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The quantization of lattice thermal conductanceg normalized byg0=p2kB
2T/3h sthe universal quantum of

thermal conductanced was recently predicted theoretically to take an integer value over a finite range of
temperature and then observed experimentally in nanowires with catenoidal contacts. The prediction of this
quantization by Rego and KirczenowfPhys. Rev. Lett.81, 232 s1998dg relies on a study of only dilatational
slongitudinald vibrational mode in the wires. We study the thermal conductance in catenoidal wires by explic-
itly calculating the transmission rates of the six distinct vibrational modessfour acoustic and two low-lying
optical modesd and applying the Landauer formula for the one-dimensional thermal transport in the ballistic
regime. In a temperature range similar to the one predicted by Rego and Kirczenow, we find the presence of a
plateau ing/g0. However, below this temperature rangeg/g0 is modified—that is, the quantization is broken—
due to imperfect transmission of the acoustic modes of vibration. Our new observation is that, as temperature
goes down further, the recovery of the quantization ofg/g0 should occur. These results are found assuming
GaAs as a wire material, but we also make similar calculations for silicon nitride wires used experimentally.
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I. INTRODUCTION

Fabrication of suspended nanoscale structures has allowed
various new observations related to the quantum nature of
the thermal transport and mechanical vibrations.1,2 In par-
ticular, the experimental observation of the quantized ther-
mal conductance in dielectric nanowires of catenoidal shape
has recently been reported;3,4 that is, the lattice thermal con-
ductance becomes an integer multiple ofg0=p2kB

2T/3h
=s9.465310−13 W K−2d T, the universal thermal conduc-
tance quantum. This quantization has theoretically been pre-
dicted in a ballistic phonon regime by applying the Landauer
formula originally used for the electrical conductance.5–7 A
tacit assumption for this quantization is that the transmission
of heat, or thermal phonons, in a nanowire is perfect. How-
ever, the transmission characteristics of phonons through the
nanowires crucially depends on both their shapes and con-
tacts between the wire and heat reservoirssthe heat source
and sinkd, even if the scatterings of phonons inside the wires
are neglected. In addition, the transmission rate depends on
the frequency and mode of phonons, or lattice vibrations.

Through their analysis of the thermal conductance for
various contact shapes, Rego and Kirczenow5 found that a
distinct plateau develops forg/g0 over a wide range of tem-
peratures if a catenoidal wire with cross-sectional area vary-
ing as

Asxd = A0 cosh2sx/ld s1d

swith A0 a constantd is assumed. More explicitly, they con-
sidered the wire with arectangular cross-sectional area
Asxd=hlsxd with a constant thicknessh in thez direction and
a varying widthlsxd=h cosh2sx/ld in the y direction. Here
we note that the parameterl measures the length of the wire
over which the cross-sectional area can be regarded to be
uniform. Hence, we call 2l the effective length of the wire.

However, their analysis is restricted to the longitudinalsdi-
latationald vibrational mode only and other acoustic modes
which should equally contribute to the thermal conductance
have not explicitly been studied. Here we remark that, in a
catenoidal wire, the lowest four vibrational branchessinclud-
ing the dilatational moded to be studied have cutoff frequen-
cies depending onl. But these cutoffs vanish in the limit of
largel. So we conveniently call those four modes of vibra-
tions acoustic modes.

In the present study, we investigate the transmission char-
acteristics of the six low-lying vibrational modessfour
acoustic modes and two lowest optical modesd which play
important roles in the thermal transport in catenoidal nano-
wires at temperatures around 1 K and consider how the re-
sulting thermal conductanceg/g0 changes as the tempera-
tures decrease further. At low frequencies the transmission
rate of vibrational modes through the wires shows, in gen-
eral, complicated behavior including resonances and cutoffs.
This means that quantization of thermal conductance relying
on perfect phonon transmission should be no longer valid as
the temperature goes down to 0 K, where only low-
frequency vibrations transport heat inside the wires. To con-
vince ourselves of this naive expectation and also to supple-
ment the study of Rego and Kirczenow,5 we calculate the
transmission rates of the lowest four acoustic vibrational
modes—that is, the dilatational, torsional, and two types of
flexural modes—as well as two shear modessthe optical
modesd that are coupled to the flexural modes in the wires.
For this purpose we employ the Timoshenko model for vi-
brations of an elastic beam rather than the simpler Bernoulli-
Euler theory.11,12 Then, either the transfer- or scattering-
matrix method is applied to the numerical evaluation of the
transmission rates in the wires with varying cross-sectional
area. The resulting transmission rates are incorporated into
the Landauer formula for the thermal conductance ratiog/g0
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and we study its temperature dependence from the previ-
ously reported plateau regions1–0.1 Kd sRefs. 3–5d down to
the sub-mK region. While our calculations are developed
mainly for GaAs wires in order to compare with the theory
of Rego and Kirczenow, we also consider them for silicon
nitride wires with parameters relevant for the experiments by
Schwabet al.3,4

In the next section, after briefly reviewing the theory of
the lattice thermal conductance, we formulate the equations
of motion for the lowest six vibrational modes in a catenoi-
dal wire. The transmission rates of these vibrational modes
through the catenoidal wire are then studied in Sec. III based
on the transfer-matrix methodsand also the scattering-matrix
methodd. We present numerical results for typical wire pa-
rameters as well as analytical results for the dilatational
mode. With these results for the transmission rates, the cal-
culation of the thermal conductance is presented in Sec. IV.
In Sec. V, the characteristic behavior of the thermal conduc-
tance obtained is discussed in terms of the various length
scales characterizing the catenoidal wire. Conclusions are
given in Sec. VI. In Appendix A, we give explicit expres-
sions for the basic matrices needed for the transfer-matrix
formalism of each mode. The scattering-matrix formalism
for the transmission rates is given in Appendix B.

II. THERMAL CONDUCTANCE AND VIBRATIONAL
EQUATIONS OF MOTION

The Landauer formula8,9 applied to the heat currentJ in a
one-dimensional dielectric wire suspended between hot and
cold heat reservoirs of temperaturesTH andTC sFig. 1d is5,6

J = o
m
E

0

` dk

2p
"vmskdVmskdfnH,m − nC,mgutmskdu2, s2d

wherem denotes vibrational modes in the wire,k is the wave
number along the wire defined in the ideal leads attached to
the wire,vm is the angular frequency,Vm is the group veloc-
ity, nH,msnC,md is the Planck distribution for the hotscoldd

reservoir, andutmu2 is the transmission rate through the wire.
Phonon scatterings are assumed to occur only between the
ideal leads and the wire and their effects are included in the
transmission coefficienttm. The scatterings happening inside
or at the surface of the wire10 are not considered. Here we
note that some of the vibrational modes in the wire are
coupled to each other and the mode conversion occurs while
they are transmitted through the wire. Thus the sum over the
transmitted modessm8 in Fig. 1d is also necessary but this
can be included in the definition of the transmission rateutmu2
ssee Sec. IIId.

The thermal conductanceg is given by g=J/dT in the
limit dT=TH−TC→0. Hence, atT=sTH+TCd /2 we have

g =
1

2p
o
m
E

ṽm

`

dv "v
]nsv,Td

]T
utmsvdu2

=
kB

2T

h
o
m
E

xm

`

dx
x2ex

sex − 1d2UtmSkBT

"
xDU2

, s3d

where ṽm is the minimum frequency of the modem and
xm="ṽm/kBT. If we can pututmu2=1 andxm=0 in Eq.s3d, we
have g=Nacg0. Note thatxm=0 means that only massless
acoustic branchessNac is their numberd contribute to the ther-
mal transport.

Although the vibrational equations of motion for the wires
with a uniform cross-sectional area are readily solved, these
wires do not necessarily work as good waveguides for heat
when the contacts with heat reservoirssthrough leadsd are
taken into account. As shown by Rego and Kirczenow,5 an
adiabatic contact between the thermal reservoirs and the bal-
listic quantum wire of a catenoidal shapefwith the cross-
sectional area changing according to Eq.s1dg gives a better
transmission characteristic for heat transport. Unfortunately,
however, Rego and Kirczenow analyzed only the dilatational
mode of vibration and they expected that the results applied
to other acoustic modes as well.

We now explicitly study the transmission characteristic of
the six low-lying vibrational modes in a catenoidal nanowire,
which should contribute to the thermal transport at tempera-
tures around 1 K and less.

A. Dilatational mode

The equation of motion for dilatationalslongitudinald vi-
brations in a wiresextending in thex directiond with a vari-
able cross-sectional areaAsxd is

rAsxd
]2u

]t2
=

]

]x
FAsxdY

]u

]x
G , s4d

wherer is the mass density andY]u/]x=s is the stress with
Y the Young modulus of the wire materialsassumed isotropic
elasticallyd. For a wire with a uniform cross section, this
equation is reduced to a simple wave equation in one dimen-
sion:

FIG. 1. Diagram defining the heat flowJ in the system consist-
ing of a catenoidal wiresthicknessh in z direction is uniformd. The
wire is attached to the ideal leadsslabeledH andCd in which the
wave numberk and vibrational modesm and m8 are defined. The
ideal leads are also attached to the hot and cold heat reservoirs with
temperaturesTH andTC, respectively.
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1

vl
2

]2u

]t2
=

]2u

]x2 , s5d

wherevl =sY/rd1/2 is the longitudinal sound velocity. How-
ever, for a catenoidal wire characterized by Eq.s1d, Eq.s4d is
written as

1

vl
2

]2u

]t2
=

2

l
tanhS x

l
D ]u

]x
+

]2u

]x2 . s6d

This equation is known to have an outgoing-wave solution13

u = u0 cosh−1S x

l
Dexpfiskx− vtdg, s7d

whereu0 is a constant and the wave numberk and frequency
v should satisfy the dispersion relation

v2 = vl
2Fk2 + S1

l
D2G . s8d

Thus, a cutoff frequencyvD
c ;vl /l exists for this modesal-

though it vanishes forl→`d. For v,vD
c the wave number

k is pure imaginary and the vibrations do not propagate
through the wire.

B. Torsional mode

The equation of motion for the torsional mode is

rĨsxd
]2u

]t2
=

]

]x
FCsxd

]u

]x
G , s9d

whereu is the angle of twist of the wire,Ĩsxd=esy2+z2ddA is
the polar moment of inertia, andCsxd]u /]x=tsxd is the
torque withCsxd the torsional rigidity depending on the shear
modulusG of the wire and on the cross-sectional properties.

If the wire has a uniform cross sectionfCsxd=C0 and Ĩsxd
= Ĩ0, with C0 and Ĩ0 constantsg, this equation of motion again
becomes a wave equation

]2u

]t2
=

C0

rĨ0

]2u

]x2 , s10d

and the dispersion relation is given byv=sC0/rĨ0d1/2k.
For a wire with a rectangular cross-sectional areaAsxd

=hlsxd, we have

Ĩsxd =
1

12
fh3lsxd + hl3sxdg s11d

and the torsional rigidity is given by Timoshenko and
Goodier as11

Csxd = G
h3lsxd

3 H1 −
192h

p5lsxd o
m=1,3,5,. . .

`
1

m5 tanhFmplsxd
h

GJ .

s12d

For the catenoidal wire we will consider—i.e.,lsxd
=h cosh2sx/ld—this expressions12d is well approximated to
be

Csxd =
Gh3

3
flsxd − 0.627hg s13d

and Eq.s9d is reduced to

]2u

]x2 +
l8sxd

lsxd − 0.627h

]u

]x
=

h2lsxd + l3sxd
4h2flsxd − 0.627hg

1

vt
2

]2u

]t2
,

s14d

wherevt=sG/rd1/2 is the transverse sound velocity. Unfortu-
nately, this equation of motion cannot be solved analytically.

If we consider the regionx@l snear the end of the wired,
lsxd=h cosh2sx/ld@h and Eq.s14d is approximated as

]2u

]x2 +
2

l

]u

]x
+

cosh4sx/ld
4

Sv

vt
D2

u = 0, s15d

where we have putu~exps−ivtd. fFor x!−l, l should be
replaced by −l in Eq. s15d.g Let us subdivide the wire into
small segments in thex direction and regard the cross-
sectional area as uniform in each segment—i.e., cosh2sx/ld
=cosh2sxn/ld with xn the position of thenth segmentsthis
division will be used in Sec. III for the calculation of trans-
mission ratesd. Then, Eq.s15d has a solutionu~expfiskx
−vtdg, where

k = ± Fcosh4sxn/ld
4

Sv

vt
D2

− S1

l
D2G1/2

+
i

l
. s16d

This equation can be used to estimate the cutoff frequency
vT

c of the torsional mode—i.e.,vT
c ;2vt / fl cosh2sxn/ldg

Thus, the cutoff frequency depends on the position of the
segment and takes the smallest value at the both ends of the
wire. Here we note that Eq.s15d has an extended solution
usxd at v=0.

C. Transverse modes resulting from bending motions

The Bernoulli-Euler theory applied to the bending motion
of a wire leads to the unphysical consequence that the wave
velocity increases indefinitely with increasing wave
number.12 As formulated by Timoshenko and Goodier, both
the flexural and shear motions associated with the bending of
the wire are coupled to each other.11 The equations of motion
describing the coupled flexural and shear motions lead, for a
wire with a uniform cross section, to the correct wave veloc-
ity obtained by the elasticity theory. For these coupled modes
the dynamical variables are the displacementw transverse to
the neutral surface of the wire and the anglec which mea-
sures the slope of the wire cross section relative to theyszd
axis when the displacementw is associated with the bending
in the yszd direction. In the Bernoulli-Euler theory this angle
is the same as the slope of the centroidal axis]w/]x. But the
shearing effect introduces an additional contribution. The
equations of motion governing the displacementsw and c
are

rAsxd
]2w

]t2
= kG

]

]x
FAsxdS ]w

]x
− cDG , s17d
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rIsxd
]2c

]t2
= Y

]

]x
FIsxd

]c

]x
G + kGAsxdS ]w

]x
− cD , s18d

where k is the shear coefficients=0.833 for a rectangular
cross sectiond,11 Asxd=hlsxd, and I is the moment of inertia
of area defined byIsxd=ez2dA=h3lsxd /12; Izsxd for the
bending in thez sthe thicknessd direction withz the coordi-
nate to the neutral surface of the wire. Similarly,Isxd
=ey2dA=hl3sxd /12; Iysxd for the bending in they sthe
widthd direction.

For a wire with a uniform cross sectionsof areaA0d these
equations are reduced to

r
]2w

]t2
= kGS ]2w

]x2 −
]c

]x
D , s19d

rI0
]2c

]t2
= YI0

]2c

]x2 + kGA0S ]w

]x
− cD , s20d

where Isxd is also independent ofx and we have putIsxd
= I0. By puttingw,c,expfiskx−vtdg, we obtain the equation
determining the dispersion relations in this uniform wire as

r2I0v4 − rv2fkGA0 + skG + YdI0k
2g + kGYI0k

4 = 0.

s21d

The flexural mode has a frequencyv that vanishes in the
long-wavelength limitsk→0d. Explicitly, the dispersion re-
lation of this mode is expressed asv=sYI0/rA0d1/2k2 for k
.0. So this is an acoustic branch. In contrast, the shear
mode has a finite frequency atk=0, which is given byv
=vS,min;skGA0/rI0d1/2. This cutoff arises from the lateral
confinement of the vibration in the wire. Hence, the excita-
tion of the shear mode is related to the onset of three-
dimensional heat conduction in a wire. For a largek, Eq.s21d
leads tov=sY/rd1/2k=vlk and v=skG/rd1/2k=k1/2vtk, for
the flexural and shear modes, respectively.

Here we give an approximate equation of motion for the
flexural mode valid at low frequencies obtained by neglect-
ing the coupling to the shear mode of vibrations:

rAsxd
]2w

]t2
= −

]2

]x2FYIsxd
]2w

]x2 G . s22d

For the vibrations in the thicknessszd direction Isxd= Izsxd
and Eq.s22d becomesfby puttingw~exps−ivtdg

]4w

]x4 +
4

l
tanhS x

l
D ]3w

]x3 +
2

l2F1 + tanh2S x

l
DG

3
]2w

]x2 − 12S v

vlh
D2

w = 0, s23d

which is reduced to

]4w

]x4 +
4

l

]3w

]x3 +
4

l2

]2w

]x2 − 12S v

vlh
D2

w = 0, s24d

for x@l. sFor x!−l we may again changel to −l.d
For the vibrations of the catenoidal wirefEq. s1dg in the

width syd direction Isxd= Iysxd and Eq.s22d becomes

]4w

]x4 +
12

l
tanhS x

l
D ]3w

]x3 +
6

l2F1 + 5 tanh2S x

l
DG

3
]2w

]x2 −
12v2

vl
2h2 cosh4sx/ld

w = 0, s25d

which is reduced to

]4w

]x4 +
12

l

]3w

]x3 +
36

l2

]2w

]x2 − 12F v

vlh cosh2sx/ldG2

w = 0,

s26d

for x@l.
Now, the solutionw=wzsxd of Eq. s24d is

wzsxd = o
j=1

4

aj expsk j
zxd, s27d

whereaj s j =1−4d are arbitrary constants,

k1,2
z = −

1

l
± iF2Î3v

vlh
− S1

l
D2G1/2

s28d

and

k3,4
z = −

1

l
± F2Î3v

vlh
+ S1

l
D2G1/2

. s29d

Thus, we estimate that there exists a cutoff frequency for this
mode given byvF,z

c =vlh/2Î3l2.
Next, we consider the solution of Eq.s26d again in a small

segment of the wiresas in Sec. II B for the torsional moded
where cosh2sx/ld can be regarded to be constant—i.e.,
cosh2sx/ld=cosh2sxn/ld with xn the position of the segment.
Then the solutionw=wysxd of Eq. s26d takes the form

wysxd = o
j=1

4

bj expsk j
yxd, s30d

wherebj s j =1−4d are constants,

k1,2
y = −

3

l
± iF 2Î3v

vlh cosh2sxn/ld
− S3

l
D2G1/2

s31d

and

k3,4
y = −

3

l
± F 2Î3v

vlh cosh2sxn/ld
+ S3

l
D2G1/2

. s32d

Hence, for this mode, the cutoff frequency is estimated to be
vF,y

c =9vlh cosh2sxn/ld /2Î3l2 and this becomes largest at
both ends of the wire.

III. TRANSMISSION RATE

It is only for the dilatational mode that an analytic solu-
tion has been obtained for the above vibrational equations of
motion for the catenoidal wire.13 Thus, for the calculation of
the transmission rates we need a numerical scheme. In the
present work, we employ the transfer-matrix method for the
dilatational and torsional modessnumerically stabled and the
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scattering-matrix method14 for the coupled flexural and shear
modes for which the transfer-matrix method becomes nu-
merically unstable at high frequencies.sFor the scattering-
matrix method, see the Appendix B.d Here, the transfer-
matrix method is also applied to the dilatational mode in
order to confirm the validity of our numerical scheme for the
transmission rates.

A. Formulation

In applying the transfer-matrix method for a system with
varying cross-sectional area, we first subdivide the wire into
small segments in the longitudinalsxd direction so that each
segment can be regarded to have a uniform cross-sectional
area. This means that in each segment, we may solve the
equations of motions5d, s10d, s19d, ands20d for obtaining the
quantities needed in this scheme. Then, we apply appropriate
boundary conditionssdepending on the vibrational moded at
each interface of the segments as described below.

We represent the physical variables in thenth segment,
which should be continuous at each interface, as a column
vectorWnsxd and write this formally as

Wnsxd = Mnsxdbn, s33d

wherebn is a vector consisting of the amplitudes indepen-
dent of the positionx. Explicit expressions forWn and Mn
for each mode have been given in Appendix A. As we shall
see below, for the dilatational and torsional modes thebn

vector consists of two components—i.e.,bn=sbn
s+d ,bn

s−ddt, the
amplitudes of the transmittedspropagating in the +x direc-
tiond and reflectedspropagating in the −x directiond waves,
respectively. For the coupled flexural-shear modes, however,
bn consists of four components corresponding to the trans-
mitted and reflected components of the flexuralsFd and shear
sSd modes—i.e., bn=sbF,n

s+d ,bF,n
s−d ,bS,n

s+d ,bS,n
s−ddt. In accordance

with these considerations,Mnsxd is a 232 matrix for the
dilatational and torsional modes and a 434 matrix for the
flexural-shear modes.

Next, we introduce the transfer matrixF which connects
the amplitude vectorbH=sbH

s+d ,bH
s−ddt in the lead adjacent to

the hot reservoir tobC=sbC
s+d ,bC

s−ddt in the lead adjacent to the
cold reservoir as

bH = FbC. s34d

With this matrix F the transmission rate of the vibrational
energy through the wire is calculated. Explicitly,F is con-
structed in terms of the matrixMnsxd at each interfacex
=xn as

F = p
n=0

N

Hn, s35d

Hn ; fMnsxndg−1Mn+1sxnd, s36d

whereN is the total number of the segments in the wire,x0
=−a, andxN=a sthe length of the wire is 2ad.

In the calculation of the transmission coefficienttm, we
can regard that only transmitted components are present in

the lead attached to the cold reservoir—i.e.,bC
s−d=0. This

leads to

tm = sF11d−1 s37d

for m, the dilatationalsm=Dd and torsional modessm=Td.
The transmission rate is defined by the ratio of the incident
and transmitted acoustic Poynting vectors and for these two
modes it is simply given byutmu2. In contrast, for the coupled
flexural-shear modes the transmission coefficients should be
discriminated according to the incidentsmd and transmitted
sm8d modes and we denote them ast̃mm8. Thus,

t̃FF =
F33

D
, t̃FS= −

F31

D
, s38d

if the incident mode is the flexuralsm=Fd, and

t̃SS=
F11

D
, t̃SF= −

F13

D
, s39d

if the incident mode is the shearsm=Sd. In these expressions
D;F11F33−F13F31. Then, summing over the modes of the
transmitted components coupled to the incident modes, the
transmission ratesutmu2 of the flexural and shear modes are
calculated as

utm=Fu2 = ut̃FFu2 + ut̃FSu2
kS

kF
s40d

for the flexural mode and

utm=Su2 = ut̃SSu2 + ut̃SFu2
kF

kS
s41d

for the shear mode. It should be noted that for a given fre-
quency the wave numberskF andkS of the flexural and shear
modes are determined by Eq.s21d as discussed in Sec. II C.

Here we note that for the flexural and shear modes that
are coupled to each other, the transfer-matrix method for the
transmission rates is stable only at low frequencies or for
small wave numbers. This is because the shear vibrations of
the wire that are excited above certain cutoff frequencies are
evanescent modes below these frequencies. Hence, the asso-
ciated vibrational amplitudes have exponentially growing
components that become too large when the products of the
transfer matrices are calculated. In this case we may use the
more sophisticated scattering-matrix method as explained in
Appendix B.

B. Analytic results for the dilatational mode

In order to check the validity of the numerical scheme
based on the transfer-matrix methodsand also the scattering-
matrix methodd, we first apply it to the calculation of the
transmission rate of the dilatational mode and compare with
the analytical result.

The transmission rateutm=Du2 of the dilatational mode
through the catenoidal wire is obtained analytically and
given by
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utm=Du2 = 4K2FS2Q cos 2ka−
Q2 − k2 − K2

k
sin 2kaD2

+ 4K2Scos 2ka−
Q

k
sin 2kaD2G−1

, s42d

for vùvD
c =vl /l and

utm=Du2 = 4K2FS2Q cosh 2ka −
Q2 + k2 − K2

k
sinh 2kaD2

+ 4K2Scosh 2ka −
Q

k
sinh 2kaD2G−1

, s43d

for vøvD
c . In these expressions

Q = l−1 tanhsa/ld, s44d

v2 = vl
2K2 = vl

2fk2 + s1/ld2g = vl
2f− k2 + s1/ld2g, s45d

andk= ik.
From Eqs. s42d and s43d the resonant transmissions

futm=Du2=1 seen in Fig. 2sadg are found to occur at frequen-

ciesv satisfying

1

k
tan 2ka= l tanhS2a

l
D s46d

for vùvD
c and

1

k
tanh 2ka = l tanhS2a

l
D s47d

for vøvD
c . At a frequencyv satisfyingv!vD

c the transmis-
sion ratefEq. s43dg is well described by the Lorentzian form

utm=Du2 =
1

1 + sv/v0d2 , s48d

wherev0
2=vl

2/ sA2+Bd with

A =
l

2
FtanhSa

l
D + sinhS2a

l
DG +

a

2
F1 − tanh2Sa

l
DG ,

s49d

B = − Fla +
l2

2
sinhS2a

l
DGtanhSa

l
D . s50d

Evidently, v=0—i.e., k=l−1—satisfies this resonance con-
dition.

C. Numerical results of transmission rates

Based on the formulas developed above, we have numeri-
cally calculated the transmission rate for each mode of vibra-
tion through the catenoidal wire. The chosen parameters for
the assumed GaAs wire arel=0.86mm andh=50 nm fthe
minimum cross-sectional area at the center of the wire is
thus A0=Asx=0d=h2=50350 nm2g, and the largest width
at the ends of the wire isd=2 mm. Thus, the length of the
wire is 2a=2l lnfÎd/h+Îd/h−1g=4.34mm. Also Y=1.20
31012 dyn cm−2 and G=4.8631011 dyn cm−2 with r
=5.36 g cm−3, giving vl =4.733105 cm s−1 and vt=3.01
3105 cm s−1.

Although the flexural-shear modes are coupled vibrations,
we can conveniently regard them as separated flexural and
shear modes as far as their transmission characteristics are
concerned. It is only above a certain cutoff frequencyv
=vS,min defined belowsnumerically vS,min=30.4 GHz with
the above parametersd that these shear modes are excited
effectively and their transmission probabilities become finite.

1. Dilatational mode

In order to check the validity of our numerical results, we
show in Fig. 2sad the analytically calculated transmission rate
fEqs.s42d ands43dg and the one calculated with the transfer-
matrix method. In applying the transfer-matrix scheme, the
number of divisions for the wire we have used are of the
order of 103, for which the stability of the results has been
confirmed. We see that the coincidence is excellent and thus
we believe that our formulation for the transmission rates
based on the transfer-matrix methodsand also the scattering-
matrix method for the coupled flexural and shear modesd is

FIG. 2. sad The transmission rate versus normalized frequency
of the dilatational vibrations in a catenoidal GaAs wire. The solid
line is the analytical result and dots are calculated with the transfer-
matrix method. The parameters used arel=0.86mm, d=2 mm, and
h=0.05mm. nD

c is the cutoff frequency of the dilatational mode.
The inset shows the definition of parameters characterizing the
catenoidal wiresthe only negativex region is shownd. sbd The cal-
culated transmission rates of the dilatational modessolid lined and
torsional modesdotted lined in the same GaAs wire as forsad. nT

c

denotes the cutoff frequencies of the torsional mode.
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quite convincing. Incidentally, the magnitude of the cutoff
frequencyvD

c ;vl /l for the dilatational mode is 0.88 GHz
for the GaAs wire withl=0.86mm.

2. Torsional mode

In Fig. 2sbd we see that the transmission rate of the tor-
sional mode exhibits similar behavior as the dilatational
mode; that is, a dip in transmission is seen below about
0.8 GHz. However, the cutoff of the transmission is not as
sharp as the case of the dilatational mode. We have also
repeated the same calculation with the scattering-matrix
method and have checked the exact coincidence of the trans-
mission rates obtained by these different two methods.

The presence of the cutoff frequency for this mode is
expected by the presence of the term proportional to]u /]x in
Eq. s14d, which induces the damping in transmission. How-
ever, the prefactorfh2lsxd+ l3sxdg /4h2flsxd−0.627hg on the
right-hand side of Eq.s14d suggests that the cutoff frequency
for this mode depends on the position of the segments in the
wire assumed. According to the approximation developed in
Sec. II B, the minimum cutoff frequency is given by putting
xn=l in the expressionvT

c =2vt /l cosh2sxn/ld and we have
vT,min

c =0.028 GHz. If we extrapolate this expression up to
the center of the wire, the maximum value of the cutoff
frequency is roughly estimated to bevT,max

c =0.79 GHz. This
range of frequencies betweenvT,min

c and vT,max
c is shown in

Fig. 2sbd. The cutoff of this mode is, thus, not as sharp as for
the dilatational mode.

3. Flexural modes (thickness and width directions)

For the flexural vibrations in the thickness directionsz
directiond, the transmission rate does not show any clear
structure and stays almost at unity down to about 0.05 GHz
as seen in Fig. 3sad. This is because it is assumed that the
thickness is uniform in the wire. The estimated cutoff fre-
quency for this mode isvF,z

c =vlh/2Î3l2=0.015 GHzfsee
Sec. II Cg.

In contrast, the width of the wiresin the y directiond
changes according to~cosh2sx/ld. Thus the transmission
rate of the flexural vibrations in the width direction is
strongly frequency dependent and exhibits rich structure at
low frequencies where the transmission is suppressed both
for the dilatational and torsional modes. The cutoff frequency
estimated for this mode depends on the position of the seg-
mentvF,y

c =9vlh cosh2sxn/ld /2Î3l2 fsee Sec. II Cg. The larg-
est value is 5.2 GHz and the lowest value is roughly
0.13 GHz. Within this frequency range indicated in Fig. 3sbd
we see several resonant peaks in transmission but unfortu-
nately no analytical formula for these resonance frequencies
has so far been derived.

4. Shear mode (thickness direction)

The finite transmission of the shear modes starts at a
frequency aroundvS,min=30.4 GHz. The frequency depen-
dence of the transmission for the shear mode in the thickness
direction is very simple. The sharp rise in transmission is
due to the fact that the cutoff frequency of this mode is
given by vS,z

c =skGA/rId1/2=s12kG/rh2d1/2;vS,min with

Isxd=h3lsxd /12. Thus, this value is independent of the posi-
tion x of the wire and the shear mode is excited only for
vùvS,min as shown in Fig. 3sad.

5. Shear mode (width direction)

For the shear mode in the width direction, however,Isxd
=hlsxd3/12 and the corresponding cutoff isvS,y

c

=f12kG/rlsxd2g1/2~ lsxd−1. This means that the cutoff fre-
quencyvS,y

c depends again on the position in the wire and
takes the maximum value equal tovS,min sdot in Fig. 3d at the
centerx=0. The frequencyvS,y

c becomes smaller as the po-
sition x of the wire shifts from the center and takes the mini-
mum valuevS,min/40=0.83 GHzfsolid square in Fig. 3sbdg
at the both ends of the wire becauselsx=ad /h=d/h=40.
Thus the transmission rate takes finite values at frequencies
vùvS,min/40 as shown in Fig. 3sbd and becomes unity at
frequenciesv.vS,min for which the shear mode is excited
completely.

The behavior of the transmission rate in between
vS,min/40 and vS,min is understood as follows: Forv
.vS,min/40 the incident shear mode coming from the ideal

FIG. 3. The calculated transmission rates of the coupled flexural
sthin lined and shearsbold lined modesad in the thickness direction
andsbd in the width direction in the same GaAs wire as for Fig. 1.
nF,z

c andnF,y
c snS,z

c andnS,y
c d are the cutoff frequencies of the flexural

ssheard modes in the thickness and width directions, respectively.
The inset ofsad shows the transmission rates in the frequency range
where the shear mode rates become finite. The thin linesbold lined
is the shear mode in the thickness directionsin the width directiond.
The rates of four acoustic modes are practically unity in this range.
nS,min is the threshold frequency of the shear modes.
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lead excites the shear mode only near the entrance of the
wire but this mode cannot be transmitted through the center
of the wire. The transmission is possible only via mode con-
version into the flexural mode. This rate of the mode conver-
sion should be large near the entrance where the shape of the
wire changes rapidly. As the frequency increases the mode
conversion into the flexural mode occurs near the center of
the wire. However, the rate for this mode conversion to hap-
pen is small in the region where the width of the wire is
almost uniform. We have numerically checked these charac-
teristics of the mode conversion by changing the parameterl
determining the profile of the wire. Atv=vs,min the mode
conversion becomes irrelevant because the shear mode can
be excited in the whole region of the wire. Accordingly, the
gradual increase of the transmission rate seen for the shear
vibrations in the width directionfinset of Fig. 3sadg is quali-
tatively the same phenomenon as the one seen for the tor-
sional mode.

IV. THERMAL CONDUCTANCE

With the transmission rates obtained in the preceding sec-
tion, we have calculated the thermal conductanceg for
catenoidal wires of GaAs with variousl. An example for
l=9.2 mm is illustrated in Fig. 4sad. The contribution of
each vibrational mode is shown in the inset. We see the pres-
ence of three plateaus in the temperature range,10−4–1 K.
The plateau atg/g0=4 sT=0.02–0.2 Kd corresponds to the
one studied theoretically by Rego and Kirczenow for GaAs
wires5 and also observed experimentally by Schwabet al. for
silicon nitride wires.3,4 Below this range of temperatures
g/g0 decreases from 4 because the overlapping of the pho-
non distribution function"v]nsv ,Td /]T fEq. s3dg with the
dips in transmission for three acoustic modes except for the
flexural vibration in the thickness direction becomes appre-
ciable.

Another plateau atg/g0=6 seen at higher temperatures is
due to the excitation of shear modes of vibrations. Above
about these temperatures additional optical modes of vibra-
tion with higher cutoff frequencies15 would be excited and
contribute to the heat conduction in the wireswe have not
added the contribution of these modesd. Hence, this plateau
will be seen only when the higher optical phonon branches
are well separated from the shear mode frequencyvS,min.
Blencowe discussed that the broad nature of the Planckian
distributionnsv ,Td should wash out the steps except for the
one at the lowest temperature.6 Thus the increase ofg/g0
from the plateau value 4 at a 1-K region is the indication of
the onset of three-dimensional thermal conduction.

An interesting new observation is the recovery ofg/g0
seen at very low temperature after the breakdown of the
quantization ofg/g0=4. In particular, an apparent plateau
with nonintegral value ofg/g0 is seen for the wire withl
=9.2 mm below 1 mK. As we see in the inset of Fig. 4sad,
this plateau appears as the temperature decreases due to the
balance of the increasing and decreasing contributions of
both the dilatational and flexuralsin the width directiond
modes to the conductance. At these temperaturessexcept for
T→0d g/g0 for the flexural mode in the thickness direction

and the torsional mode stay unity and zero, respectively. The
reason for the recovery of the quantized thermal conductance
of the dilatational mode is the presence of the resonant trans-
mission atv=0 fEq. s48dg.

Figure 4sbd further displaysg/g0 calculated for three
other values ofl together with the one forl=9.2 mm. The
plateau region atg/g0=4 is developed only for wires with
largel—that is, for the wires with a sufficiently large length
in which the cross-sectional area is regarded to be uniform.
No plateau atg/g0=4 is recognizable at all for the wire with
l=0.2 mm. However, for this wire the presence of a dip in
g/g0s,1d is seen at temperatures for which the lower edge
of the plateaug/g0=4 exists for the wire withl=9.2 mm.
This normalized conductance then increases towardsg/g0
=4 as the temperature decreases towards 0 K.

For comparison with the experimental observation of the
plateau ing/g0,

3,4 we have also carried out the calculation of
the conductance for silicon nitride wires with the maximum
and minimum widths 4mm s=dd and 0.2mm s=dd, respec-

FIG. 4. sad Calculated thermal conductanceg snormalized by the
quantum of thermal conductanceg0=p2kB

2T/3hd versus temperature
for a GaAs catenoidal wire withl=9.2 mm, d=2 mm, and h
=0.05mm. The inset shows the contributions of the dilatational
modesbold solid lined, torsional modesdotted lined, and the coupled
flexural-shear modessdenoted conveniently as bending modesd in
the thickness directionsdashed lined and in the width directionsthin
solid lined. sbd g/g0 for the catenoidal wires with various magnitude
of l—i.e., l=9.2 mm sdotsd, l=4.6 mm ssquaresd, l=0.86mm
strianglesd, and l=0.2 mm sopen circlesd. The wire widths d
=2 mm and h=0.05mm are the same assad. For T0, Tb, and Tc

indicated insad, see the text.

TANAKA, YOSHIDA, AND TAMURA PHYSICAL REVIEW B 71, 205308s2005d

205308-8



tively, and with the uniform thickness 60 nms=hd.17 The cal-
culated temperature dependences are shown in Fig. 5. The
effective wire length corresponding to the experiment by
Schwabet al. is 2l=2 mm and the plateau is observed for
0.1–1 K as shown in the inset. However, for this value ofl
the plateau does not develop in the calculated temperature
dependence ofg/g0, but instead continues to decrease as the
temperature goes down.sIf we display the calculatedg/g0 in
logarithmic scale rather than linear scale the coincidence
with the experimental data is apparently good for the tem-
perature range 0.1–1 K.d Theoretically, a reason is that the
cutoff frequencies of the three of four acoustic modes except
for the flexural vibration in the thickness direction are not
fully separated from the onset frequency of the shear mode in
the width directionvS,d

c =s12kG/rd2d1/2=s12kd1/2vt /d. Nu-
merically, vS,d

c =16.7 GHz andvD
c =vl /l=1.60 GHz, for in-

stance.sNote thatvS,min
c =30.4 GHz andvD

c =0.88 GHz for
the GaAs wire withl=0.86mm.d This is also related to the
fact that the minimum widthd=0.2 mm at the center of the
silicon nitride wire fabricated for the experiment is not small
enough compared with the wire parameterl=1 mm. This
point will be also discussed in the next section.

V. DISCUSSION

In a catenoidal wire there exist three characteristic lengths
h, l, anda. Corresponding to the sizes of these lengths, we
can define three characteristic temperatures. Two of them are
readily defined with the relationT=2p"v /kBLth which con-
nects the wavelength of dominant thermal phononsLth and
temperatureT, wherev is an appropriate sound velocity.sSo
these temperatures depend also on the vibrational mode.d Ex-
plicitly, T=Tc;2p"v /kBh and T=Tb;2p"v /kBl are ob-

tained by puttingLth=h and Lth=l, respectively. The third
characteristic temperature is defined byT=T0;"v0/kB
=hv exps−2a/ld /kBl, wherev0 is up to a numerical factor
of the order of unity, equivalent to the one appearing in Eq.
s48d for the dilatational mode if the condition exps−2a/ld
!exps2a/ld is satisfied.

Among these temperatures,Tc defines the temperature at
which the crossover between the three- and one-dimensional
thermal conductions occurs. ForT,Tc, the wavelength of
thermal phonons becomes longer than the width of the wire
and the heat conduction is essentially that for the one-
dimensional system. Thus, in this temperature region the
quantization ofg—i.e., the plateau ing/g0—is expected to
develop if the transmission of the relevant vibrational modes
is perfect. This plateau only persists, however, as long asLth
is much shorter than the effective length of the wire—i.e.,
Lth!l. Hence, the plateau may be well observed only under
the conditionh!Lth!l or Tb!T!Tc in the temperature
domain. At temperaturesT,Tb the plateau should be modi-
fied or, equivalently, the quantization breaks down in gen-
eral. This clearly occurs as we can see in Fig. 4.

The last temperatureT0 gives a representative temperature
at which the recovery of the quantization occurs. This is
explicitly seen in the dilatational mode. The sharp rise in the
transmission ratesup to unityd nearv=0 sFig. 2d is the reso-
nance and the transmission rate is expressed by the Lorent-
zian form of Eq.s48d with the width v0. Similar but nar-
rower transmission peaks atv=0 are also seen for other
acoustic modes. Hence, at very low temperatures for which
the phonon energy distribution"v]nsv ,Td /]T is well con-
fined inside this resonant peak in transmission—i.e.,
T!T0—the quantization of the thermal conductance should
be recovered. Actually, the recovering temperature of the
quantization depends on the vibrational modes through their
characteristic resonant transmission profiles nearv=0. As
we see in the inset of Fig. 4sad, the recovering temperature in
the catenoidal wire is highest for the dilatational mode.

Numerically, those three temperatures for the dilatational
mode areTc=4 K, Tb=0.02 K, and T0=0.14 mK, for h
=50 nm, l=9.2 mm, and a=26.5mm sd=2 mmd, and are
indicated in Fig. 4sad. At T=Tb and T0 the expected transi-
tions are clearly seen. In contrast,Tc is located below the
temperature at which the plateaug/g0=6 is attained. Here
we note that apart from a numerical factor of the order of
unity, Tc is essentially equal to the onset temperatureTS
="vS,min/kB=1.6 K of the shear mode. Thus the excitation
of the optical modes of vibrations and three-dimensional heat
conduction is physically equivalent. This means that our
analysis including only lowest two shear modes is not reli-
able forT.Tc. Blencowe has calculated the temperature de-
pendence ofg/g0 in both sides ofTc for wires with uniform,
rectangular cross sections. He found that there exists no step-
like feature except for the plateaug/g0=4 at T→0.6 How-
ever, there still exists an expectation that the plateau at
g/g0=6 can be observed. This will happen if the wire is
designed so that a gap of an appropriate magnitude may exist
in between the lowest two shear mode branches we have
considered and the next lowest optical branch in the wire.
The vibrational frequencies in such wires can be studied with

FIG. 5. Calculated thermal conductanceg snormalized by the
quantum of thermal conductanceg0=p2kB

2T/3hd versus temperature
for catenoidal silicon nitride wires withl=1 mm scirclesd, l
=3 mm strianglesd, andl=5 mm ssquaresd. For other parameters of
the wires, see the text. The inset shows the log-log plot which
compares the experimental data by Schwabet al. sdotsd with the
theoretical results forl=1 mm scirclesd.
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a resonant ultrasound spectroscopy method by Visscher
et al., for example.16

Finally, we remark on the fact that the wires composed of
softer materials are more appropriate to observe the quanti-
zation of thermal conductance. According to the discussion
given above, the temperature range where the quantization of
thermal conductancesor plateaud is expected to appear is
DT=Tc−Tb. Since bothTc andTb are proportional to velocity
v, the width of this rangeDT is also proportional tov andDT
is smaller for softer materials. However, as we see in Fig.
4sad, the width of the plateau is actually smaller thanDT
because atT=Tc optical modes are already excited; that is,
the three-dimensional conduction has started at a temperature
belowTc. This means thatTb sthe lower edge of the plateaud
is more important to observe the quantization effect. For
softer materials with lowerTb the plateau ing/g0 should be
developed more extensively than that for harder materials.
This is indeed recognized by comparing Fig. 4sg/g0 in
GaAs wiresd with Fig. 5 sg/g0 in silicon nitride wiresd. For a
softer GaAs wire withl=4.6 mm the plateau develops more
clearly than that for a wire of harder silicon nitride with
l=5 mm.

VI. CONCLUSIONS

In the present study we have investigated the thermal con-
ductance in catenoidal wires of nanoscale dimensions by ex-
plicitly calculating the transmission rates of the low-lying six
vibrational modessfour acoustic modes and two optical
modesd that contribute to the heat transport at low tempera-
tures. As far as the plateausat g/g0=4d associated with the
universal quantized thermal conductance is concerned, three
acoustic modessother than the dilatational moded not studied
by Rego and Kirczenow contribute similarly to realize
g/g0=4 over an appreciable range of temperature, although
the details are quite different depending on the mode. We
have also considered how the quantization of the conduc-
tance changes in catenoidal wires as the temperature de-
creases further. The reduction and recovery of the conduc-
tance relative to the universal thermal quantum are predicted.
They happen owing to the imperfect transmission of thermal
energies due to the presence of cutoff frequencies for the
acoustic vibrational modes in catenoidal wires and also the
presence of resonances at zero frequency.

Our calculation indicates that the plateau atg/g0=4 is not
well developed for the silicon nitride wireswith l=1 mmd
used in the experiment. The wire we assumed is symmetric
with respect tox=0 sthe narrowest positiond along the heat
flow direction. We have also calculated the transmission rate
of the dilatational mode by introducing some asymmetry as
in the experimental phonon device by Schwabet al.3,4 No
large effect which may change the above result has been
recognized. The plateau region is, however, predicted to be-
come broader as the length of the wire becomes longer. So it
would be interesting to measure the thermal conductance by
changing the wire length. The theoretical search for the
shape of quantum wires which allows the quantization of the
thermal conductance for a wider range of temperatures
would also be important.
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APPENDIX A

In this appendix we give explicit expressions for the vec-
tor Wnsxd and matrixMn needed to define the transfer matrix
for the calculation of the transmission rate of each vibra-
tional mode.

1. Dilatational mode

For the dilatational modeWnsxd is chosen as

Wnsxd = Sunsxd
pnsxd

D , sA1d

wherepn is the pressure in thenth segment and this pressure
is obtained from the equationpsxd=Asxdssxd=AsxdY]u/]x.
The matrixMn is

Mn = S expsiknxd exps− iknxd
iknYAn expsiknxd − iknYAn exps− iknxd

D ,

sA2d

where kn=k=v /vl and An are the wave number and the
cross-sectional area in thenth segment, respectively.

2. Torsional mode

For the torsional modeWnsxd is chosen as

Wnsxd = Sunsxd
tnsxd

D , sA3d

wheretsxd is the torque defined with the torsional rigidityC
by tsxd=Csxd]u /]x. The matrixMn is given by

Mn = S expsiknxd exps− iknxd
iknCn expsiknxd − iknCn exps− iknxd

D , sA4d

wherekn=sCn/rĨnd−1/2v and Ĩ is the polar moment of inertia
fEq. s11dg in the nth segment.

3. Flexural-shear mode

For the flexural-shear modeWnsxd is a four-component
vector—i.e.,

Wnsxd =1
wnsxd
Snsxd
cnsxd
mnsxd

2 , sA5d

where Ssxd is the shear stress defined bySsxd
=kGAsxdf]w/]x−csxdg andmsxd is the bending moment de-
fined bymsxd=YIsxd]c /]x. The matrixMn is given by
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Mnsxd =1
M1jsxd
M2jsxd
M3jsxd
M4jsxd

2 =1
expsikn

s jdxd
GkAnsikn

s jd − fn
s jddexpsikn

s jdxd
fn

s jd expsikn
s jdxd

ikn
s jdYIn expsikn

s jdxd
2

s j = 1 – 4d,

wheref is the ratio betweenc andw, andks jd are given by
the solutions of Eq.s21d sfor a given vd with I0 and A0
replaced byIn andAn.

APPENDIX B: SCATTERING MATRIX METHOD

The transfer matrix connects the waves in one end to the
other end of the system. So, if there exist waves which vary
exponentially with distance, the numerical scheme with the
transfer-matrix method becomes unstable, in general. In or-
der to avoid this numerical instability we can use the scatter-

ing matrix sF̃d which connects the amplitude vectorbin as-
sociated with the incoming waves in the leads attached to the
hot sHd and coldsCd reservoirs to the onebout for the out-

going waves in the leads—i.e.,bout=F̃bin, where bout

=sbC
s+d ,bH

s−ddt and bin=sbH
s+d ,bC

s−ddt for the longitudinal or tor-
sional mode and bout=sbF,C

s+d ,bS,C
s+d ,bF,H

s−d ,bS,H
s−d dt and bin

=sbF,H
s+d ,bS,H

s+d ,bF,C
s−d ,bS,C

s−d dt for the flexural and shear modes.
sThe notations are the same as for the transfer-matrix method
developed in Sec. III A.d In the calculation of the transmis-
sion coefficienttm, we can assume that only transmitted com-
ponents exist in the lead attached to the cold reservoirse.g.,

bC
s−d=0d. Thus, we can gettm=F̃11=bC

s+d /bH
s+d for m, the dila-

tational and torsional modes. For the coupled flexural-shear
modes the transmission coefficients are given by

tFF = bF,C
s+d /bF,H

s+d = F̃11, tFS= bS,C
s+d /bF,H

s+d = F̃21 sB1d

if the incident mode is flexuralsbS,H
s+d =0d and

tSF= bF,C
s+d /bS,H

s+d = F̃12, tSS= bS,C
s+d /bS,H

s+d = F̃22 sB2d

if the incident mode is shearsbF,H
s+d =0d.

The procedure for obtaining the scattering matrix is the
following. sThough we here consider the scattering matrix
composed of a 232 matrix, the generalization to am3m
matrix is straightforward.d First we write the matrixHn in
Eq. s36d as

Hn = Sh11
snd h12

snd

h21
snd h22

snd D .

Next we introduce the matrix

sn = Ss11
snd s12

snd

s21
snd s22

snd D
at each interfacex=xn, which is defined by

Sbn+1
s+d

bn
s−d D = Ss11

snd s12
snd

s21
snd s22

snd DSbn
s+d

bn+1
s−d D . sB3d

With the elements ofHn, the matrixsn is represented by

sn = Sh11
snd − h12

sndfh22
sndg−1h21

snd h12
sndfh22

sndg−1

fh22
sndg−1h21

snd fh22
sndg−1 D . sB4d

Hence, it is convenient to define the combination law which
constructs the matrixS in terms of sn and sn+1 as S=sn+1
^ sn—i.e.,

Sbn+2
s+d

bn
s−d D = SS11 S12

S21 S22
DSbn

s+d

bn+2
s−d D . sB5d

In this combination law the matrix elements ofS are given
by

S11 = fsn+1 ^ sng11 = s11
sn+1df1 − s12

snds21
sn+1dg−1s11

snd, sB6d

S12 = fsn+1 ^ sng12 = s12
sn+1d + s11

sn+1df1 − s12
snds21

sn+1dg−1s12
snds22

sn+1d,

sB7d

S21 = fsn+1 ^ sng21 = s21
snd + s22

sndf1 − s21
sn+1ds12

sndg−1s21
sn+1ds11

snd,

sB8d

S22 = fsn+1 ^ sng22 = s22
sndf1 − s21

sn+1ds12
sndg−1s22

sn+1d. sB9d

Using the above procedures recursively, we can obtain the

scattering matrixF̃, which is given by

F̃ = fffs0 ^ s1g ^ s2g ^ ¯ g ^ sN. sB10d

Thus, in the scattering-matrix method, the relevant matrix
elements correspond to the transmission or reflection coeffi-
cients at each recursive stagefEqs.sB1d andsB2dg and there
is no numerical instability even if waves with exponentially
increasing and/or decreasing components arise.14
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