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Using a multistep renormalization group method, we study the low-temperature phases of the interacting
one-dimensionals1Dd electron gas coupled to phonons. We obtain analytic expressions for the weak-coupling
quantum phase boundaries of the 1D extended Holstein-Hubbard model and the 1D extended Peierls-Hubbard
model for general band-filling and phonon frequency. Away from half-filling, the phase diagrams are charac-
terized by a delicate competition between spin density wave, charge density wave, and superconducting orders.
We study the dependence of the ground state on the electron-phononsel-phd and electron-electronsel-eld
coupling strengths, the screening length, electron bandwidth, phonon frequency, doping, and type of phonon.
Unlike the case in Fermi liquids, in 1D the el-ph coupling is strongly renormalized, often to stronger values.
Even when the bare phonon-induced attraction is weak compared to the bare el-el repulsion, a small amount of
retardation can cause the renormalized el-ph interaction to dominate the problem. We find cases in which a
repulsive el-el interaction enhances the superconducting susceptibility in the presence of a retarded el-ph
interaction. The spin gap and superconducting susceptibility are found to be strongly dependent on the devia-
tion from half-filling sdopingd. In some cases, the superconducting susceptibility varies nonmonotonically with
doping and exhibits a maximum at a particular doping. For a quasi-1D array of weakly coupled, fluctuating 1D
chains, the superconducting transition temperatureTc also exhibits a maximum as a function of doping. The
effect of changing the ion masssisotope effectd on Tc is found to be largest near half-filling and to decrease
rapidly with doping.
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I. INTRODUCTION

Recent experiments1,2 in the high-temperature supercon-
ductors that suggest a strong and ubiquitous electron-phonon
sel-phd interaction have led to an increased interest in
strongly correlated el-ph systems. Of particular interest is the
interplay between the repulsive, instantaneous Coulomb in-
teraction and the attractive, retarded interaction mediated by
phonons, in the context of various phase transitionssinsta-
bilitiesd of the system. This interplay is quite simple and well
understood in a two- or three-dimensional Fermi liquid, and
serves as a foundation for the BCS theory of superconduc-
tivity. However, the high-temperature superconductors, as
well as some other materials of current interest, exhibit
manifestly non-Fermi-liquid behavior.3–7

Compared to conventional metals, much less is known
about the influence of an el-ph interaction in non-Fermi liq-
uids. One such system, where much analytic progress can be
made,8–12 is the interacting one-dimensional electron gas
s1DEGd, where the system is strongly correlated even for
weak interactions. In contrast to higher dimensions, in one
dimension the el-ph interaction is strongly renormalized. In
other words, the effective el-ph interaction at low energies is
not simply given by the bare, microscopic coupling con-
stants, which makes the physics both very different and very
rich. Furthermore, the renormalizations of the el-ph interac-
tions are affected by direct electron-electronsel-eld interac-
tions. It is unknown how much of the physics of the 1DEG is
generic to other non-Fermi liquids; but one may hope that
certain features are generic, in which case the 1DEG may
serve as a paradigmatic model for a broader class of systems.
In addition, there are many reasons to study the 1DEG
coupled to phonons for its own sake, including the impor-

tance of el-ph interactions in the quasi-1D conducting
polymers,13,14 and the possibility that they play an important
role in the quasi-1D organic conductors.15 It may also be the
case that holes in the high-temperature superconductors live
in quasi-1D due to stripe correlations.16 In any case, since in
1D a small bare el-ph coupling can be renormalized to sub-
stantially larger values, the el-ph interaction is important to
consider.

In the present paper, we use a multistep renormalization
group sRGd procedure to comprehensively study the zero-
temperature phase diagram of the spinful 1DEG coupled to
phonons, treating the el-el and el-ph interactions on equal
footing. The same technique is employed to compute the
doping-dependent superconducting susceptibilities, charge
density wave susceptibility, and isotope effects. In a separate
paper,7 we have studied the influence of the el-ph interaction
on the electron dynamics of an interacting 1DEG, expressed
via the single particle spectral function. The strategy in the
present paper is to start with a microscopic electron-phonon
model with many parameterssel-el interactions, electron
bandwidth, el-ph interactions, and phonon frequencyd, and
then to integrate out high-energy degrees of freedom to pro-
duce a low-energy effective field theory with a known phase
diagram—the continuum 1DEG—whose only parameters are
the renormalized el-el interactions and bandwidth.

If the system is far from commensurate filling, we employ
the “two-step RG” procedure.10,17,18In this method, one set
of RG equations governs the flow of the coupling constants
for energiesv greater than the phonon frequencyv0, while a
second set governs the flow forv0.v. If, as usual, the
Fermi energyEF.v0, the first step is to integrate out de-
grees of freedom fromEF to v0 using the microscopic cou-
pling constants as initial values. The resulting renormalized
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couplings are then used as initial values in the second stage
of RG flows, to integrate out degrees of freedom fromv0 to
some low-energy scale. We also use the two-step RG tech-
nique to study systems at half-fillingsthe only difference
being the inclusion of Umklapp scatteringd. Near, but not
equal to half-filling, there are three steps to the RG transfor-
mation. Definingm as the chemical potential relative to its
value at half-filling, form.v0 these steps areEF.v.m,
then m.v.v0, and finally v0.v. This “three-step RG”
technique allows us to study the continuous evolution of the
phase diagram with doping.

We study the continuum limit of two microscopic models
of interacting, spinful 1D electrons coupled to phonons: the
extended Holstein-Hubbard model19 and extended Peierls-
Hubbard model. While others have employed RG techniques
to study the 1DEG coupled to phonons,10–12,17,18and indeed
some of the qualitative results of the present paper have been
known for some time, the aforementioned models have not
been explored in detail with multistep RG. Numerical calcu-
lations of their phase diagrams have been mostly limited to
simplified models that contain spinless electrons, infinite ion
mass, or zero el-el interactions.20,21 These studies have also
been mostly limited to specific values of the band filling,
especially half-filling.22

We obtain analytic expressions for the low-temperature
phase boundaries of the aforementioned models. Since the
RG procedure is perturbativesone-loopd, our results are only
accurate for interactions that are small compared to the band-
width, but are valid for any relative strength of the el-ph and
el-el interactions. Corrections at stronger couplings are ex-
pected to be smooth and should not make large qualitative
changes to the results, as long as the interactions are not too
large. The method properly takes into account the quantum
phonon dynamics, and is therefore used to study phonons of
nonzero frequency.

One question we address is whether superconductivity
can exist in realistic quasi-1D systems in which the bare el-el
repulsion is stronger than the bare attractive interaction me-
diated by the el-ph coupling. It is known that in the absence
of el-ph interactions, a repulsive el-el interaction in a single-
chain 1DEG is always harmful to superconductivity, as is the
case in higher dimensions. However, we find that for the
1DEG coupled to phonons, increasing the el-el repulsion can
in some specific cases enhance superconductivity. Moreover,
with even a small amount of retardation present, it is possible
for a 1DEG to have a divergent superconducting susceptibil-
ity even when the bare el-el repulsive is much stronger than
the bare el-ph attraction.fIn three dimensionss3Dd, this is
only possible with substantial retardation.g

In ordinary metals, the observation of an isotope effect on
Tc was crucial in the development of the BCS theory that
describes the superconductivity of Fermi liquids. The isotope
effect exponents aTc

=−d ln Tc/d ln M and aD=
−d ln D /d ln M have the universal value of 1/2, whereM is
the ion mass andD is the superconducting gap.

In contrast, in the cuprate high-temperature superconduct-
ors, bothTc andaTc

are strongly doping dependent. Despite
the fact that the superconducting gap is a monotonically de-
creasing function of increasing doping,Tc varies nonmono-
tonically with doping, exhibiting a maximum at “optimal

doping.” For dopings well below optimal, the isotope effect
on Tc is quite large:aTc

<1. As the doping increases,aTc
decreases, usually dropping below 0.1 near optimal doping.23

The isotope effect on the so-called pseudogap has the oppo-
site sign as the isotope effect onTc.

24 The origin of these
highly unconventional isotope effects remains one of the
many unsolved mysteries of high-temperature superconduc-
tivity.

Since the 1DEG is perhaps the only presently solvable
non-Fermi liquid, it is worth computing isotope effects in
this system to try to gain insights on isotope effects in un-
conventional superconductors. We computeaTc

for a quasi-
1DEG coupled to phonons, under the assumption that charge
density wave order is dephased by spatial or dynamic fluc-
tuations of the 1D chains.25,26 For most choices of the pa-
rameters,aTc

is larger than the BCS value at small dopings,
then drops below 1/2 as the doping is increased. We show
that the quasi-1DEG coupled to phonons displays a strongly
doping-dependentTc that can exhibit a maximum as a func-
tion of doping. This behavior occurs despite the fact that the
pairing energy, determined by the spin gapDs, is a mono-
tonically decreasing function of increasing doping. We also
compute the isotope exponentaDs

=−d ln Ds/d ln M and find
aDs

,0, which in most cases is the opposite sign asaTc
.

The rest of this paper is organized as follows. Section II
defines the microscopic models. Section III presents our re-
sults for the phase diagrams, without derivation. In Sec. IV
we give our results for the doping dependence of the super-
conducting susceptibility and isotope effects, again without
derivation. In Sec. V we compare our analytical results for
the phase diagrams to numerical work of other authors. Sec-
tion VI discusses the RG flows of the coupling constants and
contains a mathematical derivation of all the results in the
previous sections. In Sec. VII we summarize the results
qualitatively and make some concluding remarks.

II. MODELS OF 1D ELECTRON-PHONON SYSTEMS

The 1D extended Peierls-HubbardsPei-Hubd model is de-
fined by the Hamiltonian

HPei-Hub= − to
i,s

f1 − g̃sai
† + aidgsci,s

† ci+1,s + H.c.d

+ v0o
i

ai
†ai + HUV, s1d

where the el-el interaction part is that of the extended Hub-
bard model:

HUV = Uo
i

ni,↑ni,↓ + Vo
i

nini+1. s2d

Here,ci,s
† creates an electron of spins on sitei, ai

† creates a
phonon of frequencyv0 between sitesi and i +1, ni
=osni,s=osci,s

† ci,s, and g̃ is the dimensionless el-ph cou-
pling constant. This model, in the absence ofHUV, is an
approximation to the model of Su, Schrieffer, and Heeger27

sSSHd. Including extended Hubbard interactions, the SSH
model is
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HSSH-Hub= − o
i,s

ft − gsui+1 − uidgsci,s
† ci+1,s + H.c.d

+ o
i
F pi

2

2M
+

k

2
sui+1 − uid2G + HUV. s3d

Here, acoustic phonons with spring constantk couple to
electrons by modifying the bare hopping matrix elementt by
the el-ph coupling strengthg times the relative displace-
mentsui+1−ui of two neighboring ions of massM. If we
approximate the acoustic phonon as an Einstein phonon of
frequency 2Îk /M ;v0, the SSH-Hub model reduces to the
Pei-Hub model. This is a good approximation since, in the
SSH model, the el-ph interaction vanishes at zero momentum
transfer. The el-ph coupling constants of the models are re-
lated viag= g̃tÎ2Mv0.

The 1D extended Holstein-HubbardsHol-Hubd model is
defined by the Hamiltonian

HHol-Hub = − to
i,s

sci,s
† ci+1,s + H.c.d + o

i
F pi

2

2M
+

1

2
Mv0

2qi
2G

+ gÎ2Mv0o
i

qini + HUV. s4d

In this model, a dispersionless optical phonon mode with
vibrational coordinateqi and frequencyv0 couples to the
local electron density with el-ph coupling strengthg. Unlike
the Pei-Hub model, this model contains equal parts backward
scatteringsmomentum transfer near 2kFd and forward scat-
tering smomentum transfer near 0d el-ph interactions. An-
other difference is that the el-ph interaction is site centered
sdiagonald in the Hol-Hub model versus bond centeredsoff-
diagonald in the Pei-Hub model. In the present paper, we
only explicitly discuss the case of repulsive el-el interactions
sU ,Vù0d; however, the mathematics remains valid for at-
tractive ones.

For convenience we define the following dimensionless
quantities:

lPei=
4g2 sin2 kF

pvFk
, lHol =

2g2

pvFv0
,

Ū =
U

pvF
, V̄ =

V8

pvF
, l0 = lnSEF

v0
D , s5d

where vF=2t sinskFd, V8=−V coss2kFd, EF.v0 is a high-
energy cutoff for the RG theory on the order of the Fermi
energy, and 2kF /p is the average number of fermions per
site. The el-ph coupling parameterslPei andlHol are defined
such that, in the absence of el-el interactions, the spin gap is
given by Ds~exps−a/ld, where a=1/2 for half-filling, a
=1 for incommensurate fillings, andl stands forlPei or lHol,
depending on the model.sIn Sec. VI we give the result forDs
in the presence of el-el interactions.d The method we employ

yields phase diagrams that are accurate forl ,Ū ,V̄!1. We
expect that the technique is qualitatively accurate when these
couplings are of order 1. It should be clear that, in the present
paper, we have set the lattice parameter and Planck’s con-
stant equal to 1.

III. RESULTS FOR THE PHASE DIAGRAMS

In this section, we present our main results for the phase
diagrams, without derivation. More discussion of the method
and a detailed derivation are given in Sec. VI, where we
obtain explicit expressions for the phase boundaries.

A. Incommensurate filling

Below we present zero-temperature phase diagrams in the
incommensurate limit, which corresponds tom,EF.

1. Transition to the spin-gapped phase

For the 1D extended Hubbard model without el-ph inter-
actions, the low-energy properties are described by the spin-

charge separated Luttinger liquidsLL d as long asV̄, Ū /2.
The low energy properties of this gapless, quantum-critical
state of matter can be described by a bosonic free field
theory.28,29Since the quasiparticle residue vanishes, the LL is
by definition a non-Fermi liquid; there are no elementary
excitations with the quantum number of an electronsor a
holed.

In the absence of el-ph interactions, a spectral gap devel-

ops in the spin sector ifV̄. Ū /2, which leads to quite dif-
ferent physical properties than the LL. This non-Fermi-liquid
phase is termed a Luther-Emery liquid30 sLELd. However, in

nature one typically expectsV̄, Ū /2, so that some additional
physics is needed to create a spin gap. For incommensurate
fillings, the charge sector is gapless.

We now study the effects of the el-ph interaction on the
phase boundary between the LL and spin-gapped LEL. In

Fig. 1 we show a phase diagram in theV̄-Ū plane, for vari-
ous fixed values ofl andEF /v0 sthis phase boundary is the
same for the Pei-Hub and Hol-Hub modelsd. We see that a
retarded el-ph interaction dramatically increases the stability
of the LEL phase relative to the LL phase. The phase bound-
ary is very sensitive to the retardation parameterEF /v0, with
higher values favoring the LEL phase. For the case of an
unretarded el-ph interactionsv0.EFd, which is not typical

FIG. 1. Phase diagram in theV̄-Ū plane showing thel depen-
dence of the phase boundary between the gapless Luttinger liquid
sLL d phase and the spin-gapped Luther-Emery liquidsLELd phase,
for an incommensurate 1DEG withEF /v0=5 sdashed linesd and
EF /v0=10 sthin solid linesd. The thick line shows the phase bound-
ary atl=0 for anyEF /v0. l stands for eitherlHol or lPei, depend-
ing on the model.
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in real materials, a spin gap can only occur forl. Ū−2V̄.
However, just a modest amount of retardation makes a spin

gap possible, even, in some cases, forl! Ū−2V̄. As we
show in Sec. VI, this is due to the renormalization of the
backscattering el-ph interaction toward stronger values. The

figure shows that poorly screened interactionsshigh V̄/ Ūd
favor the LEL. The dependence of the phase boundary on

V̄/ Ū is shown explicitly in Fig. 2, which presents a phase

diagram in thell0-Ūl0 plane. This diagram shows that scal-
ing eventually carries one to the case in which an infinitesi-
mal l causes a spin gapsin other words, forEF@v0, the
system is spin-gapped for infinitesimalld.

2. Competition between spin density wave, charge density wave,
and superconductivity instabilities

Below, we explore the many ordering instabilities present
in the system. 2kF spin density wave ordersSDWd, 2kF
charge density wave ordersCDWd, and singlet superconduc-
tivity sSSd can all compete at zero temperature. A divergent
charge density wave susceptibility with 4kF periodicity sla-
beled in phase diagrams as “4kF” d is also possible. It is im-
portant to note that since long range order is forbidden in an
incommensurate 1D system, the phase diagrams below actu-
ally consist of identifying instabilities with divergent re-
sponse functions. However, for a quasi-1D array of weakly
coupled chains, interchain coupling allows for true broken
symmetry order at low temperature.

In Fig. 3 we present phase diagrams in theŪ-lHol and

Ū-lPei planes, forEF /v0=10. In these diagrams, we show
phase boundaries between regions where various ordering
fluctuations have divergent susceptibilities in the low-
temperature limit. The susceptibility that diverges most
strongly, i.e., dominates, is shown without parentheses. If a
second susceptibility diverges, but less strongly, it is termed
“subdominant,” and is shown in parentheses. The thick solid
line is the LL-LEL transition line; the LL phase is present to
left of this line and the LEL phase to the right.

For repulsive el-el interactions, the entire LL phase, for
either model, is dominated by SDW fluctuations, with a

slightly weaker CDW susceptibility. The LEL phase is more
complex. For the extended Hol-Hub model, dominant SS
order is possible provided the el-el repulsion is weak enough
andlHol is neither too weaknor too strong. For the Pei-Hub
model with repulsive el-el interactions, a phase with domi-
nant SS is impossible due to the absence of el-ph forward
scattering. Therefore, generally speaking, an optical phonon
is more favorable to superconductivity than an acoustic one.
In both models, there is a large region, for intermediate val-
ues ofl, with dominant CDW and subdominant SS. At high
values ofl, SS is no longer divergent; in this region a 2kF
CDW dominates and a 4kF CDW is subdominant. We must
point out that the dashed line is not expected to be quantita-
tively accurate, since the method is a weak-coupling one.
Note that the phase with dominant SS is strongly suppressed

by poor screeningslarge V̄/ Ūd.
In Fig. 4, we study the dependence of the ground state on

EF /v0, for the Hol-Hub model, by showing phase diagrams

in the EF /v0-Ū plane. We see that high values ofEF /v0
create a spin-gapped phase with dominant CDW. Low values

of EF /v0 create a SS-dominated LEL for lowŪ, and a LL

for high Ū. In other words, an electron bandwidth that is too
big is harmful to superconductivity! Note that for moderate
EF /v0, the system lies in the region with dominant CDW

and subdominant SS, which extends fromŪ=0 to quite large

values ofŪ. Therefore, even when the bare interactions are

FIG. 2. Phase diagram in thell0-Ūl0 plane for an incommensu-

rate 1DEG, showing the dependence onV̄/ Ū of the phase boundary
separating the LL and LEL phases.l stands for eitherlHol or lPei,
depending on the model.

FIG. 3. Phase diagrams of the incommensurate extended Hol-

Hub model withsad V=0 andsbd V̄/ Ū=0.2, and of the incommen-

surate extended Pei-Hub model forscd V=0 andsdd V̄/ Ū=0.2. For
all diagrams,EF /v0=10. To the right of the thick line, the system is
spin-gapped. The most divergent susceptibility is shown without
parentheses, while parentheses indicate a susceptibility that di-
verges less strongly. SDW stands for 2kF spin density wave, CDW
stands for 2kF charge density wave, SS stands for singlet supercon-
ductivity, and 4kF stands for 4kF charge density wave.
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predominantly repulsivesŪ@lHold, it is still possible for the
system to have a divergent superconducting correlation. It is
possible for this to occur even with a small degree of retar-
dation likeEF /v0,5 fsee Fig. 4sddg. The phase diagram of
the Pei-Hub model is similar to Fig. 4, except that the phase
with dominant SS is removed, and the dashed line is shifted
to slightly lowerEF /v0.

It is worth pointing out the intriguing possibility that, for
a quasi-1D system with dynamically fluctuating 1D chains,
or even for chains that exhibit transverse spatial fluctuations,
CDW order is easily dephased, while the superconducting
instability is not.26 If this is the case, then it is possible for
the system to support superconductivity even for the physi-

cally realistic case ofŪ@lHol, and without the large amount
of retardation that is required in 3D.

A number of authors have computed the phase diagram of
the spinlessHolstein model at half-filling, in the absence of
el-el interactionsssee Fig. 17d. To facilitate comparison be-
tween this model and the spinful incommensurate extended
Holstein-Hubbard model, Fig. 5 shows our phase diagram
for the latter model, in units similar to Fig. 17.

3. Enhancement of superconductivity by repulsive interactions

The intuitive notion that repulsive interactions suppress
superconductivity at weak coupling, while always true in a
Fermi liquid, does not always hold for the 1DEG coupled to
phonons. In the 1DEG, the potentially strongly divergent part
of the singlet superconducting susceptibility at temperature

T!v0 is xSS~DsT
1/Kc

eff−2. Interactions in the spin channel
determine Ds, while charge interactions renormalize the

effective Luttinger parameterKc
eff away from its noninteract-

ing value of 1ssee Sec. VId. Clearly, SS is enhanced by an
increase inDs or an increase inKc. In many cases, increasing
the el-el repulsion causes bothDs andKc to decrease. How-
ever, below we discuss cases in which one of the two param-
eters isincreasedby el-el repulsion; depending on how much
the second parameter is reduced,xSS may be enhanced.

In the absence of el-ph interactions, an increase inU al-
ways decreasesKc and Ds, and therefore suppresses super-
conductivity. In a 1D el-ph system, this is often the case as
well; however, there are also cases in which increasingU can
causeKc

eff to be increased. sThe technical reason is a de-
crease in the effective el-ph backscattering interaction, see
Sec. VI.d Then, if Ds is not reduced too much by the increase
in U, it is possible for SS to be enhanced. An example of this
can be seen in Fig. 3sad or 3scd. If we start atl=0.35 and

Ū=0, and increaseŪ while holdingl fixed, we cross from a
region without divergent SS to a region with divergent SS.
This phenomenon can also be seen in Figs. 4sad and 4scd if
the right value ofEF /v0 is chosenfsuch as, for example,

EF /v0=200 in Fig. 4sadg. However, if we setV̄/ Ūù1/6 and

hold this ratio fixed while increasingŪ, superconductivity is
never enhanced at weak couplingfsee Figs. 3sbd and 3sdd,
and Sec. VIg.

In Fig. 6, we further investigate the enhancement of SS by
repulsive interactions by plotting the dimensionless super-
conducting susceptibility

FIG. 4. Phase diagrams of the incommensurate extended Hol-
Hub model.sad andsbd lHol=0.2; scd andsdd lHol=0.3. sad andscd
V̄/ Ū=0; sbd andsdd V̄/ Ū=0.1. Parentheses indicate a subdominant
susceptibility. The region with dominant SDW is the LL phase,
while the rest of the parameter space is a LEL.

FIG. 5. Phase diagram in theg8 /v0-t8 /v0 plane of the spinful
incommensurate extended Hol-Hub model forsad U=V=0; sbd
U8 /v0=5, V=0; andscd U8 /v0=5, V̄/ Ū=0.1. Hereg8;gÎEF /vF,
t8; tsEF /2td, andU8;UsEF /vFd. In sad, a spin gap is present ev-
erywhere in the phase diagram, while insbd and scd, it is present
above the thick solid line.
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x̄SS; pvFxSS= sDs/EFdsT/EFd1/Kc
eff−2 s6d

versusŪ, at fixed l=0.3, V=0, andT/v0=0.01. For small

Ū, x̄SS increases with increasingŪ. However, asŪ is in-
creased further,Kc

eff stops increasing as rapidly, and the de-
creasingDs causesx̄SS to drop back down.

It is also possible to enhance superconductivity, in some
cases, by increasing the nearest-neighbor Hubbard repulsion
V, while holdingU fixed. This causes a renormalization of
the el-ph backscattering toward stronger coupling, which re-
sults in an increase ofDs and a decrease ofKc

eff. Depending
on the competition between these two effects,xSS may sor
may notd be enhanced. An example of a case in whichxSS is
enhanced can be seen in Figs. 3sad and 3scd. There, if one

begins atl=0.1 andŪ=0.2, then increasesV̄/ Ū from 0 to

0.2 while holdingl and Ū fixed, the system moves from a
LL phase without divergent SS, to a LEL phase with diver-
gent SS.

In Fig. 7, we explore this phenomenon further by plotting

xSS versusV̄ at fixed Ū=0.3, l=0.2, andT/v0=0.01. For

small V̄, xSS is enhanced by increasingV̄, due to the increase

in Ds. However, asV̄ is increased further, eventually the rap-

idly decreasingKc
eff begins to overwhelm the effect of the

increasingDs, and xSS decreases. In this case, optimizing

superconductivity therefore requires a fine tuning ofV̄/ Ū.
We have pointed out exceptions to “rule” that el-el repul-

sion suppresses superconductivity at weak coupling, in order
to illustrate, as a point of principle, the dramatically different
physics that governs 1D el-ph systems compared with a
Fermi liquid coupled to phonons. It is worth briefly discuss-
ing some prior works on this topic. Although the RG flow
equations in Ref. 10 are correct, the authors implied that an
enhancement of superconductivity by repulsive interactions
is a generic feature of the 1DEG coupled to phonons, while
Ref. 12 concluded that repulsion always suppresses super-
conductivity. Our results indicate that both works overstated
things; indeed, both situations are possible, depending on the
choice of parameters. The disagreement between Ref. 10 and
Ref. 12 was caused, in large part, by the fact that Ref. 10
focused purely on the effect of the el-ph interaction onDs,
while Ref. 12 focused purely on the effect of the el-ph inter-
action onKc

eff. Above, we have correctly taken into account
that the el-ph interaction affects bothDs and Kc

eff, both of
which in turn affectxSS.

B. Near half-filling

If we reduce the doping level of an incommensurate sys-
tem si.e., move closer to half-fillingd, the LL-LEL phase
boundary is influenced in opposite ways for the Hol-Hub
compared to the Pei-Hub model. This is because the on-site
Hubbard repulsion is in direct competition with the attractive
on-site el-ph interaction of the Holstein model, while it co-
operates with the attractive bond-centered interaction of the
Pei model. Therefore, the spin gap is enhanced by proximity
to half-filling for the Pei-Hub model, and reduced for the
Hol-Hub model.

We illustrate this in Fig. 8, which presents a phase dia-

gram in theŪl0-ll0 plane, forV=0. This diagram shows the
dependence of the LL-LEL phase boundary on the doping
parameter

d =
lnsm/v0d
lnsEF/v0d

. s7d

Assuming the charge gapDc,m, the actual doping concen-
tration x relative to half-filling is related tod by

x =
2

pvc
m =

2v0

pvc
SEF

v0
Dd

, s8d

wherevc<vF is the charge velocityfsee Eq.s41dg. The in-
commensurate limitd=1 is shown previously in Fig. 3sad
and Fig. 3sbd as a thick solid line. As we move closer to
half-filling by lowering d, the LL-LEL transition line for the
Pei-Hub modelsdashed lined moves toward lower values of
l, while the transition line for the Hol-Hub modelsdash-
dotted lined moves toward higher values. In the weak-
coupling limit assumed here, formøv0, the LL-LEL transi-
tion line is independent ofm. Therefore, this phase boundary
is the same for half-fillingsm=x=0d as ford=0.

The doping dependencies of the other phase boundaries
are shown in Figs. 9 and 10, for the rangev0,m,EF. Fig-

FIG. 6. Dependence of the superconducting susceptibilityx̄SS

sthick lined on the Hubbard repulsionŪ, for an incommensurate
system withV=0, EF /v0=10, andT/v0=0.01. sad is for the Hol-
Hub model withlHol=0.3, andsbd is for the Pei-Hub model with
lPei=0.3. The thin line isDs/v0 and the dashed line is the effective
Luttinger exponentKc

eff.

FIG. 7. Dependence ofx̄SS sthick lined on the nearest-neighbor

repulsion V̄, for an incommensurate system withŪ=0.3, EF /v0

=10, andT/v0=0.01.sad is for the Hol-Hub model withlHol=0.2,
andsbd is for the Pei-Hub model withlPei=0.2. The thin line shows
Ds/v0 and the dashed line is the effective Luttinger exponentKc

eff.
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ure 9 illustrates that for the Hol-Hub model, proximity to
half-filling strongly suppresses the phase with dominant SS.
For both models, moving toward half-filling increases the
stability of the phase with subdominant 4kF charge density
wave, at the expense of the phase with subdominant SS,
especially for the Pei-Hub modelsFig. 10d. Note that, espe-
cially in Fig. 10, SS is divergent for a range of parameters

such thatŪ@lPei, despite the low value ofEF /v0=5. Figure
11 shows a different slice of the phase diagram by showing
plots in thel-d plane.

C. Half-filling

At half-filling, for repulsive el-el interactions, a charge
gap is present for the entire phase diagram. Divergent SS is
eliminated at half-filling. The region without a spin gap is a
SDW, while the spin-gapped region is an ordered CDW. We
show the half-filled phase diagram, for both models, in Fig.
12, for several values ofEF /v0 and V=0. The difference
between the two models is substantial, with the Pei-Hub

FIG. 8. Dependence of the transition line between spin-gapped
and non-spin-gapped phases on the doping parameterd and on the
electron-phonon model, forV=0. For møv0 swhich includes the
half-filled casem=0d, the transition line is denoted byd=0. The
incommensurate limitsm,EFd is labeled byd=1. d=1/3 and 2/3
are intermediate dopings, withm /v0=sEF /v0dd. Here,l stands for
lPei in the Pei-Hub modelsdashed linesd and for lHol in the Hol-
Hub modelsdashed-dotted linesd. For d=1 ssolid lined, the transi-
tion line is the same for either model.

FIG. 9. Doping dependence of the Hol-Hub phase diagram for
V=0 andEF /v0=5. The value ofd is given above each plot.

FIG. 10. Doping dependence of the Pei-Hub phase diagram for
V=0 andEF /v0=5. The value ofd is given above each plot.

FIG. 11. Phase diagrams forEF /v0=5 in thel-d plane. Plotssad
andsbd are for the Hol-Hub model;scd andsdd are for the Pei-Hub

model. Plotssad and scd are forŪ=0.1; sbd and sdd are forŪ=0.4.
For all plots,V=0.
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model favoring CDW more than the Hol-Hub model. In Fig.

12sbd, we also draw a dashed line defined bylPei=Ū, which
is the transition line predicted by mean-field theory. Such a
treatment is known32 to be quite inaccurate for the Pei-Hub
model, as demonstrated in the figure, since it does not take
into account the dramatic renormalization of the backscatter-
ing el-ph interaction to stronger couplings. Note that the Pei-
Hub phase diagram is very sensitive toEF /v0, with high
values favoring a spin-gapped CDW, while the Hol-Hub
phase diagram is only weakly dependent onEF /v0. It is
interesting that in the Pei-Hub modelfFig. 12sbdg, there is a
maximum value of the critical el-ph coupling of about

0.149/l0, which occurs atŪ<0.411/l0. sIn other words, for

lPei.0.149/l0, the system is an ordered CDW for anyŪ.d

IV. DOPING DEPENDENCE OF THE SUPERCONDUCTING
SUSCEPTIBILITY AND ISOTOPE EFFECTS

In this section, we study the strong doping dependencies
of the spin gap, superconducting susceptibility, CDW suscep-
tibility, and isotope effects.

Examining the phase diagram in Fig. 11sdd, we can de-
duce an interesting nonmonotonic dependence of the SS sus-
ceptibility on d. For moderate values oflPei, for example,
nearlPei<0.2,xSS is not divergent neard=0, where only the
2kF and 4kF CDW susceptibilities diverge, nor is it divergent
neard=1, where the system is in the gapless LL phase. How-
ever, xSS is divergent for a certain range of moderated.
Therefore, in these cases, at fixedT!Ds, xSS must exhibit a
maximum as a function ofd at some intermediate value ofd.

This maximum inxSS, which occurs in both models, is
shown explicitly in Figs. 13 and 14, where we plotx̄SS sthick
solid lined versusd at T/v0=0.1, for representative param-
eters. The cause of the nonmonotonic doping dependence is
the different doping dependencies ofDs and Kc

eff. Ds de-
creases with increasing doping, which acts to reducexSS,
while Kc

eff increases with increasing doping, which acts to
increasexSS. These two effects “compete” with each other
and can cause a maximum at some “optimal” value of the

doping that depends on the interaction strengths. The dimen-
sionless 2kF CDW susceptibility

x̄CDW ; pvFxCDW = sDs/EFdsT/EFdKc
eff−2 s9d

sdashed lines in Figs. 13 and 14d does not exhibit such a
maximum, but instead decreases monotonically with increas-
ing doping. In Figs. 13 and 14, we also plotDs/v0 sthin solid
linesd, which shows that at low dopings,xSS increases with

FIG. 12. Phase diagram of thesad half-filled Hol-Hub model and
sbd half-filled Pei-Hub model, both withV=0. The dashed lines are
for EF /v0=5 and the solid lines forEF /v0=10. For both diagrams,
a spin gap is present for the CDW phase, while a charge gap is
present everywhere in the phase diagram. Insbd the dotted line,

defined bylPei=Ū, is the inaccurate result for the phase boundary
from mean-field theory.

FIG. 13. Doping dependence of the singlet superconducting sus-
ceptibility x̄SS sthick solid linesd at T/v0=0.1, CDW susceptibility
x̄CDW sdashed linesd at T/v0=0.1, and spin gapsthin solid linesd,
for the Pei-Hub model withŪ=0.4, V=0, EF /v0=5, and various
values oflPei slabeled in plotd.

FIG. 14. Doping dependence ofx̄SS sthick solid linesd at T/v0

=0.1, x̄CDW sdashed linesd at T/v0=0.1, andDs/v0 sthin solid
linesd, for the Hol-Hub modelfsad andsbdg, and the Pei-Hub model

fscd andsddg. For all plots,Ū=0.1,V=0, andEF /v0=5. The values
of lHol andlPei are labeled above each plot.
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increasing doping, despite the fact that the superconducting
pairing strengthDs decreases.

We now consider the doping dependence ofTc and the
isotope effect onTc for a quasi-1D system that consists of an
array of weakly coupled quasi-1D chains. We assume that
the chains are spatially or dynamically fluctuating so that
CDW order is dephased. The interchain Josephson coupling
J is treated on a mean-field level,31 so thatTc is determined
by the temperature at which

2JxSS= 1 sat T = Tcd, s10d

where the numerical prefactor 2 is determined by the number
of nearest-neighbor chains. Treating the interchain coupling
with perturbative RG gives an equivalent result. AssumingJ
is doping independent,Tc then exhibits a maximum at the
samed wherexSS has a maximum.

The isotope effect exponentaTc
is plotted versusd in Fig.

15. It is shown for various values ofJ̄;J/pvF, at fixed l

and Ū. Unlike in BCS theory,aTc
is not universal but de-

pends on the interaction strengths and band-filling. However,
qualitatively, it appears that the doping-dependent behavior
in which aTc

is large near half-filling but decreases rapidly
with increasing doping is genericsindependent of interaction
strengths and el-ph modeld. Note that if the parameters are
tuned just right,aTc

vanishes. A smallaTc
can even occur at

the doping for whichTc is maximum. Therefore, one should
be careful not to assume that phonons are unimportant in
unconventional superconductors for whichaTc

!1, such as
in the cuprates at optimal doping. Figure 15 also showsaDs

,
which is weakly doping dependent and negative.

V. COMPARISON WITH OTHER WORK

Below, we compare our results for the phase diagrams to
some phase diagrams which have been previously computed.

A. Half-filled extended Peierls-Hubbard model

We first compare our results for the half-filled extended
Pei-Hub model to recent Monte Carlo work by Sengupta,

Sandvik, and Campbell22 on the same model. Following Ref.
22, we show a phase diagram in theg̃-v0/ t plane in Fig. 16.
This figure compares our result for the critical line forU / t
=2.5 andV/ t=0.625ssolid lined to the result in Ref. 22.sIn
order to plot our result in these units, we took the high-
energy cutoffEF in the RG theory to bet.d

The quantitative disagreement nearv0/ t,1 can probably
be attributed to the fact that the assumption in the RG theory
of a linear electronic dispersion becomes problematic when
v0,EF. At lower v0/ t, the agreement is excellent, espe-

cially considering the moderately strong valueŪ=U / s2ptd
<0.4. This gives one reason to believe that the multistep RG
method is, at the very least, qualitatively accurate for physi-

cally interesting values ofŪ,1.
In Fig. 16, we have also plotted our result forV=0

sdashed lined, which can be obtained from the simple ana-
lytic expression in Eq.s59d. The solid line in this figure is the
only phase boundary in the present paper that required nu-
merical integration of the RG flow equationsfEqs.s20d and
s21dg. The phase boundaries in all other plots are given by
analytic expressions derived in Sec. VI.

B. Holstein model

The phase diagram for perhaps the most interesting model
studied in the present paper, the spinful incommensurate ex-
tended Holstein-Hubbard model, has not been extensively
studied in prior works. A much simpler related model, which
has been thoroughly explored, is the spinless half-filled Hol-
stein modelswithout el-el interactionsd. We show the phase
diagram for this model in Fig. 17, computed by various au-
thors with a wide range of methods. Note that the result from
the two-step RG techniquesline with squaresd18 is in good
agreement with exact numerical methods.

In order to see how Fig. 17 changes when spin is in-
cluded, we have computed a phase diagram in similar units
for the spinful half-filled Holstein model in Fig. 18, includ-
ing a Hubbard interaction. In the absence of el-el interac-
tions, at weak el-ph coupling, the ground state of this model

FIG. 15. Dependence of the isotope effect exponentsaTc
and

aDs
on the doping parameterd and interchain coupling strengthJ̄

for the Hol-Hub model withlHol=0.275 sad and Pei-Hub model

with lPei=0.25sbd. For both plots,Ū=0.1,V=0, andEF /v0=5. aDs

is independent ofJ̄.

FIG. 16. Phase diagram of the half-filled Pei-Hub model, com-
paring of our result for the phase boundaryssolid lined to the quan-
tum Monte Carlo result of Ref. 22ssquaresd, for U / t=2.5 and
V/ t=0.625. The dashed line is our result for the sameU / t but with
V=0. Here,g̃=Îpsv0/ tdlPei/4 is the el-ph coupling constant in Eq.
s1d.
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is always a CDW, for any finitev0. This also holds in the
strong coupling limitslHol@1d.9 In contrast, for thespinless
half-filled Holstein model without el-el interactions, the tran-
sition to a CDW occurs at a nonzero value ofg, as shown in
Fig. 17 for weak coupling and proven in Ref. 9 for strong
coupling.

To study how Fig. 18 changes when the system is doped
into the incommensurate limit, we have presented a diagram
in the same units for the spinful incommensurate extended
Holstein-Hubbard model in Fig. 5. In Figs. 5 and 18 for
technical reasons, we have definedg8=gÎEF /vF, t8
= tsEF /2td, andU8=UsEF /vFd.

VI. METHODS AND DERIVATIONS

Here, we provide more discussion of the technique and
study the RG flows of the coupling parameters. We also de-
rive the explicit expressions that were used to plot the phase
boundaries in the figures.

A. Field theory for the 1DEG coupled to phonons

To focus on the low-energy, long-wavelength physics, we
work with continuum versions of Eqs.s1d and s4d. The
purely electronic part of our Hamiltonian is the standard con-
tinuum model of the interacting 1DEG, in which the spec-
trum is linearized around the left and right Fermi points. The
destruction field for fermions of spins is written as a sum of
slowly varying right and left moving fields:Cs=eikFxc1,s
+e−ikFxc−1,s. The Hamiltonian density for the 1DEG, in the
absence of el-ph interactions, is written asH=H0+Hel-el,
where the kinetic energy density is

H0 = − ivF o
h,s=±1

hch,s
† ]xch,s, s11d

and the important short range el-el interaction terms are

Hel-el = g1 o
s,s8=±1

c1,s
† c−1,s8

† c1,s8c−1,s

+ g2 o
s,s8=±1

c1,s
† c−1,s8

† c−1,s8c1,s

+ g3feis4kF−Gdxc−1,1
† c−1,−1

† c1,−1c1,1+ H.c.g

+ g4 o
h,s=±1

ch,s
† ch,−s

† ch,−sch,s. s12d

We have assumed the system is spin-rotation invariant. The
g2 andg4 terms describe forward scattering, the former con-
taining scattering on both left and right moving branches,
and the latter containing scattering on only one branch. The
g1 term contains backscattering from one branch to the other.
The g3 term contains Umklapp processes and is only impor-
tant when 4kF equals a reciprocal lattice vectorG; i.e., at
half-filling s4kF=2pd. For the extended Hubbard model in
the continuum limit, the baresunrenormalizedd values of the
gi’s are given by

g1
0 = g3

0 = U − 2V8, s13d

g2
0 = U + 2V8, s14d

g4
0 = U/2 + 2V8 s15d

where the superscript 0 indicates bare couplings and again
V8=−V coss2kFd, which equalsV at half-filling.

We incorporate el-ph interactions by defining retarded in-
teractionsg1,ph, g2,ph, g3,ph, and g4,ph, which play the same
role as thegi’s except that the energy transfer is restricted to
be less than a cutoffvc, which is approximately the phonon
frequencyv0 svc will be defined more precisely belowd. This
corresponds to approximating the phonon propagator as a
step function of frequency, which is a good approximation
for the momentum-independent phonon dispersions we con-

FIG. 17. Phase diagram of the spinless half-filled Holstein
model from various authors, in the absence of el-el interactions. The
solid line is an analytical result from Ref. 33. The line with circles
and the line with squares denote the results of density matrix renor-
malization groupsRef. 20d and two-step RGsRef. 18d, respectively.
The line with triangles is the result from an exact-diagonalization
methodsRef. 21d. sAfter Ref. 33.d

FIG. 18. Phase diagram in theg8 /v0-t8 /v0 plane of the spinful
half-filled Holstein-Hubbard model forV=0. The phase boundary is
shown for various values ofU8 /v0, as labeled. The system is
charge-gapped everywhere in the phase diagram, and spin-gapped
in the CDW phase. ForU8 /v0=0 snot shownd, the ground state is a
CDW for infinitesimalg8 /v0. Here,g8<g, t8< t, andU8<U ssee
the text for their precise definitionsd.
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sider in this paper. In the Pei-Hub model, the bare el-ph
couplings are given by

g1,ph
0 = − g3,ph

0 = − pvFlPei, s16d

g2,ph
0 = g4,ph

0 = 0. s17d

For the Hol-Hub model they are

g1,ph
0 = g2,ph

0 = g3,ph
0 = g4,ph

0 = − pvFlHol, s18d

wherelPei andlHol are the positive, dimensionless coupling
constants defined in Eq.s5d. Note that the couplingsg1,ph

0 ,
g2,ph

0 , andg4,ph
0 are negative, indicating the attractive interac-

tion induced by phonons. In the absence of el-el interactions,
the sign ofg3,ph

0 is arbitrary; likewise, the sign ofg3
0 is arbi-

trary in the absence of el-ph interactions. However, for the
extended Hubbard model coupled to phonons, once the sign
conventiong3

0=U−2V8 is chosen, it is required thatg3,ph
0

.0 for the Pei-Hub model andg3,ph
0 ,0 for the Hol-Hub

model.

B. Phase diagram of the 1DEG without phonons

Before deriving the phase diagram including phonons, we
briefly review the known quantum phase diagram of the
1DEG without el-ph coupling,29,34,35by identifying the con-
ditions for various types of order to have divergent suscepti-
bilities in the low-temperature limit.

The sign ofg1
0 determines the existence or nonexistence

of a spin gap: a 1DEG without el-ph coupling contains a gap
to spin excitations forg1

0,0, and no such gap forg1
0ù0,

regardless of band filling. A charge gap is only possible at
commensurate fillings.

An incommensurate 1DEG without a spin gapsLuttinger
liquidd, has a divergent 2kF SDW susceptibility when the
Luttinger charge exponent

Kc =Î2pvF + 2g4
0 + g1

0 − 2g2
0

2pvF + 2g4
0 − g1

0 + 2g2
0 s19d

is less than 1, along with a logarithmically more weakly
divergent 2kF CDW correlation. IfKc,1/2, the 4kF CDW
correlation is also divergent; it is less divergent than SDW
and 2kF CDW for 1/3,Kc,1/2, but becomes the dominant
order for Kc,1/3. ForKc.1, a LL has a divergent triplet
superconductingsTSd correlation and a logarithmically
weaker divergent singlet superconductivity.

An incommensurate spin-gapped 1DEGsLuther-Emery
liquidd, is dominated by either SS or 2kF CDW correlations,
depending on the value ofKc. A LEL with Kc,1 is domi-
nated by 2kF CDW. If Kc,1/2, 4kF CDW is subdominant,
while if 1 /2,Kc,1, SS fluctuations replace 4kF CDW as
the subdominant order. For 1,Kc,2, SS is the most diver-
gent channel, and CDW is subdominant. ForKc.2, the only
divergent correlation is SS. We summarize the phase diagram
of the incommensurate 1DEG in Table I.

At half-filling, a 1DEG is charge-gapped forug3
0u.g1

0

−2g2
0, which for repulsive interactions is always satisfied.

For g1
0,0, the ground state of a charge-gapped system is an

ordered, spin-gapped CDWsthe Peierls instabilityd, other-

wise, it is a SDW with no spin gapsSee Table IId.

C. The multistep RG technique

To determine the phase diagrams, we apply the known
one-loop RG flow equations10

dg1

dl
= − g1

2,
dgc

dl
= − g3

2,
dg3

dl
= − g3gc, s20d

dg±,ph

dl
= − g±,phS3

2
g1 ± g3 +

1

2
gc + g±,phD , s21d

dg2,ph

dl
=

dg4,ph

dl
=

dg4

dl
= 0, s22d

dvc

dl
= vcspvF + g+,phd,

dm

dl
= pvFm, s23d

where we defined

gc = g1 − 2g2, s24d

g±,ph= g1,ph± g3,ph, s25d

l = spvFd−1lnsEF/vd, s26d

andv is the running cutoff. The above expressions apply for
EF@v@v0,m. If, instead,m@v@v0, the same equations
apply, but withg3=g3,ph=0. From Eq.s20d, we see that a
repulsiveg1 renormalizes in the same way as the Coulomb
pseudopotential in a Fermi liquid—it is scaled to smaller
values as one integrates out high-energy degrees of freedom.

TABLE I. Conditions for various ordering fluctuations to domi-
nate for an incommensurate 1DEG. See the text for the subdomi-
nant fluctuations.

Type of order Dominates fora

4kF charge density waves4kFd Ds=0, Kc,1/3

2kF spin density wave Ds=0, 1/3,Kc,1

2kF charge density wave Ds.0, Kc,1

Triplet superconductivity Ds=0, Kc.1

Singlet superconductivity Ds.0, Kc.1

aFor the Hubbard model,Kc,1 corresponds to repulsive interac-
tions,Kc.1 to attractive interactions. The effect of a forward scat-
tering el-ph interaction is to raiseKc, while a backscattering el-ph
interaction lowersKc and, if strong enough compared to the el-el
repulsion, causes a gap in the spin sectorsDs.0d.

TABLE II. Conditions for SDW and CDW order in a half-filled,
charge-gapped 1DEG.

Type of order Present for

2kF Spin density wave Ds=0

2kF Charge density wave Ds.0
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However, in 1D the backscattering and Umklapp el-ph inter-
actions g1,ph and g3,ph are strongly renormalized. Further-
more, there are cross termsg±,phgi in Eq. s21d, which means
that the RG flows ofg1,ph andg3,ph are strongly influenced by
direct el-el interactions.

The two-step RG procedure is as follows: AssumingDs
,v0 and the system is at half-fillingsm=0d, we first inte-
grate out fermionic degrees of freedom between the high-
energy scaleEF and the phonon energyv0 using Eqs.s20d
and s21d. Once v0 is reached, total effective interactions
gi

totsv0d at this energy scale are determined by adding the
effective el-el coupling to the effective el-ph coupling

gi
totsv0d = gisv0d + gi,phsv0d. s27d

Below this energy scale, there is no difference between re-
tarded and instantaneous interactions, sogi

tot renormalizes as
a nonretarded interaction using Eq.s20d with gi

totsv0d as the
initial value. If the system is far enough away from half-
filling such thatm,EF, the method is identical except that
one setsg3

0=g3,ph
0 =0 at the start. For the above cases, it is

clear that the renormalized couplingsgi
totsv0d and the renor-

malized cutoffv0 play the same role in the 1D electron-
phonon system asgi

0 and EF, respectively, do in the pure
1DEG. Therefore, to determine the phase diagram of the
1DEG coupled to phonons, we can use the known phase
diagram of the pure 1DEG, and simply replace thegi

0’s there
with gi

totsv0d’s. For more general fillingss0,m,EFd, a
three-step RG method is necessary, which we will elaborate
at the end of this section.

Note thatv0 is the physical phonon frequency, which is
related tovc by the expressionv0=vcsv0d, wherevcsv0d is
the renormalized value ofvc at the energy scalev0, deter-
mined by Eq.s23d. Likewise, we definem as the physical
value of the chemical potential relative to its value at half-
filling; the bare chemical potentialm0 is chosen such that it
flows to the valuem after integrating out degrees of freedom
betweenEF andm.

D. Incommensurate filling

We first derive the scaling of the coupling constants and
compute the phase diagrams for the case when the system is
doped far into the incommensurate limitsm,EFd.

1. Scaling of the coupling constants

Using Eqs.s20d and s21d with g3=g3,ph=0, we integrate
out degrees of freedom betweenEF and v with EF.v
ùv0, to obtain the follow effective couplings for incommen-
surate systems:

gcsvd = gc
0, s28d

g1svd =
g1

0

1 + g1
0l

, s29d

g1,phsvd = S g1,ph
0

1 + g1,ph
0 Z

DSg1svd
g1

0 D3/2SEF

v
D−gc

0/2pvF

, s30d

where

Z =E
0

l

dx
exps− gc

0x/2d
s1 + g1

0xd3/2 , s31d

and againgi
0=gisEFd.

In the absence of el-el interactions, the el-ph backscatter-
ing coupling g1,ph flows to stronger values according to
g1,phsvd /g1,ph

0 =s1−ug1,ph
0 uld−1. In Fig. 19, the important influ-

ence of extended Hubbard interactions ong1,phsvd is studied.
In Figs. 19sad and 19scd, we show the scaling for several
fixed finite values ofU / ug1,ph

0 u. Fig. 19sed shows the scaling
in the limit U@ ug1,ph

0 u, which is given by

g1,phsvd/g1,ph
0 < hsUld, U @ ug1,ph

0 u, s32d

where for future convenience we define

FIG. 19. Dependence of the effective backscattering el-ph cou-
pling g1,phsvd on Ul ;sU /pvFdlnsEF /vd for v.v0. Plotssad, scd,
andsed are for systems doped into the incommensurate limit, while
sbd, sdd, andsfd are for the half-filled Pei-Hub and Hol-Hub models
with V=0. For each plot, the ratio ofU to the bare el-ph coupling
g1,ph

0 is held fixed at the value indicated above the plot. For each

curve in sad, scd, and sed, the ratioV̄/ Ū is held fixed at the value
indicated.
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hsxd =
expsGcx/2d
s1 + G1xd3/2, s33d

G1 = 1 − 2sV̄/Ūd, s34d

Gc = 1 + 6sV̄/Ūd. s35d

From Fig. 19, we see that the flow ofg1,ph is very sensi-

tive to the parameterV̄/ Ū. If V̄/ Ū,1/6 and U / ug1,ph
0 u is

large enough, then theg±,phg1 term in Eq. s21d causes
g1,phsvd to initially flow to weaker values. However, if

V̄/ Ūù1/6, theng1,phsvd /g1,ph
0 .1 for all v,EF, regardless

of U / ug1,ph
0 u. The driving force for this increase inug1,phsvdu is

the g±,phgc term in Eq.s21d.
To better understand why increasingŪ can sometimes

enhance superconductivity at smallŪ ssee Fig. 6d, we study

the dependence ofg1,phsv0d on Ū at fixedEF /v0 in Fig. 20.

In this plot, for smallŪ, the effectiveg1,ph is stronger that its

bare valuesg1,phsv0d /g1,ph
0 .1d. However, forV̄/ Ū,1/6, in-

creasingŪ causesug1,phsv0du to decrease. This can causeKc
eff

and xSS to increase, as in Fig. 6. However, if we setV̄/ Ū

ù1/6 and hold this ratio fixed while increasingŪ, then
ug1,phsv0du increases, causingKc

eff andxSS to be suppressed.

Note that in real materials, one typically expectsV̄/ Ū
.1/6, in which caseug1,phsv0du. ug1,ph

0 u or even ug1,phsv0du
@ ug1,ph

0 u. The requirement for a spin gap isug1,phsv0du
.g1sv0d, which can be achieved, in many cases, with even a
small amount of retardation.sNote that for repulsive el-el
interactions, 0,g1sv0d,g1

0.d Therefore, it is possible for a
slightly retarded el-ph interaction to create a divergent super-
conducting susceptibility even when the bare interactions are
predominantly repulsivesug1,ph

0 u!g1
0d.

2. Luttinger liquid to Luther-Emery liquid transition

The phase boundary between the LL and LEL phases is
given by the conditiong1

totsv0d=0. This condition determines

the following critical value of the bare el-ph coupling

lPei
Gap= lHol

Gap= ŪF expsGcŪl0/2d

G1
Î1 + G1Ūl0

+ fsŪl0dG−1

sLL-LEL transitiond, s36d

where we define

fsyd =E
0

y

dx hsxd. s37d

For lPei.lPei
Gap or lHol.lHol

Gap, the ground state of the incom-
mensurate 1DEG is a spin-gapped LEL; otherwise, it is a
gapless LL. The conditionl=lPei

Gap=lHol
Gap therefore deter-

mines the transition lines in Figs. 1 and 2, as well as the thick
solid lines in Figs. 3–5. Note that in Fig. 2, we used that the
“scaled” critical couplingslHol

Gapl0 andlPei
Gapl0 depend only on

the two parametersŪl0 and V̄/ Ū.

3. Susceptibilities and spin gap in the LEL phase

In the LEL phase, the potentially strongly divergent part
of the low-temperature susceptibilities for SS and 2kF CDW
are given by Eqs.s6d and s9d, respectively, whereKc

eff is the
effective Luttinger charge exponent after integrating out
states betweenEF andv0, given by

Kc
eff =Î2pvF + 2g4

tot + gc
totsv0d

2pvF + 2g4
tot − gc

totsv0d
, s38d

where

gc
totsv0d = gc

0 + g1,phsv0d − 2g2,ph
0 , s39d

g4
tot = g4

0 + g4,ph
0 . s40d

Integrating out states below the energyv0 does not further
renormalizegc

tot sand thereforeKcd. Note that the effective
charge and spin velocities are also renormalized due to
phonons, the former of which is

vc = s2pd−1Îf2pvF + 2g4
totg2 − fgc

totsv0dg2. s41d

For −1,g1
totsv0d,0, Ds is given approximately by the

energy scale belowv0, at which the RG analysis breaks
down because the effectiveg1

tot/pvF has grown to −1. Since

g1
totsvd =

g1
totsv0d

1 + fg1
totsv0d/pvFglnsv0/vd

, for v , v0,

s42d

this gives

Ds = v0eexpf− pvF/ug1
totsv0dug. s43d

For g1
totsv0d.0, g1

totsvd→0 asv→0; therefore,Ds=0.

4. Competition between SS and CDW in the Hol-Hub model

The thin solid line in the incommensurate extended Hol-
Hub model phase diagrams of Figs. 3–5, which we call the
“superconducting transition,” is determined byKc

eff=1. This

FIG. 20. Dependence ofg1,phsv0d on Ū for incommensurate
systems withsad EF /v0=5 andsbd EF /v0=10. The horizontal dot-
ted line indicates the value of the bare el-ph couplingl=
−g1,ph

0 /pvF=0.2, wherel stands for eitherlHol or lPei, depending

on the model. For each curve, the ratioV̄/ Ū is held fixed at the
value indicated insad.
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condition is satisfied forlHol=lHol
SS,+ andlHol=lHol

SS,−, where

lHol
SS,±= ŪFH ±ÎH2 −

Gc

2fsŪl0d
G

3ssuperconducting transitiond s44d

and

H =
2 − hsŪl0d

4fsŪl0d
+

Gc

4
. s45d

Therefore, as long as the square root is not imaginary, for

fixed Ūl0.0, there aretwo critical values of the bare el-ph
coupling determining the boundary between the phase with
dominant CDW and the phase with dominant SS. The most

divergent correlation is SS providedGc,2fsŪl0dH2 and
lHol

SS,−,lHol,lHol
SS,+. Note that a divergent TS susceptibility is

not present in any phase diagrams, since for repulsive el-el
interactions,Kc

eff,1 wheneverg1
totsv0d.0.

The phase boundary shown as a dashed line in Figs. 3–5
is defined byKc

eff=1/2. For theextended Hol-Hub model,
this condition occurs atlHol=lHol

CDW with

lHol
CDW = ŪFL +ÎL2 +

Q

2fsŪl0d
G sKc

eff = 1/2 transitiond,

s46d

where

L =
4 − 5hsŪl0d

8fsŪl0d
−

Q

4
, s47d

Q = 3/Ū − 9sV̄/Ūd − 1. s48d

For lHol.lHol
CDW, a divergent SS susceptibility is not pos-

sible.

5. Competition between SS and CDW in the Pei-Hub model

For the extended Pei-Hub model with repulsive el-el cou-
plings,Kc

eff,1 always, which means a phase with dominant
SS is impossible. For this model the conditionKc

eff=1/2 oc-
curs at the critical el-ph coupling value

lPei
CDW = ŪF5hsŪl0d

2Q
+ fsŪl0dG−1

sKc
eff = 1/2 transitiond.

s49d

For lPei.lPei
CDW, the SS susceptibility is never divergent. The

conditionlPei=lPei
CDW determines the dashed line in Figs. 3scd

and 3sdd.

E. Half-filling

At half-filling, Eqs. s20d and s21d can be integrated ana-
lytically if one takesgc

0=−g3
0. For that case,

gcsvd = − g3svd =
gc

0

1 + gc
0l

, s50d

g+,phsvd = S g+,ph
0

1 + g+,ph
0 X

DSg1svd
g1

0 D3/2Sgcsvd
gc

0 D−1/2

, s51d

g−,phsvd = S g−,ph
0

1 + g−,ph
0 Y

DSg1svd
g1

0 D3/2Sgcsvd
gc

0 D3/2

, s52d

where

X =E
0

l

dxs1 + g1
0xd−3/2s1 + gc

0xd1/2, s53d

Y =E
0

l

dxs1 + g1
0xd−3/2s1 + gc

0xd−3/2

=
2

sg1
0 − gc

0d2Fg1
0 + gc

0 −
g1

0 + gc
0 + 2g1

0gc
0l

Îs1 + g1
0lds1 + gc

0ld
G , s54d

andg1svd is given again by Eq.s29d. Since our assumption
of gc

0=−g3
0 is satisfied for the Hubbard modelswith V=0d,

the above results determine the scalings ofg1,ph andg3,ph for
the Hol-Hub and Pei-Hub models, which are

g1,phsvd = g3,phsvd = S g1,ph
0

1 + g1,ph
0 X8

DÎ 1 − Ul

s1 + Uld3

shalf-filled Holstein-Hubbard modeld, s55d

g1,phsvd = − g3,phsvd = S g1,ph
0

1 + g1,ph
0 Y8

DÎ 1

f1 − sUld2g3

shalf-filled Peierls-Hubbard modeld, s56d

whereX8 andY8 are the values of 2X and 2Y, respectively,
for the caseg1

0=−gc
0=U:

X8 =
2

U
F2 − 2Î1 − Ul

1 + Ul
− arcsinsUldG , s57d

Y8 =
2l

Î1 − sUld2
. s58d

In the absence of el-el interactions, for either model,
g1,phsvd increases in strength asl is increased according to
g1,phsvd /g1,ph

0 =s1−2ug1,ph
0 uld−1. As shown in Figs. 19sbd,

19sdd, and 19sfd, turning on a repulsiveU has the opposite
effect for the half-filled Pei-Hub model compared to the half-
filled Hol-Hub model: for the formerg1,phsvd increases even
more rapidly with increasingl than before, while for the later
g1,phsvd increases less rapidly than before. This is due to the
bond- ssite-d centered nature of the PeierlssHolsteind el-ph
interaction, and shows up as a sign difference ing3,ph

0 for the
two models.

For U@ ug1,ph
0 u, the behavior ofg1,phsvd /g1,ph

0 is given by
the square roots in Eqs.s55d and s56d, and is shown in Fig.
19sfd. In this limit, for the Hol-Hub model,g1,phsvd flows to
weaker values. Since the spin gap is enhanced by a strong
g1,ph, and the charge gap is enhanced by a strongg3,ph, we
see that the off-diagonal phonon mechanism in the Pei-Hub
model is more effective in enhancing both the charge and
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spin gap compared to the diagonal mechanism in the Hol-
Hub model.

At half-filling, the transition line between CDW and SDW
phases, called the Mott-Peierls transition, is determined by
g1

totsv0d=0. The critical el-ph couplings that define this phase
boundary are then

lPei
GAP =

ŪÎ1 − sŪl0d2

s1 − Ūl0d−1 + 2Ūl0

sPeierls-Hubbard model: Mott-Peierls transitiond,

s59d

lHol
GAP = ŪF4 − 3Î1 − Ūl0

1 + Ūl0
− 2 arcsinsŪl0dG−1

sHolstein-Hubbard model: Mott-Peierls transitiond.

s60d

For lPei.lPei
GAP in the half-filled Pei-Hub model, orlHol

.lHol
GAP in the half-filled Hol-Hub model, the ground state is

a spin-gapped, ordered CDW. We plot the transition line
given by lPei=lPei

GAP in Figs. 12sbd and 16, and the line de-
termined bylHol=lHol

GAP in Figs. 12sad and 18.

F. Near half-filling

Using the two-step RG technique, we have derived phase
boundaries for the strongly incommensurate casem,EF, as
well as the half-filled casem=0. For the more general case
0,m,EF, in other words at filling near but not equal to
half-filling, a three-step RG method is necessary. The three
distinct crossover scales are the high-energyEF, low-energy
scalev0, and chemical potentialm. As before, retarded inter-
actions only renormalize when integrating out states between
EF andv0. However, nowg3 andg3,ph only play a role when
integrating out states at higher energies thanm sand if m
,v0, for states betweenm andv0, only g3 plays a roled.

1. Doping dependence of the phase boundaries

We now employ the three-step RG technique to derive the
doping dependence of the phase boundaries forV=0. First
consider the casev0,m,EF. We begin by integrating out
degrees of freedom betweenEF and m=v0sEF /v0dd, result-
ing in an effectiveg1,ph of

g1,phsmd = − S pvFlHol

1 − lHolX̃/Ū
DÎ 1 − cŪl0

s1 + cŪl0d3
s61d

or

g1,phsmd = − S pvFlPei

1 − lPeiỸ/Ū
DÎ 1

f1 − scŪl0d2g3
, s62d

for the Hol-Hub and Pei-Hub models, respectively, with

c = 1 −d, s63d

X̃ = 2F2 − 2Î1 − cŪl0

1 + cŪl0
− arcsinscŪl0dG , s64d

Ỹ =
2cŪl0

Î1 − scŪl0d2
. s65d

Next, g1,phsmd is used as the initial value to integrate fromm
to v0, employing the RG flow equations withoutg3 andg3,ph,
resulting in

g1,phsv0d = S g1,phsmd

1 + g1,phsmdZ̃/U
DÎ expsdŪl0d

s1 + dŪl0d3
s66d

for either model, where

Z̃ =E
0

dŪl0
dx ex/2s1 + xd−3/2. s67d

Sinceg1 renormalizes in the same way for the half-filled and
incommensurate cases, we can just integrate fromEF to v0 in
one step using Eq.s29d.

Again, the conditiong1
totsv0d=g1sv0d+g1,phsv0d=0 deter-

mines the transition to a spin gap, which leads to the critical
values

lPei
gap=

ŪÎf1 − scŪl0d2g3

4 + j + 2cŪl0f3 − scŪl0d2g

sPeierls-Hubbard modeld, s68d

lHol
gap= ŪF4 + jÎ 1 − cŪl0

s1 + cŪl0d3
− 2 arcsinscŪl0dG−1

sHolstein-Hubbard modeld, s69d

where we defined

j = s1 + Ūl0dF − 4s1 + cŪl0d + Z̃, s70d

F = edŪl0/2s1 + dŪl0d−3/2. s71d

The system is spin-gapped forlPei.lPei
gap or lHol.lHol

gap for
the Pei-Hub and Hol-Hub models, respectively. The phase
boundaries determined bylPei=lPei

gap and lHol=lHol
gap are

shown in Figs. 8–11 as thick solid lines. Ford=1, lPei
gap

=lHol
gap, and we recover the incommensurate LL-LEL transi-

tion fEq. s36dg with V=0.
We obtain analytic expressions for the remaining phase

boundaries by requiring thatKc
eff equals 1 or 1/2sdepending

on the phase boundaryd, using

gc
totsv0d = gcsmd + g1,phsv0d − 2g2,ph

0 s72d

with gcsmd=−U / s1−cŪl0d. The results for the critical cou-
plings, for v0,m,EF, are then

lHol
ss,±= ŪfB ± ÎB2 − SAC/2g, s73d

lHol
cdw = ŪfD + ÎD2 + 5SAE/4g, s74d
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lPei
cdw = ŪFỸ +

F/E + Z̃

Îf1 − scŪl0d2g3
G−1

, s75d

with the definitions

A = sSX̃+ Z̃d−1, s76d

B = fs2S− FdA + Cg/4, s77d

C = s1 − cŪl0d−1, s78d

D = AfSs4 − 5EX̃d − 5sEZ̃+ Fdg/8, s79d

E = s6/Ū + 3d/5 − C, s80d

S= s1 + cŪl0d3/2s1 − cŪl0d−1/2. s81d

For d=1, Eqs.s73d–s75d reduce to Eqs.s44d, s46d, ands49d,
respectively, withV=0. The conditionslHol=lHol

ss,+ and lHol
=lHol

ss,− determine the thin solid line in Figs. 9 and 11sad. In

Fig. 11sbd, Ū is large enough such thatSAC.2B2 every-
where in the plot, therefore the phase with dominant SS is
not present. The conditionlHol=lHol

cdw determines the dashed
line in Figs. 9, 11sad, and 11sbd. The dashed lines in Figs. 10,
11scd, and 11sdd are determined bylPei=lPei

cdw.
For the casem,v0,EF, sinceg1 scales in the same way

at all energies and does not depend ong3, the spin-gap phase
boundary is independent ofm, and is given by Eqs.s68d and
s69d with d=0, or by Eqs.s59d and s60d.

2. Doping dependence of susceptibilities and isotope effects

The doping dependence of the susceptibilities in the LEL
phasesFigs. 13 and 14d is computed with the three-step RG
method using Eqs.s6d and s9d, combined with Eqs.s38d,
s43d, s66d, ands72d.

The isotope effect onTc sFig. 15d is computed via

aTc
= −

1

2

DTc/Tc

Dz/z
, s82d

wherez;EF /v0=el0 andDz!z. Here,DTc;Tc8−Tc, where
Tc8 is the transition temperature determined from Eq.s10d
after changingl0→ l08=lnsz+Dzd, c→c8=cl0/ l08, and d→1
−c8. The changes inc and d are required so that, when
changingz, only the energy scalev0 is changed, and the
energy scalesEF and m remain fixed. The isotope effect on
Ds is determined in a similar fashion.

VII. CONCLUSIONS

We have explored the influence of the el-ph interaction on
the quantum phase diagram of the most theoretically well
understood non-Fermi liquid, the interacting 1DEG. The
backward and Umklapp scattering portions of the el-ph in-
teraction are strongly renormalized, often toward stronger
couplings. Even in the presence of strong el-el repulsion, a
weak, retarded el-ph interaction is capable of creating a spin

gap and causing divergent superconducting and/or CDW sus-
ceptibilitiesstrue long range order is formed when weak cou-
pling between 1D chains is includedd. The ground state is
strongly dependent on the band-filling, and, especially at or
near half-filling, dependent on the microscopic model of the
el-ph interaction. Compared to higher dimensions, the zero-
temperature phase diagram is far more complex, and, away
from commensurate filling, contains a subtle competition be-
tween SDW, CDW, and superconductivity. The fact that di-
rect el-el interactions strongly influence the renormalizations
of the el-ph interactions adds to the richness of the phase
diagram. In 1D, intuitive concepts that apply to higher di-
mensional Fermi liquids, such as the suppression of super-
conductivity by repulsive interactions at weak coupling,
must sometimes be abandoned.

When the bare el-el repulsion is much stronger than the
bare el-ph induced attraction, in 1D, unlike in higher dimen-
sions, it is not a requirement thatEF@v0 for the supercon-
ducting susceptibility to diverge.sIn fact, in 1D, very large
values ofEF /v0 are harmful to superconductivity.d Note that
in the high-temperature superconductors, whereEF /v0,5
and the el-el repulsion is strong, it has been correctly argued
that the small value ofEF /v0 rules out conventional phonon-
mediated superconductivity.35 It is interesting to point out
that the arguments there apply only to a Fermi liquid and not
the quasi-1DEG.

We now qualitatively summarize the phase diagrams, for
the case of repulsive el-el interactions, beginning with a sys-
tem that is far from half-filling. In this case, the charge sector
is gapless. For either the Hol-Hub or Pei-Hub model, the
spin-gapped LEL phase is favored by smallU, largeV, large
l, and largeEF /v0. The LL phase is favored by largeU,
small V, smalll, and smallEF /v0. For the Hol-Hub model,
a dominant superconducting fluctuation is favored by small
U, small V, moderatelHol, and smallEF /v0. For either
model, the phase with dominant 2kF CDW and subdominant
superconductivity is favored by moderateEF /v0 and moder-
ate l sthe dependence onU and V is more subtle, see the
phase diagramsd. For either model, the phase with dominant
2kF CDW and subdominant 4kF CDW is favored by largeV,
large l, and largeEF /v0 ssee the diagrams for the subtle
dependence onUd.

Moving the incommensurate system toward half-filling
increases the stability of the LEL phase relative to the LL
phase in the Pei-Hub model, but decreases the stability of the
LEL phase relative to the LL phase in the Hol-Hub model. In
the Hol-Hub model, moving toward half-filling suppresses
the phase with dominant superconductivity. For both models,
moving toward half-filling decreases the stability of the
phase with subdominant SS and increases the stability of the
phase with subdominant 4kF CDW, but this effect is more
pronounced in the Pei-Hub model.

In the Hol-Hub model at half-filling, a spin-gapped CDW
phase is favored by smallU and largelHol. The SDW phase
with no spin gap is favored by largeU and smalllHol. The
half-filled Hol-Hub phase diagram is weakly dependent on
EF /v0 compared to the Pei-Hub phase diagram. In the half-
filled Pei-Hub model, the spin-gapped CDW phase is favored
by large lPei, large EF /v0, large V, and anyU other than
moderate values. The SDW phase is favored by smalllPei,
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small EF /v0, small V, and moderateU. Both models are
charge-gapped at half-filling.

We have studied the strong doping dependencies of the
phonon-induced spin gap and various susceptibilities in the
Luther-Emery liquid phase. The spin gap and charge density
wave susceptibilities decrease monotonically as the system is
doped away from half-filling. However, the superconducting
susceptibility, and thereforeTc in a quasi-1D system with
fluctuating chains, can vary nonmonotonically with doping
and exhibit a maximum at some “optimal” doping.

Partially motivated by the unconventional doping-
dependent isotope effects observed in the cuprate high-
temperature superconductors, we have computed isotope ef-

fects in the quasi-1DEG coupled to phonons, since it is
perhaps the most easily studied unconventional phonon-
mediated superconductor. The calculated isotope effects bear
a qualitative resemblance to those observed in the cuprates,
as summarized in Sec. I.
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