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Lattice thermal conductance in nanowires at low temperatures:
Breakdown and recovery of quantization
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The quantization of lattice thermal conductamcaormalized bygozwzkéTISh (the universal quantum of
thermal conductangewas recently predicted theoretically to take an integer value over a finite range of
temperature and then observed experimentally in nanowires with catenoidal contacts. The prediction of this
guantization by Rego and Kirczend®hys. Rev. Lett.81, 232(1998] relies on a study of only dilatational
(longitudina) vibrational mode in the wires. We study the thermal conductance in catenoidal wires by explic-
itly calculating the transmission rates of the six distinct vibrational mdéms acoustic and two low-lying
optical modeps and applying the Landauer formula for the one-dimensional thermal transport in the ballistic
regime. In a temperature range similar to the one predicted by Rego and Kirczenow, we find the presence of a
plateau ing/gy. However, below this temperature rangyy, is modified—that is, the quantization is broken—
due to imperfect transmission of the acoustic modes of vibration. Our new observation is that, as temperature
goes down further, the recovery of the quantizatiorgfd, should occur. These results are found assuming
GaAs as a wire material, but we also make similar calculations for silicon nitride wires used experimentally.
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I. INTRODUCTION However, their analysis is restricted to the longituditdit

Fabricati f ded le struct h I latationa) vibrational mode only and other acoustic modes
abrication of suspended nanoscalé structures nas allowgg,ien should equally contribute to the thermal conductance

various new observations related to the_qua_ntum nature qfave not explicitly been studied. Here we remark that, in a
the thermal transport and mechanical vibratibfdn par-  catenoidal wire, the lowest four vibrational branclieslud-
ticular, the experimental observation of the quantized thermg the dilatational modeto be studied have cutoff frequen-
€ies depending on. But these cutoffs vanish in the limit of

has recently been reportédihat is, the lattice thermal con- 5106\ "So we conveniently call those four modes of vibra-

ductance becomes an integer multiple @f=7kzT/3h 515 acoustic modes.

=(9.465< 10°° W K )T the universal thermal conduc- | the present study, we investigate the transmission char-
tance quantum. This quantization has theoretically been pregcteristics of the six low-lying vibrational modeSour
dicted in a_b_allistic phonon regime by_applying the Landaueryqustic modes and two lowest optical modesich play
formula originally used for the electrical CO”dUCtaﬁCbA _ important roles in the thermal transport in catenoidal nano-
tacit assumption for this quan'qzanon is that Fhe transmissioRyires at temperatures around 1 K and consider how the re-
of heat, or thermal _phonons, in a nanowire is perfect. HOW‘suIting thermal conductancg/g, changes as the tempera-
ever, the transmission characteristics of phonons through thees decrease further. At low frequencies the transmission
nanowires crucially depends on both their shapes and conate of vibrational modes through the wires shows, in gen-
tacts between the wire and heat reservéiie heat source grg| complicated behavior including resonances and cutoffs.
and sinB, even if the scatterings of phonons inside the wiresthis means that quantization of thermal conductance relying
are neglected. In addition, the transmission rate_dep_ends ®h perfect phonon transmission should be no longer valid as
the frequency and mode of phonons, or lattice vibrations. he temperature goes down to O K, where only low-
Through their analysis of the thermal conductance fofrequency vibrations transport heat inside the wires. To con-
various contact shapes, Rego and Klrc_ze%dmwnd that a  yince ourselves of this naive expectation and also to supple-
distinct plateau develops f@/g, over a wide range of tem- ant the study of Rego and Kirczendwye calculate the
peratures if a catenoidal wire with cross-sectional area varygansmission rates of the lowest four acoustic vibrational
Ing as modes—that is, the dilatational, torsional, and two types of
A(X) = Ay cosR(X/\) (1) flexural modes—as well as two shear moc(dg optica_l
modes that are coupled to the flexural modes in the wires.
(with Ay a constantis assumed. More explicitly, they con- For this purpose we employ the Timoshenko model for vi-
sidered the wire with arectangular cross-sectional area brations of an elastic beam rather than the simpler Bernoulli-
A(x)=hl(x) with a constant thicknedsin thez direction and  Euler theory*:12 Then, either the transfer- or scattering-
a varying widthl(x)=h cosl(x/\) in the y direction. Here matrix method is applied to the numerical evaluation of the
we note that the parametemeasures the length of the wire transmission rates in the wires with varying cross-sectional
over which the cross-sectional area can be regarded to ea. The resulting transmission rates are incorporated into
uniform. Hence, we call R the effective length of the wire. the Landauer formula for the thermal conductance rgtig,
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reservoir, andt,|? is the transmission rate through the wire.
Phonon scatterings are assumed to occur only between the
ideal leads and the wire and their effects are included in the
transmission coefficiertt, The scatterings happening inside
or at the surface of the witeare not considered. Here we

Te note that some of the vibrational modes in the wire are
coupled to each other and the mode conversion occurs while
they are transmitted through the wire. Thus the sum over the

heat | ideal catenoidal wire heat transmitted modesém’ in Fig. 1) is also necessary but this
bath | lead lead | bath . . L2 o
H) can be included in the definition of the transmission (&g

(see Sec. Il
""""""""""""""""" The thermal conductancg is given by g=J/4T in the
limit T=Ty—Tc—0. Hence, alf=(Ty+T¢)/2 we have

FIG. 1. Diagram defining the heat flodvin the system consist-
ing of a catenoidal wiréthicknessh in z direction is uniform. The

wire is attached to the ideal leadabeledH andC) in which the 1 ” an(w,T) 2
g : g=2-2 | doho [t )]
wave numberk and vibrational modesn andm’ are defined. The 27 )= Jgr 'm
ideal leads are also attached to the hot and cold heat reservoirs with m
temperature§,, and T, respectively. kéTE f ” q x%e* . (kBT ) 2 3
=— X—0> —X]| |,
h <), "E@-02™ &
m

and we study its temperature dependence from the previ-
ously reported plateau regigh—0.1 K) (Refs. 3-% down to
the sub-mK region. While our calculations are develope

mainly for GaAs wires in order to compare with the theoryh e N h m h : |
of Rego and Kirczenow, we also consider them for silicon ave g=Npgo. Note thatx,=0 means that only massless

nitride wires with parameters relevant for the experiments by:c0UStic branche@, is their number contribute to the ther-
Schwabet al34 mal transport. _ _ .

In the next section, after briefly reviewing the theory of _AIthough the V|brat|0na_l equations of mothn for the wires
the lattice thermal conductance, we formulate the equation¥/th adumform cross—Sﬁctmnali area arg readily 5_’3|Ve?, tI;ese
of motion for the lowest six vibrational modes in a Catenoi-W'r:es r? not necessa_rlhyr:/vor as goo bwavehgllll es for heat
dal wire. The transmission rates of these vibrational modeg"ken the contacts wit heat VESGVVO(I YOUéJ _ead?are
through the catenoidal wire are then studied in Sec. 11l baseffKen Into account. As shown by Rego and Kirczernam
on the transfer-matrix methddnd also the scattering-matrix adiabatic contact between the thermal reservoirs and the bal-

method. We present numerical results for typical wire pa- Iistic. quantum wire qf a catenqidal shaiwith the cross-
ionaPectional area changing according to ED. gives a better

mode. With these results for the transmission rates. the caffansmission characteristic for heat transport. Unfortunately,

culation of the thermal conductance is presented in Sec. V}OWever, Rego and Kirczenow analyzed only the dilatational

In Sec. V. the characteristic behavior of the thermal conducMede of vibration and they expected that the results applied

tance obtained is discussed in terms of the various Iengtf’P S\t/her acoustll_c_rrodez ashwell. - h istic of
scales characterizing the catenoidal wire. Conclusions ar(-?1 _erllow le)_(p 'C'T[by stu ylt etorlans_mlssmn N _3rallcter|st|qo
given in Sec. VI. In Appendix A, we give explicit expres- the six low-lying vibrational modes in a catenoidal nanowire,

sions for the basic matrices needed for the transfer-matrif/Nich should contribute to the thermal transport at tempera-

formalism of each mode. The scattering-matrix formalismtres around 1 K and less.
for the transmission rates is given in Appendix B.

0where @y, is the minimum frequency of the moda and
Xm=Hhom! kg T. If we can putlt,|>=1 andx,,=0 in Eq.(3), we

A. Dilatational mode

Il. THERMAL CONDUCTANCE AND VIBRATIONAL The equation of motion for dilatation&longitudina) vi-
EQUATIONS OF MOTION brations in a wirglextending in thex direction with a vari-

. . able cross-sectional arédx) is
The Landauer formuf® applied to the heat curredtin a &)

one-dimensional dielectric wire suspended between hot and

cold heat reservoirs of temperaturBs and T¢ (Fig. 1) is>8 Pu 9 au
peratur andle (70 o0 =2 AoY | @

“ dk
3= f o> 10V m = e mlltn(%, (2
m o wherep is the mass density antu/ dx=o is the stress with
wherem denotes vibrational modes in the wikeis the wave Y the Young modulus of the wire materi@ssumed isotropic
number along the wire defined in the ideal leads attached telastically. For a wire with a uniform cross section, this

the wire, w, is the angular frequency,, is the group veloc- equation is reduced to a simple wave equation in one dimen-
ity, nym(nc,m) is the Planck distribution for the hdtold) sion:
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1 #u
v o7t2

2
ax‘;. (5)

wherev,=(Y/p)*? is the longitudinal sound velocity. How-
ever, for a catenoidal wire characterized by Eq, Eq.(4) is
written as
174
v|2 a2

2 ou

e

#u
+ [
A oX

ol (6)

This equation is known to have an outgoing-wave soldfion

U= cosh‘1<§)exp{i(kx— ot)], %)

whereu, is a constant and the wave numlkeand frequency
o should satisfy the dispersion relation

o]

Thus, a cutoff frequencyg =uv,/\ exists for this modéal-
though it vanishes fox — ). For w < wf the wave number

)

k is pure imaginary and the vibrations do not propagate’

through the wire.

B. Torsional mode

The equation of motion for the torsional mode is
~ PO a a9
(X)—=—|CX)— |,

p()o7t2 ax[ ()ﬁx]

whered is the angle of twist of the wird(x)=J(y2+Z2)dA s
the polar moment of inertia, an@(x)d0/dx=7(x) is the
torque withC(x) the torsional rigidity depending on the shear

9
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3
C(x)= %[I(x) -0.627h] (13
and Eq.(9) is reduced to
&2_0 ') 96 I +1%x) 156
Pl I(x) - 0.62 ox  4h?[I(x) - 0.627] v? 2 52"
(14)

wherev;=(G/p)*? is the transverse sound velocity. Unfortu-
nately, this equation of motion cannot be solved analytically.

If we consider the regior> \ (near the end of the wije
[(x)=h cost(x/\)>h and Eq.(14) is approximated as

(2 o-o

where we have pudxexp-iwt). [For x<-\, A should be
replaced by x in Eq. (15).] Let us subdivide the wire into
small segments in the direction and regard the cross-
sectional area as uniform in each segment—i.e., ‘rsk)
=cosi(x,/\) with x, the position of thenth segmentthis
division will be used in Sec. Il for the calculation of trans-
mission rates Then, Eq.(15) has a solutionfoexdi(kx

-ot)], where
) 2
(2]~

|

This equation can be used to estimate the cutoff frequency
w$ of the torsional mode—i.e.w$=2v,/[\ cost(x,/\)]
Thus, the cutoff frequency depends on the position of the
segment and takes the smallest value at the both ends of the
wire. Here we note that Eq15) has an extended solution

(720 206 cosh‘(x/)\)

EY NG VA (15)

axz

1

2} vz
_) N
A

cost(x,/\) i
A

4

k (16)

modulusG of the wire and on the cross-sectional properties.gy) at »=0.

If the wire has a uniform cross secti¢@(x)=C, and I(x)
—Io, with Cy andlo constantg this equation of motion again
becomes a wave equation

#0_ Co (920

10
0"t2 P| e (10

and the dispersion relation is given ky=(Cy/ pl o).
For a wire with a rectangular cross-sectional afgs)
=hl(x), we have

T(x) = %Z[rﬁ (x) +hi¥(x)] (11)

and the torsional rigidity is given by Timoshenko and

Goodier a$

(12

For the catenoidal wire we will consider—i.el(x)
=h cosH(x/\)—this expression12) is well approximated to
be

h3l(x)
3

1

5

marl (X)

=G 192h S
3,5,...

1 —
T (X) et 35,

C. Transverse modes resulting from bending motions

The Bernoulli-Euler theory applied to the bending motion
of a wire leads to the unphysical consequence that the wave
velocity increases indefinitely with increasing wave
numbert? As formulated by Timoshenko and Goodier, both
the flexural and shear motions associated with the bending of
the wire are coupled to each otHélhe equations of motion
describing the coupled flexural and shear motions lead, for a
wire with a uniform cross section, to the correct wave veloc-
ity obtained by the elasticity theory. For these coupled modes
the dynamical variables are the displacemeritansverse to
the neutral surface of the wire and the anglevhich mea-
sures the slope of the wire cross section relative toytlae
axis when the displacementis associated with the bending
in the y(z) direction. In the Bernoulli-Euler theory this angle
is the same as the slope of the centroidal amisox. But the
shearing effect introduces an additional contribution. The
equations of motion governing the displacementsind

are
&2
pA(X W_ KG(%([A(X)(%N - l//):| , (17)
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P aw} (aw ) Aw 12 '_(x>a3w 6[ (x)}
IX)— =Y—|[ I(X)— | + kKGAX)| — — ], (18 —+—tanh = |— + —| 1 +5tank| —
P10 ax[()&x KGAX)\ o ~¥) (18 PYIY N @ N2 \
where « is the shear coefficient=0.833 for a rectangular Xﬂv_ 1202 . -
cross sectiont! A(x)=hl(x), and! is the moment of inertia e e cosH‘(x/)\)W_ ' (25

of area defined byl(x)=/Z2dA=h3l(x)/12=1,x) for the o
bending in thez (the thicknessdirection withz the coordi-  Which is reduced to
nz}teZdE: m??( )n/eluztrall (sm;n}acethof t’;he d\./vire.. Sit?ilarl(ﬁ() (94w+ 12 §3W+ 36 2w . [ o ]ZW o
=[y?dA=hI*(x)/12=1,(x) for the bending in they (the Gt 3t 53 5-12 ——5 | w=0,
width) direction. axt NN ox vih cos(d/\)

For a wire with a uniform cross sectigof areaA,) these (26)
equations are reduced to

for x>N\.
Pw P ap Now, the solutiorw=w,(x) of Eq. (24) is
— =kG|—-—, (19
ot oX oX 4
w,(x) = 2 &) exp(xX), (27
| ﬁ—YI ’?2—'/’+ GAO<(?\—N—1//> (20) -
Ploge = Toge ™ K X ’ wherea; (j=1-4) are arbitrary constants,
where | (x) is also independent of and we have put(x) 1 | 2V3w [1)\2]¥?
=1,. By puttingw, #~ exfi(kx— wt)], we obtain the equation Kip=" G T (X) (28)
determining the dispersion relations in this uniform wire as '
2 4 2 2 — and
pPlow* = po?[kGAy+ (kG + Y)Iok?] + kGY lk* = 0. .
[y 2
(21 : - 1, {2"3‘%(1) ] 29
A N AT IR VA (29

The flexural mode has a frequenay that vanishes in the
long-wavelength limit(k— 0). Explicitly, the dispersion re- Thus, we estimate that there exists a cutoff frequency for this
lation of this mode is expressed as=(Ylo/pAg)*/%? for k  mode given bywf ,=v|h/2y3\%
=0. So this is an acoustic branch. In contrast, the shear Next, we consider the solution of E(26) again in a small
mode has a finite frequency &t0, which is given byw segment of the wirg€as in Sec. Il B for the torsional mogle
= wgmin= (kGA/ plg)2. This cutoff arises from the lateral where cosf(x/\) can be regarded to be constant—i.e.,
confinement of the vibration in the wire. Hence, the excita-Costf(x/\)=cosk(x,/\) with x, the position of the segment.
tion of the shear mode is related to the onset of threeThen the solutiorw=w,(x) of Eq. (26) takes the form
dimensional heat conduction in a wire. For a lakg&q. (21)
leads tow=(Y/p)Y%*k=vk and w=(xG/p)Y%k=«Y? Kk, for
the flexural and shear modes, respectively.

Here we give an approximate equation of motion for the
flexural mode valid at low frequencies obtained by neglectWhereb; (j=1-4) are constants,

4
wy(X) = 21 by exp(x)x), (30
]:

ing the coupling to the shear mode of vibrations: = 5712
3 . 2\3w 3
w__ & Fw NPT cosx/A)  \\ (3Y)
pA(X)? =- % Yl(X)W . (22) I
and
For the vibrations in the thicknegg) direction I(x)=1,(x) - S
and Eq.(22) becomegby puttingwoexp(-iwt)] Q= — 3 + [ 2V3w n <§> } (32)
3,4 - '
N [ vhcosH(x/N)  \\
4 x\Pw 2 X
PV RN tan NEREE 1+tanit N Hence, for this mode, the cutoff frequency is estimated to be
, , o ,=9vih cost(x,/\)/2y3\* and this becomes largest at
a'l i
x - lz(i) w=0, 23) both ends of the wire.
oX U|h
which is reduced to 11l. TRANSMISSION RATE
AW 4APw 4 Pw o \? It is only for the dilatational mode that an analytic solu-
Tt st 3,12 | w=0, (24) tion has been obtained for the above vibrational equations of
ax* N xS N ox vh . : ) :
motion for the catenoidal wir€ Thus, for the calculation of
for x>\. (For x<-\ we may again change to -\.) the transmission rates we need a numerical scheme. In the
For the vibrations of the catenoidal wif&qg. (1)] in the  present work, we employ the transfer-matrix method for the
width (y) directionl(x)=1,(x) and Eq.(22) becomes dilatational and torsional modésumerically stablgand the
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scattering-matrix methddfor the coupled flexural and shear the lead attached to the cold reserv0|r—|lec =0. This
modes for which the transfer-matrix method becomes nuteads to

merically unstable at high frequencig&or the scattering-

matrix method, see the Appendix )BHere, the transfer- tm=(F1)™" (37)
matrix method is also applied to the dilatational mode in

order to confirm the validity of our numerical scheme for thefor m. the d.iIaFationaI(rp: D) .and torsional rnodeSm:IT)..
transmission rates. The transmission rate is defined by the ratio of the incident

and transmitted acoustic Poynting vectors and for these two
modes it is simply given bjt,,|%. In contrast, for the coupled
A. Formulation flexural-shear modes the transmission coefficients should be
In applying the transfer-matrix method for a system with discriminated according to the incidefrh) and transmitted
varying cross-sectional area, we first subdivide the wire intdm’) modes and we denote themag,. Thus,
small segments in the longitudin@{) direction so that each
segment can be regarded to have a uniform cross-sectional Te = F_33’ Teg=- F_?»ly (38)
area. This means that in each segment, we may solve the D D
equations of motiois), (10), (19), and(20) for obtaining the
quantities needed in this scheme. Then, we apply appropriat
boundary conditiongdepending on the vibrational modat E F
each interface of the segments as described below. Tss= i Tse=- —— (39
We represent the physical variables in thibh segment, D D
which should be continuous at each interface, as a colum
vectorW,(x) and write this formally as

Ethe incident mode is the flexuréam=F), and

Rthe incident mode is the sheém=S). In these expressions
D=F;F33—F13F3;. Then, summing over the modes of the
W,(x) = M(x)b,, (339 transmitted components coupled to the incident modes, the
transmission rateft,|? of the flexural and shear modes are

whereb, is a vector consisting of the amplitudes 'ndepen'calculated as

dent of the positiorx. Explicit expressions foW,, and M,,
for each mode have been given in Appendix A. As we shall K
. . . 2_ 2 288

see below, for the dilatational and torsional modes lihe [t |® = [t +rFs|
vector consists of two components—i.bn,:(bff),bg"))t, the ke
amplitudes of the transmitte@bropagating in the » direc-  for the flexural mode and
tion) and reflectedpropagating in the x direction waves,
respectively. For the coupled flexural-shear modes, however,

- - tre? = [isg? + sl =
b, consists of four components corresponding to the trans- m=S S SH Ks
mitted and reflected components of the flexFgland shear
(S modes—i.e., bn:(b(;;,b(ﬁ)ﬂbgz,b(_z)‘. In accordance for the shear mode. It should be noted that for a given fre-
with these considerationdyl,(X) is a 2x2 matrix for the quency the wave numbeks andks of the flexural and shear

dilatational and torsional modes and & 4 matrix for the ~modes are determined by E@1) as discussed in Sec. Il C.
flexural-shear modes. Here we note that for the flexural and shear modes that

Next, we introduce the transfer matiwhich connects are coupled to each other, the transfer-matrix method for the
the amplitude vectoby,= (b’ (+) b( )tin the lead adjacent to transmission rates is stable only at low frequencies or for
the hot reservoir tioe= (b“ b( ))t in the lead adjacent to the small.wave numbers'. This is becaus_e the shear V|brat_|ons of

. the wire that are excited above certain cutoff frequencies are
cold reservoir as .
evanescent modes below these frequencies. Hence, the asso-
by =Fbc. (34 ciated vibrational amplitudes have exponentially growing
components that become too large when the products of the
transfer matrices are calculated. In this case we may use the
more sophisticated scattering-matrix method as explained in

(40)

(41)

With this matrix F the transmission rate of the vibrational
energy through the wire is calculated. Explicithy,is con-
structed in terms of the matriiM,(x) at each interface

Appendix B.
=X, as
N B. Analytic results for the dilatational mode
=0 In order to check the validity of the numerical scheme
based on the transfer-matrix meth@hd also the scattering-
H, = [M (%)M aq(%) (36) matrix method, we first apply it to the calculation of the

transmission rate of the dilatational mode and compare with
whereN is the total number of the segments in the wig, the analytical result.
=-a, andxy=a (the length of the wire is &. The transmission ratét,—p|? of the dilatational mode
In the calculation of the transmission coefficigpt we  through the catenoidal wire is obtained analytically and
can regard that only transmitted components are present given by
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FIG. 2. (a) The transmission rate versus normalized frequency
of the dilatational vibrations in a catenoidal GaAs wire. The solid
line is the analytical result and dots are calculated with the transfer-

matrix method. The parameters usedare0.86 um, d=2 um, and
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cies w satisfying
1 2a
—tan Xa=\ tan —) 46
k I‘( A (46)
for o= g and
1 2a
—tanh Zxa=2\ tanl—<—> (47)
K A

for o< wp. At a frequencyw satisfyingm < g, the transmis-
sion rate[Eq. (43)] is well described by the Lorentzian form

1
2
|tmep|” = 1+ (alwg)?" (48)
where wj=vf/(A?+B) with
s 2) oo 2) | 3] -2
A=—|tanH — | +sinll — | | + =| 1 —tanK| = | |,
2 A A 2 N
(49
B——{)\ R h(z—aﬂt r<9> (50)
= a+ > sinh = | |tanh = J.

Evidently, o=0—i.e., k=\"'—satisfies this resonance con-
dition.

C. Numerical results of transmission rates

Based on the formulas developed above, we have numeri-
cally calculated the transmission rate for each mode of vibra-

h=0.05um. vf, is the cutoff frequency of the dilatational mode. tion through the catenoidal wire. The chosen parameters for
The inset shows the definition of parameters characterizing théhe assumed GaAs wire ake=0.86 um andh=50 nm[the

catenoidal wire(the only negativex region is showhn (b) The cal-
culated transmission rates of the dilatational m¢etaid line) and
torsional mode(dotted ling in the same GaAs wire as fda). v$
denotes the cutoff frequencies of the torsional mode.

2 _ kZ_ K2 2
|trep|? = 4K2[ (ZQ cos Xa— QT sin 2ka>

Q 21-1
+ 4K2<cos Xa- m sin 2ka> , (42)
for o= wg=v,/\ and
2+ 2 _ KZ 2
|tmep|? = 4K2{(2Q cosh Xa- Lre-K sinh 2;<a)
K
Q 21-1
+ 4K2(cosh %a-— sinh 2;<a) , (43)
K
for o< wg. In these expressions
Q=\"1tanha/\), (44)
w? = v K2 = uf[K% + (1N = v~ K2+ (1N)?],  (45)

and k=ik.

minimum cross-sectional area at the center of the wire is
thus Aj=A(x=0)=h?=50% 50 nnt], and the largest width
at the ends of the wire id=2 um. Thus, the length of the
wire is 2a=2\ In[Vd/h+\d/h-1]=4.34 um. Also Y=1.20

X 102 dyncm? and G=4.86x 10" dyncni? with p
=5.36 g cm?, giving v,=4.73x10°cms*! and »,=3.01

X 10° cm s,

Although the flexural-shear modes are coupled vibrations,
we can conveniently regard them as separated flexural and
shear modes as far as their transmission characteristics are
concerned. It is only above a certain cutoff frequency
=wsmin defined below(numerically wgmi,=30.4 GHz with
the above parametgrshat these shear modes are excited
effectively and their transmission probabilities become finite.

1. Dilatational mode

In order to check the validity of our numerical results, we
show in Fig. 2a) the analytically calculated transmission rate
[Egs.(42) and(43)] and the one calculated with the transfer-
matrix method. In applying the transfer-matrix scheme, the
number of divisions for the wire we have used are of the
order of 1@, for which the stability of the results has been
confirmed. We see that the coincidence is excellent and thus
we believe that our formulation for the transmission rates

From Egs. (42 and (43) the resonant transmissions based on the transfer-matrix meth@uhd also the scattering-
[[tm=pl?=1 seen in Fig. @)] are found to occur at frequen- matrix method for the coupled flexural and shear mpdes

205308-6



LATTICE THERMAL CONDUCTANCE IN NANOWIRES AT... PHYSICAL REVIEW B 71, 205308(2005

quite convirclcing. Incidentally, the magnitude of the cutoff L0 Ve, -
frequencywg=v,/\ for the dilatational mode is 0.88 GHz R A Y A R
for the GaA% wire withh =0.86 um. 0.3 i
] ‘Qa" shear —
2. Torsional mode %‘ 0.6 ~— flexural v i
In Fig. 2(b) we see that the transmission rate of the tor- z 10
sional mode exhibits similar behavior as the dilatational g 04 f / -
mode; that is, a dip in transmission is seen below about § osf .
0.8 GHz. However, the cutoff of the transmission is not as = 02F [ / Voo T
sharp as the case of the dilatational mode. We have also (@) % 0 A
repeated the same calculation with the scattering-matrix e e T
method and have checked the exact coincidence of the trans- )
mission rates obtained by these different two methods. Frequency (GHz)
The presence of the cutoff frequency for this mode is L0 - F

expected by the presence of the term proportionabf@x in ey —— 1T
Eq. (14), which induces the damping in transmission. How- 0.8l ; N
ever, the prefactofh?(x)+13(x)]/4h%[1(x)-0.627h] on the £ .
right-hand side of Eq(14) suggests that the cutoff frequency i 0.6l : i
for this mode depends on the position of the segments in the % ;
wire assumed. According to the approximation developed in g 0.4 ! -
Sec. II B, the minimum cutoff frequency is given by putting g :
X,=\ in the expressiom$=2v,/\ costt(x,/\) and we have & 02r  flexural—|: U -
o} min=0.028 GHz. If we extrapolate this expression up to JU
the center of the wire, the maximum value of the cutoff 0.0 0.01 o 1' T 10
frequency is roughly estimated to b§ ,,,=0.79 GHz. This ' ) Vs, min

. . . Frequency (GHz
range of frequencies betwees .. and w7 .., is shown in qency (GHz)

Fig. 2b). The cutoff of this mode is, thus, not as sharp as for |G 3. The calculated transmission rates of the coupled flexural

the dilatational mode. (thin line) and shearbold line) mode(a) in the thickness direction
) ) o and(b) in the width direction in the same GaAs wire as for Fig. 1.
3. Flexural modes (thickness and width directions) vg, andif , (1§, and1g) are the cutoff frequencies of the flexural

For the flexural vibrations in the thickness directitm (sheay modes in the thickness and width directions, respectively.
direction, the transmission rate does not show any cleafrhe inset of(a) shows the transmission _rqtes in the frequenpy range
structure and stays almost at unity down to about 0.05 GH'here the shear mode rates become finite. The thin(bogl line)
as seen in Fig. @). This is because it is assumed that thelS the shear mode in the_th|ckness dwecnjmn_the W|dth d_lrect_lom.
thickness is uniform in the wire. The estimated cutoff fre-The rates of four acoustic modes are practically unity in this range.
quency for this mode is»ﬁyz=v|h/2\s“§)\2=0.015 GHz[see Vsmin is the threshold frequency of the shear modes.

Sec. 11 C.

In contrast, the width of the wirdin the y direction  |(X)=h%(x)/12. Thus, this value is independent of the posi-
changes according tacosH(x/\). Thus the transmission tion x of the wire and the shear mode is excited only for
rate of the flexural vibrations in the width direction is @= @smin @ shown in Fig. @&).
strongly frequency dependent and exhibits rich structure at
low frequencies where the transmission is suppressed both 5. Shear mode (width direction)
for the dilatational and torsional modes. The cutoff frequency For the shear mode in the width direction, howevéx)
estimated for this mode depe_nds on the position of the seg-n|(x)3/12 and the corresponding  cutoff iSwgy
mentog , =9ujh cost(x,/\)/2V3\? [see Sec. Il ¢ The larg-  =[124G/pl(x)221(x)%. This means that the cutoff fre-
est value is 5.2 GHz and the lowest value is roughlyguencyw, depends again on the position in the wire and
0.13 GHz. Within this frequency range indicated in Fih)3  takes the maximum value equaldgn, (dot in Fig. 3 at the
we see several resonant peaks in transmission but unfortidanterx=0. The frequencys, becomes smaller as the po-
nately no analytical formula for these resonance frequenciesition x of the wire shifts from the center and takes the mini-
has so far been derived. mum valuewsm,/40=0.83 GHz[solid square in Fig. ®)]
at the both ends of the wire becaukg=a)/h=d/h=40.
Thus the transmission rate takes finite values at frequencies

The finite transmission of the shear modes starts at &= wg,;,/40 as shown in Fig. ®) and becomes unity at
frequency aroundvsmin=30.4 GHz. The frequency depen- frequenciesw > wsmi, for which the shear mode is excited
dence of the transmission for the shear mode in the thicknesompletely.
direction is very simple. The sharp rise in transmission is The behavior of the transmission rate in between
due to the fact that the cutoff frequency of this mode isws/40 and wgp, is understood as follows: Fom
given by w&,=(kGA/pl)2=(12«G/ph?)?=wgmin With = wsmin/40 the incident shear mode coming from the ideal

4. Shear mode (thickness direction)
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lead excites the shear mode only near the entrance of the 7 prr— @
wire but this mode cannot be transmitted through the center | e torsional
of the wire. The transmission is possible only via mode con-
version into the flexural mode. This rate of the mode conver-
sion should be large near the entrance where the shape of the
wire changes rapidly. As the frequency increases the mode
conversion into the flexural mode occurs near the center of
the wire. However, the rate for this mode conversion to hap-
pen is small in the region where the width of the wire is
almost uniform. We have numerically checked these charac-
teristics of the mode conversion by changing the parameter
determining the profile of the wire. Ab=ws i, the mode
conversion becomes irrelevant because the shear mode can
be excited in the whole region of the wire. Accordingly, the
gradual increase of the transmission rate seen for the shear
vibrations in the width directiofinset of Fig. 3a)] is quali-
tatively the same phenomenon as the one seen for the tor-
sional mode.

— bending

2(Mgy

10" 10° 102 10" 10° 10'
Temperature (K)

IV. THERMAL CONDUCTANCE

(T)/go

With the transmission rates obtained in the preceding sec-
tion, we have calculated the thermal conductarmcdor
catenoidal wires of GaAs with various. An example for
A=9.2 um is illustrated in Fig. 4a). The contribution of
each vibrational mode is shown in the inset. We see the pres-
ence of three plateaus in the temperature rangé -1 K.

The plateau ag/gy=4 (T=0.02—-0.2 K corresponds to the
one studied theoretically by Rego and Kirczenow for GaAs FIG. 4. (a) Calculated thermal conductangénormalized by the
wires® and also observed experimentally by Schweéhbl.for  quantum of thermal conductangg= m2k2T/3h) versus temperature
silicon nitride wires>* Below this range of temperatures for a GaAs catenoidal wire with=9.2 um, d=2 um, and h
g/go decreases from 4 because the overlapping of the phe=0.05um. The inset shows the contributions of the dilatational
non distribution functioniwon(w,T)/JT [Eq. (3)] with the ~ mode(bold solid ling, torsional modédotted ling, and the coupled
dips in transmission for three acoustic modes except for théexural-shear mode&lenoted conveniently as bending modis
flexural vibration in the thickness direction becomes apprelhe thickness directio(dashed Iin}aand in the width directiomthin
ciable. solid line). (b) g/g, for the catenoidal wires with various magnitude

Another plateau ag/g,=6 seen at higher temperatures is f A—i.€., A=9.2um (dots, A=4.6 um (squares A=0.86um
due to the excitation of shear modes of vibrations. Abovetriangles, and A=0.2um (open circles The wire widthsd
about these temperatures additional optical modes of vibrg=2 #Mm andh=0.05um are the same a&). For Ty, Ty, and T
tion with higher cutoff frequencié® would be excited and "dicated in(a), see the text.

contribute to the heat conduction in the witwe have not  and the torsional mode stay unity and zero, respectively. The

added the contribution of these mogleldence, this plateau reason for the recovery of the quantized thermal conductance

will be seen only when the higher optical phonon branchesf the dilatational mode is the presence of the resonant trans-

are well separated from the shear mode frequengy,. mission atw=0 [Eq. (48)].

Blencowe discussed that the broad nature of the Planckian Figure 4b) further displaysg/g, calculated for three

distributionn(w, T) should wash out the steps except for theother values of\ together with the one fok=9.2 um. The

one at the lowest temperatielhus the increase af/g,  plateau region at/gy=4 is developed only for wires with

from the plateau value 4 at a 1-K region is the indication oflarge\—that is, for the wires with a sufficiently large length

the onset of three-dimensional thermal conduction. in which the cross-sectional area is regarded to be uniform.
An interesting new observation is the recoverygiyy,  No plateau agy/gy=4 is recognizable at all for the wire with

seen at very low temperature after the breakdown of thé=0.2 um. However, for this wire the presence of a dip in

guantization ofg/gy=4. In particular, an apparent plateau g/go(~1) is seen at temperatures for which the lower edge

with nonintegral value ofy/g, is seen for the wire witlh  of the plateaug/gy,=4 exists for the wire witth=9.2 um.

=9.2 um below 1 mK. As we see in the inset of Figi@}  This normalized conductance then increases towaydg

this plateau appears as the temperature decreases due to ## as the temperature decreases towards 0 K.

balance of the increasing and decreasing contributions of For comparison with the experimental observation of the

both the dilatational and flexurdin the width direction  plateau ing/ gy, we have also carried out the calculation of

modes to the conductance. At these temperati@gesept for  the conductance for silicon nitride wires with the maximum

T—0) g/go for the flexural mode in the thickness direction and minimum widths 4um (=d) and 0.2um (=6), respec-

10* 107 107 107 10° 10'
Temperature (K)
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SO L L tained by puttingA,=h and A,=\, respectively. The third

oF ,'/ characteristic temperature is defined ByTo=7fwy/kg
E g0 / - ] =hv exp(—=2a/\)/kg\, wherewy is up to a numerical factor
5_§c oo of the order of unity, equivalent to the one appearing in Eq.
e o el E (48) for the dilatational mode if the condition ef¢Pa/\)
3 E <exp(2a/\) is satisfied.

[ ot
4F o0 10

u‘;;";‘;‘;m T = Among these temperaturep, defines the temperature at
which the crossover between the three- and one-dimensional
thermal conductions occurs. Far<T,, the wavelength of
thermal phonons becomes longer than the width of the wire
and the heat conduction is essentially that for the one-
dimensional system. Thus, in this temperature region the
—— 1 quantization ofg—i.e., the plateau ig/gy—is expected to
E develop if the transmission of the relevant vibrational modes
” ” = I — is perfect. This plateau only persists, however, as long.as
10 10 10 10 10 10 is much shorter than the effective length of the wire—i.e.,
Temperature (K) Apn<\. Hence, the plateau may be well observed only under
the conditionh< Ay, <\ or T,<T<T, in the temperature
guantum of thermal conductang@=ﬂ2k§Tl3h) versus temperature dpmam. Al t.emperature§<Tb the p_Iateau should be mod|-
for catenoidal silicon nitride wires withh=1 um (circles, X\ fied or, lequ'valently' the quantization br_eak,S down in gen-
=3 um (triangles, and\=5 um (squares For other parameters of €'al- This clearly occurs as we can see in Fig. 4.
the wires, see the text. The inset shows the log-log plot which ~The last temperaturg, gives a representative temperature

compares the experimental data by Schveatal. (dotg with the @t which the recovery of the quantization occurs. This is
theoretical results fok=1 um (circles. explicitly seen in the dilatational mode. The sharp rise in the

transmission ratéup to unity) nearo=0 (Fig. 2) is the reso-
nance and the transmission rate is expressed by the Lorent-

culated temperature dependences are shown in Fig. 5. THED form of Eq.(48) with the width . Similar but nar-

effective wire length corresponding to the experiment by;?:vgﬁgtréagsorg;s'weﬁsskzt 31(;0 Ig\:\? tzﬁoesr:teur;efso:‘o(r)t\r/]virich
Schwabet al. is 2\=2 um and the plateau is observed for ’ ' y P

0.1-1 K as shown in the inset. However, for this value\of the phonon energy distributiofiwin(w, T)/JT is well con-

the plateau does not develop in the calculated temperatu 2_?_ |r1z|de th'f. ft‘?s"”";}r;; aﬁak 'T traansr?ssmngl.ela
dependence df/ g, but instead continues to decrease as th% o—the quantization ot the thermal conductance shou

temperature goes dow(if we display the calculated/g, in € re_covgred. Actually, the recovering temperature of th?
logarithmic scale rather than linear scale the coincidencgtantization depends on the vibrational modes through their

with the experimental data is apparently good for the tem_characterlstlc resonant transmission profiles nea0. As

perature range 0.1-1 KTheoretically, a reason is that the we see in the ins_et qf Fi_g.(a), the recove_ring temperature in
cutoff frequencies of the three of four acoustic modes exceptéqe catenqdal wire is highest for the dilatational m_ode._

for the flexural vibration in the thickness direction are not Numerically, those three temperatures for the dilatational
fully separated from the onset frequency of the shear mode inode are1'024 K, Tb:0.0_Z K, and TO:_0'14 mK, for h

the width directionef, ;= (12xG/pd?)¥?=(126)"2,/ 6. Nu- 20 "M, A=9.2um, anda=26.5um (d=2 um), and are
merically, wg ;=16.7 GHz andwj=v,/\=1.60 GHz, for in- |tnd|cated ml F'?' 4a). At IT_Tb ?nd To thle eﬁpgctbecli tra?hsr
stance.(Note thatw§,,;;=30.4 GHz andwp=0.88 GHz for lons are clearly ffehn'hn clon radl |_560_ca ed. edowH €
the GaAs wire withh=0.86 um.) This is also related to the temperature at which the p ateayA_gO— 'S attained. Here
fact that the minimum width$=0.2 um at the center of the we note t_hat apart from a numerical factor of the order of
silicon nitride wire fabricated for the experiment is not smallumty’ Te is essentially equal to the onset temperatlige

enough compared with the wire parameter1 um. This :ft(lfl)smin/tli(le:::ﬁGE of :T/?bfrliear: m(r)lgeth ;rhlfzirt:ene;(cr'ltﬁt;?”t
point will be also discussed in the next section. ot the optical modes o ations a ce ensionaihea

conduction is physically equivalent. This means that our
analysis including only lowest two shear modes is not reli-
able forT>T,. Blencowe has calculated the temperature de-
pendence of/g, in both sides ofT,. for wires with uniform,

In a catenoidal wire there exist three characteristic lengthsectangular cross sections. He found that there exists no step-
h, A, anda. Corresponding to the sizes of these lengths, wdike feature except for the plateay/g,=4 atT— 0.5 How-
can define three characteristic temperatures. Two of them aeever, there still exists an expectation that the plateau at
readily defined with the relatiom=2nAv/kgAy, which con-  g/gy=6 can be observed. This will happen if the wire is
nects the wavelength of dominant thermal phondgsand  designed so that a gap of an appropriate magnitude may exist
temperaturdl, wherev is an appropriate sound velociffso  in between the lowest two shear mode branches we have
these temperatures depend also on the vibrational mBde. considered and the next lowest optical branch in the wire.
plicitly, T=T,=2whv/kgh and T=T,=2n7%v/kg\ are ob- The vibrational frequencies in such wires can be studied with

[
Temperat

A=lum

FIG. 5. Calculated thermal conductanggnormalized by the

tively, and with the uniform thickness 60 n(sh).” The cal-

V. DISCUSSION
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a resonant ultrasound spectroscopy method by Visscher ACKNOWLEDGMENTS
et al, for examplet®

Finally, we remark on the fact that the wires composed of
softer materials are more appropriate to observe the quanﬁ]—1

zation of thermal conductance. According to the discussiorlln'Ald for Scientific Research from the Ministry of Educa-

given above, the temperature range where the quantization fipn, Science and Culture of Jap&Grant Nos. 09640385
thermal conductancéor plateali is expected to appear is and 1671009y
AT=T,-T,. Since bothrl, andT, are proportional to velocity

v, the width of this rang@T is also proportional to andAT

4(a), the width of the plateau is actually smaller thA {1\ (x) and matrixM,, needed to define the transfer matrix

because al =T, optical modes are already excited; that is, for the calculation of the transmission rate of each vibra-
the three-dimensional conduction has started at a temperatufg a1 mode.

below T.. This means thatf,, (the lower edge of the plateau

is more important to observe the quantization effect. For
softer materials with loweT, the plateau irg/gy should be
developed more extensively than that for harder materials. For the dilatational mod&V,(x) is chosen as

This is indeed recognized by comparing Fig.(g/go in

GaAs wire$ with Fig. 5(g/gp in silicon nitride wires. For a W, (%) = (un(x) ) (A1)
softer GaAs wire witlh=4.6 um the plateau develops more Pn(X)

clearly than that for a wire of harder silicon nitride with wherep, is the pressure in theth segment and this pressure

We thank M. Blencowe for helpful comments on the

APPENDIX A

1. Dilatational mode

A=5 um. is obtained from the equatiop(x)=A(x)o(x) =A(X)Ydu/ ox.
The matrixM,, is
VI. CONCLUSIONS ~ explik,X) exp(— ikyX)
In the present study we have investigated the thermal con- "k, YA, explikx) =ik YA, exp(—ik.x) /'

ductance in catenoidal wires of nanoscale dimensions by ex-
g ; L . . (A2)

plicitly calculating the transmission rates of the low-lying six

vibrational modes(four acoustic modes and two optical where k,=k=w/v, and A, are the wave number and the

mode$ that contribute to the heat transport at low tempera<cross-sectional area in tinth segment, respectively.

tures. As far as the platedat g/gy=4) associated with the

universal quantized thermal conductance is concerned, three 2 Torsional mode

acoustic modegother than the dilatational moygeot studied

by Rego and Kirczenow contribute similarly to realize

g/go=4 over an appreciable range of temperature, although 0,(X)

the details are quite different depending on the mode. We W, (X) :< " )

have also considered how the quantization of the conduc- (X)

tance ch:mtghes i_f;hcategoﬁ?" Wireds as the terp?heratured d@herer(x) is the torque defined with the torsional rigidify

creases further. The reduction and recovery of the condu = i ie gi

tance relative to the universal thermal quantum are predicteco?y X =Cx)a6/ax. The matrixMy is given by

They happen owing to the imperfect transmission of thermal B exp(ikx) exp(— ikpX)

energies due to the presence of cutoff frequencies for the " \ik,C, explikx) —ik,C, exp(—ik.x)

acoustic vibrational modes in catenoidal wires and also the y _

presence of resonances at zero frequency. wherek,=(C,/pl,) *?w and| is the polar moment of inertia
Our calculation indicates that the plateaw#étj,=4 is not  [Eq. (11)] in the nth segment.

well developed for the silicon nitride wirévith A=1 um)

used in the experiment. The wire we assumed is symmetric 3. Flexural-shear mode

with respect tox=0 (the narrowest positignalong the heat ]

flow direction. We have also calculated the transmission rate FOr the flexural-shear modé/(x) is a four-component

of the dilatational mode by introducing some asymmetry ay€ctor—i.e.,

in the experimental phonon device by Schwetbal>* No

For the torsional mod&V,(x) is chosen as

(A3)

) , (Ad)

large effect which may change the above result has been We(X)
recognized. The plateau region is, however, predicted to be- _| S
: : Wi(x) = ; (AS5)
come broader as the length of the wire becomes longer. So it Pn(X)
would be interesting to measure the thermal conductance by 1n(X)

changing the wire length. The theoretical search for the

shape of quantum wires which allows the quantization of thevhere S(x) is the shear stress defined by(x)
thermal conductance for a wider range of temperatures kGA(X)[ow/dx—(x)] andu(x) is the bending moment de-
would also be important. fined by u(x)=YI(x)dy/ 9x. The matrixM,, is given by
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My;(x) exp(ikVx) o h A
Ma;(X) GrA(ikY - ¢)explikx) " \h h
Mn(X) — 2j — (rj) n' 0 n 21 22
M;(x) ¢n’ expliky’x) Next we introduce the matrix
M_;(X) ikDY I, explikx) ORRG)
(Sll S12)
(j=1-9, 5 s

where ¢ is the ratio betweeny andw, andk() are given by &t €ach interfac&=x,, which is defined by

the solutions of Eq(21) (for a given w) with Iy and A, bg:;-)l sn s bff)
replaced byl,, and A, 5= - (B3)
ey o) =\ o) e
APPENDIX B: SCATTERING MATRIX METHOD With the elements oHn, the matrixsn is represented by
The transfer matrix connects the waves in one end to the _ (”)[h 21 1h(”> [h(znz)]‘l
other end of the system. So, if there exist waves which vary B [hzz] th [h(znz)]—l (B4)

exponentially with distance, the numerical scheme with the
transfer-matrix method becomes unstable, in general. In oHence, it is convenient to define the combination law which
der to avoid this numerical instability we can use the scatterconstructs the matri>s in terms ofs, and s,,; as S=s,.;
ing matrix (F) which connects the amplitude vectof, as- ®S—-€
sociated with the incoming waves in the leads attached to the b, (Su Sw b
hot (H) and cold(C) reservoirs to the onb,,, for the out- )

. . ) = by )\ S/ \b)
going waves in the Ieads—l.e.bout—Fbin, where by
—(b<+),b( Nt and bm—(b(” b( )t for the longitudinal or tor- In this combination law the matrix elements $fare given
sional mode and bout—(b(;)c,bg():,b(FL,b( Mt oand b, oY
—(bFH,bgH,b(FC, S‘é)‘ for the flexural and shear modes. S11=[Snet ® Spli1 = SU[1 - sTsH DD (B6)
(The notations are the same as for the transfer-matrix method
developed in Sec. Ill A.In the calculation of the transmis- g, =[5 .. ®s];,= S 4 S — 1D
sion coefficient,, we can assume that only transmitted com- 87
ponents exist in the lead attached to the cold resefead., (B7)

bl'=0). Thus, we can get,=F;;,=b\’/b'}’ for m, the dila-

(B5)

n) (n) n+1> (n)7-1 (n+1 (n)
tat|onal and torsional modes. For the Coupled flexural-shear 17 (81 @ Sl = 551 + (1 - Sip] S s,
modes the transmission coefficients are given by (B8)
ter =bEWBEL =Fry,  tes=bSUBE, =F,  (BY) S50=[S1® Sul2o=Soa[1 -0y VST sy Y. (BY)
if the incident mode is flexure(lbgH=0) and Using the above procedures recursively, we can obtain the

~ scattering matri¥=, which is given by
tsp= bgz:/bglzl =F1p tss= bsc/b ¢\ =F,n (B2

if the incident mode is shedb{"),=0). Felllo®s]es]e -los. (B10)

The procedure for obtaining the scattering matrix is the Thus, in the scattering-matrix method, the relevant matrix
following. (Though we here consider the scattering matrixelements correspond to the transmission or reflection coeffi-
composed of a X2 matrix, the generalization to @mXm  cients at each recursive stadegs.(B1) and(B2)] and there
matrix is straightforward. First we write the matrixH,, in is no numerical instability even if waves with exponentially
Eq. (36) as increasing and/or decreasing components afise.
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