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The Pariser-Parr-PoplesPPPd model of a single-band one-dimensionals1Dd metal is studied at the Hartree-
Fock level, and by using the second-order perturbation theory of the electronic correlation. The PPP model
provides an extension of the Hubbard model by properly accounting for the long-range character of the
electron-electron repulsion. Both finite and infinite version of the 1D-metal model are considered within the
PPP and Hubbard approximations. Calculated are the second-order electronic-correlation corrections to the
total energy, and to the electronic-energy bands. Our results for the PPP model of 1D metal show qualitative
similarity to the coupled-cluster results for the 3D electron-gas model. The picture of the 1D-metal model that
emerges from the present study provides a support for the hypothesis that the normal metallic state of the 1D
metal is different from the ground state.
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I. INTRODUCTION

The quantum-mechanical description of a metallic system
encounters difficulties due to the Fermi-level degeneracy and
the long-range character of the Coulombic interactions.
These difficulties seem to be resolved in the case of the
three-dimensionals3Dd electron gas,1 which serves as the
primary model of isotropic metallic systems. On the other
hand, the highly anisotropic metallic systems, exhibiting
quasi-2D or quasi-1D metallic behavior, are much worse un-
derstood. For such systems, it is natural to use lattice models.
However, the 2D- or 1D-lattice models are usually studied
within the Hubbard approximation,2 in which the Coulombic
interactions are completely screened outside of a given
atomic sor moleculard site. A very nice feature of this ap-
proximation is the availability of exact solutions for several
systems, including the ground state of the simple 1D lattice.3

A progress in the experimental investigations of the so-called
quantum wires4 has inspired recent theoretical studies of the
1D metals which use more realistic models, stressing the
importance of the long-range Coulombic interactions among
electrons.5–12 In the present paper we consider a simple
model of the 1D metal in which noa priori screening of the
interelectronic interactions is assumed. By using the Møller-
PlessetsMPd perturbation theory,13–15 known also as the
many-body perturbation theorysMBPTd,16 we study the
second-order electronic-correlation corrections to the total
energy and to the electronic-energy band spectrum of this
model. A comparison is made with the Hubbard model, to
uncover qualitative differences between the two approaches.

The 1D-lattice model of a metallic system is an idealiza-
tion of such quasi-1D metals as conducting polymersfpoly-
acetylene,sSNdx, chains of chelated transition-metal com-
plexesg and certain classes of segregated-stack donor-
acceptor molecular crystalssTTF-TCNQ, Bechgaard salts,
etc.d; the respective references may be found in the review
article by Bryce and Murphy.17 Such a model may be viewed
as describing a single chain of subsystemssatoms, molecular
fragments, moleculesd, exhibiting a translational periodicity
in one dimensionsa 3D character of the subsystems is im-
plicitly assumedd. The simplest single-band 1D-metal model

with the Coulombic interaction may be formulated on the
basis of the Pariser-Parr-PoplesPPPd model18–20 of
p-electron molecules.

However, despite being a direct extension of the Hubbard
model, the PPP model is virtually unknown to the
condensed-matter theoristssrecent papers by Fanoet al.8,21

are noteworthy exceptionsd. In Sec. II we give some details
of the 1D-metal model based on the PPP theory. It is known
that the long-range Coulomb interactions in the extended-
system limit result in conditionally convergent lattice sums,
which have to be handled with care. In the Hartree-Fock
sHFd theory of polymers, a very efficient multipole-
expansion technique was introduced by Piela and
Delhalle.22,23 For small-energy-gap and metallic polymers, a
special treatment of extremely slowly converging HF
exchange-energy lattice sums becomes essential, see Refs.
24 and 25, and references cited therein. Thus, the 1D-metal
model of Sec. II is highly nontrivial already at the HF level,
exhibiting the pathologies of the exact HF exchange which
are characteristic to metallic systems of arbitrary
dimensionality.26 A complete HF description of this model,
for various band fillings, is given in Sec. III.

The Hartree-Fock model of electronic systems provides a
reference for a systematic inclusion of the electronic-
correlation effects by the perturbation theory or the related
coupled-clustersCCd method,27,28 up to the level described
by the full configuration-interactionsFCId method, which
provides the exact solution in the algebraic approximation.
Both the perturbation and coupled-cluster methods are non-
variational, but ensure the extensivity of the calculated cor-
relation contributions, the property which is crucial in appli-
cations to extended systems. On the other hand, the
variational procedures employing a truncated configuration-
interaction scheme lack the extensivity property, and are thus
useless for extended systems. Within the last two decades, a
progress has been made in the electronic-correlation studies
of 1D extended systems, by the perturbation theory,29–44 as
well as the coupled-cluster method.44–49 In comparison to
molecular applications, these approaches to extended sys-
tems require special techniques for handling the translational
symmetry and infinite lattice sums. In metallic systems, one
may expect additional problems due to the Fermi-level de-
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generacysthe vanishing of the orbital-energy denominatorsd.
Moreover, the severe numerical problems caused by the slow
convergence of the Hartree-Fock exchange-energy terms are
likely to propagate into the electronic-correlation calcula-
tions, since the exchange and correlation contributions have
to partially cancel each other, to effect the removal of the
HF-exchange pathologies. Some insight into these problems
is provided by the performance of the perturbation and CC
methods for the 3D electron gas. It is known that the pertur-
bation theory fails in this case, by predicting infinite values
of the individual energy corrections.50–52However, meaning-
ful results can be obtained by selectively summing up certain
sinfinited classes of the energy contributions; see Gell-Mann
and Brueckner.50,51The coupled-cluster method provides an-
other way of performing infinite-order summation of the
perturbation-theory diagrams, and it proved to be very suc-
cessful in application to the 3D electron gas,53–56 giving the
electronic-correlation energies in a very good agreement
with the exact results obtained numerically by means of the
Monte Carlo method.57

Unfortunately, the coupled-cluster method is expected to
fail when applied to the ground state of the 1D metal. This
negative conclusion derives from the extensive CC studies of
the PPP model of small cyclic polyenessCMHM, M =6 , 10,
14, 18, …d of DMh symmetry, originated by Paldus and
co-workers58–69 swith some recent complements by the
present authors70–73d. In the PPP model of cyclic polyenes
sannulenesd, the strength of the electronic correlation may be
increased bysid decreasingubu for a fixed M, and/orsii d by
increasingM for a fixedb fparameterbs,0d represents the
so-called resonance integral of the PPP modelg. By studying
both routes,sid and sii d, it was found60,61 that the basic
coupled-cluster method, called CCDswhere D stands for the
connecteddouble excitationsd, breaks down in the strongly
correlated regime of the model. In the CCD method one
solves a set of quadratic equationssthe CCD equationsd
which supply the so-calledt2 amplitudes corresponding to
the D excitations; the electronic-correlation energy is aslin-
eard function of theset2 amplitudes. The breakdown of the
CCD method for annulenes was attributed to the increasing
importance of the connected quadruplesQd excitations,
which, together with the connected triplesTd excitations,
contribute to theexact equations for thet2 amplitudes
through some coupling termssin the CCD method these
terms are simply neglectedd. Palduset al.60,61 then showed
that the coupling terms corresponding to Q excitations ap-
proximately cancel certain quadratic terms in the CCD equa-
tions. This opened ways of improving the CCD method by
some modification of the quadratic terms in the CCD equa-
tions, without the need of explicitly calculating the Q contri-
butions. The approximate coupled-pair theory, called ACP-
D45 sor ACP, for shortd, introduced earlier,74 and the
approximate coupled-pair theory with quadruplessACPQd,
devised by Palduset al.,60,61are variants of the CCD method
which incorporate the above idea. These methods proved to
be very effective for small cyclic polyenes, being convergent
and giving the correlation energies close to the FCI values.
However, recent calculations by Podeszwaet al.,70 showed
that even the inclusion of the T and Q excitations in the CC
operatorswithin the full CCSDTQ method75d is insufficient

for getting the converged CC results in the strongly corre-
lated regime, thus indicating that still higher connected exci-
tations are necessary for a proper description of these sys-
tems. Moreover, it was found that in the strongly correlated
regime the t2 amplitudes corresponding to the ACP and
ACPQ methods deviate markedly from those derived from
the full configuration interaction calculations, despite a good
agreement between the corresponding correlation energies.
Our recent application of the ACP and ACPQ methods to
large cyclic polyenes72 brought in negative results: no con-
vergence was found for the ACPQ method forM ù198, and
for the ACP method forM ù446. Thus, it appears that no
currently available CC method is capable of studying the
1D-metal limit sM→`d of cyclic polyenes.

Recently, the density-matrix renormalization-group
sDMRGd technique76 emerges as a new promising tool for
studying electronic systems.77 Applied to the annulenes de-
scribed within the PPP modelsM =6−34d,21 the DMRG
method was shown to approach the FCI accuracy for the
ground-state energy. By extrapolating the DMRG results ob-
tained for finite ringsswith M up to 80d to the extended-
system limit, Fanoet al.8 investigated the asymptotic behav-
ior of the elementary excitations, the spin and charge
correlation functions, and the momentum distribution, find-
ing agreement with the previous bosonisation study by
Schulz.5 Unfortunately, no DMRG-based band-structure
theory is available as yet.

It seems that the electronic-correlation problem in the 1D
metal poses quite a challenge for the available quantum
many-body techniques. Nevertheless, the pioneeringab ini-
tio studies of the electronic-correlation effects in polymers
by Suhai involved also 1D metallic systems: a chain of equi-
distant hydrogen atoms,29,32,35 sHd` ssee also Ref. 78d, the
equidistant zig-zag form of polyacetylene,31–33,37sCHd`, and
the equidistant zig-zag form of polysilene,34,38 sSiHd`. For
these systems Suhai calculated the MP2,29,31–33MP3,34 and
MP435,37,38 correlation-energy contributions to the total en-
ergy per unit cell, where MPn denotes thenth order of the
Møller-Plesset perturbation theory. These calculations pro-
vide a numerical evidence that, unlike for the 3D electron-
gas model,50 for the 1D metals the vanishing denominators
do not cause the divergence of the individual MPn contribu-
tions.

The present paper is organized as follows:
The Pariser-Parr-Pople model of a single-band 1D metal

is described in Sec. II. The Hartree-Fock results for this
model are presented in Sec. III. The second-order electronic-
correlation effects in the 1D metal are investigated in Sec. IV
sthe correlation corrections to the total energy per unit celld
and in Sec. Vsthe correlation corrections to the electronic-
energy bandsd. The second-order corrections are calculated
for finite systems and in the extended-system limit, for vari-
ous band fillings. We point to some striking analogies be-
tween our perturbative results for the PPP 1D-metal model,
and the coupled-cluster results for the 3D electron-gas model
obtained by Bishop and Lührmann,54,55 and Emrich and
Zabolitzky.56 In the last section, Sec. VI, we confront the
picture of the PPP model of 1D metal that emerges from the
present study with that of the DMRG calculations by Fanoet
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al.8 These two pictures can be reconciled by adopting a hy-
pothesis that the normal metallic state of the 1D metal is
different from the ground state.

II. PARISER-PARR-POPLE MODEL OF 1D METAL

The Pariser-Parr-PoplesPPPd model18–20 was created for
describing the electronic states ofp-electron molecules. A
built-in feature of this model is a qualitatively correct treat-
ment of the electrostatic interactionsfelectron-electron,
electron-satomic cored, and satomic cored-satomic coredg
within a molecule. Below we reformulate the PPP model for
the linear polyacetylenessee Ref. 24d to provide a descrip-
tion of a more general 1D metal. We consider a system com-
posed of identical subsystems forming a regular chain, which
is represented by a simple 1D lattice with some translational
parameterR0. We focus on the electronic-structure problem,
neglecting the electron-phonon coupling, and keeping the ge-
ometry of our chain fixed. Subsystems may be atoms or mo-
lecular fragments, connected by chemical bondssas in poly-
mersd, or molecules interacting via the van der Waals forces.
Although it is not essential for the considerations of the
present paper, one may assume that the chain is embedded in
some 3D crystalline matrix providing the chain with a rigid
structure and supplying a 3D phonon spectrum. It is sup-
posed that the number of electrons in the chain may be var-
ied se.g., due to the interactions with some doping agentsd
and an electron transfer between the neighboring subsystems
is possible, leading eventually to a metallic 1D band struc-
ture. Such systems, with a finitesbut very larged number of
subsystems, may work as wires in the molecular electronic
devices of the future.79

Let XM be a regular chain of subsystems X, hereafter
called molecules, with the nearest-neighbor distanceR0. In
order to arrive at the limit of an infinite chain corresponding
to the 1D metal, one has to build a finite cyclic model which
leads to the fastest convergence forM→`. Such a model
corresponds to a locally linear chain with periodic boundary
conditions, which is depicted in Fig. 1. For convenience, we
chooseM =4m0+2, m0=1,2,…, as in cyclic polyenes studied
in Ref. 70. The electronic structure of molecule X is assumed
to be frozen, except for the occupation number of someouter
molecular orbitalsMOd which may be varied from 0 to 2. In
our PPP model, thesesouterd MOs of all the molecules in the
XM system provide a basis set used in the quantum descrip-
tion of N mobile electrons, 0øNø2M. The ratioN/M is
equal to the mean occupation number of the outer MO. The
ground state of the chain may be of the closed-shell type
only if the number of the mobile electrons fulfills the so-
called Hückel rule:N=4n0+2, n0=1,2,… ,2m0. The case
n0=m0 corresponds toN=M and leads to the half-filled band
in the 1D-metal limit. The molecules in the chainsand the
corresponding MOsd will be numbered by indicesm,n,…,
belonging to anM-element set,

Asm0d = h0, ± 1,…, ± 2m0,2m0 + 1j. s1d

A translation of n nearest-neighbor distance unitssnR0,n
=1,… ,Md along the chain transforms themth molecule into
the sm+ndth one, where the modulosMd addition of indices
belonging to setAsm0d is applied. It is implicitly assumed
that the environment of any molecule in the XM system is the
same as that of the zeroth molecule; see Fig. 1. Thus, our
system is invariant with respect to all the translationssthey
form a cyclic group of orderM, hereafter denoted asTMd.
The above construction leads to the XM system which is
cyclic, but locally linear.

The electronic-structure model of the XM system, with a
single molecular orbital per subsystem, may be easily cast
into the form of the PPP model of polyacetylene in which the
2pz atomic orbitals of the carbon atoms are replaced by the
molecular orbitals of the subsystems. The original orbitals of
the molecules in the XM system are nonorthogonal, and the
overlap between the orbitals of the adjacent molecules is
vital for making the electron transfer along the chain pos-
sible. However, the handling of nonorthogonal orbitals in a
semiempirical model is inconvenient, and it will be assumed
that the set of the original molecular orbitals is subject to the
symmetrical orthonormalization procedure of Löwdin,80

yielding a set oforthogonalizedmolecular orbitals which
fulfill the orthonormality conditions:

kxmuxnl = dmn. s2d

These orbitals are well localized and similar to the original
molecular orbitals, including the symmetry properties: the
translation of nR0 transforms xm into xm+n. It was
Fisher-Hjalmars81,82 who showed that certain simplifying as-
sumptions of the PPP model for thep-electron molecules,
involving the so-called ZDO approximation introduced by
Parr,83 can be substantiated when the one- and two-electron
integrals, which become empirical parameters in the PPP
model, are treated as corresponding to the orthogonalized
orbitals. The crucial simplification achieved in the PPP
model is due to the complete neglect of all the three- and
four-center two-electron integrals, as well as the two-center
two-electron integrals of the hybrid and exchange types. Spe-
cifically, we assume that for our orthogonalized orbitals of
Eq. s2d:

kxms1dxns2due2r12
−1xm8s1dxn8s2dl

= dmm8dnn8kxms1dxns2due2r12
−1xms1dxns2dl, s3d

wheree stands for the elementary charge. In other words, in
the PPP model the only surviving two-electron integrals are
the two-center integrals of the Coulomb type, as well as the
one-center integrals.

The key to the explanation why Eq.s3d should work lies
in the properties of the two-center densitiesxms1dxns1d, m
Þn, which contribute to the two-electron integrals neglected
in the PPP model. These densities integrate to the corre-
sponding overlap integrals, which vanish for the orthogonal-
ized orbitals that fulfill conditionss2d. The performance of
the approximations3d may be illustrated by the results ob-
tained for benzene by McWeeny.84 He calculated the two-

FIG. 1. Periodic structure of the XM system,M =4m0+2.
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electron integrals corresponding to the orthogonalized basis
of atomic orbitals, and found that the absolute values of in-
tegrals neglected in the PPP model do not exceed 0.12 eV,
while the values corresponding to the originalsnonorthogo-
nald basis of atomic orbitals are as big as 3.31 eVsthese
results are quoted in Parr’s book;85 see Table 9 on p. 67d.
Similar behavior may be expected for the orthogonalized ba-
sis of molecular orbitals corresponding to a general XM sys-
tem considered in the present paper.

The implicit use of the orthogonalized basis in the PPP
model, which validates approximations3d, supersedes the
old-fashioned ZDO approximation83 employed in the origi-
nal formulation18–20 of the model. Let us stress that the ap-
proximation given in Eq.s3d is valid only when orbitalsxm
fulfill Eq. s2d. The use of a nonorthogonal basis, and a selec-
tive incorporation of the corresponding two-electron inte-
grals sas proposed, e.g., in Ref. 86d, is likely to spoil the
internal consistency of the PPP model.

A. Pariser-Parr-Pople Hamiltonian

The second-quantized version of the Pariser-Parr-Pople
sPPPd many-electron Hamiltonian was introduced by
Koutecký;87 also see a paper by Del Re.88 In the case of our
XM system, we consider the Fock space spanned by all pos-
sible N-electron Slater determinantssN=0,1,… ,2Md built
of spin orbitals from the 2M-element orthonormal spin-
orbital basis setB=hxma ,xmbj, wherea andb are the one-
electron spin functions. Any linear operator acting in our
Fock space may be built from products of annihilation and
creation operators:âma is the annihilation operator associated
with the spin-orbitalxma, andâma

† is the corresponding cre-
ation operator. The Fock-space Hamiltonian for our chain,
built according to the prescriptions of the PPP model, reads
as

Ĥ = a0N̂ + b0 o
mPAsm0d

st̂m,m+1 + t̂m+1,md + g0 o
mPAsm0d

n̂man̂mb

+
1

2 o
mÞnPAsm0d

gsun − muR0dsz0 − n̂mdsz0 − n̂nd. s4d

The meaning of the operators appearing in Eq.s4d is as fol-
lows: for the spin-a electrons n̂ma= âma

† âma is the
occupation-number operator corresponding to sitem, and
t̂mna= âna

† âma is the electron-transfer operator corresponding
to transfer from sitem to n; we define alson̂m= n̂ma+ n̂mb,
t̂mn= t̂mna+ t̂mnb, and the electron-number operator reads as

N̂=omn̂m. Quantitiesa0, b0, andg0 are empirical parameters
of the PPP model:a0 represents the binding energy of an
electron described by any of the orbitalsxm, b0 corresponds
to the electron transfer between a pair of the neighboring
orbitals,xm andxm+1, and

g0 = kxms1dxms2due2r12
−1xms1dxms2dl s5d

is the one-center two-electron integral. In the case when the
outer molecular orbital is empty, we shall refer to the mol-
ecule as to thesmoleculard core; the core plusz0 electrons is
assumed to make an electrically neutral system. Parameterz0

should assume a discrete value: 0, 1, or 2, but it will be
advantageous to treat it as a continuous quantity, 0øz0ø2;
see a further discussion. The mobile electrons are assumed to
move in a static potential of molecular cores, andz0 may be
treated as representing aneffective chargeof the molecular
core sin units of the elementary chargeed. The last term of
Hamiltonians4d represents a sum of the long-range electro-
static interactions of the core-core, electron-core, and
electron-electron types. The dependence of these interactions
on the distanceR is described in the PPP model by acommon
function gsRd. Here we depart from the PPP model of Ref.
24, where functiongsRd describing the electron-electron in-
teractions was different from that used for the core-core and
core-electron interactions.

In Eq. s4d, function gsRd represents the two-center two-
electron integral of the Coulomb type,

gsRd = kxms1dxns2due2r12
−1xms1dxns2dl, s6d

in which the centers of molecular orbitalsxm and xn are
displaced by distanceR= un−muR0; by definitiongs0d=g0. In
the PPP model, functiongsRd is considered as a certainin-
terpolating functionbetween the one-center values5d and the
long-range limiting form,gsRd→e2/R for R→`. The origi-
nal proposal by Pople20 was to use the bare Coulomb poten-
tial for the two-center interactions:

gPsRd = HgP
0 , for R= 0,

e2/R, for RÞ 0.
J s7d

Although the Pople functiongPsRd has never won popularity
in the molecular applications of the PPP model, we find it
quite a useful reference function in application to the 1D
metals, with the one-center parametergP

0 defined as

gP
0 = s2 ln 2de2/R0, s8d

see Sec. III. A general interpolating function in the PPP
model may be written as

gsRd = gPsRd + lsRd, s9d

where

lsRd = Hg0 − s2 ln 2de2/R0, for R= 0,

gsRd − e2/R, for RÞ 0,
J s10d

and function lsRd has to decay faster than 1/R, i.e.,
R lsRd→0 for R→`. Obviously, the Pople functions7d de-
scribes the essential Coulombic part of any interpolating
function gsRd. When the interacting charge distributions
have spherical symmetry, the corresponding functionlsRd
describes the so-called charge-penetration effects, and should
decay exponentially forR→`. Such behavior is desirable in
applications to model extended systems, but isnot fulfilled
by the most popular interpolating functions proposed by
Mataga and Nishimoto,89 and by Ohno.90 In Ref. 24 the so-
called modified Mataga-NishimotosMMN d interpolating
function was introduced,
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gMMNsRd = e2fR+ e2sg0d−1 exps− e−2g0Rdg−1, s11d

which corresponds to an exponentially decaying function
lsRd. FunctionsgPsRd andgMMNsRd, hereafter also referred
to as potentials, are depicted in Fig. 2. These potentials cor-
respond to the parametrization of the PPP model of Table I,
which will be used throughout the papersit is the same pa-
rametrization as employed for the model of polyacetylene in
Ref. 24d.

B. Extended-system limit

The idea behind building a cyclic, locally linear XM sys-
tem, and to study its properties in the extended-system limit
sM→`d, is based on the assumed high symmetry of the
latter model, and on the expected fast convergence of its
properties in this limit. The studied properties must beinten-
sivequantities, having finite limiting values: the total energy
per molecule, excitation energies, and electronic-band ener-
gies provide important examples. In the Hubbard modelsin
general, in any model with a finite range of interparticle in-
teractionsd no problem emerges, since all eigenenergies be-
have asextensivequantities. In the case of models with long-
range interactions, like the PPP model described by

Hamiltonians4d, only the eigenenergies corresponding to the
system with no macroscopic net charge behave as extensive
quantities.

When studying the electronic states in the extended-
system limit, one has to select a certainN-electron closed-
shell ground statesN=4n0+2d as the reference state. The
choice of a particular value ofN in our XM model system
may reflect the doping level of a real system, corresponding
to the presence of some electron-donor or electron-acceptor
molecules in the vicinity of the XM system. Already at the
Hartree-Fock level, in order to arrive at the convergent lattice
sums in the expressions for the Hartree-Fock energysper
moleculed and the orbital energies, one has to assume that the
unit cell smolecule X in this cased is electrically neutral. For
Hamiltonians4d, this neutrality condition requires that

z0 = N/M , s12d

which in general leads to a fractional core effective charge
z0. By applying the conditions12d one may continuously
vary the doping level without destroying the translational
symmetry of the systemsno explicit inclusion of counterions
is necessaryd. The extended-system limit should then corre-
spond to the joint conditions,

M → `, N/M = z0 = const. s13d

Let us note that parameterz0 corresponds now also to the
mean occupation numbersthe filling leveld of the outer MO
in molecule X. In the limits13d, quantity 0øz0/2ø1 de-
notes also the filling level of the electron-energy band of our
1D metal.

C. Essential parameters of PPP Hamiltonian

From a formal point of view, the PPP Hamiltonians4d
depends on five parameters,

Ĥ ; Ĥsa0,b0,g0,z0,R0d = Ĥs0,b0,g0,z0,R0d + a0N̂,

s14d

as well as on the choice of the potentialgsRd. Actually, b0

should be a certain function ofR0, but it is more convenient
to treatb0 as an independent parameter. From the consider-
ations of the previous section, it follows that one has to
choose the numberN of electrons in the ground state of the
system. Then, the condition of electrical neutrality fixes the
value of parameterz0; see Eq.s12d. Thus,z0 is no longer a
variable in Eq.s14d, which reduces the number of indepen-

dent parameters to four. SinceN̂ commutes withĤ, eigen-
functions of Hamiltonians14d are independent of parameter
a0, while the corresponding eigenenergies still depend on all
the four parameters. We shall refer to parametersb0, g0, and
R0 as to theessentialparameters of the PPP Hamiltonians4d.

When the Pople interpolating functions7d ands8d is used
in Hamiltonians4d, parametergP

0 depends onR0. One finds
in this case that the scaling of the translation parameter,R0

→mR0, brings about the following scaling ofN8-electron
eigenenergies corresponding toa0=0:

FIG. 2. sColor onlined FunctionsgsRd corresponding to PPP-P
and PPP-MMN models. Values corresponding toR=nR0, n=0, 1,
2,…, for R0=1.4 Å, are indicated by circles.

TABLE I. Parameters of Hamiltonians4d employed in calcula-
tions of the present paper. Energies are in eV, andR0 is in Å; the
conversion factors to atomic units are the same as in Refs. 70–72:
1 hartree=27.2116 eV, 1 bohr=0.529 177 Å.

a0 b0 g0 R0

PPP-P 0 −2.5 14.259a 1.4

PPP-MMN 0 −2.5 10.840 1.4

Hubbard-0 0 −2.5 5.000 —

aCalculated from Eq.s8d.
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Ej
N8s0,b0,m−1gP

0,mR0d = m−1Ej
N8s0,mb0,gP

0,R0d; s15d

hereN8 denotes the number of electrons which may be dif-
ferent from the numberN corresponding to the ground state.
Thus, the calculations performed for some fixedR0 may be
easily extended to other values of this parameter. It is seen
that the eigenfunctions of Hamiltonians4d with the Pople
potentialgPsRd depend effectively on asingleparameter,b0.
This feature makes the corresponding PPP model, hereafter
abbreviated PPP-P, a convenientreference modelin theoret-
ical studies of 1D metals. It seems that for the 1D metals the
PPP-P model plays an analogous role to that of the electron-
gas model for the 3D metals.

D. Alternancy symmetry and pairing of energy levels

Let C0
N represent the closed-shell ground state of the XM

system for the assumed doping level characterized byz0 of

Eq. s12d. The excited and ionized statesC j
N8 correspond to

the number of electronsN8=N,N±1,N±2,…. By changing
parameterz0 to 2−z0, one arrives at a similar family of
s2M −N8d-electron states. It can be shown that due to the
alternancy symmetryssee Kouteckýet al.91 and references
thereind, for the ground-state eigenenergies per molecule,

E0
N=M−1E0

N, and for the excitation energiesDE0,j
N,N8=Ej

N8

−E0
N, one obtains

E0
2M−N = E0

N + s1 − z0ds2a0 + g0d, s16d

DE0,cs jd
2M−N,2M−N8 = DE0,j

N,N8 + sN − N8ds2a0 + g0d, s17d

which hold for finiteM, as well as in the extended-system
limit. In the above equation,j →cs jd denotes a certain map-
ping spairingd of the indices labeling theN- and
s2M −Nd-electron states; for the respective ground states, one
hascs0d=0. Therefore, one may restrict the study of the XM

system to the filling levels 0,z0/2ø1/2. Eqs.s16d ands17d
are fulfilled also when the exact eigenenergies are replaced
by the results of certain approximate calculations, e.g., by the
Hartree-Fock or the coupled-cluster method. The ground-
state energies per electron may be calculated asE0

N/z0.

Concluding this section, let us look again at the structure
of the PPP Hamiltonians4d. By the neglect of certain terms,
the form of this Hamiltonian may be reduced to that corre-
sponding to a more simplified model. When only the first
two terms are retained, one arrives at the second-quantized
version of the Hückel Hamiltonian,92 with no explicit
electron-electron interactions. By including the third term,
the Hubbard Hamiltonian2 is obtained, where the electron-
electron interactions are confined to individual molecular
centerssbecause of the assumption of the single molecular
orbital per center, only the electrons with the opposite spins
may interactd. The Hubbard model tries to account for a dy-
namical screening of the electron-electron interactions
swhich is an electronic-correlation effectd by actually purging
out all the long-range terms from the Hamiltoniansincluding
the electron-core and the core-core terms, which have to be
sacrificed for the sake of the electrostatic balanced. There is

also a family of the so-called extended Hubbard models, in
which the long-range electrostatic terms are neglected after
the n neighborssn=1, 2,…d; we shall refer to these models
as to the Hubbard-n models, the original Hubbard model
being Hubbard-0. In Table I we give also the parameters
corresponding to the Hubbard modelsfor annulenesd. A low
value for the one-center two-electron integral in this model
sgH

0 =5.0 eVd was suggested by Paldus and Boyle,58 who ar-
gued thatgH

0 should be approximately equal to the difference
g0−gsR0d corresponding to the PPP model.93

III. HARTREE-FOCK RESULTS FOR 1D-METAL MODEL

The basis set of orthogonalized molecular orbitals
hxm,mPAsm0dj is in one-to-one correspondence with the
orthonormal basis set of symmetry orbitalssthe Bloch orbit-
alsd corresponding to the translation groupTM:

ck = M−1/2 o
mPAsm0d

xm expS2pi

M
kmD , s18d

wherekPAsm0d enumerates the symmetry labels ofM one-
dimensional representations of theTM group, which are com-
plex for kÞ0,2m0+1. For anarbitrary state of our XM sys-
tem, described within the restricted Hartree-FocksRHFd
theory sin which no symmetry breaking is allowedd, the HF
orbitals may be taken in the form of the symmetry orbitals
s18d. These orbitals will be hereafter referred to as the crystal
orbitals sCOsd. The two-electron integrals corresponding to
the CO basis, calculated by using Eqs.s3d and s6d, may be
written as

kck1+qs1dck2−qs2due2r12
−1ck1

s1dck2
s2dl = vsqd, s19d

where

vsqd = vs− qd = M−1 o
mPAsm0d

gsmR0dcosS2p

M
qmD . s20d

In the above expressions the symmetry labelsk1,k2,q
PAsm0d are subject to the modulosMd addition rule. It is
seen that in the PPP model of the 1D metal the two-electron
CO integrals are enumerated by asingle index qPAsm0d.

We are going to study the closed-shell ground state of the
XM system described by the PPP Hamiltonians4d. We as-
sume that the number of electrons conforms to the Hückel
rule: N=4n0+2, n0=1, 2,…, and that conditions12d holds.
The N-electron ground state of the system,C0

N, corresponds
to the spin singlet, the fully symmetric representationsk=0d
of the translation group, and, forN=M it belongs to the
“minus” category corresponding to the alternancy
symmetry.94 Throughout this paper we shall assume that the
overlap integral between the original molecular orbitals of
the adjacent molecules is.0, and thus parameterb0,0. In
such a case the RHF determinantal wave functionFHF
s;F0

Nd describing the ground state is characterized by a
double occupation of the COs with the symmetry labelk
belonging to the set
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Osn0d = h0, ± 1,…, ± n0j. s21d

The above set contains 2n0+1=N/2 elements and will be
referred to as the occupied CO index set. The
sM −N/2d-element subset ofAsm0d which is complementary
to Osn0d reads as

Usm0,n0d = h±sn0 + 1d, ± sn0 + 2d,…, ± 2m0,2m0 + 1j,

s22d

and will be referred to as the unoccupied CO index set. The
CO energies of the XM system are calculated as

eHFskd = kcku f̂ckl = a0 + 2b0 cosS2p

M
kD + g0z0

− o
qPOsn0d

vsk − qd, s23d

where f̂ is the Fock operator corresponding toFHF and
Hamiltonians4d. The CO energieseHFskd;eHF

N skd depend on
the parametersa0,b0,g0,z0, andR0. Due to the time-reversal
symmetry, the complex-conjugate COsck andc−k are degen-
erate: eHF

N s−kd=eHF
N skd. In the one-electron approximation,

the alternancy symmetry manifests itself through the
Coulson-Rushbrooke theorem,95 which introduces another
pairing among the COs:ck and ck−q0

, where q0=2m0+1,
make a conjugate pair. It can be shown in general, by invok-
ing Koopmans’ theorem96 and using formulas17d, that the
CO energies corresponding to theN- and s2M −Nd-electron
ground-state RHF functions are related to each other,

eHF
2M−Nskd − sa0 + g0/2d = − feHF

N sk − q0d − sa0 + g0/2dg.

s24d

If one of the paired one-electron states corresponding to the
above formula is occupied, then the other one is unoccupied.
In particular, forN=M, the alternancy symmetry causes the
pairing of the occupied and unoccupied COs, and their or-
bital energies satisfy Eq.s24d.

The HF energy per molecule,EHF=EHF
N , in the the XM

system reads as

EHF = M−1kFHFuĤFHFl = a0z0 + b04 sinsz0p/2d
M sinsp/Md

+ g0sz0d2

2

− M−1 o
k,qPOsn0d

vsk − qd. s25d

The terminal terms on the rhs of Eqs.s23d and s25d corre-
spond to the nonlocal Hartree-Fock exchange. In the Hub-
bard model, these terms reduce to −g0z0/2 and −g0sz0d2/4,
respectivelysthese are the terms correcting for the one-center
self-interaction of electronsd.

For NÞ0,2M, the gap between the degenerate pair of the
highest occupied COs and the degenerate pair of the lowest
unoccupied COs amounts to

DeHF = eHFsn0 + 1d − eHFsn0d = − 4b0sinsz0p/2dsinsp/Md

+ vs0d − vsN/2d. s26d

Interestingly, for finiteM the above gap is always.0, and

does not vanish even forb0=0, due to the exchange term in
eHFskd.

When studying the extended-system limit of the XM sys-
tem, it will be advantageous to replace the integer symmetry
labelskPAsm0d by

k =
2p

M
k, s27d

where the new labels form an evenly spacedM-element sub-
set in the semiclosed intervals−p ,pg. The new symmetry
label k is proportional to the quasimomentumk" /R0, where
" is the Planck constant, and will be for brevity referred to as
the quasimomentum. The addition rule for the quasimomenta
kP s−p ,pg is borrowed from the modulosMd addition rule in
set Asm0d; this corresponds to the so-called Umklapp pro-
cess for the quasimomentum. As a consequence, the arbitrary
function of quasimomentum,fskd, which is defined fork
P s−p ,pg, may be extended to the whole range of real argu-
ments by assuming that it is periodic with period 2p; this
interpretation of the Umklapp process will be used through-
out the paper. The quasimomenta corresponding to the occu-
pied COs, with labelskPOsn0d, form anN/2-element subset
of the closed intervalf−kF,kFg, where we introduce the so-
called Fermi quasimomentum,

kF =
pN

2M
= z0p

2
. s28d

The Fermi quasimomentumkF is related to the effective core
chargez0 because of conditions12d. Interval s−p ,pg repre-
sents the first Brillouin zone for our 1D metal, and
f−kF,kFg is the Fermi intervalsthe 1D analog of the Fermi
sphered. The quasimomenta corresponding to the unoccupied
COs, with labelskPUsm0,n0d, form an sM −N/2d-element
subset belonging to the union of intervalss−p ,−kFd and
skF,pg.

In the limit of M→`, the quasimomentak related to sets
Asm0d ,Osn0d, and Usm0,n0d form dense countable subsets
enclosed in the respective intervals. In this limit, a summa-
tion over symmetry labels forming a subset inAsm0d may be
replaced by an integration over the corresponding subinterval
in s−p ,pg,

M−1o
k=k1

k2

→ s2pd−1E
k1

k2

dk, s29d

where −2m0øk1øk2ø2m0+1. For simplicity, in the formu-
las corresponding to the infinite limit we shall replace the
symbol of quasimomentum,k, by symbol k, wherever no
confusion arises. In the extended-system limits13d we shall
use the Fermi quasimomentums28d rather than parameterz0

to characterize the reference ground state of the system.
Let us write the two-electron CO integralss19d as

vsqd = M−1Vsqd, s30d

whereq now stands for the quasimomentum, see Eq.s27d,
qP s−p ,pg. In the next step we apply partitions9d to for-
mula s20d, and assume that functionlsRd vanishes beyond
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RùL0R
0, where L0.0 is some finite integer. For theM

.2L0 function Vsqd may be then written as

Vsqd = VPsqd + ls0d + 2o
m=1

L0

lsmR0dcosmq, s31d

whereVPsqd corresponds to the Pople function defined in Eq.
s7d,

VPsqd =
e2

R0H2 ln 2 + 2o
m=1

2m0 cosmq

m
+

cosfs2m0 + 1dqg
2m0 + 1 J .

s32d

When studying the infinite-M limit of function Vsqd, one
finds that the second term on the rhs of Eq.s31d reaches its
limiting value for M .2L0. On the other hand, the lattice
sum of the cosines inVPsqd cannot be effectively summed up
by a finite-summation method; see Ref. 24 and references
therein. Fortunately, an analytical limiting formula is
available,24

VPsqd = −
2e2

R0 lnusinsq/2du, s33d

for qP s−p ,pg. Thanks to a special choice of the one-center
contribution, Eq.s8d, the resulting formula is very compact
and corresponds to a non-negative function. Let us note that
VPsqd vanishes forq=p and diverges logarithmically forq
→0. FunctionVPsqd and functionVMMNsqd, corresponding
to the modified Mataga-Nishimoto functions11d, are de-
picted in Fig. 3. In addition, we show there also asconstantd
function VHsqd=gH

0 corresponding to the Hubbard-0 model.
The logarithmic divergence ofVsqd at q=0 is an inherent

feature the PPP model of the 1D metal. It originates from the
asymptoticR−1 behavior of functiongsRd, and is thus absent
in the Hubbard-n model for any finiten sfor a comparison of
the PPP and the Hubbard-1 models of the infinite polyene,
see Ref. 24d. In the PPP model one finds also that the CO

Coulomb integral vs0d, see Eq. s19d, vanishes as
s2e2/R0dlnsMd /M in the limit of M→`. Thus, so vanishes
the HF orbital-energy gaps26d in this limit. Formulas31d is
applicable whenlsRd is a quickly decaying function. How-
ever, when the charge distribution corresponding toselectri-
cally neutrald molecule X has a dipole or quadrupole moment
sor when XM forms a zig-zag chaind, lsRd should include
terms decaying likeR−n,n.1. In such a case the necessary
lattice sums may be handled by using a general method de-
scribed in Refs. 24 and 25.

In order to find the formulas for the CO energiess23d and
the HF energy per molecules25d in the extended-system
limit s13d, we use some of the results of the Appendix A of
Ref. 24. By writing formulas33d as

VPsqd =
2e2

R0 fln 2 + f1sqdg, s34d

and applying the continuous variabless27d and the
summation-to-integration switchs29d, we arrive at the fol-
lowing formulas:

eHFskd = a0 + 2b0 cosk + g0kF

p
−

e2

pR0fg2sk + kFd

− g2sk − kFdg −
2

p
o
m=1

L0 lsmR0d
m

sinmkF cosmk,

s35d

for kP s−p ,pg, and

EHF = a02kF

p
+ b04 sinkF

p
+ g0SkF

p
D2

+
e2

p2R0ff3s2kFd − f3s0dg

−
1

p2 o
m=1

L0 lsmR0d
m2 sin2 mkF, s36d

where functionsf1, g2, and f3 are defined in the Appendix A
of Ref. 24. These functions may easily be calculated by using
the analytical approximants introduced in Appendix B of
Ref. 24. In both Eqs.s35d and s36d, the first three terms on
the rhs correspond to the Hubbard-0 model; by adding the
fourth term one arrives at the results of the PPP-P model. In
the extended-system limit the dependence of various quanti-
ties on the number of electronsN should be replaced by the
dependence on the Fermi quasimomentumkF defined in Eq.
s28d, thus eHFskd;eHF

kF skd and EHF;EHF
kF . Equations24d, re-

flecting the influence of the alternancy symmetry on the CO
energies, now reads as

eHF
p−kFskd − sa0 + g0/2d = − feHF

kF sk − pd − sa0 + g0/2dg,

s37d

wherekP s−p ,pg.
The CO energies given by formulas35d represent the

electronic-energy bands of our 1D-metal model within the
Hartree-Fock approximation. The first derivative of these CO
energies can be calculated in an analytical form; for the
PPP-P model one finds that

FIG. 3. sColor onlined FunctionsVsqd corresponding to PPP-P,
PPP-MMN, and Hubbard-0 models.
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deHFskd
d k

= − 2b0 sink +
e2

pR0

3hlnusinfsk + kFd/2gu − lnusinfsk − kFd/2guj.

s38d

As pointed out in Ref. 24, the HF-exchange contribution to
the CO energies, originating from the long-range Coulombic
interactions of electrons, is causing a logarithmic divergence
of quantity s38d at k= ±kF. This in turn makes the density-
of-statessDOSd functions vanish at the Fermi level equal to
eHFskFd.24,26 The CO energies corresponding tokF=p /2 sthe
half-filled-band cased and kF=p /4 sthe quarter-filled-band
cased are shown in Figs. 4 and 5, respectively. The infinite
slope of the energy bands fork=kF is noticeable for the
PPP-P and PPP-MMN models, in difference to the results of
the Hubbard-0 model. The energy bands corresponding to the

PPP model are much wider than those corresponding to the
Hubbard-0 modelsin the latter case the total band width
amounts simply to 4ub0ud. The differences between the PPP
and Hubbard-0 energy bands are due solely to the exchange
effects that originate from the long-range Coulomb interac-
tions. The vanishing of the DOS function at the Fermi level,
and a too-large bandwidth, are well-known pathologies of
the HF approximation applied to a metallic system.

The HF energy per molecule defined in Eq.s36d is a func-
tion of the Fermi momentum,EHF;EHF

kF ; the HF energy per
electron may be calculated asEHF

kF p / s2kFd. The dependence
of EHF on kF/pP f0,1g, for the PPP-P, PPP-MMN, and
Hubbard-0 models, is depicted in Fig. 6. Fora0=0 ssee Table
Id and kFP f0,p /2g the value ofEHF;EHF

kF may be viewed
upon as corresponding to a delocalization effectsat the HF
leveld: it is equal to the energy lowering with respect to a
reference state of the perfectly localized electronsswith no
more than one electron per moleculed. Near the half-filling,
the HF energies corresponding to the Hubbard-0 are close to
the PPP results, thus providing some justificationsat the HF
leveld for using a smaller parameterg0 in the Hubbard-0
model; see Table I and Ref. 58.

By applying formula s16d to the HF energies in the
extended-system limit, one finds that

EHF
p−kF = EHF

kF + s1 − 2kF/pds2a0 + g0d. s39d

For specific values ofkF, compact analytical formulas can be
obtained for the HF energiess36d corresponding to the
PPP-P model, by making use of Eqs.sA5ad andsA7ad of Ref.
24:

EHF
p/2 = a0 + b0 4

p
+

e2

R0F ln 2

2
−

7

4p2zs3dG , s40d

FIG. 4. sColor onlined kF=p /2. Hartree-Fock electronic-energy
bandseHFskd for PPP-P, PPP-MMN, and Hubbard-0 models.

FIG. 5. sColor onlined kF=p /4. Hartree-Fock electronic-energy
bandseHFskd for PPP-P, PPP-MMN, and Hubbard-0 models.

FIG. 6. sColor onlined Hartree-Fock energy per molecule,EHF,
as a function ofkF/p for PPP-P, PPP-MMN, and Hubbard-0
models.
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EHF
p/4 = a0/2 + b02Î2

p
+

e2

R0F ln 2

8
−

35

32p2zs3dG , s41d

wherezs3d=1.202 057; see Ref. 97. The value ofEHF
3p/4 may

be obtained from Eqs.s39d ands41d. The above results may
be extended to any variant of the PPP model by explicitly
calculating the last term in Eq.s36d.

IV. SECOND-ORDER CORRELATION CORRECTIONS TO
THE TOTAL ENERGY OF 1D-METAL MODEL

The basic many-body techniques, the perturbation
theory13–15 and the coupled-cluster method,27,28 use as the
reference some determinantal functionsmost often the
Hartree-Fock oned. Before such techniques are applied to
Hamiltonian s4d, it is convenient to write it in a different
form. By applying a unitary transformation converting the
spin-orbital basisB=hxma ,xmbj into B8=hcka ,ckbj, and
choosing the restricted Hartree-Fock functionFHF as the
Fermi vacuum, one may introduce a new representation of
linear operators in the Fock space for our XM system. The
PPP Hamiltonians4d assumes then a general form of the
many-electron Hamiltonian:

Ĥ = kFHFuĤFHFl + o
p

epNfp̂†p̂g +
1

4 o
p,q,r,s

vrs
pqNfp̂†q̂†ŝr̂g,

s42d

wherep, r, s, andt stand for composite spin-orbital indices:
p=sk,sd, wheres is spin indexsequal toa or bd, andp̂ and
p̂† are the annihilation and creation operators, respectively,
corresponding to spin-orbitalcks. Nf¯g stands for the nor-
mal ordering of the enclosed operators with respect to the
Fermi vacuumFHF. Quantitiesvrs

pq are the antisymmetrized
two-electron integrals calculated in the spin-orbital basisB8:

vp1,p2

p3,p4 = vk1s1,k2s2

sk1+qds3,sk2−qds4 = vsqdds1,s3
ds2,s4

− vsk2 − k1 − qdds1,s4
ds2,s3

, s43d

wherevsqd are the CO two-electron integrals defined in Eqs.
s19d and s20d. The HF spin-orbital energiesep;ek,s
=eHFskd are equal to the CO energies of Eq.s23d.

A modern approach to the many-body perturbation theory
places it in the framework of the coupled-clustersCCd
theory.16,98 In the present paper, we shall pursuit this connec-
tion to put our perturbative results into a broader context. In
the CC theory, the eigenfunction of Hamiltonians42d, corre-
sponding to theN-electron spin-singlet ground stateC0
;C0

N with eigenenergyE0;E0
N, can be expressed as

C0 = expsT̂dFHF, s44d

where T̂ is the CC operator, being a sum of the single,
double,… , up to N-tuple excitation operators. Then-tuple

excitation operatorT̂n depends on some linear parameters,
called the tn amplitudes. The ground-state electronic-

correlation energy,Ecorr=E0−kFHFu ĤFHFl, can be expressed
as a simple function of thet1 and t2 amplitudes and the

two-electron integralss43d. For the 1D-metal model of Sec.
II, the COs are determined by the translational symmetry,
and the HF functionFHF is equivalent to the Bruecknersor
maximum-overlapd determinantal function; see Ref. 99 and
references therein. Therefore, thet1 amplitudes vanish by
symmetry, and the electronic-correlation energy per mol-
ecule for our XM system depends only on thet2 amplitudes

of operatorT̂2:

T̂2 =
1

4o
i j

o
ab

tij
abNfâ†b̂† ĵ ı̂g, s45d

cf. Eq. s42d, where indicesi, j enumerate the occupied, and
a, b—the unoccupied spin orbitals. For our 1D-metal model,
the t2 amplitudes corresponding to operators45d can be ex-
pressed as70

ti1,i2

a3,a4 = tk1s1,k2s2

sk1+qds3,sk2−qds4 = tsk1,k2,qdds1,s3
ds2,s4

− tsk1,k2,k2 − k1 − qdds1,s4
ds2,s3

; s46d

cf. Eq. s43d, where sreald quantitiestsk1,k2,qd may be re-
garded as the nonorthogonally spin-adaptedt2 amplitudes
ssee, e.g., Ref. 99d. The spin-adapted amplitudestsk1,k2,qd
= tsk2,k1,−qd correspond to the same double excitation. In
Eq. s46d indices k1,k2POsn0d, while sk1+qd ,sk2−qd
PUsm0,n0d fsee Eqs.s21d ands22d, respectivelyg; these con-
ditions may be conveniently enforced by means of the CO-
occupation function:

nskd =H1 for k P Osn0d,

0 for k P Usm0,n0d,
J s47d

and an auxiliary function,

n̄skd = 1 −nskd, s48d

where kPAsm0d; see Eq. s1d. When the t2 amplitudes
tsk1,k2,qd are derived from the exact eigenstateC0 se.g.,
obtained by using the FCI methodd, the exact electronic-
correlation energy per molecule in our XM system,Ecorr
;Ecorr

N , may be expressed as follows:

Ecorr ; Ecorr/M = M−1 o
k1,k2,qPAsm0d

tsk1,k2,qdf2vsqd

− vsk2 − k1 − qdgnsk1dnsk2dn̄sk1 + qdn̄sk2 − qd.

s49d

Amplitudes tsk1,k2,qd are assumed to vanish identically if
nsk1dnsk2dn̄sk1+qdn̄sk1−qd=0. Because Eq.s16d holds both
for the exactsFCId and the Hartree-Fock energies, one con-
cludes that

Ecorr
2M−N = Ecorr

N , s50d

which is also true for approximate correlation energies, cal-
culated by means of a truncated coupled-cluster method or
the perturbation theory.

The sfull d coupled-clustersCCd equations comprise a set
of coupled nonlinear equations, from which the exacttn am-
plitudes of the CC operators44d may be calculated. In prac-
tice, one often neglects the coupling between the amplitudes
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corresponding to lower excitationsst1, t2, …d, and those cor-
responding to higher excitations, thus arriving at some trun-
cated CC schemesCCSD, CCSDT, CCSDTQ,…d. In Sec. I
we pointed out that attempts to find quantitiestsk1,k2,qd by
using the CCD method, or related methods which approxi-
mately include the coupling between the double and qua-
druple excitationssACP, ACPQd, seem hopeless; also the
CCDT and CCDTQ methods are expected to fail in this
respect.70 However, it turns out that one can calculate the
perturbation-theory approximants to amplitudestsk1,k2,qd.
To this end, Hamiltonians42d has to be partitioned into the

unperturbedszeroth-orderd part Ĥs0d, being the sum of the
first two terms on the rhs of Eq.s42d, and the perturbation

sfirst-orderd operatorĤs1d, equal to the third term. One may
now express the CC amplitudes astn= tn

s1d+ tn
s2d+¯, and solve

the full set of CC equations order-by-order98 by keeping the
terms of the same order togethersthis perturbation approach
effectively linearize the CC equationsd. The perturbation se-
ries of thet2-amplitude corrections,t2= t2

s1d+ t2
s2d+¯, substi-

tuted into the correlation-energy formulas49d, defines the
perturbation series of correlation-energy correctionsEcorr

=Ecorr
s2d +Ecorr

s3d +¯.

In the lowest order of the perturbation theoryT̂=T̂2
s1d, and

the corresponding spin-adaptedt2
s1d amplitudes of our 1D-

metal model read simply as

ts1dsk1,k2,qd = − D−1sk1,k2,qdvsqd, s51d

where

Dsk1,k2,qd = eHFsk1 + qd − eHFsk1d + eHFsk2 − qd − eHFsk2d

= Dsk1,k2,k2 − k1 − qd = Dsk2,k1,− qd, s52d

is an orbital-energy denominator. By substituting Eq.s51d
into formula s49d one obtains the expression forEcorr

s2d , the
second order correlation energysper moleculed for our XM

system The total second-order correlation energy,Ecorr
s2d

=MEcorr
s2d , is represented by the topmost Brandow diagram100

depicted in Fig. 7. It can be shown thatDsk1,k2,qd
ù2DeHF.0 fsee Eq. s26dg, if nsk1dnsk2dn̄sk1+qdn̄sk1−qd
Þ0, which makesEcorr

s2d finite sand,0d for finite M.
In order to study the extended system limits13d, we use

the approach described in detail in the previous section. It is
useful to write the formula forEcorr

s2d in the following form:

Ecorr
s2d =E

0

p

dq Fs2dsqd, s53d

where, forqP f0,pg,

Fs2dsqd = −
Vsqd
4p3 E

−kF

kF

dk1E
−kF

kF

dk2 D−1sk1,k2,qd 3 f2Vsqd

− Vsk2 − k1 − qdgn̄sk1 + qdn̄sk2 − qd, s54d

and for the definition of functionVsqd, see Eqs.s31d and
s33d. Functionn̄skd, corresponding to Eq.s48d, becomes now
the characteristic function for the union of intervalss−p ,
−kFd and skF,pg. It is not certaina priori whether quantity
s53d is finite, since the definition of functionFs2dsqd in Eq.
s54d involves singular quantities. Let us note that the analysis
by Beleznayet al. ,101 employed by Suhai and Ladik,29 does
not apply to the case of the PPP model, since, forq→0,
neither the denominators52d is linear inq, nor the numerator
involving function Vsqd remains finite in this limit.sHow-
ever, the analysis of Ref. 101 is valid for the Hubbard-n
models.d By analytical and numerical means, we have been
able to show that, for the PPP model of 1D metal, function
Fs2dsqd is finite, and thus leads to a finite value ofEcorr

s2d . In
particular, forq→0 the asymptotic form of functionFs2dsqd
reads as

Fs2dsqd → e2

p2R0q ln q, s55d

for the PPP modelsindependently of the form of the
g-potentiald, and

FIG. 7. Brandow diagrams representing: total
second-order electronic-correlation energyEcorr

s2d ,
and second-order contributions to electronic-
energy bands,eU

s2dskd andeV
s2dskd. Summation over

spin indices is assumed.
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Fs2dsqd → sg0d2

16p3b0 sinkF
q, s56d

for the Hubbard-0 model. FunctionsFs2dsqd corresponding to
the PPP-P, PPP-MMN, and Hubbard-0 models, forkF=p /2
andp /4, are presented in Figs. 8 and 9, respectively. These
results were obtained by applying a numerical-integration
routine based on Romberg’s algorithm.102 The behavior of
these functions in the vicinity ofq=0 agrees with the predic-
tions of Eqs.s55d ands56d. In addition, each function devel-
ops a cusp atq=2kF fthe cusp is absent for the PPP-P model
with kF=p /2, because in this caseVPspd=0g.

At the qualitative level, functionsFs2dsqd corresponding to
the PPP-P and PPP-MMN models of the 1D metal are simi-
lar, but that of the Hubbard-0 model is distinctly different.

On the other hand, the plot ofFs2dsqd for the PPP model
exhibits a striking similarity to the plot of an analogous func-
tion, corresponding to the CC method, calculated for the 3D
electron-gas model by Bishop and Lührmann,54,55 and by
Emrich and Zabolitzky.56 This similarity points to some com-
mon behavior of electronic correlations in 3D and 1D metal-
lic systems, which in the latter case, at least qualitatively,
may be described within the second-order perturbation
theory.

The second-order electronic-correlation energy per mol-
ecule s53d is a function of the Fermi momentum,Ecorr

s2d

;Ecorr
s2dkF, and fulfills condition

Ecorr
s2dsp−kFd = Ecorr

s2dkF; s57d

cf. Eq. s50d. In Fig. 10 we drawEcorr
s2dkF, corresponding to the

PPP-P, PPP-MMN, and Hubbard-0 models, forkF/p
P f0,1/2g. By comparing the PPP-P and PPP-MMN models
at the second-order perturbation theory and the Hartree-Fock
levels sfor the latter, see Fig. 6d, one may conclude that the
second-order electronic-correlation corrections are more sen-
sitive to the form of theg potential than are the Hartree-Fock
results. Our second-order results for the Hubbard-0 model
agree with those of Metzner and Vollhardt.103

The convergence pattern of the finite-system PPP-P re-
sults toward the extended system limit is studied in Table II.
The extended-system Hartree-Fock results are obtained from
formulas s40d and s41d. It is seen that our numerical-
integration scheme applied to the calculation of the second-
order energies in the extended-system limitfby using Eqs.
s53d ands54dg gives very good resultssalthough getting high-
accuracy results required intense computations using a very
fine gridd. The data in Table II indicate that the errors in the
Hartree-Fock and the electronic-correlation energies, origi-
nating from the finite-size effects, partially cancel out.

The 1D-metal model introduced in the present paper may

FIG. 8. sColor onlined kF=p /2. FunctionsFs2dsqd for PPP-P,
PPP-MMN, and Hubbard-0 models.

FIG. 9. sColor onlined kF=p /4. FunctionsFs2dsqd for PPP-P,
PPP-MMN, and Hubbard-0 models.

FIG. 10. sColor onlined Second-order electronic-correlation en-
ergy per molecule,Ecorr

s2d , as a function ofkF/p for PPP-P, PPP-
MMN, and Hubbard-0 models.
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be used to generate benchmark results for testing theab ini-
tio computer programs for conducting polymers. In his study
of a chain of equidistant hydrogen atoms, Suhai35 applied a
cutoff radius of 16 Å in the calculations of the exchange and
correlation terms, which should correspond to our results for
M =20, 22 in Table II. Thus, one may expect that the accu-
racy of the results of Ref. 35 is no worse than 0.05 eV.

V. SECOND-ORDER CORRELATION CORRECTIONS TO
ELECTRONIC-ENERGY BANDS OF 1D-METAL

MODEL

Theoretical models describing the influence of electronic-
correlation effects on the electronic-energy bands in solids
were studied by Toyozawa,104 Kunz,105 and Pantelideset
al.106 The departure point for these models was the second-
order perturbation theory of correlation effects, applied to the
ground state, and to some ionized states of the solid. Re-
cently, Sun and Bartlett39–43developed anab initio perturba-
tion approach to the band structure of solids with a nonzero
band gap. Below we shall analyze the correlation corrections
to the Hartree-Fock energy bands of our 1D-metal model and
perform calculations of these corrections within the second-
order perturbation theory.

A formal definition of the “exact single-electron ener-
gies,” eskd, in the XM system may be modeled after Koop-
mans’ theorem:96

eskd =HE0
N − Ek,s

N−1, for k P Osn0d,

Ek,s
N+1 − E0

N, for k P Usm0,n0d.
J s58d

In the above formula,eskd;eNskd is expressed through the
differences of certain eigenenergies of Hamiltonians4d: as
before,E0

N corresponds to theN-electron closed-shell ground
stateC0

N, while Ek
N−1, and Ek

N+1 correspond to some spin-
doublet eigenstates,Ck,s

N−1 and Ck,s
N+1, where the lower index

indicates thekth representation of the translation groupTM,
cf. Eq. s18d, ands is a spin indexss=a or bd. It is assumed
that functionsCk,s

N−1 and Ck,s
N+1 are similar sin the sense of

maximum overlapd to the determinantal functionsFk,s
N−1 and

Fk,s
N+1, respectively. FunctionFk,s

N−1 is obtained from the re-
stricted Hartree-FocksRHFd ground-state functionFHF
;F0

N by removing spin-orbitalcks; in turn, Ck,s
N+1 is ob-

tained fromFHF by adding spinorbitalcks. Due to the high

symmetry of our model, functionsFk,s
N−1 andFk,s

N+1 appear to
be the open-shell RHF wave functions for the respective
doublet states. Let us note that the above definition of func-
tions Ck,s

N−1 andCk,s
N+1 is, in fact, an oversimplification, but it

is sufficient for a theory involving only the second-order
corrections.104–106The physical sense of quantities defined in
Eq. s58d is as follows: forkPOsn0d, −eskd represent certain
ionization potentials of the XM system, while for k
PUsm0,n0d, eskd are equal to some electron affinities of this
system. Due to the time-reversal symmetry,eskd=es−kd.

By partitioning the eigenenergies into the Hartree-Fock
and correlation parts, one may define the electronic-
correlation contribution toeskd:

ecorrskd = eskd − eHFskd, s59d

and ecorrskd;ecorr
N skd may be calculated as the difference of

the pertinent correlation energies. Due to the alternancy sym-
metry of Hamiltonians4d, the differences of eigenenergies in
Eq. s58d obey formulas17d, which leads to a relation foreskd
analogous to that for the CO energies in Eq.s24d. As a con-
sequence, the correlation contributionss59d fulfill the follow-
ing condition:

ecorr
2M−Nskd = − ecorr

N sk − q0d, s60d

whereq0=2m0+1.
By calculating the second-order correlation energies cor-

responding to the states involved in definitionss58d ands59d,
one may obtain the second-order correlation corrections to
the energy bands,ecorr

s2d skd;ecorr
s2dNskd. These correlation correc-

tions emerge as differences of extensive quantitiessthe total
correlation energies of the respective statesd, but due to the
exact cancellation of certain extensive contributions, the re-
sulting formula corresponds to an intensive quantity. By us-
ing the spin-adapted formulas of Ref. 39, one may write

ecorr
s2d skd = eU

s2dskd + eV
s2dskd, s61d

where

eU
s2dskd = − o

k2,qPAsm0d
D−1sk,k2,qdvsqdf2vsqd

− vsk2 − k − qdgnsk2dn̄sk + qdn̄sk2 − qd, s62d

and

TABLE II. PPP-P model. Hartree-Fock energiessHFd and second-order correlation energiessMP2d per moleculesin eVd for XM system,
shown for extended-system limitsM =`d and for finiteM sas energy differences with respect toM =`d.

kF=p /4

M ` 15 996 7996 3996 1996 996 100 20

HF −2.729 774 −0.000 000 −0.000 001 −0.000 002 −0.000 007 −0.000 027 −0.001 926 −0.034 256

MP2 −0.251 402 0.000 000 0.000 002 0.000 005 0.000 018 0.000 057 0.002 188 0.021 514

kF=p /2

M ` 15 998 7998 3998 1998 998 102 22

HF −1.810 654 −0.000 000 −0.000 001 −0.000 002 −0.000 008 −0.000 030 −0.002 119 −0.034 663

MP2 −0.274 249 0.000 000 0.000 001 0.000 005 0.000 016 0.000 050 0.001 903 0.017 587
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eV
s2dskd = o

k2,qPAsm0d
D−1sk − q,k2,qdvsqdf2vsqd

− vsk2 − kdgnsk2dnsk − qdn̄sk2 − qd. s63d

In the above formulas we use definitionss47d, s48d, ands52d.
The Brandow diagrams representing the second-order contri-
butionseU

s2dskd;eU
s2dNskd andeV

s2dskd;eV
s2dNskd are depicted in

Fig. 7. These quantities may be related to the second-order
ground-state correlation energy:

Ecorr
s2d = M−1 o

kPAsm0d
eU

s2dskdnskd = − M−1 o
kPAsm0d

eV
s2dskdn̄skd;

s64d

cf. Eqs. s49d and s51d. It can be shown that, in addition to
relation s60d holding for ecorr

s2d skd, one has also

eV
s2d2M−Nskd = − eU

s2dNsk − q0d. s65d

In the extended-system limits13d, the correlation correc-
tions to the energy bands for our 1D-metal model,ecorr
;ecorr

kF skd, fulfill the analog of relations60d:

ecorr
p−kFskd = − ecorr

kF sk − pd. s66d

For kF=p /2 sthe half-filling cased the above formula implies
that theexactcorrelation correction must vanish at the Fermi
level:

ecorr
p/2s±p/2d = 0. s67d

In the extended-system limit, by using the approach de-
scribed in Sec. III, one may rewrite the second-order corre-
lation correctionss62d and s63d as

eU
s2dskd = −

1

4p2E
−p

p

dq VsqdE
−kF

kF

dk2 D−1sk,k2,qd

3 f2Vsqd − Vsk2 − k − qdgn̄sk + qdn̄sk2 − qd,

s68d

and

eV
s2dskd =

1

4p2E
−p

p

dq VsqdE
−kF

kF

dk2 D−1sk − q,k2,qd

3 f2Vsqd − Vsk2 − kdgnsk − qdn̄sk2 − qd, s69d

where noweU
s2dskd;eU

s2dkFskd and eV
s2dskd;eV

s2dkFskd. The full
second-order energy-band correctionss61d fulfill formulas
s66d and s67d; in addition, the analog of formulas65d reads
as

eV
s2dp−kFskd = − eU

s2dkFsk − pd, s70d

which, for kF=p /2, gives

eV
s2dp/2s±p/2d = − eU

s2dp/2s±p/2d, s71d

in agreement with the general conditions67d.
We have studied the behavior of the second-order corre-

lation corrections to the energy bands of the XM system
within the PPP-P and Hubbard-0 models. As indicated in
Sec. II C, the former model is a convenient, single-parameter

reference PPP model for 1D metals. Let us note that the
PPP-P model shares basic qualitative features of other PPP
models, perhaps with some amplification of the electronic-
correlation effects; see Fig. 10.

In our energy-band calculations we found that already for
finite M some numerical problems emerged whenNÞM.
For instance, in Eq.s62d denominatorDsk,k2,qd may change
its sign when going from one allowed triple of indices
k,k2,qPAsm0d to another. Moreover, in some cases the cor-
responding denominator may closely approach zero, thus
leading to ansalmostd divergent result. Similar problems
emerge in Eq.s63d for denominatorsDsk−q,k2,qd. In the
case of the PPP-P model, such problems affecteU

s2dskd for
N,M and kPUsm0,n0d; by virtue of Eq. s65d, the same
problems affecteV

s2dskd for N.M and kPOsn0d. We thus
conclude that in the extended-system limit of the PPP model
the second-order correlation correctionsecorr

s2d skd=ecorr
s2dkFskd are

not defined forukuùkF, if kF,p /2, and for ukuøkF, if kF
.p /2. Only for kF=p /2 the second-order correlation cor-
rectionss61d are defined for all values ofk.

For the PPP-P model, quantitieseU
s2dskd and eV

s2dskd, and
their sumf=ecorr

s2d skdg, are shown in Fig. 11sfor kF=p /2d, and
in Fig. 12sfor kF=p /4d. It is seen that correctionseU

s2dskd and
eV

s2dskd are continuous functions of quasimomentumk fexcept
that eU

s2dp/4skd is not defined foruku.p /4g, but, apparently,
are not smooth fork= ±kF. The full second-order correlation
correction,ecorr

s2d skd, is continuous, but has a diverging deriva-
tive at k= ±kF. In the PPP-P model, one finds thateU

s2dskd
,0, while eV

s2dskd.0, for those values ofk, for which these
quantities can be calculated.

For the Hubbard-0 model, a different behavior of the cor-
relation corrections is found; see Fig. 13sfor kF=p /2d, and
Fig. 14 sfor kF=p /4d. A special case correspond to the half-
filled band:eU

s2dskd andeV
s2dskd are defined everywhere except

for k= ±p /2, where they diverge. ForkFÞp /2 the problems

FIG. 11. sColor onlined PPP-P model,kF=p /2. Second-order
corrections to electronic-energy bands,eU

s2dskd andeV
s2dskd, and their

sum f=ecorr
s2d skdg, shown as functions ofk/p.
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with the denominators, similar to those discussed above for
the PPP-P model, emerge: ifkF,p /2, quantityeU

s2dskd is not
defined forukuùp−kF; in turn, if kF.p /2, quantityeV

s2dskd is
not defined forukuøp−kF. In both cases, the corresponding
quantity diverges when approaching the forbidden region.
Interestingly, forkFÞp /2 botheU

s2dskd andeV
s2dskd are discon-

tinuous atk= ±kF fthe gaps amount tog0
2/ s48b0 coskFdg, but

their sum, ecorr
s2d skd, remains a continuous function at this

point. As discussed in a review by Mila and Penc,107 accord-
ing to the exact results of Lieb and Wu,3 the Hubbard-0
model of the 1D metal behaves as an insulator at the half-
filling, and as the so-called Luttinger liquid forkFÞp /2. The

divergence ofecorr
s2d skd at k= ±p /2 for kF=p /2 is likely to

reflect the inadequacy of the band-structure picture for the
ground state of the Hubbard-0 model at the half filling.

For the PPP-P model, we also studied the convergence of
the finite-system results toward the extended-system limit. In
Tables III and IV we show the convergence of quantities
eHFskd, eU

s2dskd and eV
s2dskd for kF=p /2 andkF=p /4, respec-

tively. The results are presented fork=0, k<kF/2, and k
<kF. It is found that foreV

s2dskd the finite-size effects decay
extremely slow, especially fork in the vicinity of kF, while
eU

s2dskd andeHFskd behave satisfactorily. In the extended sys-
tem limit, the calculation ofeV

s2dskd from formula s69d also
meets with numerical difficulties, and attaining the accuracy
of four to five decimal places by using our Romberg-
integration approach requires extremely fine grids. The re-
sults displayed in Table II indicate that the electronic-
correlation corrections to the total energysper moleculed in
the 1D metal saturate rather quickly with the size of the
system, and thus may be studied by employing a finite-
system variant of the PPP model, as in Refs. 8 and 21. On the
other hand, the results in Tables III and IV do not encourage
finite-system extrapolations in the case of the electronic-
correlation corrections to the energy bands.

In the case of a normal metal, one expects that the exact
correlation corrections to the energy bands,ecorrskd, should
sid reduce the width of the HF band,eHFskd, andsii d counter-
balance its infinite slope atk= ±kF. The second-order correc-
tions, ecorr

s2d skd, corresponding to the PPP-P model of the 1D
metal look as they fulfillsid and sii d at a qualitative level.
However, the results in Figs. 15 and 16 show thatecorr

s2d skd, in
fact, grossly overcorrect the deficiencies of the HF approxi-
mation. One may wonder, which theory level forecorrskd is
necessary to make conditionssid and sii d satisfactorily ful-
filled. Aissing and Monkhorst108 advocate using the Green’s
function approach of Ref. 1, within the random-phase ap-
proximation sRPAd. Another promising candidate is the

FIG. 12. sColor onlined PPP-P model,kF=p /4. Second-order
corrections to electronic-energy bands,eU

s2dskd andeV
s2dskd, and their

sum f=ecorr
s2d skdg, shown as functions ofk/p.

FIG. 13. sColor onlined Hubbard-0 model,kF=p /2. Second-
order corrections to electronic-energy bands,eU

s2dskd andeV
s2dskd, and

their sumf=ecorr
s2d skdg, shown as functions ofk/p.

FIG. 14. sColor onlined Hubbard-0 model,kF=p /4. Second-
order corrections to electronic-energy bands,eU

s2dskd andeV
s2dskd, and

their sumf=ecorr
s2d skdg, shown as functions ofk/p.
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Fock-space coupled-cluster approachssee, e.g., Ref. 109, and
references cited thereind, employed by Emrich and Zabo-
litzky in their calculations of the single-particle energies cor-
responding to the 3D electron-gas model.56 According to
their analysis, the exactecorrskd may be expressed as a sum of
three terms,ecorr

sad skd, ecorr
sbd skd, and ecorr

scd skd corresponding to
diagrams depicted in Fig. 10 of Ref. 56. At the second-order
level, the sum ofecorr

sad skd andecorr
sbd skd is equal toecorr

s2d skd of our
Eq. s61d, while the lowest-order contribution toecorr

scd skd cor-

responds to the third-order level. Emrich and Zabolitzky cal-
culated the sumecorr

sad skd+ecorr
sbd skd within the CC theory, and

found that the derivative of this quantity, calculated atk
=kF, exhibits a negative logarithmic singularity twice the
strength of the positive logarithmic singularity corresponding
to the Hartree-Fock band energy,eHFskd. Only when they
included termecorr

scd skd, the singularity corresponding toeHFskd
was exactly canceled. Therefore, even at the coupled-cluster
level of theory, witheskd approximated by the sumeHFskd

TABLE III. PPP-P model,kF=p /2. Hartree-Fock orbital energies and corresponding second-order corre-
lation correctionssin eVd for the XM system, shown for an extended-system limitsM =`d, and for finiteM sas
energy differences with respect toM =`d.

k=0

M ` 40 338 13 446 4482 1494 498

eHF −3.8683 −0.0000 −0.0000 −0.0000 −0.0000 −0.0000

eU
s2d −0.0687 0.0000 0.0000 0.0000 0.0000 0.0000

eV
s2d 8.5785 −0.0092 −0.0244 −0.0633 −0.1605 −0.3946

k=62p /249

M ` 40 338 13 446 4482 1494 498

eHF −1.3562 −0.0000 −0.0000 −0.0000 −0.0000 −0.0000

eU
s2d −0.3175 0.0000 0.0000 0.0000 0.0000 0.0000

eV
s2d 8.6845 −0.0093 −0.0246 −0.0641 −0.1636 −0.4056

k=124p /249

M ` 40 338 13 446 4482 1494 498

eHF 6.9583 −0.0000 −0.0000 −0.0000 −0.0006 −0.0006

eU
s2d −2.4095 0.0000 0.0000 0.0002 0.0020 0.0045

eV
s2d 3.1720 −0.0136 −0.0406 −0.1177 −0.2884 −0.6819

TABLE IV. PPP-P model,kF=p /4. Hartree-Fock orbital energies and corresponding second-order corre-
lation correctionssin eVd for the XM system, shown for an extended-system limitsM =`d, and for finiteM sas
energy differences with respect toM =`d.

k=0

M ` 80676 26892 8964 2988 996

eHF −7.8646 −0.0000 −0.0000 −0.0000 −0.0000 −0.0000

eU
s2d −0.5155 0.0000 0.0000 0.0000 0.0000 0.0000

eV
s2d 7.6330 −0.0050 −0.0134 −0.0351 −0.0905 −0.2273

k=31p /249

M ` 80676 26892 8964 2988 996

eHF −6.8531 −0.0000 −0.0000 −0.0000 −0.0000 −0.0000

eU
s2d −0.8135 0.0000 0.0000 0.0000 0.0000 0.0000

eV
s2d 7.3474 −0.0050 −0.0134 −0.0354 −0.0916 −0.2317

k=62p /249

M ` 80676 26892 8964 2988 996

eHF −3.0542 −0.0000 −0.0000 −0.0000 −0.0003 −0.0003

eU
s2d −2.5380 0.0000 0.0000 0.0001 0.0013 0.0029

eV
s2d 2.8929 −0.0077 −0.0235 −0.0694 −0.1725 −0.4138
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+ecorr
sad skd+ecorr

sbd skd, the results for the 3D electron-gas model
would look similarly to our Fig. 15. However, it seems that
the problem cannot be fixed just by adding the third-order
correctionssit is unlikely that a finite-order treatment is ca-
pable of the exact cancellation of the above-mentioned de-
rivative singularityd.

The PPP model with the Pople potentials7d ands8d takes
into account the essential long-range electrostatic interac-
tions in a 1D metal. Any other single-band model, including
an ab-initio one, would provide only some short-range cor-
rections to the PPP-P model; see Eqs.s9d and s10d. There-

fore, we are confident that the results presented in this sec-
tion give aqualitatively correctpicture of the second-order
correlation corrections to the electronic-energy bands of a
1D-metal.

VI. DISCUSSION

Let us recapitulate the most important findings of this
paper:

• Functions Fs2dsqd, corresponding to the second-order
correlation energy per molecules53d, and the second-order
corrections to the energy bands,ecorr

s2d skd, calculated for the
PPP model of 1D metal, display a striking similarity to the
analogous functions calculated at the CC level of theory for
the 3D electron-gas model.56

• Functions Fs2dsqd and ecorr
s2d skd, calculated for the

Hubbard-0 model of 1D metal are very different from those
corresponding to the PPP model.

We attribute the qualitative differences between the PPP
and Hubbard-0 second-order results to the neglect of the
long-range Coulomb interactions in the Hubbard-0 model.
On the other hand, the basic common element of the 3D
electron-gas model and the PPP model of 1D metal is the
absence ofa priori screening of the Coulomb interactions.
Therefore, we treat the similarity of the results corresponding
to these two models as a signature of the long-range effects.
Within the range of electron densities studied in Ref. 56, the
3D electron gas behaves as the paramagnetic Fermi fluid,57

and thus it may serve as a model of the normal metal. We
conclude that the second-order results of the present paper
are consistent with the normal-metal picture for the PPP
model of 1D metal.

However, a different picture emerges when looking at the
properties of the closed-shell ground state of an annulene
described within the PPP modelswhich may be considered a
special case of the PPP model of the finite XM systemd:

• The coupled-clustersCCd methodology breaks down in
the strongly correlated regime of the modelssee Sec. Id, due
to the unusually strong coupling between the connected-
excitation operators of different ranks which contribute to the
CC operator appearing in Eq.s44d.70 It seems that any vari-
ant of the CC method employing a truncated CC operator
will be ineffective for these systems. Such a behavior of the
CC method is not consistent with the normal-metal character
of the annulene ground statesin the extended-system limitd.

• The density-matrix renormalization group calculations
of various correlation functions for the ground state of the
model8 indicate that it corresponds to the 1D analog of the
Wigner crystal, rather than to the normal-metal state, in
agreement with the earlier predictions by Schulz.5 The
above-mentioned ineffectiveness of the CC method may be
just a consequence of the Wigner-crystal character of the
ground state, and thus a failure of the Hartree-Fock wave-
function FHF as the reference function in Eq.s44d.

One may thus conclude that there are strong indications
against the normal-metal character of the ground state for the
PPP model of 1D metal.

The apparent contradiction between the conclusions of the
above two paragraphs may be resolved by stating a hypoth-

FIG. 15. sColor onlined PPP-P model,kF=p /2. Hartree-Fock
orbital energies,eHFskd, corresponding second-order perturbation
theory corrections,ecorr

s2d skd, and their sum, shown as functions of
k/p.

FIG. 16. sColor onlined PPP-P model,kF=p /4. Hartree-Fock
orbital energies,eHFskd, corresponding second-order perturbation
theory corrections,ecorr

s2d skd, and their sum, shown as functions of
k/p.
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esis that the normal-metal state of our PPP model of 1D
metal is different from the ground state, i.e., it corresponds to
a certain excited state of the same symmetrysspin singlet,
k=0d. The eigenfunction of Hamiltonians4d corresponding
to this excited state,C08, should be more similar toFHF than
is the ground-state eigenfunction,C0. In such a case, one
would find that the second-order corrections considered in
this paper corresponded to the electronic-correlation effects
associated withC08 sand the related ionized eigenstatesd,
rather than toC0 sand the ionized eigenstates related to itd. In
our earlier studies71,73 we found some indirect evidence sup-
porting the above hypothesis:

• In Ref. 71 we studied the PPP model of benzenesM
=6d, which, at the FCI level, has 18 eigenstates of the1A1g

−

symmetrysthe D6h point group plus the alternancy symme-
tryd. Our sunpublishedd FCI calculations for the PPP-P model
with b0=−0.3 eVsi.e., in the strongly correlated regimed re-
vealed that the fourth eigenstate C08 corresponds to
kC08 uFHFl=0.62, while for the ground statekC0uFHFl
=0.45.

• When studying the multiple solutions of the CCD equa-
tions for the PPP-P model off10gannulene73 sM =10d, we
found two CCD solutions: the “standard” one, describing the
ground state in the weakly correlated regime, and the “non-
standard” one, which seemed to better reproduce the ground-
state FCI energy in the strongly correlated regimeshowever,
in this region, both solutions displayed little similarity to the
ground-state FCI solutiond. Interestingly, when the CCD it-
erations used the second-order amplitudess51d as the starting
point, they converged to the “standard” solution in the
weakly correlated regime, while in the strongly correlated
regime the “nonstandard” solution was obtained. Unfortu-
nately, a large dimension of the FCI-solution space has pre-
cluded the study of the similarity between the “nonstandard”
solution and the excited FCI states.

Our “hidden normal-metal state” hypothesis is consistent
with the properties of most quasi-1D conductors, which un-

dergo an insulator-to-metal transition above 0 K. In order to
verify this hypothesis, a new strategy of solving the CC
equations has to be developed: instead of looking for the
solution corresponding to the lowest eigenstate of a given
symmetry, one should focus on finding the solution most
similar to the reference determinantal function. Adopting this
strategy in the CC calculations for the 1D metal model may
be effected by imposing certain restrictions on the
tsk1,k2,qd-amplitudes of Eq.s46d; the CC calculations for
the 3D electron gas53–55 may provide some guidance on the
form of these restrictions. This route is now being investi-
gated by us.

A truly 1D metallic system represents an extreme case of
a highly anisotropic metal. In such a system, a dynamical
screening of the electron-electron repulsionsthe primary
electronic-correlation effect in a 3D isotropic metald is likely
to be incomplete. That puts in doubt the suitability of the
Hubbard model for the 1D metal. On the other hand, the
Pariser-Parr-Pople model studied in the present paper cap-
tures the essential physics of the long-range Coulomb inter-
actions in the 1D metal, without introducing an excessive
computational overhead. Despite their different provenance,
the PPP-P and the electron-gas models have much in com-
mon when applied to the description of the 1D and 3D met-
als, respectively. Further studies of the PPP-P model of 1D
metal should help in clarifying the similarities and differ-
ences of the electronic-correlation effects in the 1D and 3D
metallic systems.
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