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The structural, dynamical, and thermodynamic properties of diamond, graphite and layered derivatives
(graphene, rhombohedral graphitge computed using a combination of density-functional theory total-energy
calculations and density-functional perturbation theory lattice dynamics in the generalized gradient approxi-
mation. Overall, very good agreement is found for the structural properties and phonon dispersions, with the
exception of thec/a ratio in graphite and the associated elastic constants and phonon dispersions. Bath the
elastic constant and tHeto A phonon dispersions are brought to close agreement with available data once the
experimentalc/a is chosen for the calculations. The vibrational free energy and the thermal expansion, the
temperature dependence of the elastic moduli and the specific heat are calculated using the quasiharmonic
approximation. Graphite shows a distinctive in-plane negative thermal-expansion coefficient that reaches its
lowest value around room temperature, in very good agreement with experiments. Thermal contraction in
graphene is found to be three times as large; in both cases, bending acoustic modes are shown to be responsible
for the contraction, in a direct manifestation of the membrane effect predicted by Lifshitz over 50 years ago.
Stacking directly affects the bending modes, explaining the large numerical difference between the thermal-
contraction coefficients in graphite and graphene, notwithstanding their common physical origin.
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[. INTRODUCTION retical picture for these materials, we used extenalvénitio
density-functional theoryDFT) and density-functional per-
The extraordinary variety of carbon allotropes, as well agurbation theory(DFPT)16:17 calculations. DFT is a very ef-
their present and potential applications in such diverse fieldficient and accurate tool to obtain ground-state and linear-
as nanoelectroni¢or bioengineering, gives them a special response properties, especially when paired with plane-wave
place among all elements. Even excluding fullerenes, nandasis sets, which easily allow to reach full convergence with
tubes, and their derivatives, single crystalline diamondyespect to basis size, and ultrasoft pseudopotetitifais op-
graphite and grapher{ee., a single graphite layestill lack  timal performance and transferability. We adopted the
a complete characterization of their thermodynamic stabilityPerdew-Burke-ErnzerhofPBE)'® generalized gradient ap-
under a broad range of conditiosee, e.g., Refs. 3—7 and proximation(GGA) for the exchange-correlation functional,
citations therein In this respect, vibrational properties play at variance with most of the early studies on dianérRgi2t
a crucial role in determining the thermodynamic propertiesand especially graphit€;?2-26which have been performed
of the bulk. Indeed, diamond being a wide band gap materialising the local density approximatighDA). GGA calcula-
(Eg=5.5 eV), electronic excitations do not account for ther- tions have appeared mostly for the cases of diam@tef.
mal properties up to high temperatures. Graphite an®1) and graphendRefs. 12 and 18 with some data for
graphene are semimetals, but the gap vanishes only & thegraphite appearing in Refs. 13 and 27-29. DRRE&fs. 16
point where the two massless bands cree®, e.g., Ref.)8 and 17 is then used to compute the phonon frequencies at
thus, electronic excitations can often be neglected in thesany arbitrary wave vector, without having to resort to the use
materials, and the phonon dispersions provide all the inforef supercells. The vibrational free energy is calculated in the
mation that is needed to calculate thermodynamic quantitieguasiharmonic approximatiofQHA),**3 to predict finite-
such as the thermal expansion or specific heat. temperature lattice properties such as thermal expansion and
The aim of this paper is to provide a converged, accuratgpecific heat.
determination of the structural, dynamical, and thermody- To the best of our knowledge, this is the first study on the
namic properties of diamond, graphite, graphene, and rhomhermodynamic properties of graphite or graphene from first
bohedral graphite from first-principles calculations. Althoughprinciples. For the case of diamond and graphene, calcula-
the phonon spectrum of diamond and its thermal propertiedons are fullyab initio and do not require any experimental
have been studied extensively with experim&Htsand input. For the case of graphite and rhombohedral graphite we
calculationst! the phonon spectrum of graphite is still under argue that the use of the experimentsh greatly improves
active investigatiod?13 as well as its thermal properties. the agreement with experimental data. This experimental in-
Graphite in-plane thermal expansion has long been recogut is required since DFT, in its current state of development,
nized to be negativE, 1> and it has even been suggest&d yields poor predictions for the interlayer interactions, domi-
that this may be due to the internal stresses related to theated by van Der Waals dispersion forces not well described
large expansion in the direction(Poisson effegt To resolve by local or semilocal exchange correlation function@se
some of the open questions, and to provide a coherent the®efs. 31 and 32 for details; the agreement between LDA
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predictions and experimental results for tt¥e ratio is for- eloc an(r)  MNion(r)
tuitous. It is found that the weak interlayer bonding has a Caig(R-R’) =f A (R) au,(R))
small influence on most of the properties studied and that « Al
forcing the experimentat/a corrects almost all the remain-

ing ones. This allows us to obtain results for all the materials
considered that are in very good agreement with the avail-

able experimental data. [where the dependence of batlr) and V,,(r) on the dis-

The paper is structured as follows. We give a brief sum- : . . )
mary of our approach and definitions and introduce DFPTpilggfen(ﬁgfdr as been omitted for clarity, afgh(r) is con

and the QHA in Sec. II. Our ground-state, zero-temperatur It is seen that the electronic contribution can be obtained
results for diamond, graphite, graphene, and rhombohedral Ith K led fthe i ! foutl fth t It
graphite are presented in Sec. lll, lattice parameters and ela om the knowledge of the linear response ot the system (o a

tic constants from the equations of state in Sec. Il A, phono |splacement. The ."ey.assump“oﬂ IS then thg qu'
frequencies and vibrational density of states in Sec. Il B ppenheimer approximation which views a lattice vibration

and first-principles, linear-response interatomic force con’-as a static perturbation on the electrons. This is equivalent to

stants in Sec. lll C. The lattice thermal properties, such aﬁiy that the response time of the electrons is much shorter

‘92 Vion(r ) d3r

i (R)iug (R 9

+1no(r)

thermal expansion, mode Griineisen parameters, and Speci an that of ions, that is,.each time ions are slightly displaced
heat as obtained from the vibrational free energy are pre-y a phonon, electrons instantaneously rearrange themselves

sented in Sec. IV. Sec. V contains our final remarks in the state of minimum energy of the ionic configuration.
o ' ' Therefore, static linear response theory can be applied to

describe the behavior of electrons upon a vibrational excita-

Il. THEORETICAL FRAMEWORK tion. . . .
For phonon calculations, we consider a periodic perturba-
A. Basics of density-functional perturbation theory tion AV, of wave vectorq, which modifies the self-

In density-functional theod#3 the ground state elec- Consistent potential/sce by an amountAVsce The linear

tronic density and wave functions of a crystal are found by€SPonse in the charge densin(r) can be found using
solving self-consistently a set of one-electron equations. Ifirst-order perturbation theory. If we consider its Fourier

atomic units(used throughout the papethese are transformAn(g+G), and callingy,  the one-particle wave
L function of an electron in the occupied baraf ‘at the point
[- 392+ VD) ||oa) = &1l ), (18  k of the Brillouin zone(and e, the corresponding eigen-
value), one can get a self-consistent set of linear equations
imi 35
n(r’) S, similar to Eqgs.(1a), (1b), and(1c),
V r):f P+ ———+V(r), (1b)
sl =T Sy e 1 )
[So,k + EVZ - VSCF(r)]Awo,km = P<§+qAVgCF¢o,ka (43
n(r) =2 [(r)[*f(ee - &), (10
|
4 . R
wheref(e-—¢;) is the occupation functiorse the Fermi en- An(q+G) = \—/E (Yo €7 WCITPE Y Ay 1), (4b)
k,0

ergy, E,. the exchange-correlation function@pproximated
by GGA-PBE in our case n(r) the electronic density, and
Vion(r) the ionic core potentiglactually a sum over an array An(r’ d/ 5
of pseudopotentials _ _ AVecedr) =f i,)dar/ + An(r){—(—xcﬂ
Once the unperturbed ground state is determined, phonon Ir=r’| dn\ a(n(r))/ Jn o)
frequencies can be obtained from the interatomic force con-

stants, i.e., the second derivatives at equilibrium of the total * AVion(r)- (40
crystal energy versus displacements of the ions, A
PE . PE“‘ refers to the projector on the empty-state manifold at
Ciig(R-R)= ——— = ',finﬁj(R -R’) k+q, V to the total crystal volume, an@ to any reciprocal
dU,i(R)dug(R") equil ’ lattice vector. Note that the linear response contains only
+ Ciliigj(R -R"). ) Fourier components of wave vectgrG, so we add a su-

perscriptq to AV3.. We implicitly assume for simplicity
HereR (R’) is a Bravais lattice vector,(j) indicates théth  that the crystal has a band gap and that pseudopotentials are
(jth) atom of the unit cell, and(B) represents the Cartesian local, but the extension to the case of mefalsr nonlocal
componentsCy'; are the second derivativésof Ewald  pseudopotential$ is well establishedsee Ref. 16 for a de-
sums corresponding to the ion-ion repulsion potential, whiletailed and complete review of DFR.T

the electronic contribution@i’i‘?gj are the second derivatives Linear-response theory allows us to calculate the response
of the electron-electron and electron-ion terms in the groundo any periodic perturbation; i.e., it allows direct access to
state energy. From the Hellmann-Feynman thedfeome the dynamical matrix related to the interatomic force con-
obtains stants via a Fourier transform,
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1 CoR and has been applied successfully to many bulk
Daigi(q) = —> Coigi(R)e™ (5 systemd!38.39The linear thermal expansion coefficients of

VMiM; r the cell dimensions of a lattice are then
(whereM,; is the mass of thé&h aton). 1 8
Phonon frequencies at amy are the solutions of the ei- o = ——a‘_ (9
genvalue problem g JT
~ The Griineisen formalistfi assumes a linear dependence of
2 —
@ (Q)ui(9) = % Ugi(@)Dai (@) ©®) the phonon frequencies on three orthogonal cell dimensions

{a}; developing the ground state energy up to second order
In practice, one calculates the dynamical matrix on a relaene can get from the conditiof@F/da;)t=0 the alternative
tively coarse grid in the Brillouin zongsay, a 8<8x8 grid  expression
for diamond, and obtains the corresponding interatomic
force constants by inverse Fourier transfdimthis example o= 2 ¢, (q 1)2 i(;aok Jwg i
it would correspond to a 8 8 X8 supercell in real spage ! @ VA woqi
Finally, the dynamical matriXand phonon frequencigst
any g point can be obtained by Fourier interpolation of the We follow here the formalism of Ref. 4&;(q, ) is the con-
real-space interatomic force constants. tribution to the specific heat from the mode, j), Sy is the
elastic compliance matrix, and the subscript “0” indicates a
quantity taken at the ground state lattice parameter. The Gru-
neisen parameter of the modg, ) is by definition

When no external pressure is applied to a crystal, the

equilibrium structure at any temperatufecan be found by CHE ~ 8k Jwg)
minimizing the Helmholtz free energ¥({a}, T)=U-TS wogj 93
with respect to all its geometrical degrees of freedath If
now the crystal is supposed to be perfectly harmdhiis, the
sum of the ground state total energy and the vibrational fre
energy coming from the partition functigin the canonical

) e
(0]

B. Thermodynamic properties

11

0
For a structure which depends only on one lattice parameter

a (e.g., diamond or graphenene then gets for the linear
Fhermal expansion coefficient

ensemblg of a collection of independent harmonic oscilla- 1 . —a8y Jwg
tors. In a straightforward manner, it can be shéWthat ST E Cu(qu)w . —q‘laa (12
2 2= aj 0.0, 0
ﬁ(x) i (9a.2 0
F(fa},T) = E(fal) + Fun(T) = Efah) + X —* , . _
ai Note thata§ (¢°E/da?)|o=9VoB, for diamond, whereB, is
hon the bulk modulus and/, the equilibrium volume of the
+kgT> In| 1- exp(— k_fu) , (7)  primitive cell.
a. BT In the case of graphite there are two lattice paramegers,

whereE({a}) is the ground state energy and the sums rurin the basal plane and perpendicular to the basal plane, so

over all the Brillouin zone wave vectors and the band inde>$hat one gets
j of the phonon dispersions. The second term on the right- 1 —ay Jwg:
hand side of Eq(7) is the zero-point motion. = Cu(q,j)((811+ S —l
If anharmonic effects are neglected, the phonon frequen- Voaj 2w0q, Ja
cies do not depend on lattice parameters, and the free energy -Cy dwg;
dependence on structure is entirely containeé(fa;}), en- +Si3 7%
ergy of the static lattice as a function of the cell parameters. ®oqj o€
Thus, in a harmonic crystal, the structure does not depend on

0

>, (139
0

temperature. Thermal expansion is recovered by introducing,, — iz c,(q j)(Sl ~8 Jugj —Co dwg, )
in Eq. (7) the dependence of the phonon frequencies on the © V, @ o Swo,q,j da | Swquyj ac g
structural parametefsy}; direct minimization of the free en- (13b)

ergy
_ The mode Griineisen parameters provide useful insight in the
F(ia}T) = (@) + Fyi(eq;({ai}). T) thermal expansion mechanisms. They are usually positive,
B hog;({a;}) since phonon frequencies decrease when the solid expands,
=E(fah) + X although some negative mode Griineisen parameters for low-
frequency acoustic modes can arise and sometimes compete

" 2
a.j

hog ({a with positive ones, giving a negative thermal expansion at
{1_%{_ wq, ({a}))} © p giving a neg p

* kBTE In keT low temperatures, when only the lowest acoustic modes can
@ be excited.
provides the equilibrium structure at any temperafluréhis Finally, the heat capacity per unit cell at constant volume

approach goes under the name quasiharmonic approximati@an be obtained fror€,=-T(#F,/ IT?)y,%’
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TABLE I. Equilibrium lattice parametesy and bulk modulus, 4.5
of diamond at the ground staf&S) and at 300 K(see Sec. IV,

compared to experimental values. 4

35
Present calculation  Experime(800 K) s
3
Lattice constang, 6.743(GYS 6.74C

(@.u) 6.769(300 K) N 25

Bulk modulusB, 432 (GY 442+ 42 43 44 45 46 47 48 49 5°
(GPa 422 (300 K) a (Bohr)
aReference 49. FIG. 1. Contour plot of the ground state energy of graphite as a
bReference 50. function ofa andc/a (isoenergy contours are not equidisjant
1 highly converged calculations with a more reasonable cutoff

ﬁwg’-

kT

qj 2kBT . .
' Finally, the cutoffs used are 40 Ry for the wave functions

in all the carbon materials presented, with duals of 8 for
diamond and 12 for graphite and graphene, corresponding to
a charge density cutoff of 320 Ry for diamond and 480 Ry
for graphite and graphene. We use & 8x8 Monkhorst-

All the calculations that follow are performed using the Pack mesh for the Brillouin zone sampling in diamond, 16
r-ESPRESSQRef. 42 package, which is a fulab initio X 16X 8 in graphite, 16< 16X 4 in rhombohedral graphite
DFT and DFPT code available under the GNU General Puband 16< 16X 1 in graphene. All these meshes are not shifted
lic License®® We use a plane-wave basis set, ultrasoft(i.e., they includd’). The dynamical matrix is explicitly cal-
pseudopotentiatd from the standard distributidf [gener-  culated on a & 8 8 g-points mesh in diamond,88x 4 in
ated using a modified RRK(Ref. 45 approach, and the graphite, 88X 2 in rhombohedral graphite and %6L6
generalized gradient approximation in its PBE X1 in graphene. Finally, integrations over the Brillouin zone
parametrizatiol for the exchange-correlation functional. for the vibrational free energy or the heat capacity are done
We also use the local density approximati@DA) in order  using phonon frequencies that are Fourier interpolated on
to compare some results between the two functionals. In thiswuch finer meshes. The phonon frequencies are usually com-
case the parametrization used is the one proposed by Perdegwted at several lattice parameters and the results interpo-
and Zungef® lated to get their dependence on lattice constants.

For the semimetallic graphite and graphene cases, we use A final remark is that we are careful to use the same
0.03 Ry of cold smearinfy. We carefully and extensively parameterscutoffs, k-points sampling, smearing, etin the
check the convergence in the energy differences between difletermination of the ground statstatio energy and that of
ferent configurations and the phonon frequencies with rethe phonon frequencies, since these two terms need to be
spect to the wave function cutoff, the du@le., the ratio added in the free energy expression.
between charge density cutoff and wave function clitolife
k-point sampling of the Brillouin zone, and the interlayer
vacuum spacing for graphene. Energy differences are con-

Ao i\2
cv:Ecvm,j):kBE( ‘“)
@) i r?(

) . (19 and dual.

C. Computational details

Ill. ZERO-TEMPERATURE RESULTS

vgrged_ vyithin 5 meV/atom or better, and phonon frequen- A. Structural and elastic properties
cies within 1-2 crit’. In the case of graphite and graphene ) ]
phonon frequencies are converged with respect tapaint We perform ground state total-energy calculations on dia-

sampling after having set the smearing parameter at 0.03 Ryond, graphite, and graphene over a broad range of lattice
Besides, values of the smearing between 0.02 Ry anBarameters. The potential energy surface is then fitted by an
0.04 Ry do not change the frequencies by more thar@PPropriate equation of state, and its minimum provides the-
1-2 cml oretical predictions for the ground state equilibrium lattice
In a solid, translational invariance guaranties that thre®aramete(s). The second derivatives at the minimum are re-
phonon frequencies dt will go to zero. In our GGA-PBE  lated to the bulk modulus and elastic constants. _
DFPT formalism this condition is exactly satisfied only in  FOr the case of diamond we choose the Birch equation of
the limit of infinite k-point sampling and full convergence Staté® (up to the fourth orderto fit the total energy vs the
with the plane-wave cutoffs. For the case of graphene anlfttice constang,
graphite we find in particular that an exceedingly large cutoff

(100 Ry and dual(28) would be needed to recover phonon B 9 ag\? |2 a\? . |°
dispersions(especially around™ and thel’-A branch with E@)=-Eo+ 8BOV0 al L +A al 1

the tolerances mentioned; on the other hand, application of ) 4 ) 5

the acoustic sum rulg.e., forcing the translational symmetry + B{(‘e‘_o) - 1] + O[(@) -1 (15)
on the interatomic force constantlows us to recover these a a '
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p
0.1 T T T T T T 1 672E
[ 1 CutCp=—7m—3,
0.08 - V3¢ da
_ 1 i L. 2CO (92E
E 0061 . stiffness coefficients 3= = 5
= . V3a2 ac
> B cfa=2725 cla=345 i
i 0.04 (experimental) (theoretical) 13= /_1 &ZE
&3 ] |3a, dadc’
S 002} i L V3ag
= (168
of .
| ] 1
L I L . 1 . 1 . == —
0.02 S ! H y s tetragonal shear modul@ = 5[(Cy;+ Cy) + 2C33— 4Cy4],

cla (16b)

FIG. 2. Ground state energy of graphite as a functioo/af at
fixed a=4.65 a.u.. The theoreticéPBE) and the experimental/a Cas(Cry+ Cpp) — 202
are shown. The zero of energy is set to the PBE minimum. bulk modulusB, = —>—11_~1 13

6C!

We summarize all our LDA and GGA results in Table II.
whereB;, is the bulk modulusy, the primitive cell volume For LDA, both the lattice parameteg and thecy/a, ratio
(V0:38/4 herg and A and B are fit parameters. The Mur- are very close to experimental data. Elastic constants are
naghan equation of state or even a p0|ynomia| would ﬁ[C&'CL”ated fU"y from first principles, in the sense that the
equally well the calculations around the minimum of thesecond derivatives of the energy are taken at the theoretical
curve. A best fit of this equation on our data gives us both thé-DA 8 and ¢, and that only these theoretical values are
equilibrium lattice parameter and the bulk modulus; our re-Used in Eqs(163. Elastic constants are found in good agree-
sults are summarized in Table I. The agreement with th&"€nt with experiments, except for the case @k which
experimental values is very good, even after the zero—poin‘fomes out as negatiyeneaning that the Poisson’s coefficient

motion and thermal expansion are added to our theoreticéﬂ’olu'r?mbe fn_lt?g;tlv)le] FUIrI%/ threoretlcralll ?GAXYEi:JrE$?]?Cng t
predictions(see Sec. IV, column of Table [} compare poorly to experimental data

The equation of state for graphene is fitted by a fourthexcept for thea lattice constant, in very good agreement

. .S with experiments. Using the experimental value fgrin
order polynomlal, and the minimum founq far4.654 au., Egs.(16a improves only the value dt;;,+C;, (third column
which is very close to the experimental in-plane lattice pa-

! : X - of Table Il). Most of the remaining disagreement is related to
rameter of graphite. The graphite equation of state is fitted by}, poor value obtained far/a; if the second derivatives in

a two-dimensional fourth order polynomial in the varialkdes Egs. (168 are taken at the experimental value fora all
andc. To illustrate the very small dependence of the groundy|astic constants are accurately recovered exceptCiar
state energy with the/a ratio, we plot the results of our (fourth column of Table I\. In both LDA and GGA, errors
calculations over a broad range of lattice constants in Figs. 4rise from the fact that van Der Waals interactions between
and 2. A few elastic constants can be obtained from the segraphitic layers are poorly described. These issues can still
ond derivatives of this enerdy, be addressed within the framework of DFas shown by

(160

TABLE Il. Structural and elastic properties of graphite according to LDA, GGA, and experiments.

GGA using GGA with
LDA fully  GGA fully Expt. ¢y second derivatives  Experiment
theoretical theoretical in Eqs.(16g9 taken at Exptcg/ag (300 K)

Lattice constanty(a.u) 4.61 4.65 4.65 4.6%fixed) 4.65+0.008
co/ ag ratio 2.74 3.45 3.45 2.72fxed) 2.725+0.002
C1;+Cy, (GPa 1283 976 1235 1230 1240+20
Cay3 (GPa 29 2.4 1.9 45 36.541
C5 (GPa -2.8 -0.46 -0.46 -4.6 1545
B, (GPa 27.8 2.4 1.9 41.2 35%
C! (GPg 225 164 207 223 208°8

aReferences 51-53, as reported by Ref. 22.
bReference 6.
‘Reference 54, as reported by Ref. 22.
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> e LA -
FIG. 3. GGAab initio phonon dispersionésolid lineg and vi- [ ] - TA ] ]
brational density of state€®DOS) for diamond. Experimental neu- - ¥/ 53
tron scattering data from Ref. 9 are shown for comparigincles. 7 s, AT ] ]

Langreth and collaborators, Ref.)34t the cost of having a
nonlocal exchange-correlation potential.

graphite, we either use the theoreticéé or the experimen-
tal one(c/a=2.725. We will comment in the following on

B. Phonon dispersion curves

PHYSICAL REVIEW B 71,

205214(2005

M

W_______

r VDOS

FIG. 5. GGAab initio phonon dispersions for graphefsolid

Zero-point motion and finite-temperature effects will be lines). Experimental data for graphite are also shown, as in Fig. 4.
discussed in details in Sec. IV.

ment is somehow better in LDA; on the other hand, the
whole I'-L dispersion is overestimated by LDA.
The results on graphite require some comments. In Table
We calculate the phonon dispersion relations for diamondlV and Figs. 4—7, modes are classified as follows: L stands
graphite, rhombohedral graphite and graphene. For diamonfdr longitudinal polarization, T for in-plane transversal polar-
and graphene, we use the theoretical lattice parameter. F@ation and Z for out-of-plane transversal polarization. For

graphite, a prime(as in LO) indicates an optical mode
where the two atoms in each layer of the unit cell oscillate

the role ofc/a on our calculated properties. Finally we also together and in phase opposition to the two atoms of the
calculate the phonon dispersions for rhombohedral graphitegther layer. A nonprimed optical mode is instead a mode
which differs from graphite only in the stacking of the par- where atoms inside the same layer are “optical” with respect

allel layers, in graphite the stacking ABABABwhile it is

to each other. Of course “primed” optical modes do not exist

ABCABCin rhombohedral graphite, and the latter unit cell for graphene, since there is only one lay®svo atoms$ per
contains six atoms instead of four. We therefore use the samsit cell.
in-plane lattice parameter and same interlayer distance as in We observe that stacking has a negligible effect on all the

graphite(that is, ac/a ratio multiplied by 1.53. Results are

frequencies above 400 ¢ty since both rhombohedral

presented in Figs. 3, 4, 5, 6, and 7, and in Table Il and IV graphite and hexagonal graphite show nearly the same dis-
persions except for thE-A branch and the in-plane disper-

together with the experimental data.

In diamond, GGA produces softer modes than L{F¥ef.
11) on the whole(as expected particularly atl’ (optical

sions neai’. The in-plane part of the dispersions is also very
similar to that of graphene, except of course for the low

mode and in the optical’-X branches. For these, the agree-optical branchegbelow 400 cm?) that appear in graphite
and are not present in graphene.
For graphite as well as diamond GGA tends to underesti-

1800
! N . . .
1600 |=zn O ' L0, g mate high optical modes while LDA overestimates them. The
[, | TO Nl e opposite happens for the low optical modes, and for the
1400: PR A N St ] I'-A branch of graphite; the acoustic modes show marginal
TE 1200 .0 A 1o N : . LA ]
i 1000 o4 : R 70 ] 1800 Lo i
g e DN R asi 1600} p 1o =
5 soof |20 NG e F :
g e : ] 1400 prp—> : TO 4
‘[-Y:: 600 LA dzd: s ] 'm(_
TA = TA ] - 1200 1 .
400 | 54 ] 5 RN
200F | §/20; . N, 7. 1000 . 20]
zA ! e N 5 sool |z0 i i
0 L 3 )
AT M K I VDOS g 00 !
&) M| LA ) ]
. . . . TA
FIG. 4. GGA(solid lineg and LDA (dashed lingab initio pho- a0l 8 ! ]
non dispersions for graphite, together with the GGA vibrational 00k ' i ]
density of stategVDOS). The inset shows an enlargement of the 27 74 ! ZA Q
low-frequencyl’-A region. The experimental data are EE(&Sec- Uy X T VDOS

tron energy loss spectroscopfyom Refs. 55, 56, and 5@espec-

tively squares, diamonds, and filled cirgleseutron scattering from
Ref. 58(open circleg and x-ray scattering from Ref. 1#iangles.

Data for Refs. 55 and 57 are taken from Ref. 13.

205214-6

FIG. 6. GGAab initio phonon dispersions for rhombohedral
graphite. The inset shows an enlargement of the low-frequency
I'-A region.
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1800
1600
1400~

performed at the theoretical/a (3.45 instead of 2.725
strongly underestimate low-frequency mode&elow
150 cm?) especially betweeh andA, as can be seen in Fig.
7 and in the second column of Table IV. High-frequency
optical modes are not significantly affected by this change in
c/a, but still depend on the in-plane lattice constanthis
explains much of the discrepancy between the LDA optical
modes and the GGA ondsalculated at the equilibriuma
=4.61 anda=4.65, respectively

Finally, elastic constants can be extracted from the data on
sound velocities. Indeed, the latter are the slopes of the dis-
persion curves in the vicinity of and can be expressed as
the square root of linear combinations of elastic constants

FIG. 7. GGAab initio phonon dispersions for graphite at the (depending on the branch considereder the densitysee

theoretical c/a. The inset shows an enlargement of the low- Ref. 62 for details We note in passing that we compute the
frequencyl’-A region. density consistently with the geometry used in the calcula-

tions (see Table IV for details, first column for LDA and

differences and are in very good agreement with experithird one for GGA, and not the experimental density. Our
ments. Overall, the agreement of both LDA and GGA calcu+esults are shown in Table V. The overall agreement with
lations with experiments is very good and comparable to thagxperiment is good to very good. LDA leads to larger elastic
between different measurements. constants, as expected from the general tendency to

Some characteristic features of both diamond and graphitéverbind,” but still agrees well with experiment. For dia-
are well reproduced by owab initio results, such as the LO mond, the agreement is particularly good. As 103 in
branch overbending and the associated shift of the highegiraphite, it is quite difficult to obtain it from the dispersion
frequencies away fronT". Also, in the case of graphite, curves since it enters the sound velocities only in a linear
rhombohedral graphite and graphene, the quadratic dispegombination involving other elastic constants, for which the
sion of the in-plane ZA branch in the vicinity df is ob-  error is almost comparable to the magnitudeCgf itself.
served; this is a characteristic feature of the phonon disper- An accurate description of the phonon dispersions allows
sions of layered crystaf8;6! observed experimentally, e.g., us to predict the low-energy structural excitations and thus
with neutron scatteringf Nevertheless, some discrepanciesseveral thermodynamic quantities. Before exploring this in
are found in graphite. The most obvious one is along theéSec. IV, we want to discuss the nature and decay of the
I'-M TA branch, where EELSRef. 59 data show much interatomic force constants in carbon-based materials.
higher frequencies than calculations. Additionally several
EELS experiments-> report a gap between the ZA and ZO C. Interatomic force constants
branches aK while these cross each other in all the calcu- . . . .
lations. In these cases the disagreement could come eithgr As exelalned in Sec. Il A, the interatomic force constants
from a failure of DFT within the approximations used or j(R—R’) are obtained in our calculations from the Fourier
from imperfections in the crystals used in the experimentstransform of the dynamical matri®; ;(q) calculated on a
There are also discrepancies between experimental data, iegular mesh inside the Brillouin zon@x8x 8 for dia-
particular in graphite for the LA branch aroukd EELS data mond and 16 16X 1 for grapheng At a givenR, C; (R) is
from Ref. 56 agree with ouab initio results while those actually a second order tensor, and the decay of its norm
from Ref. 57 deviate from them. (defined as the square root of the sum of the squares of all

We should stress again the dependence of the graphitee matrix elemenjswith distance is a good measure of the
phonon frequencies on the in-plane lattice parametecdad long-range effects coming from distant neighbors. In Fig. 8
ratio. The results we have analyzed so far and that we aree plot the natural logarithm of such a norm with respect to
going to use in the remaining sections are obtained using thihe distance from a given atom, for the cases of diamond and
theoretical in-plane lattice parametand the experimental graphene. In diamond the decay of the force constants along
c/a ratio for both GGA and LDA. For GGA, calculations (110 is much slower than in other directions due to long-

LO

0O H

12001
LA

1000

z0

800

Frequency (em™)

TA

ZA

] S D Ll S A7 TR

T VDOS

TABLE lIl. Phonon frequencies of diamond at the high-symmetry pdintX, andL, in cni.

T'o X1 X0 XLo Lta Lia Lto Lio
LDA? 1324 800 1094 1228 561 1080 1231 1275
GGAP 1289 783 1057 1192 548 1040 1193 1246
Expt° 1332 807 1072 1184 550 1029 1206 1234

3Reference 11.
bPresent calculation.
‘Reference 9.
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TABLE IV. Phonon frequencies of graphite and derivatives at the high-symmetry pitsM, andK,
in cm™L. The lattice constants used in the calculations are also shown.

Graphite Rhombo. graphite Graphene Graphite
Functional LDA GGA GGA GGA GGA Experiment
In-plane lattice constaag 4.61 a.u. 4.65 a.u. 4.65 a.u. 4.65 a.u. 4.65 a.u. 4.65 a.u.
Interlayer distances 1.36 1.725 1.36 1.36 15 1.36
Arpror 31 6 29 33
A Lo 80 20 96 89
Ao 897 880 878
Ao 1598 1561 1564
T'o 44 8 41 35 49
Iz 113 28 135 117 g5 126
I'z0 899 881 879 879 881 861
T'lomo 1593 1561 1559 1559 1554 189a575

1604 1561 1567

Mya 478 471 477 479 471 471467, 451
M1 630 626 626 626 626 640
Mzo 637 634 634 635 635 670
Mia 1349 1331 1330 1330 1328 1290
Mo 1368 1346 1342 1344 1340 1321
Mo 1430 1397 1394 1394 1390 1388389
Kza 540 534 540 535 535 482517, 53C¢°
Kzo 544 534 542 539 535 588627
Kra 1009 999 998 998 997
KiarLo 1239 1218 1216 1216 1213 1184202
Kro 1359 1308 1319 1319 1288 1313, 129F

8Reference 58.

bReference 55.

‘Reference 12.

dReference 57.

€Reference 56.

'Reference 59.

9Note that a direct calculation of this mode with DFRfistead of the Fourier interpolation result given here
leads to a significantly lower value in the case of graphite—1297 énstead of 1319 cm. This explains
much of the discrepancy between the graphite and graphene result, since in the latter we usecpbéniser
mesh. This effect is due to the Kohn anomaly occurringl dRef. 29.

TABLE V. Elastic constants of diamond and graphite as calculated from the phonon dispersions, in

GPa.
Diamond Graphite
Functional GGA Expt. LDA GGA Expt.
Ci1 1060 1076.4+02 1118 1079 1060+20
Cio 125 125.2+2.3 235 217 180+20
Cus 562 577.4+12 4.5 3.9 45+0.58
Cas 29.5 422 36.5+1

aReference 50.
bReference 6.
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FIG. 8. Decay of the norm of the interatomic force constants as FIG. 10. Phonon frequencies of graphene as a function of the
a function of distance for diamondhin solid line and graphene number of neighbors included in the interatomic force constants,
(thick solid line, averaged over all directions and in a semilogarith- I Lorro (solid line), Kyo (dotted-dashed Mz, (dashedi and for the
mic scale. The dotted line shows the decay for diamond along thgotted line a phonon mode in the ZA branch one-fourth alond the
(100 direction, and the dashed line that along th&0) direction. to M line.

range _elastic .effe_cts along the govalent bonds. This long- For graphene, our 616X 1 supercell contains up to 74
range interaction is glsq responsible for.the flattenmg of theneighbors, but after the 30th no relevant changes occur. At
phonon d|sperS|ons_ in zinc-blende gnd diamond semicondugs st 4 neighbors are needed for the optical modes to be
tors along thek-X line (see, e.g., Fig. 3 and Ref. 17The  :nyerged within 5%-8%. On the other hand, the frequency
force-constants decay in graphene is slower than in diamongk some ZA modes in thE-M branch(at about one-fourth of
and it depends less on direction. Note that in graphite theye pranch oscillates strongly with the number of neighbors
force constant¢not represented herénclude values corre- ¢ ded, and can even become imaginary when less than 13
sponding to graphendin-plane nearest neighborand  4re ysed, resulting in an instability of the crystal. Also, the
smaller values corresponding to weak interlayer mteractlonsKTO mode keeps decreasing in going from 20 to 30 neigh-
It is interesting to assess the effects of truncation of thesg ¢ though the effect remains smél-9 cntl). This drift
interatomic force constants on the phonon dispersions. Fig§igné1ls the presence of a Kohn anonfdlat theK point of
ures 9 and 10 show the change in frequency for selectehs grijioyin zone the electronic band gap vanishes and a

modes in diamond and graphene as a function of the trunc&; jjarity arises in the highest optical phonon mode. A de-
tion range. The modes we chose are those most strong Miled discussion is offered in Ref. 29.

affected by the number of neighbors included.

For diamond, our whole supercell contains up to 47
neighbors, and the graph shows only the region up to 20 IV. THERMODYNAMIC PROPERTIES
neighbors included, since the selected modes do not vary by
more than 1 cmt after that. With five neighbors, phonon

G

Lreq;[e\?vgress:[ ir; .al\::?dy Qggrégggrgzgvcer;qu i\s/a:)ubiéa eelgg e quasiharmonic approxim_ation and phono.n dispersions at
y > 7 y 9 the GGA level. As outlined in Sec. Il B we first perform a
with 13 neighbors. direct minimization over the lattice paramd®r{a;} of the
1500 ————— vibrational free energ¥({a;},T) [Eq. (8)]. This gives us, at
any temperaturd, the equilibrium structure, shown in Figs.
11, 12, and 13. For diamond and graphene, we use if&kq.
the equations of state obtained from the ground state calcu-
lations presented in Sec. Il A. For graphite this choice
would not be useful or accurate, since the theoreti¢alis
much larger than the experimental one. So we force the
i ) equation of state to be a minimum fara=2.725 anda
Ny ' =4.65 a.u.(fixing only c/a and relaxinga would give a
\ ] =4.66 a.u., with negligible effects on the thermal expansion
BN In particular, our “corrected” equation of state is obtained by
] L T—--'20 fitting with a fourth ordpr polynomial the true equatiqn of
Number of neighbors included before truncation state a_round the ?Xperlmenmbnd c/a and then dropplng
from this polynomial the linear order terms. Since the second
FIG. 9. Phonon frequencies of diamond as a function of thederivatives of the polynomial remain unchanged, we keep
number of neighbors included in the interatomic force const@igs, the elastic constants unchanged, and the only input from ex-
(solid line), X7¢ (dotted ling, andLy, (dashed ling periments remains the/a ratio. We have also checked the

We present in this final section our results on the thermo-
namic properties of diamond, graphite and graphene using
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FIG. 11. Lattice parameter of diamond as a function of

temperature.

effects of imposing taC,3 its experimental valuéC,; is the
elastic constant that is predicted least accuratddut the

changes were small.

The dependence of the phonon frequencies on the latti
parameters is determined by calculating the whole phono
dispersions at several values and interpolating these in bg
tween. For diamond and graphene we use four different val;
ues of a (from 6.76 to 6.85 a.u. for diamond, and from
4.654 to 4.668 a.u. for grapherend interpolate them with a
cubic polynomial. For graphite, where two independent
structural parameters are needed, we restrict ourselves to li
ear interpolations and calculate the phonon dispersions f
the three combination&,c/a)=(4.659,2.72% (4.659,2.9,

and (4.667,2.725

Before focusing on the thermal expansion, we examin
the zero-point motion. Indeed, the effects of temperature u
to about 1000 K remains small or comparable to the zero
point expansion of the lattice parameters. In diamond, onc
the zero-point motion is added the equilibrium lattice param-
etera expands from 6.743 a.u. to 6.768 a.u., a difference of I—7T1—

. ! . ! . I . I
0 500 1000 1500 2000

2500
FIG. 13. Out-of-plane lattice parameter of graphite as a function
of temperature.

case, and even comparable to the discrepancy between ex-
periments and GGA or LDA ground states.

The coefficients of linear thermal expansion at any tem-
perature are obtained by direct numerical differentiation of
the previous data. Results are shown in Figs. 14, 15, and 16.
or the case of diamond, we also plot the linear thermal
xpansion coefficient calculated using the Griineisen formal-
fsm [Eq. (12)] instead of directly minimizing the free energy.
hile at low temperature the two curves agree, a discrep-
ancy becomes notable above 1000 K, and direct minimiza-
tion should be performed. This difference between the Gru-
neisen approach and a direct minimization seems to explain
Hiuch of the discrepancy between the calculations of Ref. 11
%nd our results. Finally a Monte Carlo path integral study by
Herrero and Ramiré?, which does not use the QHA, gives
very similar results.
€ For graphite, the in-plane coefficient of linear thermal ex-
Bansion slightly overestimates the experimental values, but
overall the agreement remains excellent, even at high tem-
ﬁeratures. Out-of-plane, the agreement holds well up to

I
0.4%. For graphene changes from 4.654 a.u. to 4.668 a.u. I
with zero-point motion correction6é+0.3%); for graphitea 6_'
increases from 4.65 to 4.664 a.+0.3%) and c from _5h
12.671 to 12.711+0.3%). The increase is similar in each IV
e 4
T T T T Ig 5
3
4671 S |
Graphite 2+
1 =
:E’ 4.66F \\\ i 0 . ] . ] . ] . ] . ] .
e RN 0 500 1000 1500 2000 2500 3000
\\\ Temperature (K)
Graphene\ - FIG. 14. Coefficient of linear thermal expansion for diamond as
N . a function of temperature. We compare our QHA-G@H] initio
- calculations(solid line) to experimentgRef. 10, filled circleg a
T 5(')0 . 10'00 . 15'00 . 20'00 7500 path integral Monte Carlo study using a Tersoff empirical potential

Temperature (K)

FIG. 12. In-plane lattice parameter of graphiselid line) and

graphengdashed lingas a function of temperature.

(Ref. 64, open squargand the QHA-LDA study by Pavonet al.
(Ref. 11 (dashed ling The QHA-GGA thermal expansion calcu-
lated using the Griineisen equatidfy. (12)] is also showr(dotted
line).
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FIG. 15. In-plane coefficient of linear thermal expansion as a FIG. 17. Ab initio mode Grineisen parameters for graphene.
function of temperature for graphitésolid line) and graphene . . . .
(dashed Iin}efrompour QHA-GG?AaEini%SO study. '?’he expgeriraental :—[aIZwJ(q)][dwj(q)/da]). While not visible in th? figure,
results for graphite are from Ref. #llled circles and Ref. 7open  the Grlneisen parameters for the lowest acoustic branch of
diamonds. graphite become as low as —-40, and as low as -80 in
graphene. Therefore, at low temperatuf@bere most opti-
150 K, after which the coefficient of linear thermal expan-cal modes with positive Grineisen parameters are still not
sion is underestimated by about 30% at 1000 K. excited the contribution from the negative Griineisen param-
In-plane, the coefficient of linear thermal expansion iseters will be dominant and thermal expansidrom Eq.
confirmed to be negative from 0 to about 600 K. This fea-(12)] negative.
ture, absent in diamond, is much more apparent in graphene, The negative Griineisen parameters correspond to the
where the coefficient of linear thermal expansion keeps belowest transversal acoustizA) modes, and in the case of
ing negative up to 2300 K. This thermal contraction will graphite to th€ZO’) modes as well, which can be described
likely appear also in single-walled nanotuliesie graphene as “acoustic” inside the layer and optical out-of-plaisee
sheet rolled on itsel®® Some molecular dynamics Sec. lll B). Indeed, the phonon frequencies for such modes
calculation4'%¢ have already pointed out this characteristicincrease when the in-plane lattice parameter is increased,
of SWNTSs. contrary to the usual behavior, since upon stretching atoms in
To further analyze thermal contraction, we show in Figs.the layer will be less free to move in tlzairection (just like
17 and 18 the in-plane mode Griineisen parameters d string that is stretched will have vibrations of smaller am-
graphene and graphitesee Sec. Il B These are obtained plitude and higher frequengyThe eigenvector correspond-
from an interpolation of the phonon frequencies with a quaing to the ZA mode ag=2x/a(0,0.1,0 is represented in
dratic (or linear, for graphitg polynomial in the lattice con-  Fig. 19. In graphite the Griineisen parameters of these modes
stanfs), and computed at the ground state geometryare less negative as a consequence of stacking that directly
Whereas in diamond the Griineisen paramdiakulated in  affects the out-of-plane vibrations. The thermal contraction is
Refs. 11 and 20were shown to be all positive, in graphite found to be greatly reduced with respect to graphene.
and graphene some bands display large and negative This phenomenon, named “membrane effect,” was pre-
Gruneisen parametergve have used the definition;(q)  dicted by Lifshit?! in 1952, when he pointed out the role of
the ZA modes(also called bending modesh membranes

1 e ] and layered materials. In particular, several recent studies
351 be -
I o T 3
30 Lt =
< [ g oo ‘ ]
¥ 25F S .- i
% L e ,°
% 20_ .-:o ] 0
e
o 15 4 R
o o
102 n = 3
st =
0 N 1 . 1 . 1 N 1 . -6
0 500 1000 1500 2000 2500
Temperature (K)
FIG. 16. Out-of-plane coefficient of linear thermal expansion as T M K T
a function of temperature for graphite from our QHA-G@HR initio
study (solid ling). The experimental results are from Ref. (fdled FIG. 18. Ab initio in-plane mode Griineisen parameters for
circles and Ref. 7(open diamonds graphite.
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FIG. 19. ZA bending mode of a graphene sheet.

have highlighted the relevance of these modes to the therme -3 . , . ,

L 1 N 1 L E
properties of layered crystals such as graphite, boron nitride 0 500 1000 1500 2000 2500

and gallium sulfidé’-6° Temperature (K)
Other relevant thermodynamic quantities can also be cal-

culated from the vibrational free energy. For example, th%ulk modulus(Bg) as a function of temperature. The filled circles

FIG. 21. Elastic constants of graphit€,,+C;,,C13,C33) and

dependence of elastic constants on temperature can be
rived from the second derivatives of the free endigg. (8)]
taken at the respective minimum for any givenOur results

are shown in Figs. 20 and 2giamond and graphite, respec- our ab initio results and evaluated at each of the tempera-

tively). Agam_, the zero—pgmt motion has a S|_gn|f|cant .eﬁeCttllJres considered. The difference betwé&grandC, is small,

on the elastic constants; the agreement with experimenta bout 2% of th | p hi d 59 f

data for the temperature dependence of the bulk modulus oF most about 2% of the value , for grap Ite an o for
iamond. Note tha€, andC, shown on the figures are nor-

diamond is excellenfupper panel of Fig. 20 We note that ; L .
the temperature dependence of the bulk modulus of diamon'(”jn""l'zed by d|V|d|ng by th? unit cell mass.
. 70 The heat capacity of diamond, graphite, and graphene are
has already been obtained by Karmehal.”® using LDA cal- : . . X
almost identical except at very low temperatures, in a mani-

culations. : ! ;
Finally, in Figs. 22-24 we present results on the heat Ca]festanon of the law of corresponding states for different ma-

pacities for all the systems considered, both at constant vof—erlals with essentially very similar Debye temperature.

ume (C,) and constant pressute,). C, is computed using gg\;gtreym;:;dwnh experimental data of diamond and graphite
Eq. (14), in which we use at each temperatQré¢he interpo- '

lated phonon frequencies calculated at the lattice coristant

that minimize the respective free energy. To obtajp we V. CONCLUSIONS

add toC, the additional ternC,—C,=TV,Bya& whereV, is . o

the unit cell volume,ay the volumetric thermal expansion ~ We have presented a full first-principles study of the

andB, the bulk modulus. All these quantities are taken fromstructural, vibrational, and thermodynamic properties of dia-
mond, graphite, and graphene at the GGA-PBE level and

f 0 K) indicate their ground state valuéas in Table I} before
accounting for zero-point motion.

o T T T T T T using the quasiharmonic approximation to derive the finite-
o a— 7 temperature behavior of several thermodynamic quantities.
g All our results are in very good agreement with experimental
a2 T ] data, the phonon dispersions are well reproduced, as well as
=)
% 0.998} 4
- R R R S 2500 [————————————————
0 100 200 300 400
Temperature (K)
440 T T T T T T T T T T T 2000
3 g
el e
?_j e 1500
E >
m Z, 1000
| o
340 " | M | L 1 L | M | L
0 500 1000 1500 2000 2500 3000 sook
Temperature (K)
i | 1 1 | 1
FIQ. 20. Lower panel, bullk moduluSO(T) of diamond as a 05 =0 09013003000 33903000
function of temperature. The filled circle indicates the value of the Temperature (K)
bulk modulus(as in Table ) before accounting for zero-point mo-
tion. Upper panel, theoreticésolid line) and experimental values FIG. 22. Constant pressure heat capacity for diam¢sulid
(Ref. 71, open circledor the ratio betweeBy(T) andBy(298 K) in line). Experimental results are from Refs. 49 and (¢&cle9, as
the low-temperature region. reported by Ref. 64.
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FIG. 23. Constant pressure heat capacity for graptstgid FIG. 24. Constant volume heat capacity for grapfswid line),
line). Experimental results are from Ref. 78quareys as reported graphenddashed ling and diamonddotted ling. The inset shows
by Ref. 74. an enlargement of the low-temperature region.

most of the elastic constants. In graphite, @g elastic con-
stant and thd” to A phonon dispersions are found to be in
good agreement with experimental results provided the cal
culations are performed at the experimentéa. Only the
C,3 constant remains in poor agreement with experiment
data.

The decay of the long-ranged interatomic force constant

shows a distinctive in-plane negative thermal-expansion co-

efficient that reaches the minimum around room temperature,
again in very good agreement with experiments. This effect

is found to be three times as large in graphene. In both cases,
he mode Gruneisen parameters show that the ZA bending
acoustic modes are responsible for the contraction, in a direct
has been analyzed in detail. It has been shown that interaﬁjanifeStation of t.he. m(_embrane effecfc predicted by Lifshitz

’ fi 1952. These distinctive features will likely affect the ther-

tions in the_(llO) dlrgcuqn n d|a_mond are Ipnger—ranged modynamic properties of single-walled and multiwalled car-
than those in other directions, as is characteristic of the ZiNG 0 hanotubetl:65.66

blende and diamond structures. For graphene and graphite,

in-plane interactions are even longer ranged and the phonon

frequencies sensitive to the truncation of the interatomic ACKNOWLEDGMENTS
force constants.

Thermodynamic properties such as the thermal expansion, The authors gratefully acknowledge support from NSF-
temperature dependence of elastic moduli, and specific hellRT Grant No. DMR-0304019 and the Interconnect Focus
have been calculated in the quasiharmonic approximatiorCenter MARCO-DARPA Grant No. 2003-IT-674. One of the
These quantities are all found to be in close agreement witaAuthors (Moune) thanks the Ecole Polytechnique of Pal-
experiments, except for the out-of-plane thermal expansioaiseau(Francg and the Fondation de I'Ecole Polytechnique
of graphite at temperatures higher than 150 K. Graphitdor their help and support.

*Electronic address: nicolas.mounet@polytechnique.org Fullerenes: Properties, Processing, and Applicatiofi¢oyes

TURL: http:/nnn.mit.edu/ Publications, Park Ridge, NJ, 199%p. 59-60.

1K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, 2R. Saito, G. Dresselhaus, and M. S. DresselhRagsical Prop-
S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Sciengé6g, erties of Carbon Nanotubed@mperial College Press, London,
666 (2004). 1998.

2R. J. Chen, S. Bangsaruntip, K. A. Drouvalakis, N. W. S. Kam, 2J. L. Warren, J. L. Yarnell, G. Dolling, and R. A. Cowley, Phys.
M. Shim, Y. Li, W. Kim, P. J. Utz, and H. Dai, Proc. Natl. Acad. Rev. 158 805 (1967.

Sci. U.S.A. 100, 4984(2003. 10G. A. Slack and S. F. Bartram, J. Appl. Phy&6, 89 (1975.

3G. Galli, R. M. Martin, R. Car, and M. Parrinello, Phys. Rev. Lett. 'P. Pavone, K. Karch, O. Schiitt, W. Windl, D. Strauch, P. Gian-
63, 988(1989. nozzi, and S. Baroni, Phys. Rev. 83, 3156(1993.

4G. Galli, R. M. Martin, R. Car, and M. Parrinello, Phys. Rev. Lett. 12J. Maultzsch, S. Reich, C. Thomsen, H. Requardt, and P. Ordején,
62, 555(1989. Phys. Rev. Lett.92, 075501(2004.

SA. De Vita, G. Galli, A. Canning, and R. Car, Natufeondon 131, wirtz and A. Rubio, Solid State Commuri31, 141 (2004.
379 523(1996. 14A. C. Bailey and B. Yates, J. Appl. Phyd1, 5088(1970.

6Graphite and Precursorsedited by P. Delhae$Gordon and %J. B. Nelson and D. P. Riley, Proc. Phys. Soc. Londi 477
Breach, Australia, 2001 Chap. 6. (1945.

"H. 0. Pierson,Handbook of Carbon, Graphite, Diamond, and 6S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Rev.

205214-13



N. MOUNET AND N. MARZARI

Mod. Phys. 73, 515(200J).

PHYSICAL REVIEW B 71, 205214(2009

46]. P. Perdew and A. Zunger, Phys. Rev2B, 5048(1981).

17p, Giannozzi, S. de Gironcoli, P. Pavone, and S. Baroni, Phys'’N. Marzari, D. Vanderbilt, A. De Vita, and M. C. Payne, Phys.

Rev. B 43, 7231(199)).

18D, Vanderbilt, Phys. Rev. Bt1, R7892(1990.

193, P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. L&®,.
3865(1996.

Rev. Lett. 82, 3296(1999.

48E. Ziambaras and E. Schroder, Phys. Rev6® 064112(2003.
49physics of Group IV and llI-V Compoundsdited by O. Made-

lung (Springer-Verlag, Berlin, 1982 Vol. 17a of Landolt-

20J. Xie, S. P. Chen, J. S. Tse, S. de Gironcoli, and S. Baroni, Phys. Bornstein, New Series, Group lll, p. 107.

Rev. B 60, 9444(1999.
21F, Favot and A. Dal Corso, Phys. Rev. @, 11 427(1999.
22]. C. Boettger, Phys. Rev. B5, 11 202(1997.
23M. C. Schabel and J. L. Martins, Phys. Rev.48, 7185(1992.
240. Dubay and G. Kresse, Phys. Rev.68, 035401(2003.

50M. H. Grimsditch and A. K. Ramdas, Phys. Rev. B, 3139
(1975.

51y, X. Zhao and I. L. Spain, Phys. Rev. B0, 993(1989.

52M. Hanfland, H. Beister, and K. Syassen, Phys. Rev.3§
12 598(1989.

25p. pavone, R. Bauer, K. Karch, O. Schutt, S. Vent, W. Windl, D.33J. DonohueThe Structures of the ElementKreiger, Malabar,

Strauch, S. Baroni, and S. de Gironcoli, Physic2 B/220 439
(1996.

26| H. Ye, B. G. Liu, D. S. Wang, and R. Han, Phys. Rev.6B,
235409(2004.

27]. H. Lee and R. M. Martin, Phys. Rev. B6, 7197(1997).

28K. R. Kganyago and P. E. Ngoepe, Mol. Sim@2, 39 (1999.

293, Piscanec, M. Lazzeri, F. Mauri, A. C. Ferrari, and J. Robertson,

Phys. Rev. Lett.93, 185503(2004.
30p, pavone, Ph.D. thesis, SISSA, Trieste, ltaly, 1991.

1982, p. 256.

540. L. Blakslee, D. G. Proctor, E. J. Seldin, G. B. Spence, and T.
Weng, J. Appl. Phys41, 3373(1970.

55C. Oshima, T. Aizawa, R. Souda, Y. Ishizawa, and Y. Sumiyoshi,
Solid State Commun65, 1601 (1988.

563, Siebentritt, R. Pues, K.-H. Rieder, and A. M. Shikin, Phys.

Rev. B 55, 7927(1997).

57H. Yanagisawa, T. Tanaka, Y. Ishida, M. Matsue, E. Rokuta, S.
Otani, and C. Oshima, Surf. Interface An&7, 133(2005.

31H. Rydberg, M. Dion, N. Jacobson, E. Schroder, P. Hyldgaard, S®®R. Nicklow, N. Wakabayashi, and H. G. Smith, Phys. Rev5B

I. Simak, D. C. Langreth, and B. I. Lundgvist, Phys. Rev. Lett.

91, 126402(2003.

32\, Kohn, Y. Meir, and D. E. Makarov, Phys. Rev. Le&0, 4153
(1998.

33W. Kohn and L. J. Sham, Phys. Ret40, A1133(1965.

34p. Hohenberg and W. Kohn, Phys. Re\36, B864 (1964).

35S, Baroni, P. Giannozzi, and A. Testa, Phys. Rev. L&&.1861
(1987).

36S. de Gironcoli, Phys. Rev. B1, 6773(1995.

S7TA. A. Maradudin, E. W. Montroll, and G. H. Weisheory of
Lattice Dynamics in the Harmonic Approximati¢gAcademic,
New York, 1963, Vol. 3 of Solid-state physics, pp. 45—-46.

38A. A. Quong and A. Y. Liu, Phys. Rev. B56, 7767(1997.

393, Narasimhan and S. de Gironcoli, Phys. Rev68 064302
(2002.

40T, H. K. Barron, J. G. Collins, and G. K. White, Adv. Phya9,
609 (1980.

41p, K. Schelling and P. Keblinski, Phys. Rev.@B, 035425(2003.

425, Baroniet al,, http://www.pwscf.org

43http://www.gnu.org/copyleft/gpl.html

4A. Dal Corso, C.pbe-rrkjus.upf http://www.pwscf.org/pseudo/
1.3/UPF/C.pbe-rrkjus.UPF

45A. M. Rappe, K. M. Rabe, E. Kaxiras, and J. D. Joannopoulos,

Phys. Rev. B41, R1227(1990.

4951(1972.

59F. Tuinstra and J. L. Koenig, J. Chem. Ph{8, 1126(1970.

60H, Zabel, J. Phys.: Condens. Matt&B, 7679(2007).

61|, M. Lifshitz, Zh. Eksp. Teor. Fiz.22, 475(1952.

62C. Kittel, Introduction to Solid State Physi¢8Viley, New York,
1976, Chap. 3, 5th ed.

63\, Kohn, Phys. Rev. Lett2, 393(1959.

64C. P. Herrero and R. Ramirez, Phys. Rev6B 024103(2000.

65N. Mounet and N. Marzarjunpublisheg

66y. K. Kwon, S. Berber, and D. Toméanek, Phys. Rev. L&,
015901(2004.

67G. L. Belenkii, R. A. Suleimanov, N. A. Abdullaev, and V. Y.
Stenshraiber, Sov. Phys. Solid St#26, 2142(1984).

68N. A. Abdullaev, Phys. Solid Statd3, 727 (2007).

69N. A. Abdullaev, R. A. Suleimanov, M. A. Aldzhanov, and L. N.
Alieva, Phys. Solid Statet4, 1859(2002.

70K, Karch, T. Dietrich, W. WindI, P. Pavone, A. P. Mayer, and D.
Strauch, Phys. Rev. B3, 7259(1996.

"IH. J. McSkimin and P. Andreatch, J. Appl. Phy&8, 2944(1972.

72A. C. Victor, J. Chem. Phys36, 1903(1962.

73R. R. Hultgren Selected Values of the Thermodynamic Properties

of the Element§American Society for Metals, Metals Park, OH,

1973.

AL, E. Fried and W. M. Howard, Phys. Rev. 81, 8734(2000.

205214-14



