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Spin-dependent transport through an interacting single-level quantum dot coupled to ferromagnetic leads
with noncollinear magnetizations is analyzed theoretically. The transport properties and average spin of the dot
are investigated within the nonequilibrium Green function technique based on the equation of motion in the
Hartree-Fock approximation. Numerical results show that Coulomb correlations on the dot and strong spin
polarization of the leads significantly enhance precession of the average dot spin around the effective molecular
field created by the external electrodes. Moreover, they also show that spin precession may lead to negative
differential conductance in the voltage range between the two relevant threshold voltages. Nonmonotonous
angular variation of electric current and change in sign of the tunnel magnetoresistance are also found. It is also
shown that the diodelike behavior in asymmetrical junctions with one electrode being half-metallic is signifi-
cantly reduced in noncollinear configurations.
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I. INTRODUCTION

Current interest in electronic transport and spin effects in
mesoscopic tunnel junctions is stimulated by their possible
applications in microelectronics and spintronics devices.1,2

One of the most widely studied spin-dependent effects in
magnetic tunnel junctions is the tunnel magnetoresistance
sTMRd. This phenomenon appears as a change in the junc-
tion resistance when magnetic moments of external elec-
trodes rotate from a parallel alignment to a noncollinear one
sor to antiparallel alignment in a particular cased. Such a
rotation of magnetic moments may be induced, for instance,
by an external magnetic field. The TMR effect may occur in
planar junctions,3–5 mesoscopic double-barrier junctions,6–9

granular systems,10,11 and others. When the central part of a
double-barrier junction is sufficiently small, the interplay of
discrete charging by single electrons and spin dependence of
tunneling processes can lead to additional interesting features
in the corresponding transport characteristics.6–9

Up to now, most of theoretical works on transport through
quantum dotssQDsd coupled to ferromagnetic electrodes was
limited to collinear, i.e., parallel and antiparallel magnetic
configurations.12–18 It is only very recently when transport
in systems with noncollinear magnetizations was
addressed.19–22 In particular, it has been shown that the di-
odelike features in transport characteristics of systems with
one electrode being half-metallic are significantly reduced
when magnetic moments of the electrodes become
noncollinear.20 However, this behavior was studied only in
the sequential tunneling regime.

In recent papers21,22 spin precession in electron tunneling
through an interacting quantum dot was studied theoretically
in the first order approximation with respect to the tunneling
Hamiltonian. Such a precession takes place when magnetic
moments of the leads are noncollinear, and occurs because
an electron entering the dot in a tunneling event is subject to

an effective exchange field, which exerts a torque on the
electron spin and makes the spin precesses by a certain angle
before the electron leaves the dot. In the first order approxi-
mation, the spin precession is driven by the Coulomb inter-
action on the dotsdescribed by the Hubbard correlation pa-
rameterUd and disappears whenU tends to zero.

In this paper we extend the earlier descriptions20–22 of
electron tunneling through a QD with noncollinear magneti-
zations by going beyond the first order approximation. In
order to calculate the tunneling current and spin precession,
we employ the nonequilibrium Green function technique and
limit considerations to the Hartree-Fock approximation.
Hence, besides the sequential tunneling also the contribution
due to higher order tunneling processes is included in the
description. Numerical results show, that spin precession also
exists in the limit ofU=0. However, Coulomb correlations
significantly enhance the precession. This, in turn, may lead
to negative differential conductance in a certain bias voltage
range. We predict that symmetry of the junction, barrier
height, and spin polarization of magnetic leads may signifi-
cantly influence spin dependent characteristics of the dot. In
particular, it is shown that the diodelike behavior in asym-
metrical junctions with one half-metallic electrode is par-
tially suppressed in noncollinear configurations. However,
the suppression is much less evident than that obtained
within a simplified theory neglecting the exchange interac-
tions between the dot and leads.20

The paper is organized as follows. In Sec. II we describe
model of the system. The theoretical method is described in
Sec. III, where the equation of the motion method is used to
derive nonequilibrium Green functions of the dot. Transport
characteristics are calculated in Sec. IV, whereas relevant
numerical results on tunneling current, magnetoresistance,
and spin precession are presented and discussed in Sec. V.
Finally, a summary and general conclusions are in Sec. VI.
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II. MODEL

We consider a single-level QD coupled to two ferromag-
netic metallic leads by tunneling barriers. Magnetic moments
in the external leads lie in a common plane and form an
arbitrary anglew. To describe electron spin we will use the
local and global quantization axes. The local axes are deter-
mined by the local spin polarization in the leads. The global
quantization axissthe axisz in our cased is assumed to coin-
cide with the local one in the left electrode. Spin projection
on the local quantization axes will be denoted asb=+ for
majority electrons andb=− for minority electrons, whereas
projection on the global quantization axis will be denoted as
s=↑ ands=↓. Axis y of the coordinate system is normal to
the planexz determined by the spin polarizations of the
leads. Geometry of the device and the orientation of the co-
ordinate system are shown schematically in Fig. 1.

The whole system can be described by a Hamiltonian of
the general form

H = Hl + Hr + Hd + Ht. s1d

The termHn describes the leftsn= ld and right sn=rd elec-
trodes in the noninteracting quasiparticle approximation

Hn = o
k

o
b=+,−

«kb
n ankb

+ ankb, s2d

where«kb
n is the single-electron energy in thenth electrode

for the wave vectork and spinb, whereasankb
+ andankb are

the corresponding creation and annihilation operators. The
term Hd in Eq. s1d describes the QD,

Hd = o
s

«dcs
+cs + Un↑n↓, s3d

where ns=cs
+cs is the occupation operator,«d denotes the

energy of the discrete level,U is the electron correlation

parameter, whereascs
+ andcs are the corresponding creation

and annihilation operators for electrons with spin orientation
s= ↑ s↓d. Finally, the tunneling term,Ht, in Eq. s1d takes the
form

Ht = Ht
l + Ht

r , s4d

where the first term describes tunneling through the left bar-
rier,

Ht
l = o

k

sTk+
l alk+

+ c↑ + Tk−
l alk−

+ c↓d + h.c., s5d

whereas the second term corresponds to tunneling through
the right barrier,

Ht
r = o

k

hfTk+
r ark+

+ cossw/2d − Tk−
r ark−

+ sinsw/2dgc↑

+ fTk−
r ark−

+ cossw/2d + Tk+
r ark+

+ sinsw/2dgc↓j + h.c., s6d

and h.c. stands for the hermitian conjugate terms. The tun-
neling termsHt

l and Ht
r have different forms because the

corresponding local and global axes are parallel for the left
electrode and noncollinear for the right one.

III. GREEN FUNCTIONS OF THE DOT

To calculate electric current in nonequilibrium situations
we will make use of the nonequilibrium Green function de-
fined on the Keldysh contour.23 The causual Green function
of the dot is defined asGss8sed;kkcs ucs8

+ lle. Writing equa-
tion of motion for kkcs ucs8

+ lle, one arrives at

se − eddkkcsucs8
+ lle = dss8 + o

k

fTkb
* l kkalkbucs8

+ lle

+ Tkb
* r kkarkbucs8

+ llecossw/2d

− bTk−b
* r kkark−bucs8

+ llesinsw/2dg

+ Ukkcsn−sucs8
+ lle, s7d

whereb=+ for s=↑ andb=− for s=↓. Applying equation
of motion to the four Green functions on the right-hand side
srhsd of Eq. s7d, one finds

se − «kb
l dkkalkbucs8

+ lle = Tkb
l kkcsucs8

+ lle, s8d

se − «kb
r dkkarkbucs8

+ lle = Tkb
r kkcsucs8

+ llecossw/2d + bTkb
r kkc−sucs8

+ llesinsw/2d, s9d

se − «k−b
r dkkark−bucs8

+ lle = Tk−b
r kkc−sucs8

+ llecossw/2d − bTk−b
r kkcsucs8

+ llesinsw/2d, s10d

FIG. 1. Schematics of the system considered in this paper. The
coordinate systems used to describe states of the dot is also shown.
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se − ed − Udkkcsn−sucs8
+ lle = khcsn−s,cs8

+ jl + o
k

fTkb
* l kkalkbucs8

+ lle + Tkb
* r kkarkbn−sucs8

+ llecossw/2d − bTk−b
* r kkark−bn−sucs8

+ llesinsw/2d

− Tk−b
l kkcsalk−b

+ c−sucs8
+ lle − Tk−b

* l kkcsalk−bc−s
+ ucs8

+ lle − Tk−b
r kkcsark−b

+ c−sucs8
+ llecossw/2d

− bTkb
r kkcsarkb

+ c−sucs8
+ llesinsw/2d − Tk−b

* r kkcsark−bc−s
+ ucs8

+ llecossw/2d

− bTkb
* r kkcsarkbc−s

+ ucs8
+ llesinsw/2dg. s11d

Now, the Hartree-Fock decoupling scheme is applied to
the higher-order Green functions generated on the rhs of Eq.
s11d,

kkank±bn−sucs8
+ lle → kn−slkkank±bucs8

+ lle, s12d

kkcsank±bc−s
+ ucs8

+ lle → kc−s
+ cslkkank±bucs8

+ lle, s13d

kkcsank±b
+ c−sucs8

+ lle . 0, s14d

which closes the set of Eqs.s7d–s11d and allows one to find a
solution for the causual Green functionsGss8sed. Here,k…l
means the quantum statistical average value of the appropri-
ate operator.

The solution may be written in the compact form of the
matrix Dyson equation

Gsed = f1 − gsedSs0dsedg−1gsed = f1 − gs0dsedSsedg−1gs0dsed,

s15d

where

Gsed = FG↑↑sed G↑↓sed
G↓↑sed G↓↓sed G , s16d

and gsed denotes the corresponding Green functions in the
matrix form of the uncoupled dot, with the matrix elements

gsssed =
e − «d − Us1 − kn−sld
se − «ddse − «d − Ud

, s17d

gs−ssed = −
Ukn−ssl

se − «ddse − «d − Ud
, s18d

with kn−ssl=kc−s
+ csl. In turn,gs0dsed is the Green function of

the dot in the absence of both Coulomb interaction and cou-
pling to the leads,g

ss8
s0d sed=dss8se−edd−1.

Finally, the self-energyS0sed is given by

S0sed = FS0+sed S1sed
S1sed S0−sed G , s19d

with

S0±sed = o
k

uTk±
l u2

e − «k±
l + o

k
F uTk±

r u2

e − «k±
r cos2sw/2d

+
uTk7

r u2

e − «k7
r sin2sw/2dG s20d

and

S1sed =
1

2o
k
S uTk+

r u2

e − «k+
r −

uTk−
r u2

e − «k−
r Dsinw. s21d

As follows from Eq. 15, the full self-energySsed is given by
Ssed=Ss0dsed+gs0d−1sed−g−1sed.

Having found the causal Green functions one can calcu-
late the retardedsadvancedd Green functions G

ss8
RsAdsed

=Gss8se± ihd,

G↑↑
R sed = fg↑↑

R sed − AS0−
R sedg/B, s22d

G↑↓
R sed = fg↑↓

R sed + AS1
Rsedg/B, s23d

G↓↑
R sed = fg↓↑

R sed + AS1
Rsedg/B, s24d

G↓↓
R sed = fg↓↓

R sed − AS0+
R sedg/B, s25d

where

A = g↑↑
R sedg↓↓

R sed − g↑↓
R sedg↓↑

R sed, s26d

B = 1 − hg↑↑
R sedS0+

R sed + g↓↓
R sedS0−

R sed + fg↑↓
R sed

+ g↓↑
R sedgS1

Rsedj + fg↑↑
R sedg↓↓

R sed − g↑↓
R sedg↓↑

R sedg

3 hS0+
R sedS0−

R sed − fS1
Rsedg2j. s27d

The retarded self-energiesS0±
R sed andS1

Rsed are given by
the formulas

S0±
R sed = −

1

2
G±

l sedF 1

p
lnSD + eVl − e

D − eVl + e
D + iG

−
1

2
fG±

r sedcos2sw/2d + G7
r sedsin2sw/2dg

3 F 1

p
lnSD + eVr − e

D − eVr + e
D + iG s28d

and
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S1
Rsed = −

1

4
fG+

r sed − G−
r sedgsinwF 1

p
lnSD + eVr − e

D − eVr + e
D + iG ,

s29d

where

G±
nsed = 2po

k

uTk±
n u2dse − ek±

n d s30d

for n= l ,r. It has been assumed that the lower and upper
edges of the electron band at zero bias are at −D and D,
respectively.

In the following we assume:

G±
l sed = G±

l = G0s1 ± pld s31d

and

G±
r sed = G±

r = aG0s1 ± prd, s32d

whene is within the electron band and zero otherwise. The
parameterspl and pr describe the spin asymmetry of the
coupling to the left and right electrodes, respectively,G0 is a
constant, and the parametera takes into account asymmetry
between coupling of the dot to the left and right electrodes.

The correlation Green functionG,sed can be calculated
from the Keldysh equation

G,sed = GRsedS,sedGAsed, s33d

whereS,sed can be related toSs0d,sed via the Ng Ansatz,
which gives

S,sed = − o
n

fSn
s0dRsed − Sn

s0dAsedgfnsed, s34d

and fnsed is the Fermi-Dirac distribution function for thenth
electrode,fnsed=1/h1+expfse−mnd /kBTgj, with the electro-
chemical potentialsml =eVl =eV/2 andmr =eVr =−eV/2. The
energy is measured from the Fermi level of the leads in equi-
librium.

The average values of the occupation numbersknsl
=kcs

+csl andkns−sl=kcs
+c−sl swhich enter the expressions for

Green functionsd have to be calculated self-consistently by
using the formulas

knsl = ImE
−`

+` de

2p
Gss

, sed s35d

and

kns−sl = − iE
−`

+` de

2p
G−ss

, sed. s36d

IV. TRANSPORT CHARACTERISTICS

Having found the Green functions, one can calculate elec-
tric current, spin accumulation, and spin precession on the
dot. To do this we calculate the average values of all the
three spin components, which are related to the diagonal and
off-diagonal occupation numbersfEqs. s35d and s36dg. The
corresponding relations may be written assspin components
are measured in the units of"d,

kSzl = sn↑ − n↓d/2, s37d

kSyl = Imsn↑↓d, s38d

kSxl = Resn↑↓d, s39d

wheren↑ , n↓, andn↑↓ are calculated self-consistently, as de-
scribed above.

In turn, electric current flowing from thenth lead to the
dot is given by the formula24

Jn =
ie

"
E

−`

+` de

2p
TrsGnhG,sed + fnsedfGRsed − GAsedgjd,

s40d

with

Gl = G0S1 + pl 0

0 1 − pl
D s41d

and

Gr = G0aS1 + pr cosw pr sinw

pr sinw 1 − pr cosw
D . s42d

Thus, taking into account Eqs.s22d–s34d, together with Eqs.
s40d–s42d, one obtains the final symmetrized expression for
electric current,J=s1/2dsJl −Jrd, in the form

J =
eaG0

2

4p"
E

−`

+`

deff lsed − f rsedg jsed, s43d

where

jsed = 2s1 + plds1 + pr coswdG↑↑
R sedG↑↑

R*sed + 2s1 − pld

3s1 − pr coswdG↓↓
R sedG↓↓

R*sed

+ fs1 + plds1 − pr coswd + s1 − plds1 + pr coswdg

3fG↑↓
R sedG↑↓

R*sed + G↓↑
R sedG↓↑

R*sedg

+ s1 + pldpr sinwhG↑↑
R sed

3fG↑↓
R*sed + G↓↑

R*sedg + G↑↑
R*sedfG↑↓

R sed + G↓↑
R sedgj

+ s1 − pldpr sinwhG↓↓
R sed

3fG↑↓
R*sed + G↓↑

R*sedg + G↓↓
R*sedfG↑↓

R sed + G↓↑
R sedgj.

s44d

The current formula derived above can be applied to any
magnetic configuration of the system, and thus can be used
to determine TMR. Generally, TMR is described quantita-
tively by the ratio

TMR =
Rswd − Rsw = 0d

Rsw = 0d
=

Jsw = 0d − Jswd
Jswd

, s45d

whereJswd is the electric current flowing through the system
when the angle between spin polarizations of the leads isw,
andRswd is the corresponding electrical resistance.
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V. NUMERICAL RESULTS

A. Symmetrical junctions

In a symmetrical case both barriers are identical,a=1,
and the electrodes are made of the same ferromagnetic ma-
terial, pl =pr. Consider first electronic transport in a sym-
metrical junction with fully polarizedshalf-metallicd external
electrodes,pl =pr =1, and with the dot level above the Fermi
level of the electrodes at equilibrium,«d.0.

Bias dependence of electric current and the corresponding
differential conductance are shown in Figs. 2sad and 2sbd for
selected values of the anglew. The current-voltage curve for
parallel configurationsw=0d reveals typical steplike charac-
teristics. Below the firstslowerd threshold voltage the dot is
empty and thus sequential contribution to electric current is
exponentially suppressed. The first step in the current occurs
at the bias, where the discrete level«d crosses the Fermi level
of the source electrodesthe dot can be occupied by a single
electrond, whereas the step at a higher voltageshigher thresh-
oldd corresponds to the case when«d+U crosses this Fermi
level sthe dot may be doubly occupiedd.

In noncollinear configurations a monotonous suppression
of the tunneling current with increasingw takes place in the
whole bias voltage range, and the current disappears for
w=p. This is a typicalsperfectd spin-valve effect. Suppres-
sion of electric current is due to an electron residing on the
dot, whose spin orientation prevents it from tunneling to the
drain lead. In the extreme case of antiparallel configuration,
w=p, the electron that has tunneled to the dot from the fully
polarized source electrode blocks transport through the junc-
tion since it cannot tunnel further to the oppositely polarized
drain lead. This scenario holds as long as spin-flip relaxation
processes are absent.

The steps in current-voltage characteristics give rise to the
narrow peaks in differential conductance displayed in Fig.
2sbd, which occur at the lower and higher threshold voltages.
Apart from this, dependence of electric current on magnetic
configuration of the system leads to the TMR effect, defined
quantitatively by Eq.s45d and shown in Fig. 2scd. The effect
increases with increasing anglew and tends to infinity when
w→p ftherefore there is no curve in Fig. 2scd for w=pg.

An interesting feature of the current-voltage characteris-
tics is the negative differential conductance, which may oc-
cur in noncollinear configurations between the lower and
higher threshold voltagessbetween the corresponding two
peaks in the differential conductanced. The negative differen-
tial conductance corresponds to some enhancement in TMR,

FIG. 3. Bias dependence of the average spin components;kSzl
sad, kSxl sbd, and kSyl scd for indicated values of the anglew. The
other parameters are as in Fig. 2.FIG. 2. Bias dependence of electric currentsad, differential con-

ductancesbd, and tunnel magnetoresistancescd, calculated for indi-
cated values of the anglew. The inset insad shows electric current
between the lower and higher threshold voltages forw=2p /3. The
parameters assumed for numerical calculations are:«d=0.1 eV,U
=0.4 eV,G0=0.01 eV,pl =pr =1, a=1, andT=100 K.
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as can be seen in Fig. 2scd. The enhancement is particularly
significant for rather large values of the anglew ssmaller than
pd. Physical origin of this feature becomes clear, when tak-
ing into account bias dependence of the average spin on the
dot in nonequilibrium situationsspin accumulated on the
dotd.

As shown in Fig. 3sad, the absolute value of the average
kSzl increases with increasingw and almost vanishes in the
parallel configuration. In turn, the average value of thex
component,kSxl, vanishes for both parallel and antiparallel
alignments and is nonzero for canted configurations, as
shown in Fig. 3sbd. Similarly, the average value ofkSyl also
vanishes in the collinear configurations and is nonzero in the
noncollinear ones. One should point here, that neither initial
spin state in the source electrode, nor the final state in the
drain electrode have nonvanishingy componentsperpendicu-
lar to the plane determined by spin polarizations of the two
leadsd. What is then the reason of nonvanishingkSyl? This
can be accounted for by taking into account the fact, that an
electron residing on the dot experiences a certain exchange
field resulting from coupling between the dot and leads,
which effectively acts as a local magnetic field.22,25 Strength
of this molecular field and its orientation with respect to the
global quantization axis depend on the applied bias voltage
and on the angle between the magnetic moments of the leads.
Thus, if an electron that has tunneled from the source lead
resides sufficiently long time on the dot level, its spin expe-
riences a torque due to the exchange interaction, which re-
sults in precession of the average spin around the molecular
field, and consequently in a nonzero average value of the

transverse componentkSyl. As shown in Fig. 3scd, this
precession-induced component is significant in noncollinear
casesssee the case ofw=2p /3d and in the voltage range
between the two threshold voltages. Just this enhanced pre-
cession is associated with a decrease in electric current,
which leads to negative differential conductance.

As follows from the above discussion, the magnitude of
kSyl is a measure of the spin precession induced by the ef-
fective exchange field. In Fig. 4sad we showkSyl for different
values of the Coulomb correlation parameterU. The curve
for U=0 indicates that spin precession in noncollinear con-
figurations takes place also when there is no Coulomb inter-
action between electrons on the dot. However, as follows
from Fig. 4sad, the presence of such an interaction enhances
the spin precession and also extends the voltage range where
the precession is significant.

The spin precession also depends on the spin polarization
of external electrodes. This is shown in Fig. 4sbd, where the
y component of the average spin accumulated on the dot is
shown for several values of the parameterspl and pr. This
figure clearly shows that the spin precession decreases when
spin polarization of the leads becomes smaller. This is rea-
sonable since lower spin polarization creates smaller ex-
change field.

FIG. 4. Bias dependence of the average spin componentkSyl for
w=2p /3 and for indicated values of the Coulomb correlation pa-
rameterU sad and the lead polarizationsbd. The other parameters
are as in Fig. 2.

FIG. 5. Bias dependence of the tunnel magnetoresistance in
symmetrical junctions for indicated values of the lead polarization.
The curves are plotted for the noncollinear configuration,w
=2p /3. The other parameters are as in Fig. 2.
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When the spin polarization rate of the leads becomes
smaller than 1, electric current can flow also in the antipar-
allel configuration, contrary to the case shown in Fig. 2 for
pl =pr =1. Consequently, the TMR effect also becomes
smaller and remains finite forw=p. In Fig. 5 we show the
TMR effect for different polarizations of the external elec-
trodes, and for a particular noncollinear configurationsw
=2p /3d. The curves are symmetrical with respect to the bias
reversal. The central peak corresponds to an enhanced mag-
netoresistance in the current blockade regime. Such an en-
hancement of TMR in the blockade regime, where sequential
tunneling is suppressed, was also observed earlier for collin-
ear configurations.14 Although the sequential current is expo-
nentially suppressed in the blockade regime, the electrons
still can flow due to higher order processesslike cotunnel-
ingd. The other two broad maxima placed symmetrically on
both sides of the central peak, occur between the twoslower
and higherd threshold voltages. The following features of
these two maxima are interesting to note. First, for small
values of the polarization parameters, the central maximum
is larger than the others. The situation changes with increas-
ing polarization factors, and now the central peak becomes
smaller for high spin polarizations of the leads. Second, the
two maxima become strongly asymmetric for large values of
the spin polarization factors, as clearly visible in Fig. 5. To
account for this behavior one should take into account bias
dependence ofkSyl from Fig. 4sbd, which shows clearly the
corelations between the spin precession and height and shape
of the TMR peaks with increasing polarization.

In the situation studied above the dot level was empty at
equilibrium. Qualitatively similar behavior of electric cur-

FIG. 6. Bias dependence of electric currentsad, and the average
value of they component of the dot spinsbd, calculated for indi-
cated values of the anglew and«d=−0.1 eV. The other parameters
are as in Fig. 2.

FIG. 7. Bias dependence of electric currentsad and magnetore-
sistancesbd, calculated for indicated values of the anglew. The inset
in sad shows current between the threshold voltages for negative
bias. The parameters assumed for numerical calculations are:«d

=0.1 eV,U=0.4 eV,G0=0.01 eV,pl =0.4, pr =1, a=0.1, and T
=100 K.

FIG. 8. Angular variation of electric currentsad and TMRsbd for
indicated values of the bias voltage. The other parameters are as in
Fig. 7
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rent, magnetoresistance, and average spin on the dot, has
been found for the situation when the dot level is below the
Fermi level, and the dot is occupied by a single electron at
equilibrium. Exemplary current-voltage characteristics are
shown in Fig. 6sad, and the correspondingy components of
the average spin on the dot are shown in Fig. 6sbd. The
current-voltage curves display similar features as the curves
shown in Fig. 2sad, with characteristic negative differential
conductance between the threshold voltages for noncollinear
configurations. The main difference in the bias dependence
of kSyl is a reversed sign of the peaks at the lower threshold
voltage in comparison to that in Fig. 3scd.

B. Asymmetrical junctions

Now the dot is separated from both electrodes by non-
equivalent barriers,aÞ1, and the electrodes are made of
different ferromagnetic materials,pl Þpr. For numerical cal-
culations we assumepl =0.4, pr =1, anda=0.1. More spe-
cifically, it is assumed that the right electrode is made of a
half-metallic material with electrons being totally spin polar-
ized at the Fermi level, whereas the factora=0.1 indicates
that on average electrons can tunnel much easier tosfromd
the left electrode than tosfromd the right one. This asymme-
try between the left and right electrodes and barriers gives
rise to asymmetrical transport characteristics of the junction

with respect to the bias reversal. The asymmetry is clearly
visible in current-voltage characteristics and bias dependence
of TMR, shown in Figs. 7sad and 7sbd, respectively. For posi-
tive biassthe right lead is the source electroded, the current
and TMR curves are rather uniform above the first threshold
voltage. The current flows there for arbitrary value of the
anglew and thus TMR is significantly suppressed. The situ-
ation changes diametrically when the electric current flows
in the opposite direction, i.e., when electrons tunnel through
the dot from the left electrode to the rightshalf-metallicd one.
Below the first threshold voltage sequential tunneling is ex-
ponentially suppressed and only the higher-order tunneling
processes are possible. When the energy level«d enters the
tunneling window, electric current starts to flow through the
junction but this takes place only in a small voltage range in
the vicinity of the first threshold voltage, where the charac-
teristic resonant bump is observed. Above the bump, the cur-
rent is suppressed by an electron residing on the dot. When
«d+U crosses the Fermi level of the source lead, the current
increases again and finally saturates at a certain level.

For positive bias,V.0, the curves in Figs. 7sad and 7sbd
for different values of the anglew reflect a monotonous an-
gular variation of the current and TMR, shown also explicitly
in Fig. 8 for a particular value of the bias voltage. For nega-
tive bias one observes a more complex and interesting be-
havior of the transport characteristics. First, the above men-
tioned suppression of electric current between the two steps
is now less pronounced, and the corresponding angular varia-
tion of electric current and TMR is nonmonotonous, as
shown explicitly in Fig. 8 by the relevant curve. When the
negative bias voltage surpasses the second threshold, the mo-

FIG. 9. Bias dependence of the average spin components;kSzl
sad, kSxl sbd, and kSyl scd for indicated values of the anglew. The
other parameters are as in Fig. 7.

FIG. 10. Bias dependence of electric currentsad, and the average
value of they component of the dot spinsbd, calculated for indi-
cated values of the anglew and«d=−0.1 eV. The other parameters
are as in Fig. 7.
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notonous variation of electric current and TMR is restored. It
is also interesting to note, that the TMR effect is enhanced in
the voltage regions, where electric current is suppressed.
This is the region below the first threshold voltage, and for
negative bias also the region between the two threshold volt-
ages. The latter one is particularly interesting as the TMR
may change there sign from positive to negativefsee Figs.
7sbd and 8sbdg.

Suppression of electric current by an electron of a given
spin orientation localized on the dot can be accounted for by
analyzing spin accumulated on the dot when a steady state
current flows through the system. This is illustrated in Figs.
9sad–9scd, where partscd shows the component induced by
spin precession. The spin precession is particularly enhanced
for negative bias between the two thresholds—exactly where
electric current is suppressed. The enhancement is a conse-
quence of relatively long time that electrons spend on the
dot.

The situation is different for the dot level lying under the
Fermi level, i.e., when the dot is already occupied by one
electron in equilibrium situation. The corresponding numeri-
cal results are shown in Fig. 10, where partsad shows the
current-voltage characteristics, and partsbd the average value
of the perpendiculary component of the average spin accu-
mulated on the dot. The transport characteristics for collinear
configurations were already accounted for in earlier
publications,13 and their most interesting feature is the pro-
nounced asymmetry with respect to the bias reversalsdiode-
like behaviord. For noncollinear configurations transport
characteristics have features, which are qualitatively similar
to those found in the case of empty dot at equilibrium, like
for instance nonmonotonous angular variation of electric cur-
rent and TMR.

VI. SUMMARY AND CONCLUSIONS

Using the nonequilibrium Green function approach we
have calculated electric current, average value of electron
spin accumulated on the dot, and tunnel magnetoresistance
due to rotation of the magnetic moments of external elec-
trodes. It has been shown that the average spin precesses by
a certain angle around an effective exchange field arising
from the interaction between the dot and electrodes. This
precession leads to a nonzero value ofkSyl, i.e., of the com-
ponent normal to the plane determined by magnetic moments
of both electrodes.

It has been also shown that the spin precession is en-
hanced by Coulomb correlations and strong spin polarization
of the leads. The spin precession is shown to exist also in the
limit of vanishing Coulomb correlations on the dot. More-
over, the interplay of Coulomb correlations and effective ex-
change field may lead to a negative differential conductance
in the voltage range between the two threshold voltages. It
has been also shown, that the diodelike features of the sys-
tem are partially suppressed when magnetic moments of the
electrodes become noncollinear.

In a recent paper, Pedersenet al.26 studied a related prob-
lem of electron tunneling through a quantum dot coupled to
ferromagnetic leads. In their case, magnetic moments of the
leads were parallel, but the dot was subject to an external
magnetic field noncollinear with the magnetizations.
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