
First-principles determination of the structural, vibrational and thermodynamic
properties of diamond, graphite, and derivatives

Nicolas Mounet* and Nicola Marzari†

Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
sReceived 21 December 2004; published 31 May 2005d

The structural, dynamical, and thermodynamic properties of diamond, graphite and layered derivatives
sgraphene, rhombohedral graphited are computed using a combination of density-functional theory total-energy
calculations and density-functional perturbation theory lattice dynamics in the generalized gradient approxi-
mation. Overall, very good agreement is found for the structural properties and phonon dispersions, with the
exception of thec/a ratio in graphite and the associated elastic constants and phonon dispersions. Both theC33

elastic constant and theG to A phonon dispersions are brought to close agreement with available data once the
experimentalc/a is chosen for the calculations. The vibrational free energy and the thermal expansion, the
temperature dependence of the elastic moduli and the specific heat are calculated using the quasiharmonic
approximation. Graphite shows a distinctive in-plane negative thermal-expansion coefficient that reaches its
lowest value around room temperature, in very good agreement with experiments. Thermal contraction in
graphene is found to be three times as large; in both cases, bending acoustic modes are shown to be responsible
for the contraction, in a direct manifestation of the membrane effect predicted by Lifshitz over 50 years ago.
Stacking directly affects the bending modes, explaining the large numerical difference between the thermal-
contraction coefficients in graphite and graphene, notwithstanding their common physical origin.
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I. INTRODUCTION

The extraordinary variety of carbon allotropes, as well as
their present and potential applications in such diverse fields
as nanoelectronics1 or bioengineering,2 gives them a special
place among all elements. Even excluding fullerenes, nano-
tubes, and their derivatives, single crystalline diamond,
graphite and graphenesi.e., a single graphite layerd still lack
a complete characterization of their thermodynamic stability
under a broad range of conditionsssee, e.g., Refs. 3–7 and
citations thereind. In this respect, vibrational properties play
a crucial role in determining the thermodynamic properties
of the bulk. Indeed, diamond being a wide band gap material
sEg=5.5 eVd, electronic excitations do not account for ther-
mal properties up to high temperatures. Graphite and
graphene are semimetals, but the gap vanishes only at theK
point where the two massless bands crossssee, e.g., Ref. 8d;
thus, electronic excitations can often be neglected in these
materials, and the phonon dispersions provide all the infor-
mation that is needed to calculate thermodynamic quantities
such as the thermal expansion or specific heat.

The aim of this paper is to provide a converged, accurate
determination of the structural, dynamical, and thermody-
namic properties of diamond, graphite, graphene, and rhom-
bohedral graphite from first-principles calculations. Although
the phonon spectrum of diamond and its thermal properties
have been studied extensively with experiments9,10 and
calculations,11 the phonon spectrum of graphite is still under
active investigation,12,13 as well as its thermal properties.
Graphite in-plane thermal expansion has long been recog-
nized to be negative,14,15 and it has even been suggested7,15

that this may be due to the internal stresses related to the
large expansion in thec directionsPoisson effectd. To resolve
some of the open questions, and to provide a coherent theo-

retical picture for these materials, we used extensiveab initio
density-functional theorysDFTd and density-functional per-
turbation theorysDFPTd16,17 calculations. DFT is a very ef-
ficient and accurate tool to obtain ground-state and linear-
response properties, especially when paired with plane-wave
basis sets, which easily allow to reach full convergence with
respect to basis size, and ultrasoft pseudopotentials18 for op-
timal performance and transferability. We adopted the
Perdew-Burke-ErnzerhofsPBEd19 generalized gradient ap-
proximationsGGAd for the exchange-correlation functional,
at variance with most of the early studies on diamond11,20,21

and especially graphite,13,22–26 which have been performed
using the local density approximationsLDA d. GGA calcula-
tions have appeared mostly for the cases of diamondsRef.
21d and graphenesRefs. 12 and 13d, with some data for
graphite appearing in Refs. 13 and 27–29. DFPTsRefs. 16
and 17d is then used to compute the phonon frequencies at
any arbitrary wave vector, without having to resort to the use
of supercells. The vibrational free energy is calculated in the
quasiharmonic approximationsQHAd,11,30 to predict finite-
temperature lattice properties such as thermal expansion and
specific heat.

To the best of our knowledge, this is the first study on the
thermodynamic properties of graphite or graphene from first
principles. For the case of diamond and graphene, calcula-
tions are fullyab initio and do not require any experimental
input. For the case of graphite and rhombohedral graphite we
argue that the use of the experimentalc/a greatly improves
the agreement with experimental data. This experimental in-
put is required since DFT, in its current state of development,
yields poor predictions for the interlayer interactions, domi-
nated by van Der Waals dispersion forces not well described
by local or semilocal exchange correlation functionalsssee
Refs. 31 and 32 for details; the agreement between LDA
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predictions and experimental results for thec/a ratio is for-
tuitousd. It is found that the weak interlayer bonding has a
small influence on most of the properties studied and that
forcing the experimentalc/a corrects almost all the remain-
ing ones. This allows us to obtain results for all the materials
considered that are in very good agreement with the avail-
able experimental data.

The paper is structured as follows. We give a brief sum-
mary of our approach and definitions and introduce DFPT
and the QHA in Sec. II. Our ground-state, zero-temperature
results for diamond, graphite, graphene, and rhombohedral
graphite are presented in Sec. III, lattice parameters and elas-
tic constants from the equations of state in Sec. III A, phonon
frequencies and vibrational density of states in Sec. III B,
and first-principles, linear-response interatomic force con-
stants in Sec. III C. The lattice thermal properties, such as
thermal expansion, mode Grüneisen parameters, and specific
heat as obtained from the vibrational free energy are pre-
sented in Sec. IV. Sec. V contains our final remarks.

II. THEORETICAL FRAMEWORK

A. Basics of density-functional perturbation theory

In density-functional theory33,34 the ground state elec-
tronic density and wave functions of a crystal are found by
solving self-consistently a set of one-electron equations. In
atomic unitssused throughout the paperd, these are

f− 1
2¹2 + VSCFsr dgucil = «iucil, s1ad

VSCFsr d =E nsr 8d
ur − r 8u

d3r 8 +
dExc

dsnsr dd
+ Vionsr d, s1bd

nsr d = o
i

ucisr du2fs«F − «id, s1cd

where fs«F−«id is the occupation function,«F the Fermi en-
ergy, Exc the exchange-correlation functionalsapproximated
by GGA-PBE in our cased, nsr d the electronic density, and
Vionsr d the ionic core potentialsactually a sum over an array
of pseudopotentialsd.

Once the unperturbed ground state is determined, phonon
frequencies can be obtained from the interatomic force con-
stants, i.e., the second derivatives at equilibrium of the total
crystal energy versus displacements of the ions,

Cai,b jsR − R8d = U ]2E

]uaisRd]ub jsR8d
U

equil
= Cai,b j

ion sR − R8d

+ Cai,b j
elec sR − R8d. s2d

HereR sR8d is a Bravais lattice vector,i s jd indicates theith
s j thd atom of the unit cell, andasbd represents the Cartesian
components.Cai,b j

ion are the second derivatives17 of Ewald
sums corresponding to the ion-ion repulsion potential, while
the electronic contributionsCai,b j

elec are the second derivatives
of the electron-electron and electron-ion terms in the ground
state energy. From the Hellmann-Feynman theorem17 one
obtains

Cai,b j
elec sR − R8d =E F ]nsr d

]uaisRd
]Vionsr d
]ub jsR8d

+ n0sr d
]2Vionsr d

]uaisRd]ub jsR8d
Gd3r s3d

fwhere the dependence of bothnsr d and Vionsr d on the dis-
placements has been omitted for clarity, andVionsr d is con-
sidered localg.

It is seen that the electronic contribution can be obtained
from the knowledge of the linear response of the system to a
displacement. The key assumption is then the Born-
Oppenheimer approximation which views a lattice vibration
as a static perturbation on the electrons. This is equivalent to
say that the response time of the electrons is much shorter
than that of ions, that is, each time ions are slightly displaced
by a phonon, electrons instantaneously rearrange themselves
in the state of minimum energy of the ionic configuration.
Therefore, static linear response theory can be applied to
describe the behavior of electrons upon a vibrational excita-
tion.

For phonon calculations, we consider a periodic perturba-
tion DVion of wave vector q, which modifies the self-
consistent potentialVSCF by an amountDVSCF. The linear
response in the charge densityDnsr d can be found using
first-order perturbation theory. If we consider its Fourier
transformDnsq+Gd, and callingco,k the one-particle wave
function of an electron in the occupied band “o” at the point
k of the Brillouin zonesand «o,k the corresponding eigen-
valued, one can get a self-consistent set of linear equations
similar to Eqs.s1ad, s1bd, ands1cd,35

f«o,k + 1
2¹2 − VSCFsr dgDco,k+q = P̂e

k+qDVSCF
q co,k , s4ad

Dnsq + Gd =
4

V
o
k,o

kce,kue−isq+Gd·r P̂e
k+quDco,k+ql, s4bd

DVSCFsr d =E Dnsr 8d
ur − r 8u

d3r 8 + Dnsr dF d

dn
S dExc

dsnsr dd
DG

n0sr d

+ DVionsr d. s4cd

P̂e
k+q refers to the projector on the empty-state manifold at

k +q, V to the total crystal volume, andG to any reciprocal
lattice vector. Note that the linear response contains only
Fourier components of wave vectorq+G, so we add a su-
perscriptq to DVSCF

q . We implicitly assume for simplicity
that the crystal has a band gap and that pseudopotentials are
local, but the extension to the case of metals36 or nonlocal
pseudopotentials17 is well establishedssee Ref. 16 for a de-
tailed and complete review of DFPTd.

Linear-response theory allows us to calculate the response
to any periodic perturbation; i.e., it allows direct access to
the dynamical matrix related to the interatomic force con-
stants via a Fourier transform,
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D̃ai,b jsqd =
1

ÎMiMj
o
R

Cai,b jsRde−iq·R s5d

swhereMi is the mass of theith atomd.
Phonon frequencies at anyq are the solutions of the ei-

genvalue problem

v2sqduaisqd = o
b j

ub jsqdD̃ai,b jsqd. s6d

In practice, one calculates the dynamical matrix on a rela-
tively coarse grid in the Brillouin zonessay, a 83838 grid
for diamondd, and obtains the corresponding interatomic
force constants by inverse Fourier transformsin this example
it would correspond to a 83838 supercell in real spaced.
Finally, the dynamical matrixsand phonon frequenciesd at
any q point can be obtained by Fourier interpolation of the
real-space interatomic force constants.

B. Thermodynamic properties

When no external pressure is applied to a crystal, the
equilibrium structure at any temperatureT can be found by
minimizing the Helmholtz free energyFshaij ,Td=U−TS
with respect to all its geometrical degrees of freedomhaij. If
now the crystal is supposed to be perfectly harmonic,F is the
sum of the ground state total energy and the vibrational free
energy coming from the partition functionsin the canonical
ensembled of a collection of independent harmonic oscilla-
tors. In a straightforward manner, it can be shown37 that

Fshaij,Td = Eshaijd + FvibsTd = Eshaijd + o
q,j

"vq,j

2

+ kBTo
q,j

lnF1 − expS−
"vq,j

kBT
DG , s7d

whereEshaijd is the ground state energy and the sums run
over all the Brillouin zone wave vectors and the band index
j of the phonon dispersions. The second term on the right-
hand side of Eq.s7d is the zero-point motion.

If anharmonic effects are neglected, the phonon frequen-
cies do not depend on lattice parameters, and the free energy
dependence on structure is entirely contained inEshaijd, en-
ergy of the static lattice as a function of the cell parameters.
Thus, in a harmonic crystal, the structure does not depend on
temperature. Thermal expansion is recovered by introducing
in Eq. s7d the dependence of the phonon frequencies on the
structural parametershaij; direct minimization of the free en-
ergy

Fshaij,Td = Eshaijd + Fvibsvq,jshaijd,Td

= Eshaijd + o
q,j

"vq,jshaijd
2

+ kBTo
q,j

lnF1 − expS−
"vq,jshaijd

kBT
DG s8d

provides the equilibrium structure at any temperatureT. This
approach goes under the name quasiharmonic approximation

and has been applied successfully to many bulk
systems.11,38,39The linear thermal expansion coefficients of
the cell dimensions of a lattice are then

ai =
1

ai

]ai

]T
. s9d

The Grüneisen formalism40 assumes a linear dependence of
the phonon frequencies on three orthogonal cell dimensions
haij; developing the ground state energy up to second order
one can get from the conditions]F /]aidT=0 the alternative
expression

ai = o
q,j

cvsq, jdo
k

Sik

V0
S− a0,k

v0,q,j
U ]vq,j

]ak
U

0
D . s10d

We follow here the formalism of Ref. 41:cvsq , jd is the con-
tribution to the specific heat from the modesq , jd, Sik is the
elastic compliance matrix, and the subscript “0” indicates a
quantity taken at the ground state lattice parameter. The Grü-
neisen parameter of the modesq , jd is by definition

gksq, jd =
− a0,k

v0,q,j
U ]vq,j

]ak
U

0
. s11d

For a structure which depends only on one lattice parameter
a se.g., diamond or graphened one then gets for the linear
thermal expansion coefficient

a =
1

a0
2U ]2E

]a2U
0

o
q,j

cvsq, jd
− a0

v0,q,j
U ]vq,j

]a
U

0
. s12d

Note thata0
2us]2E/]a2du0=9V0B0 for diamond, whereB0 is

the bulk modulus andV0 the equilibrium volume of the
primitive cell.

In the case of graphite there are two lattice parameters,a
in the basal plane andc perpendicular to the basal plane, so
that one gets

aa =
1

V0
o
q,j

cvsq, jdSsS11 + S12d
− a0

2v0,q,j
U ]vq,j

]a
U

0

+ S13
− c0

v0,q,j
U ]vq,j

]c
U

0
D , s13ad

ac =
1

V0
o
q,j

cvsq, jdSS13
− a0

v0,q,j
U ]vq,j

]a
U

0
+ S33

− c0

v0,q,j
U ]vq,j

]c
U

0
D .

s13bd

The mode Grüneisen parameters provide useful insight in the
thermal expansion mechanisms. They are usually positive,
since phonon frequencies decrease when the solid expands,
although some negative mode Grüneisen parameters for low-
frequency acoustic modes can arise and sometimes compete
with positive ones, giving a negative thermal expansion at
low temperatures, when only the lowest acoustic modes can
be excited.

Finally, the heat capacity per unit cell at constant volume
can be obtained fromCv=−Ts]2Fvib/]T2dV,37
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Cv = o
q,j

cvsq, jd = kBo
q,j

S"vq,j

2kBT
D2 1

sinh2S"vq,j

2kBT
D . s14d

C. Computational details

All the calculations that follow are performed using the
n-ESPRESSOsRef. 42d package, which is a fullab initio
DFT and DFPT code available under the GNU General Pub-
lic License.43 We use a plane-wave basis set, ultrasoft
pseudopotentials18 from the standard distribution44 fgener-
ated using a modified RRKJsRef. 45d approachg, and the
generalized gradient approximation in its PBE
parametrization19 for the exchange-correlation functional.
We also use the local density approximationsLDA d in order
to compare some results between the two functionals. In this
case the parametrization used is the one proposed by Perdew
and Zunger.46

For the semimetallic graphite and graphene cases, we use
0.03 Ry of cold smearing.47 We carefully and extensively
check the convergence in the energy differences between dif-
ferent configurations and the phonon frequencies with re-
spect to the wave function cutoff, the dualsi.e., the ratio
between charge density cutoff and wave function cutoffd, the
k-point sampling of the Brillouin zone, and the interlayer
vacuum spacing for graphene. Energy differences are con-
verged within 5 meV/atom or better, and phonon frequen-
cies within 1–2 cm−1. In the case of graphite and graphene
phonon frequencies are converged with respect to thek-point
sampling after having set the smearing parameter at 0.03 Ry.
Besides, values of the smearing between 0.02 Ry and
0.04 Ry do not change the frequencies by more than
1–2 cm−1.

In a solid, translational invariance guaranties that three
phonon frequencies atG will go to zero. In our GGA-PBE
DFPT formalism this condition is exactly satisfied only in
the limit of infinite k-point sampling and full convergence
with the plane-wave cutoffs. For the case of graphene and
graphite we find in particular that an exceedingly large cutoff
s100 Ryd and duals28d would be needed to recover phonon
dispersionssespecially aroundG and theG-A branchd with
the tolerances mentioned; on the other hand, application of
the acoustic sum rulesi.e., forcing the translational symmetry
on the interatomic force constantsd allows us to recover these

highly converged calculations with a more reasonable cutoff
and dual.

Finally, the cutoffs used are 40 Ry for the wave functions
in all the carbon materials presented, with duals of 8 for
diamond and 12 for graphite and graphene, corresponding to
a charge density cutoff of 320 Ry for diamond and 480 Ry
for graphite and graphene. We use a 83838 Monkhorst-
Pack mesh for the Brillouin zone sampling in diamond, 16
31638 in graphite, 1631634 in rhombohedral graphite
and 1631631 in graphene. All these meshes are not shifted
si.e., they includeGd. The dynamical matrix is explicitly cal-
culated on a 83838 q-points mesh in diamond, 83834 in
graphite, 83832 in rhombohedral graphite and 16316
31 in graphene. Finally, integrations over the Brillouin zone
for the vibrational free energy or the heat capacity are done
using phonon frequencies that are Fourier interpolated on
much finer meshes. The phonon frequencies are usually com-
puted at several lattice parameters and the results interpo-
lated to get their dependence on lattice constants.

A final remark is that we are careful to use the same
parametersscutoffs,k-points sampling, smearing, etc.d in the
determination of the ground statesstaticd energy and that of
the phonon frequencies, since these two terms need to be
added in the free energy expression.

III. ZERO-TEMPERATURE RESULTS

A. Structural and elastic properties

We perform ground state total-energy calculations on dia-
mond, graphite, and graphene over a broad range of lattice
parameters. The potential energy surface is then fitted by an
appropriate equation of state, and its minimum provides the-
oretical predictions for the ground state equilibrium lattice
parameterssd. The second derivatives at the minimum are re-
lated to the bulk modulus and elastic constants.

For the case of diamond we choose the Birch equation of
state48 sup to the fourth orderd to fit the total energy vs the
lattice constanta,

Esad = − E0 +
9

8
B0V0FSa0

a
D2

− 1G2

+ AFSa0

a
D2

− 1G3

+ BFSa0

a
D2

− 1G4

+ OFSa0

a
D2

− 1G5

, s15d

TABLE I. Equilibrium lattice parametera0 and bulk modulusB0

of diamond at the ground statesGSd and at 300 Kssee Sec. IVd,
compared to experimental values.

Present calculation Experiments300 Kd

Lattice constanta0 6.743sGSd 6.740a

sa.u.d 6.769s300 Kd

Bulk modulusB0 432 sGSd 442±2b

sGPad 422 s300 Kd
aReference 49.
bReference 50.

FIG. 1. Contour plot of the ground state energy of graphite as a
function of a andc/a sisoenergy contours are not equidistantd.

N. MOUNET AND N. MARZARI PHYSICAL REVIEW B 71, 205214s2005d

205214-4



whereB0 is the bulk modulus,V0 the primitive cell volume
sV0=a0

3/4 hered and A and B are fit parameters. The Mur-
naghan equation of state or even a polynomial would fit
equally well the calculations around the minimum of the
curve. A best fit of this equation on our data gives us both the
equilibrium lattice parameter and the bulk modulus; our re-
sults are summarized in Table I. The agreement with the
experimental values is very good, even after the zero-point
motion and thermal expansion are added to our theoretical
predictionsssee Sec. IVd.

The equation of state for graphene is fitted by a fourth
order polynomial, and the minimum found fora=4.654 a.u.,
which is very close to the experimental in-plane lattice pa-
rameter of graphite. The graphite equation of state is fitted by
a two-dimensional fourth order polynomial in the variablesa
andc. To illustrate the very small dependence of the ground
state energy with thec/a ratio, we plot the results of our
calculations over a broad range of lattice constants in Figs. 1
and 2. A few elastic constants can be obtained from the sec-
ond derivatives of this energy,22

stiffness coefficients5
C11 + C12 =

1
Î3c0

]2E

]a2 ,

C33 =
2c0

Î3a0
2

]2E

]c2 ,

C13 =
1

Î3a0

]2E

]a]c
,
6

s16ad

tetragonal shear modulusCt = 1
6fsC11 + C12d + 2C33 − 4C13g,

s16bd

bulk modulusB0 =
C33sC11 + C12d − 2C13

2

6Ct . s16cd

We summarize all our LDA and GGA results in Table II.
For LDA, both the lattice parametera0 and thec0/a0 ratio
are very close to experimental data. Elastic constants are
calculated fully from first principles, in the sense that the
second derivatives of the energy are taken at the theoretical
LDA a0 and c0, and that only these theoretical values are
used in Eqs.s16ad. Elastic constants are found in good agree-
ment with experiments, except for the case ofC13 which
comes out as negativesmeaning that the Poisson’s coefficient
would be negatived. Fully theoretical GGA resultsssecond
column of Table IId compare poorly to experimental data
except for thea0 lattice constant, in very good agreement
with experiments. Using the experimental value forc0 in
Eqs.s16ad improves only the value ofC11+C12 sthird column
of Table IId. Most of the remaining disagreement is related to
the poor value obtained forc/a; if the second derivatives in
Eqs. s16ad are taken at the experimental value forc/a all
elastic constants are accurately recovered except forC13
sfourth column of Table IId. In both LDA and GGA, errors
arise from the fact that van Der Waals interactions between
graphitic layers are poorly described. These issues can still
be addressed within the framework of DFTsas shown by

FIG. 2. Ground state energy of graphite as a function ofc/a at
fixed a=4.65 a.u.. The theoreticalsPBEd and the experimentalc/a
are shown. The zero of energy is set to the PBE minimum.

TABLE II. Structural and elastic properties of graphite according to LDA, GGA, and experiments.

LDA fully
theoretical

GGA fully
theoretical

GGA using
Expt. c0

in Eqs.s16ad

GGA with
second derivatives

taken at Expt.c0/a0

Experiment
s300 Kd

Lattice constanta0sa.u.d 4.61 4.65 4.65 4.65sfixedd 4.65±0.003a

c0/a0 ratio 2.74 3.45 3.45 2.725sfixedd 2.725±0.001a

C11+C12 sGPad 1283 976 1235 1230 1240±40b

C33 sGPad 29 2.4 1.9 45 36.5±1b

C13 sGPad −2.8 −0.46 −0.46 −4.6 15±5b

B0 sGPad 27.8 2.4 1.9 41.2 35.8c

Ct sGPad 225 164 207 223 208.8c

aReferences 51–53, as reported by Ref. 22.
bReference 6.
cReference 54, as reported by Ref. 22.
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Langreth and collaborators, Ref. 31d at the cost of having a
nonlocal exchange-correlation potential.

Zero-point motion and finite-temperature effects will be
discussed in details in Sec. IV.

B. Phonon dispersion curves

We calculate the phonon dispersion relations for diamond,
graphite, rhombohedral graphite and graphene. For diamond
and graphene, we use the theoretical lattice parameter. For
graphite, we either use the theoreticalc/a or the experimen-
tal onesc/a=2.725d. We will comment in the following on
the role ofc/a on our calculated properties. Finally we also
calculate the phonon dispersions for rhombohedral graphite,
which differs from graphite only in the stacking of the par-
allel layers, in graphite the stacking isABABABwhile it is
ABCABC in rhombohedral graphite, and the latter unit cell
contains six atoms instead of four. We therefore use the same
in-plane lattice parameter and same interlayer distance as in
graphitesthat is, ac/a ratio multiplied by 1.5d. Results are
presented in Figs. 3, 4, 5, 6, and 7, and in Table III and IV,
together with the experimental data.

In diamond, GGA produces softer modes than LDAsRef.
11d on the wholesas expectedd, particularly atG soptical
moded and in the opticalG-X branches. For these, the agree-

ment is somehow better in LDA; on the other hand, the
whole G-L dispersion is overestimated by LDA.

The results on graphite require some comments. In Table
IV and Figs. 4–7, modes are classified as follows: L stands
for longitudinal polarization, T for in-plane transversal polar-
ization and Z for out-of-plane transversal polarization. For
graphite, a primesas in LO8d indicates an optical mode
where the two atoms in each layer of the unit cell oscillate
together and in phase opposition to the two atoms of the
other layer. A nonprimed optical mode is instead a mode
where atoms inside the same layer are “optical” with respect
to each other. Of course “primed” optical modes do not exist
for graphene, since there is only one layerstwo atomsd per
unit cell.

We observe that stacking has a negligible effect on all the
frequencies above 400 cm−1, since both rhombohedral
graphite and hexagonal graphite show nearly the same dis-
persions except for theG-A branch and the in-plane disper-
sions nearG. The in-plane part of the dispersions is also very
similar to that of graphene, except of course for the low
optical branchessbelow 400 cm−1d that appear in graphite
and are not present in graphene.

For graphite as well as diamond GGA tends to underesti-
mate high optical modes while LDA overestimates them. The
opposite happens for the low optical modes, and for the
G-A branch of graphite; the acoustic modes show marginal

FIG. 3. GGAab initio phonon dispersionsssolid linesd and vi-
brational density of statessVDOSd for diamond. Experimental neu-
tron scattering data from Ref. 9 are shown for comparisonscirclesd.

FIG. 4. GGAssolid linesd and LDA sdashed lined ab initio pho-
non dispersions for graphite, together with the GGA vibrational
density of statessVDOSd. The inset shows an enlargement of the
low-frequencyG-A region. The experimental data are EELSselec-
tron energy loss spectroscopyd from Refs. 55, 56, and 57srespec-
tively squares, diamonds, and filled circlesd, neutron scattering from
Ref. 58sopen circlesd, and x-ray scattering from Ref. 12strianglesd.
Data for Refs. 55 and 57 are taken from Ref. 13.

FIG. 5. GGAab initio phonon dispersions for graphenessolid
linesd. Experimental data for graphite are also shown, as in Fig. 4.

FIG. 6. GGA ab initio phonon dispersions for rhombohedral
graphite. The inset shows an enlargement of the low-frequency
G-A region.
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differences and are in very good agreement with experi-
ments. Overall, the agreement of both LDA and GGA calcu-
lations with experiments is very good and comparable to that
between different measurements.

Some characteristic features of both diamond and graphite
are well reproduced by ourab initio results, such as the LO
branch overbending and the associated shift of the highest
frequencies away fromG. Also, in the case of graphite,
rhombohedral graphite and graphene, the quadratic disper-
sion of the in-plane ZA branch in the vicinity ofG is ob-
served; this is a characteristic feature of the phonon disper-
sions of layered crystals,60,61 observed experimentally, e.g.,
with neutron scattering.58 Nevertheless, some discrepancies
are found in graphite. The most obvious one is along the
G-M TA branch, where EELSsRef. 55d data show much
higher frequencies than calculations. Additionally several
EELS experiments56,57 report a gap between the ZA and ZO
branches atK while these cross each other in all the calcu-
lations. In these cases the disagreement could come either
from a failure of DFT within the approximations used or
from imperfections in the crystals used in the experiments.
There are also discrepancies between experimental data, in
particular in graphite for the LA branch aroundK: EELS data
from Ref. 56 agree with ourab initio results while those
from Ref. 57 deviate from them.

We should stress again the dependence of the graphite
phonon frequencies on the in-plane lattice parameter andc/a
ratio. The results we have analyzed so far and that we are
going to use in the remaining sections are obtained using the
theoretical in-plane lattice parametera and the experimental
c/a ratio for both GGA and LDA. For GGA, calculations

performed at the theoreticalc/a s3.45 instead of 2.725d
strongly underestimate low-frequency modessbelow
150 cm−1d especially betweenG andA, as can be seen in Fig.
7 and in the second column of Table IV. High-frequency
optical modes are not significantly affected by this change in
c/a, but still depend on the in-plane lattice constanta; this
explains much of the discrepancy between the LDA optical
modes and the GGA onesscalculated at the equilibriuma
=4.61 anda=4.65, respectivelyd.

Finally, elastic constants can be extracted from the data on
sound velocities. Indeed, the latter are the slopes of the dis-
persion curves in the vicinity ofG and can be expressed as
the square root of linear combinations of elastic constants
sdepending on the branch consideredd over the densityssee
Ref. 62 for detailsd. We note in passing that we compute the
density consistently with the geometry used in the calcula-
tions ssee Table IV for details, first column for LDA and
third one for GGAd, and not the experimental density. Our
results are shown in Table V. The overall agreement with
experiment is good to very good. LDA leads to larger elastic
constants, as expected from the general tendency to
“overbind,” but still agrees well with experiment. For dia-
mond, the agreement is particularly good. As forC13 in
graphite, it is quite difficult to obtain it from the dispersion
curves since it enters the sound velocities only in a linear
combination involving other elastic constants, for which the
error is almost comparable to the magnitude ofC13 itself.

An accurate description of the phonon dispersions allows
us to predict the low-energy structural excitations and thus
several thermodynamic quantities. Before exploring this in
Sec. IV, we want to discuss the nature and decay of the
interatomic force constants in carbon-based materials.

C. Interatomic force constants

As explained in Sec. II A, the interatomic force constants
Ci,jsR−R8d are obtained in our calculations from the Fourier

transform of the dynamical matrixD̃i,jsqd calculated on a
regular mesh inside the Brillouin zones83838 for dia-
mond and 1631631 for graphened. At a givenR, Ci,jsRd is
actually a second order tensor, and the decay of its norm
sdefined as the square root of the sum of the squares of all
the matrix elementsd with distance is a good measure of the
long-range effects coming from distant neighbors. In Fig. 8
we plot the natural logarithm of such a norm with respect to
the distance from a given atom, for the cases of diamond and
graphene. In diamond the decay of the force constants along
s110d is much slower than in other directions due to long-

TABLE III. Phonon frequencies of diamond at the high-symmetry pointsG, X, andL, in cm−1.

GO XTA XTO XLO LTA LLA LTO LLO

LDAa 1324 800 1094 1228 561 1080 1231 1275

GGAb 1289 783 1057 1192 548 1040 1193 1246

Expt.c 1332 807 1072 1184 550 1029 1206 1234

aReference 11.
bPresent calculation.
cReference 9.

FIG. 7. GGAab initio phonon dispersions for graphite at the
theoretical c/a. The inset shows an enlargement of the low-
frequencyG-A region.
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TABLE IV. Phonon frequencies of graphite and derivatives at the high-symmetry pointsA, G, M, andK,
in cm−1. The lattice constants used in the calculations are also shown.

Graphite Rhombo. graphite Graphene Graphite

Functional LDA GGA GGA GGA GGA Experiment

In-plane lattice constanta0 4.61 a.u. 4.65 a.u. 4.65 a.u. 4.65 a.u. 4.65 a.u. 4.65 a.u.

Interlayer distance/a0 1.36 1.725 1.36 1.36 15 1.36

ATA/TO8 31 6 29 35a

ALA/LO8 80 20 96 89a

ALO 897 880 878

ATO 1598 1561 1564

GLO8 44 8 41 35 49a

GZO8 113 28 135 117 95b, 126a

GZO 899 881 879 879 881 861b

GLO/TO 1593 1561 1559 1559 1554 1590b, 1575f

1604 1561 1567

MZA 478 471 477 479 471 471a, 465b, 451d

MTA 630 626 626 626 626 630d

MZO 637 634 634 635 635 670b

MLA 1349 1331 1330 1330 1328 1290c

MLO 1368 1346 1342 1344 1340 1321c

MTO 1430 1397 1394 1394 1390 1388c, 1389b

KZA 540 534 540 535 535 482d, 517d, 530e

KZO 544 534 542 539 535 588d, 627e

KTA 1009 999 998 998 997

KLA/LO 1239 1218 1216 1216 1213 1184c, 1202c

KTO 1359 1308 1319g 1319 1288g 1313d, 1291e

aReference 58.
bReference 55.
cReference 12.
dReference 57.
eReference 56.
fReference 59.
gNote that a direct calculation of this mode with DFPTsinstead of the Fourier interpolation result given hered
leads to a significantly lower value in the case of graphite—1297 cm−1 instead of 1319 cm−1. This explains
much of the discrepancy between the graphite and graphene result, since in the latter we use a denserq-points
mesh. This effect is due to the Kohn anomaly occurring atK sRef. 29d.

TABLE V. Elastic constants of diamond and graphite as calculated from the phonon dispersions, in
GPa.

Functional

Diamond Graphite

GGA Expt. LDA GGA Expt.

C11 1060 1076.4±0.2a 1118 1079 1060±20b

C12 125 125.2±2.3a 235 217 180±20b

C44 562 577.4±1.4a 4.5 3.9 4.5±0.5b

C33 29.5 42.2 36.5±1b

aReference 50.
bReference 6.
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range elastic effects along the covalent bonds. This long-
range interaction is also responsible for the flattening of the
phonon dispersions in zinc-blende and diamond semiconduc-
tors along theK-X line ssee, e.g., Fig. 3 and Ref. 17d. The
force-constants decay in graphene is slower than in diamond
and it depends less on direction. Note that in graphite the
force constantssnot represented hered include values corre-
sponding to graphenesin-plane nearest neighborsd and
smaller values corresponding to weak interlayer interactions.

It is interesting to assess the effects of truncation of these
interatomic force constants on the phonon dispersions. Fig-
ures 9 and 10 show the change in frequency for selected
modes in diamond and graphene as a function of the trunca-
tion range. The modes we chose are those most strongly
affected by the number of neighbors included.

For diamond, our whole supercell contains up to 47
neighbors, and the graph shows only the region up to 20
neighbors included, since the selected modes do not vary by
more than 1 cm−1 after that. With five neighbors, phonon
frequencies are already near their converged value, being off
by at worst 4%; very good accuracys5 cm−1d is obtained
with 13 neighbors.

For graphene, our 1631631 supercell contains up to 74
neighbors, but after the 30th no relevant changes occur. At
least 4 neighbors are needed for the optical modes to be
converged within 5%–8%. On the other hand, the frequency
of some ZA modes in theG-M branchsat about one-fourth of
the branchd oscillates strongly with the number of neighbors
included, and can even become imaginary when less than 13
are used, resulting in an instability of the crystal. Also, the
KTO mode keeps decreasing in going from 20 to 30 neigh-
bors, though the effect remains smalls8–9 cm−1d. This drift
signals the presence of a Kohn anomaly,63 at theK point of
the Brillouin zone the electronic band gap vanishes and a
singularity arises in the highest optical phonon mode. A de-
tailed discussion is offered in Ref. 29.

IV. THERMODYNAMIC PROPERTIES

We present in this final section our results on the thermo-
dynamic properties of diamond, graphite and graphene using
the quasiharmonic approximation and phonon dispersions at
the GGA level. As outlined in Sec. II B we first perform a
direct minimization over the lattice parameterssd haij of the
vibrational free energyFshaij ,Td fEq. s8dg. This gives us, at
any temperatureT, the equilibrium structure, shown in Figs.
11, 12, and 13. For diamond and graphene, we use in Eq.s8d
the equations of state obtained from the ground state calcu-
lations presented in Sec. III A. For graphite this choice
would not be useful or accurate, since the theoreticalc/a is
much larger than the experimental one. So we force the
equation of state to be a minimum forc/a=2.725 anda
=4.65 a.u.sfixing only c/a and relaxinga would give a
=4.66 a.u., with negligible effects on the thermal expansiond.
In particular, our “corrected” equation of state is obtained by
fitting with a fourth order polynomial the true equation of
state around the experimentala andc/a, and then dropping
from this polynomial the linear order terms. Since the second
derivatives of the polynomial remain unchanged, we keep
the elastic constants unchanged, and the only input from ex-
periments remains thec/a ratio. We have also checked the

FIG. 8. Decay of the norm of the interatomic force constants as
a function of distance for diamondsthin solid lined and graphene
sthick solid lined, averaged over all directions and in a semilogarith-
mic scale. The dotted line shows the decay for diamond along the
s100d direction, and the dashed line that along thes110d direction.

FIG. 9. Phonon frequencies of diamond as a function of the
number of neighbors included in the interatomic force constants,GO

ssolid lined, XTO sdotted lined, andLTA sdashed lined.

FIG. 10. Phonon frequencies of graphene as a function of the
number of neighbors included in the interatomic force constants,
GLO/TO ssolid lined, KTO sdotted-dashedd, MZO sdashedd, and for the
dotted line a phonon mode in the ZA branch one-fourth along theG
to M line.
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effects of imposing toC13 its experimental valuesC13 is the
elastic constant that is predicted least accuratelyd, but the
changes were small.

The dependence of the phonon frequencies on the lattice
parameters is determined by calculating the whole phonon
dispersions at several values and interpolating these in be-
tween. For diamond and graphene we use four different val-
ues of a sfrom 6.76 to 6.85 a.u. for diamond, and from
4.654 to 4.668 a.u. for graphened and interpolate them with a
cubic polynomial. For graphite, where two independent
structural parameters are needed, we restrict ourselves to lin-
ear interpolations and calculate the phonon dispersions for
the three combinationssa,c/ad=s4.659,2.725d, s4.659,2.9d,
and s4.667,2.725d.

Before focusing on the thermal expansion, we examine
the zero-point motion. Indeed, the effects of temperature up
to about 1000 K remains small or comparable to the zero-
point expansion of the lattice parameters. In diamond, once
the zero-point motion is added the equilibrium lattice param-
etera expands from 6.743 a.u. to 6.768 a.u., a difference of
0.4%. For graphene,a changes from 4.654 a.u. to 4.668 a.u.
with zero-point motion correctionss+0.3%d; for graphitea
increases from 4.65 to 4.664 a.u.s+0.3%d and c from
12.671 to 12.711s+0.3%d. The increase is similar in each

case, and even comparable to the discrepancy between ex-
periments and GGA or LDA ground states.

The coefficients of linear thermal expansion at any tem-
perature are obtained by direct numerical differentiation of
the previous data. Results are shown in Figs. 14, 15, and 16.
For the case of diamond, we also plot the linear thermal
expansion coefficient calculated using the Grüneisen formal-
ism fEq. s12dg instead of directly minimizing the free energy.
While at low temperature the two curves agree, a discrep-
ancy becomes notable above 1000 K, and direct minimiza-
tion should be performed. This difference between the Grü-
neisen approach and a direct minimization seems to explain
much of the discrepancy between the calculations of Ref. 11
and our results. Finally a Monte Carlo path integral study by
Herrero and Ramírez,64 which does not use the QHA, gives
very similar results.

For graphite, the in-plane coefficient of linear thermal ex-
pansion slightly overestimates the experimental values, but
overall the agreement remains excellent, even at high tem-
peratures. Out-of-plane, the agreement holds well up to

FIG. 13. Out-of-plane lattice parameter of graphite as a function
of temperature.

FIG. 14. Coefficient of linear thermal expansion for diamond as
a function of temperature. We compare our QHA-GGAab initio
calculationsssolid lined to experimentssRef. 10, filled circlesd, a
path integral Monte Carlo study using a Tersoff empirical potential
sRef. 64, open squaresd and the QHA-LDA study by Pavoneet al.
sRef. 11d sdashed lined. The QHA-GGA thermal expansion calcu-
lated using the Grüneisen equationfEq. s12dg is also shownsdotted
lined.

FIG. 11. Lattice parameter of diamond as a function of
temperature.

FIG. 12. In-plane lattice parameter of graphitessolid lined and
graphenesdashed lined as a function of temperature.
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150 K, after which the coefficient of linear thermal expan-
sion is underestimated by about 30% at 1000 K.

In-plane, the coefficient of linear thermal expansion is
confirmed to be negative from 0 to about 600 K. This fea-
ture, absent in diamond, is much more apparent in graphene,
where the coefficient of linear thermal expansion keeps be-
ing negative up to 2300 K. This thermal contraction will
likely appear also in single-walled nanotubessone graphene
sheet rolled on itselfd.65 Some molecular dynamics
calculations41,66 have already pointed out this characteristic
of SWNTs.

To further analyze thermal contraction, we show in Figs.
17 and 18 the in-plane mode Grüneisen parameters of
graphene and graphitessee Sec. II Bd. These are obtained
from an interpolation of the phonon frequencies with a qua-
dratic sor linear, for graphited polynomial in the lattice con-
stantssd, and computed at the ground state geometry.
Whereas in diamond the Grüneisen parametersscalculated in
Refs. 11 and 20d were shown to be all positive, in graphite
and graphene some bands display large and negative
Grüneisen parametersswe have used the definitiong jsqd

=−fa/2v jsqdgfdv jsqd /dagd. While not visible in the figure,
the Grüneisen parameters for the lowest acoustic branch of
graphite become as low as −40, and as low as −80 in
graphene. Therefore, at low temperaturesswhere most opti-
cal modes with positive Grüneisen parameters are still not
excitedd the contribution from the negative Grüneisen param-
eters will be dominant and thermal expansionffrom Eq.
s12dg negative.

The negative Grüneisen parameters correspond to the
lowest transversal acousticsZAd modes, and in the case of
graphite to thesZO8d modes as well, which can be described
as “acoustic” inside the layer and optical out-of-planessee
Sec. III Bd. Indeed, the phonon frequencies for such modes
increase when the in-plane lattice parameter is increased,
contrary to the usual behavior, since upon stretching atoms in
the layer will be less free to move in thez directionsjust like
a string that is stretched will have vibrations of smaller am-
plitude and higher frequencyd. The eigenvector correspond-
ing to the ZA mode atq=2p /as0,0.1,0d is represented in
Fig. 19. In graphite the Grüneisen parameters of these modes
are less negative as a consequence of stacking that directly
affects the out-of-plane vibrations. The thermal contraction is
found to be greatly reduced with respect to graphene.

This phenomenon, named “membrane effect,” was pre-
dicted by Lifshitz61 in 1952, when he pointed out the role of
the ZA modessalso called bending modesd in membranes
and layered materials. In particular, several recent studies

FIG. 15. In-plane coefficient of linear thermal expansion as a
function of temperature for graphitessolid lined and graphene
sdashed lined from our QHA-GGAab initio study. The experimental
results for graphite are from Ref. 14sfilled circlesd and Ref. 7sopen
diamondsd.

FIG. 16. Out-of-plane coefficient of linear thermal expansion as
a function of temperature for graphite from our QHA-GGAab initio
studyssolid lined. The experimental results are from Ref. 14sfilled
circlesd and Ref. 7sopen diamondsd.

FIG. 17. Ab initio mode Grüneisen parameters for graphene.

FIG. 18. Ab initio in-plane mode Grüneisen parameters for
graphite.
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have highlighted the relevance of these modes to the thermal
properties of layered crystals such as graphite, boron nitride,
and gallium sulfide.67–69

Other relevant thermodynamic quantities can also be cal-
culated from the vibrational free energy. For example, the
dependence of elastic constants on temperature can be de-
rived from the second derivatives of the free energyfEq. s8dg
taken at the respective minimum for any givenT. Our results
are shown in Figs. 20 and 21sdiamond and graphite, respec-
tivelyd. Again, the zero-point motion has a significant effect
on the elastic constants; the agreement with experimental
data for the temperature dependence of the bulk modulus of
diamond is excellentsupper panel of Fig. 20d. We note that
the temperature dependence of the bulk modulus of diamond
has already been obtained by Karchet al.70 using LDA cal-
culations.

Finally, in Figs. 22–24 we present results on the heat ca-
pacities for all the systems considered, both at constant vol-
ume sCvd and constant pressuresCpd. Cv is computed using
Eq. s14d, in which we use at each temperatureT the interpo-
lated phonon frequencies calculated at the lattice constantssd
that minimize the respective free energy. To obtainCp, we
add toCv the additional termCp−Cv=TV0B0aV

2 whereV0 is
the unit cell volume,aV the volumetric thermal expansion
andB0 the bulk modulus. All these quantities are taken from

our ab initio results and evaluated at each of the tempera-
tures considered. The difference betweenCp andCv is small,
at most about 2% of the value ofCv for graphite and 5% for
diamond. Note thatCp andCv shown on the figures are nor-
malized by dividing by the unit cell mass.

The heat capacity of diamond, graphite, and graphene are
almost identical except at very low temperatures, in a mani-
festation of the law of corresponding states for different ma-
terials with essentially very similar Debye temperature.
Agreement with experimental data of diamond and graphite
is very good.

V. CONCLUSIONS

We have presented a full first-principles study of the
structural, vibrational, and thermodynamic properties of dia-
mond, graphite, and graphene at the GGA-PBE level and
using the quasiharmonic approximation to derive the finite-
temperature behavior of several thermodynamic quantities.
All our results are in very good agreement with experimental
data, the phonon dispersions are well reproduced, as well as

FIG. 22. Constant pressure heat capacity for diamondssolid
lined. Experimental results are from Refs. 49 and 72scirclesd, as
reported by Ref. 64.

FIG. 19. ZA bending mode of a graphene sheet.

FIG. 20. Lower panel, bulk modulusB0sTd of diamond as a
function of temperature. The filled circle indicates the value of the
bulk modulussas in Table Id before accounting for zero-point mo-
tion. Upper panel, theoreticalssolid lined and experimental values
sRef. 71, open circlesd for the ratio betweenB0sTd andB0s298 Kd in
the low-temperature region.

FIG. 21. Elastic constants of graphitesC11+C12,C13,C33d and
bulk modulussB0d as a function of temperature. The filled circles
sat 0 Kd indicate their ground state valuessas in Table IId before
accounting for zero-point motion.
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most of the elastic constants. In graphite, theC33 elastic con-
stant and theG to A phonon dispersions are found to be in
good agreement with experimental results provided the cal-
culations are performed at the experimentalc/a. Only the
C13 constant remains in poor agreement with experimental
data.

The decay of the long-ranged interatomic force constants
has been analyzed in detail. It has been shown that interac-
tions in the s110d direction in diamond are longer-ranged
than those in other directions, as is characteristic of the zinc-
blende and diamond structures. For graphene and graphite,
in-plane interactions are even longer ranged and the phonon
frequencies sensitive to the truncation of the interatomic
force constants.

Thermodynamic properties such as the thermal expansion,
temperature dependence of elastic moduli, and specific heat
have been calculated in the quasiharmonic approximation.
These quantities are all found to be in close agreement with
experiments, except for the out-of-plane thermal expansion
of graphite at temperatures higher than 150 K. Graphite

shows a distinctive in-plane negative thermal-expansion co-
efficient that reaches the minimum around room temperature,
again in very good agreement with experiments. This effect
is found to be three times as large in graphene. In both cases,
the mode Grüneisen parameters show that the ZA bending
acoustic modes are responsible for the contraction, in a direct
manifestation of the membrane effect predicted by Lifshitz61

in 1952. These distinctive features will likely affect the ther-
modynamic properties of single-walled and multiwalled car-
bon nanotubes.41,65,66
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