PHYSICAL REVIEW B 71, 205113(2005

Phase diagram and isotope effects of the quasi-one-dimensional electron gas coupled to phonons
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Using a multistep renormalization group method, we study the low-temperature phases of the interacting
one-dimensionallD) electron gas coupled to phonons. We obtain analytic expressions for the weak-coupling
guantum phase boundaries of the 1D extended Holstein-Hubbard model and the 1D extended Peierls-Hubbard
model for general band-filling and phonon frequency. Away from half-filling, the phase diagrams are charac-
terized by a delicate competition between spin density wave, charge density wave, and superconducting orders.
We study the dependence of the ground state on the electron-ptielRph) and electron-electrofiel-el)
coupling strengths, the screening length, electron bandwidth, phonon frequency, doping, and type of phonon.
Unlike the case in Fermi liquids, in 1D the el-ph coupling is strongly renormalized, often to stronger values.
Even when the bare phonon-induced attraction is weak compared to the bare el-el repulsion, a small amount of
retardation can cause the renormalized el-ph interaction to dominate the problem. We find cases in which a
repulsive el-el interaction enhances the superconducting susceptibility in the presence of a retarded el-ph
interaction. The spin gap and superconducting susceptibility are found to be strongly dependent on the devia-
tion from half-filling (doping. In some cases, the superconducting susceptibility varies nonmonotonically with
doping and exhibits a maximum at a particular doping. For a quasi-1D array of weakly coupled, fluctuating 1D
chains, the superconducting transition temperalyralso exhibits a maximum as a function of doping. The
effect of changing the ion magsotope effedton T, is found to be largest near half-filling and to decrease
rapidly with doping.
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I. INTRODUCTION tance of el-ph interactions in the quasi-1D conducting
X ) ) 13,14 ihili i
Recent experimerit& in the high-temperature supercon- Polymers,>=and the possibility that they play an important

ductors that suggest a strong and ubiquitous electron-phondf!€ in the quasi-1D organic conductdfsit may also be the
case that holes in the high-temperature superconductors live

(el-ph) interaction have led to an increased interest in; : d i Iatiohs . ;
strongly correlated el-ph systems. Of particular interest is thd! duasi-1D due to stripe correlatiofSin any case, since in

interplay between the repulsive, instantaneous Coulomb intP @ Slrlnalll bare ell—ph co#plir;g ﬁqn be renormalized to sub-
teraction and the attractive, retarded interaction mediated b ant]da y larger values, the el-ph interaction is important to
phonons, in the context of various phase transitiGinsta- onsiaer.

bilities) of the system. This interplay is quite simple and well rol[] t?lgcgresrggggﬁﬁfrt’OV\é%#]S?e?]en:]:!B:}epstrjgormzl'égﬁﬁn
understood in a two- or three-dimensional Fermi liquid, an P P P Y y

serves as a foundation for the BCS theory of supercondu emperature phase diagram of the spinful 1DEG coupled to

tivity, H the high-t A duct bhonons, treating the el-el and el-ph interactions on equal
vity. However, the high-lemperatureé SUperconduclors, ay,ging The same technique is employed to compute the
well as some other materials of current interest, exhibi

) e 27 'ijoping-dependent superconducting susceptibilities, charge
manifestly non-Fermi-liquid behavidr. , density wave susceptibility, and isotope effects. In a separate
Compared to conventional metals, much less is knowthaper” we have studied the influence of the el-ph interaction
about the influence of an el-ph interaction in non-Fermi lig-on the electron dynamics of an interacting 1DEG, expressed
uids. One such system, where much analytic progress can jga the single particle spectral function. The strategy in the
made'2 is the interacting one-dimensional electron gaspresent paper is to start with a microscopic electron-phonon
(1IDEG), where the system is strongly correlated even formodel with many parametergel-el interactions, electron
weak interactions. In contrast to higher dimensions, in ondandwidth, el-ph interactions, and phonon frequéneynd
dimension the el-ph interaction is strongly renormalized. Inthen to integrate out high-energy degrees of freedom to pro-
other words, the effective el-ph interaction at low energies igluce a low-energy effective field theory with a known phase
not simply given by the bare, microscopic coupling con-diagram—the continuum 1DEG—whose only parameters are
stants, which makes the physics both very different and veryhe renormalized el-el interactions and bandwidth.
rich. Furthermore, the renormalizations of the el-ph interac- If the system is far from commensurate filling, we employ
tions are affected by direct electron-electr@h-el) interac-  the “two-step RG” procedur®:118|n this method, one set
tions. It is unknown how much of the physics of the 1DEG isof RG equations governs the flow of the coupling constants
generic to other non-Fermi liquids; but one may hope thafor energiesw greater than the phonon frequensy, while a
certain features are generic, in which case the 1DEG magecond set governs the flow fasy,> w. If, as usual, the
serve as a paradigmatic model for a broader class of systenfSermi energyEg > wq, the first step is to integrate out de-
In addition, there are many reasons to study the 1DE@rees of freedom fronkg to wg using the microscopic cou-
coupled to phonons for its own sake, including the impor-pling constants as initial values. The resulting renormalized
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couplings are then used as initial values in the second stagioping.” For dopings well below optimal, the isotope effect
of RG flows, to integrate out degrees of freedom fregito  on T, is quite Iarge:aTCz 1. As the doping increases;

some low-energy scale. We also use the two-step RG techfecreases, usually dropping below 0.1 near optimal dofSing.
hique to study systems at half-fillinghe only difference  The isotope effect on the so-called pseudogap has the oppo-
being the inclusion of Umklapp scatteringNear, but not sjte sign as the isotope effect .24 The origin of these
equal to half-filling, there are three steps to the RG transforyighiy “unconventional isotope effects remains one of the
mation. Definingu as the chemical potential relative to its many unsolved mysteries of high-temperature superconduc-
value at half-filling, foru> wq these steps arEg> w> pu, tivity.

then p>w>wg, and finally wo>w. This "three-step RG” Since the 1DEG is perhaps the only presently solvable

technique allows us to study the continuous evolution of the AN S .
phase diagram with doping. hon-Fermi liquid, it is worth computing isotope effects in

We study the continuum limit of two microscopic models this system to try to gain insights on isotope effects in un-

of interacting, spinful 1D electrons coupled to phonons: thefonventional superconductors. We compute for a quasi-

extended Holstein-Hubbard mo&tland extended Peierls- 1DEG coupled to phonons, under the assumption that charge
Hubbard model. While others have employed RG techniqued€ensity wave order is dephased by spatial or dynamic fluc-
to study the 1DEG coupled to phonol¥st?1718and indeed tuations of the 1D chain®.?° For most choices of the pa-
some of the qualitative results of the present paper have begametersar_is larger than the BCS value at small dopings,
known for some time, the aforementioned models have nothen drops below 1/2 as the doping is increased. We show
been explored in detail with multistep RG. Numerical calcu-that the quasi-1DEG coupled to phonons displays a strongly
lations of their phase diagrams have been mostly limited t@loping-dependeri, that can exhibit a maximum as a func-
simplified models that contain spinless electrons, infinite ionion of doping. This behavior occurs despite the fact that the
mass, or zero el-el interactiof%?! These studies have also pairing energy, determined by the spin gAp is a mono-
been mostly limited to specific values of the band filling, tonically decreasing function of increasing doping. We also
especially half-filling? compute the isotope exponemt_=~d In Ag/dIn M and find

We obtain analytic expressions for the low-temperature, o which in most cases is the opposite signas
phase boundaries of the aforementioned models. Since the* <

. . The rest of this paper is organized as follows. Section |l
RG procedure is perturbativene-loop, our results are only qefines the microscopic models. Section Il presents our re-
accurate for interactions that are small compared to the ban(g'ults for the phase diagrams, without derivation. In Sec. IV
width, but are valid for any relative strength of the el-ph andyy ive our results for the doping dependence of the super-
el-el interactions. Corrections at stronger couplings are exzqq,cting susceptibility and isotope effects, again without
pected to be smooth and should not make large qualitativie iy ation. In Sec. V we compare our analytical results for

changes to the results, as long as the interactions are not t§Q, yhase diagrams to numerical work of other authors. Sec-
large. The method properly takes into account the quantury

h d . dis theref d dv bh gn VI discusses the RG flows of the coupling constants and
phonon dynamics, and Is therefore used to study phonons o niains a mathematical derivation of all the results in the
nonzero frequency.

) . . . previous sections. In Sec. VIl we summarize the results
One question we address is whether SfupercondUCt'V't%;ualitatively and make some concluding remarks.
can exist in realistic quasi-1D systems in which the bare el-e
repulsion is stronger than the bare attractive interaction me-
diated by the el-ph coupling. It is known that in the absence
of el-ph interactions, a repulsive el-el interaction in a single-
chain 1DEG is always harmful to superconductivity, as isthe The 1D extended Peierls-Hubbai@ei-Huh model is de-
case in higher dimensions. However, we find that for thefined by the Hamiltonian
1DEG coupled to phonons, increasing the el-el repulsion can
in some specific cases enhance superconductivity. Moreover,  Hpegiu= —t2 [1 =@ +a)](c cv1,+ H.C)
with even a small amount of retardation present, it is possible o '
for a 1DEG to have a divergent superconducting susceptibil-
ity even when the bare el-el repulsive is much stronger than
the bare el-ph attractioriln three dimension$3D), this is
only possible with substantial retardatipn. where the el-el interaction part is that of the extended Hub-
In ordinary metals, the observation of an isotope effect orbard model:
T, was crucial in the development of the BCS theory that
describes the superconductivity of Fermi liquids. The isotope Huyy = UE n Ny + VE MiNis1. 2
effect  exponents ar=-dinT/dInM  and a,= : !
-dIn A/dIn M have the universal value of 1/2, whekis  Here,c/ . creates an electron of spinon sitei, a' creates a
the ion mass and is the superconducting gap. phonon of frequencyw, between sitesi and i+1, n
In contrast, in the cuprate high-temperature superconductzEgni’U:Egci’f”ci’m and’y is the dimensionless el-ph cou-
ors, bothT, and ar_are strongly doping dependent. Despite pling constant. This model, in the absence7of,, is an
the fact that the superconducting gap is a monotonically deapproximation to the model of Su, Schrieffer, and He&ger
creasing function of increasing doping, varies nonmono- (SSH. Including extended Hubbard interactions, the SSH
tonically with doping, exhibiting a maximum at “optimal model is

Il. MODELS OF 1D ELECTRON-PHONON SYSTEMS

+ o) afa + Hyy, (1)
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PHASE DIAGRAM AND ISOTOPE EFFECTS OF THE

HssH-Hub™ ~ E [t— y(Uisq - Ui)](CiT,aCi+1,a+ H.c)

i,o

2

{p—iz S (Ui - u-)2} +H 3
oM 2 i+1 i uv:

Here, acoustic phonons with spring constantouple to
electrons by modifying the bare hopping matrix elentelmy
the el-ph coupling strengthy times the relative displace-
mentsu;,.,—U; of two neighboring ions of masMl. If we
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LEL =

approximate the acoustic phonon as an Einstein phonon of

frequency 2 «k/M= wg, the SSH-Hub model reduces to the

FIG. 1. Phase diagram in theU plane showing the. depen-

Pei-Hub model. This is a good approximation since, in thedence of the phase boundary between the gapless Luttinger liquid
SSH model, the el-ph interaction vanishes at zero momenturfiLL) phase and the spin-gapped Luther-Emery liqiEiL) phase,
transfer. The el-ph coupling constants of the models are refer an incommensurate 1DEG withr/ wo=5 (dashed linesand

lated viay=ytV2M wy,.
The 1D extended Holstein-Hubbat#iol-Hub) model is

defined by the Hamiltonian
2
pi 1
[zﬁ*zMw@ﬂ

(4)

Heorrun =~ 12 (CiT,gCi+1,U +H.c)+ X

i,o i

+gV2Mwo Y, gy + Hyy-
i

. . . . .0
In this model, a dispersionless optical phonon mode with

vibrational coordinatey; and frequencyw, couples to the
local electron density with el-ph coupling strengthUnlike

the Pei-Hub model, this model contains equal parts backward

scattering(momentum transfer neakg and forward scat-
tering (momentum transfer near) @I-ph interactions. An-

Er/ wp=10 (thin solid lineg. The thick line shows the phase bound-
ary atA=0 for anyEgr/wg. N stands for eithekq Or Apg; depend-
ing on the model.

Ill. RESULTS FOR THE PHASE DIAGRAMS

In this section, we present our main results for the phase
diagrams, without derivation. More discussion of the method
and a detailed derivation are given in Sec. VI, where we
btain explicit expressions for the phase boundaries.

A. Incommensurate filling

Below we present zero-temperature phase diagrams in the
incommensurate limit, which correspondsuoe- Er.

other difference is that the el-ph interaction is site centered

(diagona] in the Hol-Hub model versus bond centergxd-

diagona) in the Pei-Hub model. In the present paper, we

1. Transition to the spin-gapped phase

For the 1D extended Hubbard model without el-ph inter-

only explicitly discuss the case of repulsive el-el interactionsactions' the low-energy properties are described by the spin-

(U,V=0); however, the mathematics remains valid for at-

tractive ones.
For convenience we define the following dimensionles
quantities:

447 Sir? ke 29
Pei™ ' = !
TTUEK TTUEWo
— U =V E
U=—oV, V=—oy, |0:|n<—F), (5)
TTUE TTUE (O]

where vg=2t sin(kg), V' ==V co92kg), Er> wq is a high-

S

charge separated Luttinger liquidL) as long asv<U/2.
The low energy properties of this gapless, quantum-critical
state of matter can be described by a bosonic free field
theory?82° Since the quasiparticle residue vanishes, the LL is
by definition a non-Fermi liquid; there are no elementary
excitations with the quantum number of an electfon a
hole).

In the absence of el-ph interactions, a spectral gap devel-

ops in the spin sector ¥>U/2, which leads to quite dif-
ferent physical properties than the LL. This non-Fermi-liquid
phase is termed a Luther-Emery ligeAdLEL). However, in

energy cutoff for the RG theory on the order of the Ferminature one typically expect<U/2, so that some additional
energy, and B/ is the average number of fermions per physics is needed to create a spin gap. For incommensurate

site. The el-ph coupling parametexs,; and\, are defined
such that, in the absence of el-el interactions, the spin gap
given by Ajxexp(-a/\), wherea=1/2 for half-filling, a
=1 for incommensurate fillings, andstands fopg; OF Ay,
depending on the modéln Sec. VI we give the result fakg

in the presence of el-el interaction¥he method we employ

yields phase diagrams that are accurateNdd,V<1. We

fillings, the charge sector is gapless.
is We now study the effects of the el-ph interaction on the
phase boundary between the LL and spin-gapped LEL. In

Fig. 1 we show a phase diagram in teU plane, for vari-
ous fixed values ok andEg/ w, (this phase boundary is the
same for the Pei-Hub and Hol-Hub modelg/e see that a
retarded el-ph interaction dramatically increases the stability

expect that the technique is qualitatively accurate when thegef the LEL phase relative to the LL phase. The phase bound-
couplings are of order 1. It should be clear that, in the preserary is very sensitive to the retardation paramé&ghwg, with
paper, we have set the lattice parameter and Planck’s cotwMgher values favoring the LEL phase. For the case of an

stant equal to 1.

unretarded el-ph interactiofwy> E), which is not typical
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FIG. 2. Phase diagram in they-Ul, plane for an incommensu- 02l sOW cDW ,:' ozl (?:g\\//VV) \‘
rate 1DEG, showing the dependence\Wity of the phase boundary o] (cow) (89) ) ’ L
separating the LL and LEL phasesstands for eithek g or Apg; DT ! DT |
depending on the model. 01 N 01 f N
/ CDW Lk,
1K) - '
i i i 11—\ oo s Y] A S S v
in real ma.terlals, a spin gap can only occur forU-2V. . 00 01 02 03 04 0 01 o0z 03 o4
However, just a modest amount of retardation makes a spin A

i Pei Pei
gap possible, even, in some cases, XecgU-2V. As we

show in Sec. VI, this is due to the renormalization of the FIG. 3. Phase diagrams of the incommensurate extended Hol-
backscattering el-ph interaction toward stronger va_Iue_s. Thelub model with(a) V=0 and(b) V/U=0.2, and of the incommen-

figure shows that poorly screened interactighigh V/U)  surate extended Pei-Hub model f@) V=0 and(d) V/U=0.2. For
favor the LEL. The dependence of the phase boundary ofll diagramsEg/wo=10. To the right of the thick line, the system is
V/U is shown explicitly in Fig. 2, which presents a phasespln-gapped. The most divergent susceptibility is shown without

. . . parentheses, while parentheses indicate a susceptibility that di-
diagram in thexly-Uly plane. This diagram shows that scal- verges less strongly. SDW stands fde-2pin density wave, CDW

ing eventually carries one to the case in which an infiniteSisiangs for ®- charge density wave, SS stands for singlet supercon-

mal \ causes a spin gafin other words, forE->wo, the  ductivity, and 4 stands for 4 charge density wave.
system is spin-gapped for infinitesima).

slightly weaker CDW susceptibility. The LEL phase is more
complex. For the extended Hol-Hub model, dominant SS
order is possible provided the el-el repulsion is weak enough
Below, we explore the many ordering instabilities presentand\,,,, is neither too weakior too strong. For the Pei-Hub
in the system. & spin density wave orde(SDW), 2k model with repulsive el-el interactions, a phase with domi-
charge density wave ordé€EDW), and singlet superconduc- nant SS is impossible due to the absence of el-ph forward
tivity (SS can all compete at zero temperature. A divergentscattering. Therefore, generally speaking, an optical phonon
charge density wave susceptibility wittkeperiodicity (la-  is more favorable to superconductivity than an acoustic one.
beled in phase diagrams ask4) is also possible. It is im-  In both models, there is a large region, for intermediate val-
portant to note that since long range order is forbidden in ames of\, with dominant CDW and subdominant SS. At high
incommensurate 1D system, the phase diagrams below actualues ofx, SS is no longer divergent; in this region &2
ally consist of identifying instabilities with divergent re- CDW dominates and aké CDW is subdominant. We must
sponse functions. However, for a quasi-1D array of weaklypoint out that the dashed line is not expected to be quantita-
coupled chains, interchain coupling allows for true brokentively accurate, since the method is a weak-coupling one.
symmetry order at low temperature. o Note that the phase with dominant SS is strongly suppressed
In Fig. 3 we present phase diagrams in e\, and by poor screeninglarge V/U).

U-\pe planes, forEg/ wo=10. In these diagrams, we show  In Fig. 4, we study the dependence of the ground state on
phase boundaries between regions where various orderirfg=/ wo, for the Hol-Hub model, by showing phase diagrams
fluctuations have divergent susceptibilities in the low-in the Er/w,-U plane. We see that high values Bf/wy
temperature limit. The susceptibility that diverges mostcreate a spin-gapped phase with dominant CDW. Low values

strongly, i.e., doln"!i_nate.s, is shown without parenf[hgses. If & E-/w, create a SS-dominated LEL for |0@, and a LL
second susceptibility diverges, but less strongly, it is terme . . .
“subdominant,” and is shown in parentheses. The thick soli or high U. In other words, an electron bandwidth that is too

S - . . i ivity! Note that for moderate
line is the LL-LEL transition line; the LL phase is present to ig is harmful to superc_onductwlty ) .
left of this line and the LEL phase to thg right. P Er/ wq, the system lies in the region with dominant CDW

For repulsive el-el interactions, the entire LL phase, forand subdominant SS, which extends from0 to quite large
either model, is dominated by SDW fluctuations, with avalues ofU. Therefore, even when the bare interactions are

2. Competition between spin density wave, charge density wave,
and superconductivity instabilities
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FIG. 4. Phase diagrams of the incommensurate extended Hol- tlo, tlo,

Hub model.(a) and(b) Ay =0.2; (c) and(d) Ay =0.3.(a) and(c)

V/U=0; (b) and(d) V/U=0.1. Parentheses indicate a subdominant FIG. 5. Phase diagram in thgg/ wo-t’/ wy plane of the spinful
susceptibility. The region with dominant SDW is the LL phase, incommensurate extended Hol-Hub model f@ U=V=0; (b)
while the rest of the parameter space is a LEL. U’/ wy=5, V=0; and(c) U’ /wy=5, V/U=0.1. Hereg' = g\Er/ve,
t'=t(Eg/2t), andU’ =U(Er/vg). In (a), a spin gap is present ev-
erywhere in the phase diagram, while (im and (c), it is present

redominantly repulsivéUs \ , it is still possible for the
P Y TepulSiVeU > Avjo) P above the thick solid line.

system to have a divergent superconducting correlation. It i
possible for this to occur even with a small degree of retar-

dation like Ex/ wy~5 [see Fig. 4d)]. The phase diagram of ) i off ) )
the Pei-Hub model is similar to Fig. 4, except that the phas€'Tective Luttinger parametd€ " away from its noninteract-

with dominant SS is removed, and the dashed line is shiftefd value of 1(see Sec. VI Clearly, SS is enhanced by an
to slightly lower Ex/ . increase iMg or an increase i.. In many cases, increasing

It is worth pointing out the intriguing possibility that, for the el-el repulsion causes bath andK, to decrease. How-
a quasi1D system with dynamically fluctuating 1D chains, €ver, below we discuss cases in which one of the two param-
or even for chains that exhibit transverse spatial fluctuationsgters isncreasedy el-el repulsion; depending on how much
CDW order is easily dephased, while the superconductinghe second parameter is reducgds may be enhanced.
instability is not?® If this is the case, then it is possible for ~ In the absence of el-ph interactions, an increasd ial-
the system to support superconductivity even for the physiways decreasek. and A, and therefore suppresses super-

cally realistic case ob)> A, and without the large amount conductivity. In a 1D el-ph system, .this i§ of_ten the case as
of retardation that is required in 3D. well; however, there are also cases in which increasimgn

A number of authors have computed the phase diagram Cﬁausngﬁ to be increased (The technical reason is a de-
the spinlessHolstein model at half-filling, in the absence of C'ease in the effective el-ph backscattering interaction, see
el-el interactiongsee Fig. 17, To facilitate comparison be- S€C- V1) Then, if Asis not reduced too much by the increase
tween this model and the spinful incommensurate extendel Y, it is possible for SS to be enhanced. An example of this
Holstein-Hubbard model, Fig. 5 shows our phase diagranf@n be seen in Fig.(8 or 3(c). If we start at\=0.35 and
for the latter model, in units similar to Fig. 17. U=0, and increast while holdingX fixed, we cross from a
region without divergent SS to a region with divergent SS.
This phenomenon can also be seen in Figa) 4nd 4c) if
the right value ofEg/wq is chosen[such as, for example,

The intuitive notion that repulsive interactions suppressEgr/ wy=200 in Fig. 4a)]. However, if we se//U=1/6 and

superconductivity at weak coupling, while always true in anold this ratio fixed while increasing, superconductivity is
Fermi |IC]UId, does not a.lWa.yS hold for the 1DEG Coupled tOnever enhanced at weak Coup“[*@e F|gS 6)) and gd),
phonons. In the 1DEG, the potentially strongly divergent pargng Sec. V).

of the singlet superconducting susceptibility at temperature |n Fig. 6, we further investigate the enhancement of SS by
T<wp is xss* AT =2, Interactions in the spin channel repulsive interactions by plotting the dimensionless super-
determine A;, while charge interactions renormalize the conducting susceptibility

3. Enhancement of superconductivity by repulsive interactions
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Holstein-Hubbard Peierls-Hubbard idly decreasingKﬁff begins to overwhelm the effect of the
increasingAg, and ysg decreases. In this case, optimizing

superconductivity therefore requires a fine tuningvet).

We have pointed out exceptions to “rule” that el-el repul-
sion suppresses superconductivity at weak coupling, in order
to illustrate, as a point of principle, the dramatically different
physics that governs 1D el-ph systems compared with a
Fermi liquid coupled to phonons. It is worth briefly discuss-
ing some prior works on this topic. Although the RG flow
equations in Ref. 10 are correct, the authors implied that an
- enhancement of superconductivity by repulsive interactions

FIG. 6. Dependence of the superconducting susceptiblyy  is a generic feature of the 1DEG coupled to phonons, while
(thick line) on the Hubbard repulsiot), for an incommensurate Ref. 12 concluded that repulsion always suppresses super-
system withV=0, Er/ wy=10, andT/w,=0.01.(a) is for the Hol-  conductivity. Our results indicate that both works overstated
Hub model with\,5=0.3, and(b) is for the Pei-Hub model with  things: indeed, both situations are possible, depending on the
)\Pei_= 0.3. The thin Iing isAs/ wp and the dashed line is the effective choice of parameters. The disagreement between Ref. 10 and
Luttinger exponentc. Ref. 12 was caused, in large part, by the fact that Ref. 10

focused purely on the effect of the el-ph interaction Ay
Yes= TUrXss= (AS/EF)(T/EF)l/Kgff-z (6) while Ref. %f? focused purely on the effect of th_e el-ph inter-
action onK;". Above, we have correctly taken into account

— R ; eff
versusU, at fixed\=0.3, V=0, andT/w,=0.01. For small that the el-ph interaction affects botky and K;", both of

— L . o which in turn affectyss
U, xss increases with increasing. However, asU is in-
creased furtherl,({iff stops increasing as rapidly, and the de- B. Near half-filling
creasingA, causesyss to drop back down.

It is also possible to enhance superconductivity, in som
cases, by increasing the nearest-neighbor Hubbard repulsi
V, while holdingU fixed. This causes a renormalization of
the el-ph backscattering toward stronger coupling, which re
sults in an increase i and a decrease dﬂﬁ“. Depending
on the competition between these two effegiss may (or

If we reduce the doping level of an incommensurate sys-
%em (i.e., move closer to half-filling the LL-LEL phase
%undary is influenced in opposite ways for the Hol-Hub
compared to the Pei-Hub model. This is because the on-site
Hubbard repulsion is in direct competition with the attractive
on-site el-ph interaction of the Holstein model, while it co-
operates with the attractive bond-centered interaction of the

may no} be enhanced. A!" ex_ample of a case in Wh’_@B IS pei model. Therefore, the spin gap is enhanced by proximity
enhanced can be seen in Figsa)3and 3c). There, if one 4 naifilling for the Pei-Hub model, and reduced for the

begins at\=0.1 andU=0.2, then increaseg/U from 0 to  Hol-Hub model.
0.2 while holding\ and U fixed, the system moves from a ~ We illustrate this in Fig. 8, which presents a phase dia-
LL phase without divergent SS, to a LEL phase with diver-gram in theUl,-\l, plane, forV=0. This diagram shows the

gent SS. dependence of the LL-LEL phase boundary on the doping
In Fig. 7, we explore this phenomenon further by plotting parameter

Xss VersusV at fixed U=0.3,:=0.2, andT/wy=0.01. For In(w/wp)
smallV, xssis enhanced by increasing due to the increase N

. o In(Eg/wg)”

in Ag. However, ad/ is increased further, eventually the rap- ) )

Assuming the charge gap.< u, the actual doping concen-
tration x relative to half-filling is related tas by

()

Holstein-Hubbard Peierls-Hubbard

A, =02,U=0.3 A, =02,U=03 S5
10 Hol : 1.0 Pei 2 2 2(1)0 EF
F~< @) (b) X=—upu=— — (8)
5 08F s "vxoo.s-s\ V¢ TUc \ Wo
C N S~ F. T . . .
» 0-6—_257% . | Sosp—r.3 /73 wherev.~uvg is the charge velocitysee Eq.(41)]. The in-
p T A IRIPYY R YN . commensurate limiy=1 is shown previously in Fig. (3)
Bool ¢ f-- KT and Fig. 3b) as a thick solid line. As we move closer to
= 302 half-filling by lowering &, the LL-LEL transition line for the
00 T e ¥ Pei-Hub modeldashed ling moves toward lower values of
v v N\, while the transition line for the Hol-Hub modétlash-

dotted ling moves toward higher values. In the weak-
FIG. 7. Dependence 0fss (thick line) on the nearest-neighbor coupling limit assumed here, far< wy, the LL-LEL transi-
repulsionV, for an incommensurate system with=0.3, Ex/w,  tiOn line is independent gk. Therefore, this phase boundary
=10, andT/wy=0.01.(a) is for the Hol-Hub model with\,,,;=0.2, IS the same for half-filling x=x=0) as for 5=0.
and(b) is for the Pei-Hub model with p¢=0.2. The thin line shows The doping dependencies of the other phase boundaries
A¢/ wo and the dashed line is the effective Luttinger expori€ift are shown in Figs. 9 and 10, for the rangg< u <Eg. Fig-
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| spw ' (c) b\ d)
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FIG. 8. Dependence of the transition line between spin-gapped ! fﬁ("‘; ss)| oW
and non-spin-gapped phases on the doping parameiad on the 0.1 ' i 0.1 ! )
electron-phonon model, fov=0. For u<wy (which includes the ' !
£ - .. . . — 00 PR IR U Y N . 00 PR NI B BN I
half-filled casewx=0), the transition line is denoted b§=0. The 0.0 01 02 03 04 05 06 00 01 02 03 04 05 06

incommensurate limitu ~ Ef) is labeled bys=1. §=1/3 and 2/3 . by
are intermediate dopings, with/ wo=(Eg/wg)?. Here,\ stands for e

Apei IN the Pei-Hub mode({dashed lingsand for Ay in the Hol-
Hub model(dashed-dotted lingsFor 6=1 (solid line), the transi-
tion line is the same for either model.

Pei

FIG. 10. Doping dependence of the Pei-Hub phase diagram for
V=0 andEr/wy=5. The value ofé is given above each plot.

C. Half-filling

ure 9 illustrates that for the Hol-Hub model, proximity to At half-filling, for repulsive el-el interactions, a charge
half-filling strongly suppresses the phase with dominant $S92P IS present for the entire phase diagram. Divergent SS is
For both models, moving toward half-filling increases the(:""mm""te‘.j at half-f.||||ng. The region \.N'thOUt aspin gap Is a
stability of the phase with subdominank4charge density SDW, while thg spln-gappeq region is an ordered CD.W' We
wave, at the expense of the phase with subdominant S how the half-filled phase diagram, for both models, in Fig.

. . . 2, for several values OEr/wy and V=0. The difference
e_spec_lally_for the Pel_-Hu_b modéFig. 10. Note that, espe- between the two models is substantial, with the Pei-Hub
cially in Fig. 10, SS is divergent for a range of parameters

such thatJ > \p,;, despite the low value d&r/ wy=5. Figure Holstein-Hubbard

Hol

SS
(CDW)

}"Hol

V=0 andEr/wp=5. The value ofs is given above each plot.

: X ; . U=0.1 U=04
11 shows a different slice of the phase diagram by showing 06 06 (5w o) —
plots in the\-8 plane. L (k). -+ 2-"
" cDw
04 04F (s8)
) 3 2 f
5=1 Holstein-Hubbard 5=2/3 < \
04 (a) ) 04 | (b) / 0.2 0.2 SDW
03 (23\\7\/) ‘| osp SDW / com
3 ! 3 i
cDwW (CDW)
I (s8) /: - CDW III 00l J [ U TR ool [ PR EEPRN B
D02k ! 1202 ss) 0 02 / 04 06 08 1 0 02 04 06 08 1
r . : ,/ cow SDW 5
0.1 ss ] 0.1 f(ak) (cow)
CDW,| S8 / .
(cow) @) (CDW) K U=0,1 Peierls-Hubbard O=04
[3 1) S I T S TP R [31s)L AP R I N VI I T 0.6 . 0.6 -
00 01 02 03 04 05 06 00 01 02 03 04 05 06 (c) (d)
Hol . xum [ cow . /,
5=1/3 Holstein-Hubbard 5=0 04F (@k) JPtad 04F CDW R
04 ’ 0.4 ] - 5 (4k.) -7 cbw
i © 4 (d) ,’ [ S e a -
sow , ow , < [.--- < e (SS)
03F (cOW) // 03 7 02k CDW 02 B
| ) | (cow) Y (ss) .
cow cow 4 L -~ SDW
1D0.2 (s8) ,/ 1202 |- ss), cow — ) ) | | ((I;DW)I
i / cow - / oolatfl ot ol
01k A /) o1} J {ak) 0 02/04 06 08 1 0 02 04 06 08 1
L / X ' sbw  §
0.0 JEOW 0.0 ./l L (CDW) 5
00 01 02 03 04 05 06 00/01 02 03 04 05 06

FIG. 11. Phase diagrams fBr/ wy=5 in theX-§ plane. Plotga)
and(b) are for the Hol-Hub mcElelcc) and(d) are for the Pei-Hub

FIG. 9. Doping dependence of the Hol-Hub phase diagram fomodel. Plots(a) and(c) are forU=0.1; (b) and(d) are forU=0.4.

For all plots,V=0.
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Peierls-Hubbard

A}
03} @ o3\ * ® 1k . ' \ 2,=035
- : < T XS\l 72\
Sbw i \ = 7 /100 \
0.2f 0.2} ! < Xcow _
cow SDW| 1 cow X ! i Ao =025 |
= o} | : S o | \
.’ o \
01 - - EJo,=5 01F /)7, == Elo=5 = x \ \
——EJo, =10 [ —EJo, =10 2 05N % \
0.0 " 1 " 1 " 1 0.0 n 1 " 1 n 1 |>é) \ \\
00 01 02 03 00 01 02 03 S Aoy = 0.15 Y 5
Mo Mo % \\4 e ‘.
IPéD N N ~ > ~
FIG. 12. Phase diagram of tii@ half-filled Hol-Hub model and 0 — > '4 = L == 1
(b) half-filled Pei-Hub model, both witv'=0. The dashed lines are 0 0. 0. 5 0.6 0.8

for Ex/ wp=5 and the solid lines foEr/ wy=10. For both diagrams,

a spin gap is present for the CDW phase, while a charge gap is . . .

present everywhere in the phase diagram(dnthe dotted line, F_IQ._ 13LDop|_ng depen_dence of the singlet supercondugtl_r_lg sus-
— ceptibility yss (thick solid lineg at T/ wy=0.1, CDW susceptibility

frimezynﬁ?@tih'esoﬁ'f inaccurate result for the phase boundary, " dashed linesat T/ wo=0.1, and spin gahin solid lines,

for the Pei-Hub model withJ=0.4, V=0, Er/ wg=5, and various

. . values of\pg; (labeled in plot.
model favoring CDW more than the Hol-Hub model. In Fig.

12(b), we also draw a dashed line definedXys=U, which

is the transition line predicted by mean-field theory. Such
treatment is know#t to be quite inaccurate for the Pei-Hub
model, as demonstrated in the figure, since it does not take
into account the dramatic renormalization of the backscatter-
ing el-ph interaction to stronger couplings. Note that the Pei- i o o
Hub phase diagram is very sensitive Ea/wg, with high (das_hed lines in Figs. 13 and )1does not_exhlblt_su_ch a
values favoring a spin-gapped CDW, while the Hol-Hub maximum, butmstead decreases monotonically vylth increas-
phase diagram is only weakly dependent B/ w,. It is N9 doping. In Figs. 13 and 14, we also play/ w (thin solid
interesting that in the Pei-Hub modetig. 12b)], there is a lines), which shows that at low dopinggss increases with
maximum value of the critical el-ph coupling of about

0.1494,, which occurs atijAlle. (In other words, for
Apei=>0.1491, the system is an ordered CDW for ably)

doping that depends on the interaction strengths. The dimen-
&jonless R- CDW susceptibility

— eff_
Xcow = TUrXcow = (AJER) (T/Ep)Ke ~2 9

My = 0.275
(@)

Holstein-Hubbard 2, ,=0.3

(b) ——3,J4
=i Rl 30

— Ao,

-
T

= - \
—i 4 |
= /30

— Ao,

130, Alw
s 0

IV. DOPING DEPENDENCE OF THE SUPERCONDUCTING
SUSCEPTIBILITY AND ISOTOPE EFFECTS

» Xepw

In this section, we study the strong doping dependencies
of the spin gap, superconducting susceptibility, CDW suscep-
tibility, and isotope effects. 0=

Examining the phase diagram in Fig.(d}], we can de- 5 5
duce an interesting nonmonotonic dependence of the SS sus
ceptibility on 6. For moderate values ofp,;, for example,
nearipei= 0.2, xssis not divergent neaf=0, where only the
2ke and 4« CDW susceptibilities diverge, nor is it divergent
nears=1, where the system is in the gapless LL phase. How-
ever, xss is divergent for a certain range of moderade
Therefore, in these cases, at fiXBe&k A, yss must exhibit a
maximum as a function of at some intermediate value 6f

This maximum inysg which occurs in both models, is
shown explicitly in Figs. 13 and 14, where we pjais (thick o
solid line) versusé at T/ wy=0.1, for representative param- 5
eters. The cause of the nonmonotonic doping dependence is
the different doping dependencies af and Kﬁﬁ. Ay de- FIG. 14. Doping dependence gks (thick solid lines at T/ w,
creases with increasing doping, which acts to redyeg  =0.1, xcpw (dashed linesat T/wg=0.1, andAg/ wq (thin solid
while K& increases with increasing doping, which acts tolines), for the Hol-Hub model(a) and (b)], and the Pei-Hub model
increaseyss These two effects “compete” with each other [(c) and(d)]. For all plots,U=0.1,V=0, andEg/ w,=5. The values
and can cause a maximum at some “optimal” value of thef N, and\pe are labeled above each plot.

/4

XSS
1
]
1
1

Aoy =025  Peierls-Hubbard

Aoy = 0275
(d)

Xss

1}

Alo,

s

/60,

Xss? zcow
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FIG. 15. Dependence of the isotope effect exponentcsang
@y, On the doping parametet and interchain coupling strength FIG. 16. Phase diagram of the half-filled Pei-Hub model, com-

fo'r the Hol-Hub model withh,16=0.275(a) and Pei-Hub model paring of our result for the phase bound4syplid line) to the quan-

with Ape=0.25(b). For both plotsp=0.1,V=0, andEg/@o=5.@x,  tym Monte Carlo result of Ref. 22squarey for U/t=2.5 and

is independent of. V/t=0.625. The dashed line is our result for the sasie but with
V=0. Here,y=/m(wo/t)\pei 4 is the el-ph coupling constant in Eq.

increasing doping, despite the fact that the superconductin(g})-

pairing strength\; decreases.

We now consider the doping dependenceTgfand the  Sandvik, and Campbéfion the same model. Following Ref.
isotope effect o for a quasi-1D system that consists of an 22, we show a phase diagram in ffres,/t plane in Fig. 16.
array of weakly coupled quasi-1D chains. We assume thathis figure compares our result for the critical line fart
the chains are spatially or dynamically fluctuating so that=2.5 andV/t=0.625(solid line) to the result in Ref. 22(In
CDW order is dephased. The interchain Josephson couplingrder to plot our result in these units, we took the high-
Jis treated on a mean-field lev&lso thatT, is determined energy cutoffEg in the RG theory to be.)
by the temperature at which The quantitative disagreement negy/t~ 1 can probably

be attributed to the fact that the assumption in the RG theory
20xss=1 (atT=To), (10 of a linear electronic dispersion becomes problematic when
where the numerical prefactor 2 is determined by the numbepo~ Er. At lower wo/t, the agreement is excellent, espe-
of nearest-neighbor chains. Treating the interchain couplingially considering the moderately strong value=U/(27t)
with perturbative RG gives an equivalent result. Assuming =~0.4. This gives one reason to believe that the multistep RG
is doping independentl,; then exhibits a maximum at the method is, at the very least, qualitatively accurate for physi-
samed where yss has a maximum. o cally interesting values of) ~ 1.

The isotope effect exponent_is pl_otted versus in Fig. In Fig. 16, we have also plotted our result fot=0
15. It is shown for various values df=J/mvg, at fixed\  (dashed ling which can be obtained from the simple ana-
and U. Unlike in BCS theory,a; is not universal but de- Iytic expression in Eq(59). The solid line in this figure is the
pends on the interaction strengths and band-filling. HowevelY phase boundary in the present paper that required nu-
qualitatively, it appears that the doping-dependent behavignerical integration of the RG flow equatiof&gs.(20) and
in which ar_is large near half-filling but decreases rapidly (21)]. The phase boundaries in all other plots are given by
with increasing doping is generi;lmdependent of interaction analytic expressions derived in Sec. V1.
strengths and el-ph modelNote that if the parameters are
tuned just right,aTC vanishes. A smaltyTC can even occur at B. Holstein model
the doping for whichr; is maximum. Therefore, one should
be careful not to assume that phonons are unimportant iQt
unconventional superconductors for whiahc< 1, such as

in the cuprates at optimal doping. Figure 15 also Sh@WSS

The phase diagram for perhaps the most interesting model
udied in the present paper, the spinful incommensurate ex-
tended Holstein-Hubbard model, has not been extensively
studied in prior works. A much simpler related model, which

which is weakly doping dependent and negative. has been thoroughly explored, is the spinless half-filled Hol-
stein model(without el-el interactions We show the phase
V. COMPARISON WITH OTHER WORK diagram for this model in Fig. 17, computed by various au-

thors with a wide range of methods. Note that the result from
Below, we compare our results for the phase diagrams tthe two-step RG techniqugine with squareg?® is in good
some phase diagrams which have been previously computedgreement with exact numerical methods.
In order to see how Fig. 17 changes when spin is in-
, ) cluded, we have computed a phase diagram in similar units
A. Half-filled extended Peierls-Hubbard model for the spinful halt-filed Holstein model in Fig. 18, includ-
We first compare our results for the half-filled extendeding a Hubbard interaction. In the absence of el-el interac-
Pei-Hub model to recent Monte Carlo work by Senguptations, at weak el-ph coupling, the ground state of this model

205113-9
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VI. METHODS AND DERIVATIONS

- Here, we provide more discussion of the technique and
CDW state study the RG flows of the coupling parameters. We also de-
rive the explicit expressions that were used to plot the phase
boundaries in the figures.

- D// A. Field theory for the 1DEG coupled to phonons
L To focus on the low-energy, long-wavelength physics, we
‘A//AD/ work with continuum versions of Eq9l) and (4). The
LL state purely electronic part of our Hamiltonian is the standard con-
L _ tinuum model of the interacting 1DEG, in which the spec-
1 2 5 10 20 50100 trum is linearized around the left and right Fermi points. The
Yo destruction field for fermions of spier is written as a sum of
0 slowly varying right and left moving fie'dS‘.I’(r:e'kFXl//]_ﬂ.
FIG. 17. Phase diagram of the spinless half-filled Holstein ™ € IKFX‘/I‘L‘T' The Hf’:lmlltonl_an de_nsﬂy_for the 1DEG, in the

model from various authors, in the absence of el-el interactions. Thgbsence of _e"Ph |nteract|0ns,_ 'S_ written Bs=Ho+Hel.e
solid line is an analytical result from Ref. 33. The line with circles Where the kinetic energy density is
and the line with squares denote the results of density matrix renor-

glo,
N W e O O N
T

—_
T
[mi

(=)

- t
malization grougRef. 20 and two-step RGRef. 18, respectively. Ho=~lve 2—+1 1 5,09x .o 19
The line with triangles is the result from an exact-diagonalization o=
method(Ref. 21. (After Ref. 33) and the important short range el-el interaction terms are
t
H l-el= 91 2 l//T 0110— o' lzbl,o" lzb—l,(r

is always a CDW, for any finitesy. This also holds in the e - Lot
strong coupling limit(\;,;>1).° In contrast, for thespinless +
half-filled Holstein model without el-el interactions, the tran- +g > N oVq g ¥-10¥10
sition to a CDW occurs at a nonzero valuegpfas shown in 0,0’ =1
Eé%pﬁzgfor weak coupling and proven in Ref. 9 for strong +93[9'MkF_G)Xl//I1,11![1,—1!#1,—11//1,1"‘ H.c]

To study how Fig. 18 changes when the system is doped s 2 WL oo (12
into the incommensurate limit, we have presented a diagram n,0=1

in the same units for the spinful incommensurate extende
Holstein-Hubbard model in Fig. 5. In Figs. 5 and 18 for
technical reasons, we have definegl =gvEr/vg, t
:t(EF/Zt), andU’:U(E,:/v,:).

Q\Ie have assumed the system is spin-rotation invariant. The
g, andg, terms describe forward scattering, the former con-
taining scattering on both left and right moving branches,
and the latter containing scattering on only one branch. The
g, term contains backscattering from one branch to the other.
3 The g5 term contains Umklapp processes and is only impor-

tant when &g equals a reciprocal lattice vect@; i.e., at
5 half-filling (4k-=2m). For the extended Hubbard model in
CDW the continuum limit, the bar&unrenormalizeglvalues of the
2 g’'s are given by
g U/e =5 0_ 0 '
2t g=g3=U-2v, (13)
(o)}
1L U, = 2
®=U+2V, (14)
U/w, = 0.5
SDW ga=U/2+2Vv' (15)
0 o a0l M NN
1 10 100 where the superscript 0 indicates bare couplings and again
t/o, V' ==V coq2kg), which equalsv at half-filling.

We incorporate el-ph interactions by defining retarded in-

FIG. 18. Phase diagram in tig/wo-t'/ wy plane of the spinful  €rACtionsgs py 92 ph J3ph @Nddg pn Which play the same
half-filled Holstein-Hubbard model fo¥=0. The phase boundary is 'ole as thegy's except that the energy transfer is restricted to
shown for various values ob)’/wp, as labeled. The system is be less than a cutotb, which is approximately the phonon
charge-gapped everywhere in the phase diagram, and spin-gapp#@duencyw, (w. will be defined more precisely belgwThis
in the CDW phase. Fad’ / wy=0 (not shown, the ground state is a corresponds to approximating the phonon propagator as a
CDW for infinitesimalg’/ wo. Here,g’ =g, t' =t, andU’=~U (see  step function of frequency, which is a good approximation
the text for their precise definitions for the momentum-independent phonon dispersions we con-
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sider in this paper. In the Pei-Hub model, the bare el-ph TABLE I. Conditions for various ordering fluctuations to domi-
couplings are given by nate for an incommensurate 1DEG. See the text for the subdomi-
nant fluctuations.

0 __0 _
01,ph= ~ 93,ph= ~ TUFNpei, (16)
Type of order Dominates fér
0 0
= =0. 17
92,007 G4.ph 7 4ke charge density wavétke) A=0,K,<1/3
For the Hol-Hub model they are 2ke spin density wave A=0, 1/3<K.<1
0 _0 _0 _0 _ 2ke charge density wave Ag>0, K <1
= = = == TUENHo!, (18 F s ¢
91.pn= G2,6h= Ja.ph= 9 o Pl Triplet superconductivity Ag=0,K.>1
wherepg and Ay, are the positive, dimensionless coupling Singlet superconductivity A0, K>1

constants defined in Eq5). Note that the couplinggg'ph, ——
a3 andgg , are negative, indicating the attractive interac- For the Hubbard model(;<1 corresponds to repulsive interac-
tion induced by phonons. In the absence of el-el interactiondions, Kc>1 to attractive interactions. The effect of a forward scat-
the sign ofgg " is arbitrary; likewise, the sign ng is arbi- .terlng e'I-ph interaction is Fo raid€;, while a backscattering el-ph
trary in the absence of el-ph interactions. However, for thdteraction lowersK; and, if strong enough compared to the el-el
extended Hubbard model coupled to phonons, once the sigfiPUISion. causes a gap in the spin secty>0).
conventiong3=U-2V’ is chosen, it is required thajg, h L . ;

>0 for the Pei-Hub model and3 <0 for the Hol-Hub ~ Wise, it is a SDW with no spin gafSee Table ).

model.

C. The multistep RG technique
B. Phase diagram of the 1DEG without phonons To determine the phase diagrams, we apply the known

Before deriving the phase diagram including phonons, wé@N€-loop RG flow equatior$

briefly review the known quantum phase diagram of the

: : R do, __ , dg
1DEG without el-ph coupling?3*3by identifying the con- - = =
ditions for various types of order to have divergent suscepti-
bilities in the low-temperature limit.

The sign ofgg determines the existence or nonexistence dg: pn
of a spin gap: a 1DEG without el-ph coupling contains a gap dl
to spin excitations f0|g(1)<0, and no such gap fog‘l’zo,
regardless of band filling. A charge gap is only possible at d d d
commensurate fillings. %@ = %@ = d_§:4 =0, (22

An incommensurate 1DEG without a spin gdjuttinger
liquid), has a divergent & SDW susceptibility when the
Luttinger charge exponent doc

di
2mvg + 203+ 07 — 299

- \/ o+ 204+ 01~ 26; (19)  where we defined
2mUE+ 209, - 01 + 205

dgs
— T _ 2 2B
dl - glv dl g31 dl 039c, (20)

3 1
=- gi,ph<§91 gzt Egc + gi,ph) ) (21)

d
=odmpt Gup), o= mes, (29

is less than 1, along with a logarithmically more weakly 0c =01~ 20>, 24

divergent X CDW correlation. IfK.<1/2, the 4z CDW
correlation is also divergent; it is less divergent than SDW 9z,ph = G1,pn* 3, piv
and X CDW for 1/3<K.<1/2, but becomes the dominant

order forK,<1/3. ForK.>1, a LL has a divergent triplet | = (mve) IN(Er/w), (26)
superconducting(TS) correlation and a logarithmically
weaker divergent singlet superconductivity.

An incommensurate spin-gapped 1DHGuther-Emery
liquid), is dominated by either SS ok2 CDW correlations,
depending on the value ¢f.. A LEL with K.<1 is domi-
nated by R CDW. If K.<1/2, 4 CDW is subdominant,
while if 1/2<K <1, SS fluctuations replacekd CDW as
the subdominant order. ForlK,< 2, SS is the most diver-
gent channel, and CDW is subdominant. Rge> 2, the only
divergent correlation is SS. We summarize the phase diagral
of the incommensurate 1DEG in Table I.

(25

andw is the running cutoff. The above expressions apply for
Er> 0> wg, u. If, instead, u> 0> wy, the same equations
apply, but withgz=g; ,n=0. From Eq.(20), we see that a
repulsiveg, renormalizes in the same way as the Coulomb
pseudopotential in a Fermi liquid—it is scaled to smaller
values as one integrates out high-energy degrees of freedom.

TABLE II. Conditions for SDW and CDW order in a half-filled,
IWarge-gapped 1DEG.

At haltfiling, a 1DEG is charge-gapped fdgd>g0  |YPeOf order Present for
—Zgg, which for repulsive interactions is always satisfied. 2k Spin density wave Ag=0
For g0<0, the ground state of a charge-gapped system is 3. Charge density wave A0

ordered, spin-gapped CDMthe Peierls instability other-
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However, in 1D the backscattering and Umklapp el-ph inter- Incommensurate filling Half-filling
actions g p, and gs o are strongly renormalized. Further- (Any model): (Model as shown):
more, there are cross tergs,ng; in Eq. (21), which means Ullg, .’ =05 Ullg, ‘=05
that the RG flows 0§, ,nandgs nare strongly influenced by "’/. 3 @ — ®)
direct el-el interactions. Y 2 v ¥
The two-step RG procedure is as follows: Assumikg °s ‘s /’ i
< wpy and the system is at half-fillingu=0), we first inte- 2 2 /,"
grate out fermionic degrees of freedom between the high- 351 ] o 5%1 [ F('\f;'f_—fg')ed Pei-Hub
energy scaldeg and.the phonon energy, using .Eqs.(20.) & k T%;?/m o | —.— Half-filed Hol-Hub
and (21). Once w, is reached, total effective interactions —=Vi0=16 (V=0
g°(wy) at this energy scale are determined by adding the 0 . L . 0 . L .
) ) ) . 0 0.25 05 0 0.25 0.5
effective el-el coupling to the effective el-ph coupling ul ul
9i°' (o) = Gi(wo) + G pr(wo) - (27) Ullg,,,"I =2 Ullg, 1 =2
Below this energy scale, there is no difference between re- 21 _// h ©f 2F @
tarded and instantaneous interactionsgSorenormalizesas .| /.’ oL/
a nonretarded interaction using E@0) with gi®(w,) as the ol .- o | + - - Halffiled Pei-Hub
initial value. If the system is far enough away from half- 12" SAK et HokHub
filling such thatu ~ Eg, the method is identical except that & —ub=0 | % \'\.\ (vV=0)
one setsyl=g3 ;=0 at the start. For the above cases, itis R byl I | oy,
clear that the renormalized coupling$'(w,) and the renor- 0 s L : 0 e :
malized cutoffw, play the same role in the 1D electron- g o z 0 9 2
phonon system agio and Eg, respectively, do in the pure
1DEG. Therefore, to determine the phase diagram of the u>>1g, ‘I u>>g, ‘I
1DEG coupled to phonons, we can use the known phase Ll _ -, ©4 o /' )
diagram of the pure 1DEG, and simply replace gﬂ’e there - - = Vi0 =110 < e ’
with g°(wg)’'s. For more general filling(0<u<Eg), a Y et s
three-step RG method is necessary, which we will elaborate = ,| _._-- - _ 4=, L .7 - - Hatiedetrun
. . O | 31Kk (vV=0)
at the end of this section. % '¥ & ['\ —-Haltfiled Hok-Hub
Note thatw, is the physical phonon frequency, whichis o 2 o, M0
related tow, by the expressiomy= w.(wg), wherew(wp) is . . . - .
the renormalized value ab, at the energy scale,, deter- 0o 1 2 0o 1 2
mined by Eq.(23). Likewise, we defingu as the physical ul ul

value of the chemical potential relative to its value at half- ) )
filling; the bare chemical potentialo is chosen such that it FIG. 19. Dependence of the effective backscattering el-ph cou-

flows to the valueu after integrating out degrees of freedom P9 91pr{«) on UI=(U/mue)n(Ee/ ) for w> wo. Plots(), (c),
betweenEx and .. and(e) are for systems doped into the incommensurate limit, while

(b), (d), and(f) are for the half-filled Pei-Hub and Hol-Hub models
D. Incommensurate filling with V=0. For each plot, the ratio df to the bare el-ph coupling

We first derive the scaling of the coupling constants andgg,ph is held fixed at the value indicated above the plot. For each

compute the phase diagrams for the case when the systemﬁ:%ri\éitgd(a)’ (¢), and(e), the ratioV/U s held fixed at the value
doped far into the incommensurate linjji ~ Eg). '

1. Scaling of the coupling constants ' exp(- g2x/2)
Z= f = (31

Using Egs.(20) and (21) with g;=g; ,n=0, we integrate o (L+g¥x)32"
out degrees of freedom betwedfy and w with Er>w
= w, to obtain the follow effective couplings for incommen- 54 agairgi‘):gi(EF).

surate systems: In the absence of el-el interactions, the el-ph backscatter-

Ge(@) = ¢° (28) ing coupling g, pn flows to stronger values according to
¢ ¢ 01,pH®)/ 9} o= (1=|g} ;)% In Fig. 19, the important influ-
0 ence of extended Hubbard interactionsgan{w) is studied.
g1(w) = 910 , (29 In Figs. 19a) and 19c), we show the scaling for several
1+gil fixed finite values 01U/|g(1)’prJ. Fig. 19e) shows the scaling
in the limit Us|g? ], which is given by
Bon |[ Galw) |7 Eg | e2me |
Gl =\ T 2 ( r: ) (;) + (30 91pH(@)/G7 pn =~ h(UD, U > [0} i, (32)
where where for future convenience we define
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Incommensurate filling
1=02, EJo =5 1=0.2, EJo =10

L — V=0 @) : s 0

- - ViU=110 i
—-—=V/U=16
—e-Vil=4

ool 4 1+ 141
02 03 04 05 00 01 02 _03 04 05
u U

00 0.1

FIG. 20. Dependence df; y{wg) on U for incommensurate
systems with(a) Ex/ wg=5 and(b) Er/wy=10. The horizontal dot-
ted line indicates the value of the bare el-ph coupling
—g(l”ph/ 7vp=0.2, where\ stands for eithehy, or \pe, depending
on the model. For each curve, the ra@U is held fixed at the
value indicated in(a).

_ exp(Gx/2)
h(x) = (L0 (33)
G,=1-2VIU), (34)
Ge=1+6V/U). (35)

From Fig. 19, we see that the flow gf , is very sensi-

tive to the paramete¥/U. If V/U<1/6 and U/|gl o is
large enough, then the. ,g; term in Eg. (21) causes
A ph(a)) to initially flow to weaker values. However, if

VIU=1/6, theng; p{ o) /gl pn=> 1 for all o <Eg, regardless
of U/|gl oi- The driving force for this increase |g; p{ )| is
the g prdc term in Eq.(21).

To better understand why mcreasnhg can sometimes
enhance superconductivity at small(see Fig. 6, we study
the dependence @ ,{wo) on U at fixed Er/ wg in Fig. 20.
In this plot, for smaIIU, the effectiveg; pnis stronger that its
bare valug(g; o©0)/9} ,n>1). However, forV/U<1/6, in-
creasingU causesg; ph(w0)| to decrease. This can causgﬂ
and xss to increase, as in Fig. 6. However, if we SétU

=1/6 and hold this ratio fixed while mcreasmg, then
|01 pH{@o)| increases, causingS" and xss to be suppressed.

Note that in real materials, one typically expe&éﬂ
>1/6, in which casdg; g wo)| >0}, ol OF even|gy wo)|
> b o The requirement for a spin gap ||:glpH(a)0)|

> g,(wyp), which can be achieved, in many cases, with even

small amount of retardatior(Note that for repulsive el-el

interactions, @:gl(w0)<gg) Therefore, it is possible for a

PHYSICAL REVIEW B 71, 205113(2005

the following critical value of the bare el-ph coupling

-1
U|0):|

exp(GUly2) UI0/2)
G,V1+G U|0

(LL-LEL transition),

)\Gap

Gap
Pel — U

HoI -

(36)

where we define

y
f(y):f dx h(x). (37

For Npei> )\Pe, or )\H0|>)\HO|, the ground state of the incom-
mensurate 1DEG is a spin-gapped LEL; otherwise, it is a
gapless LL. The conditioh=\S2P=\33P therefore deter-
mines the transition lines in Figs. 1 and 2, as well as the thick
solid lines in Figs. 3-5. Note that in Fig. 2, we used that the
“scaled” critical couplings\53flo and A5l depend only on

the two parametersll; andV/U.

3. Susceptibilities and spin gap in the LEL phase

In the LEL phase, the potentially strongly divergent part
of the low-temperature susceptibilities for SS akg £DW
are given by Eqgs(6) and(9), respectively, wherda(ﬁff is the
effective Luttinger charge exponent after integrating out
states betweeBr and wg, given by

el J 2mue + 205"+ g (o)

, 38

27TU|: + thOt '[Ot( O) ( )
where

tOt (wp) = gc + 01 p{wo) = 292 pht (39

95 =d3+ 90 o (40)

Integrating out states below the energy does not further
renormalizeg?" (and thereforeK,). Note that the effective
charge and spin velocities are also renormalized due to
phonons, the former of which is

(277) 1\/[277_0[: + 2gtot 2 [gtot(wo)]z_

For —1<gt°t(wo)<0, A, is given approximately by the
energy scale beloww, at which the RG analysis breaks
down because the effectig"/ v has grown to —1. Since

tOt( wo)

1 +[gr(wo)/ moelin(wy/w)’

(41)

Iot( ) —

for w < wy,

(42)

at’his gives

As= woe expl ~ mve/|g (wo)|]. (43

slightly retarded el-ph interaction to create a divergent super- ot
conducting susceptibility even when the bare interactions arEOr 97 (wo) >0, gY'(w) — 0 asw— 0; therefore A;=0

predominantly repulsivélg] ] <g).

2. Luttinger liquid to Luther-Emery liquid transition

4. Competition between SS and CDW in the Hol-Hub model
The thin solid line in the incommensurate extended Hol-

The phase boundary between the LL and LEL phases islub model phase diagrams of Figs. 3-5, which we call the
given by the conditio*(wy) =0. This condition determines “superconducting transition,” is determined ng‘ﬁ 1. This

205113-13
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condition is satisfied foky =\ and Ao =A5g s Where o) ( & o )(gl(w)>3/2( gc(w))—lf2 51
+.p - 0 0 0 ’
)\SS,t_ H + H2— Gc 1 +g+,phx gl c
S 26(Uly) 0
o d 0 (o) :( 9 ph )(gl(w)>3’2( gc(w))3’2 2
X (superconducting transitipn (44) ~.ph 1 +gg'phy gg gg ’
and where
e [
H= —24f:'L(J_L|J')°) + %C. (45) X= JO dx(1 +g9) 341 +gox) M2, (53)
0
Therefore, as long as the square root is not imaginary, for [
fixed Ul,>0, there arewo critical values of the bare el-ph Y= f dx(1 +g9x) A1 +gox) 32
coupling determining the boundary between the phase with 0
dominant CDW and the phase with dominant SS. The most 2 l 0. 0 g({+gg+ 29293' ]
) o . = =————=|gi+a0- , (54)
divergent correlation is SS provide@,< 2f(Uly)H* and (gg_gg)z 17 Yc \/(1+g(1’l)(1+ggl)

Ao <Mho<A{5i" Note that a divergent TS susceptibility is
not present in any phase diagrams, since for repulsive el-@ndg;(w) is given again by Eq(29). Since our assumption
interactions K< 1 wheneverg®(wo) > 0. of g9=-¢3 is satisfied for the Hubbard modéhith V=0),

The phase boundary shown as a dashed line in Figs. 3-the above results determine the scalingggf, andgs ,, for
is defined byK®"=1/2. For theextended Hol-Hub model, the Hol-Hub and Pei-Hub models, which are

this condition occurs ak,=A53" with

0
_ _ O1,0h 1-Ul
91,pH@) = Gz p{ @) = ( 0 ) \ 3
ol = U[ L+ /L2+ Q } (K = 1/2 transition, 1+g0 X'/ V(1+Ul)
2f(Uly)

(half-filled Holstein-Hubbard modgl (55)

(46) .
O1,ph 1
where w)=- w) = ( L ) \/
B 91,pH J3,pH 1 +gg,th’ [1- (U2
L=A75Wly _Q (47) (half-filled Peierls-Hubbard model ~ (56)
8f(Ulo) 4 whereX’ andY’ are the values of 2 and 2, respectively,
- for the casey)=-g2=U:
Q=3MU-9V/U)-1. (48) 2 [1-ul
CDW . NTH H X, =— 2 - 2 P arCSII'(U|) y (57)
For Npyoi> Mg » @ divergent SS susceptibility is not pos- U 1+Ul
sible.
5. Competition between SS and CDW in the Pei-Hub model = a4 (59)
/ 2 )
For the extended Pei-Hub model with repulsive el-el cou- Vi-(Uh

plings, K¢ <1 always, which means a phase with dominant | the absence of el-el interactions, for either model,
SS is impossible. For this model the conditigff'=1/2 oc- g1pH(®) increases in strength dsis increased according to

curs at the critical el-ph coupling value 91,ph(w)/9(1),ph=(1‘Zlgg,pdl)'l- As shown in Figs. 1®),
5h(U| -1 19(d), and 19f), turning on a repulsivé&J has the opposite
NPV =U sh(Ulp) + f(mo) (K= 1/2 transition. effect for the half-filled Pei-Hub model compared to the half-
2Q filled Hol-Hub model: for the formeg; ,{w) increases even

(49) more rapidly with increasingithan before, while for the later
01,0 w) increases less rapidly than before. This is due to the
bond- (site) centered nature of the Peiefldolstein el-ph
interaction, and shows up as a sign dif'ferencg&l‘;)h for the
two models.

For Us|g} ], the behavior ofy; p{w)/g} ,, is given by
the square roots in Eq$55) and (56), and is shown in Fig.
At half-filling, Egs. (20) and(21) can be integrated ana- 19(f). In this limit, for the Hol-Hub modelg; ,{w) flows to

For Apei™> M50 ", the SS susceptibility is never divergent. The
condition\p=AS2" determines the dashed line in Figéc)3
and 3d).

E. Half-filling

lytically if one takesgg=-g3. For that case, weaker values. Since the spin gap is enhanced by a strong
o O1,pp and the chqrge gap is enhanced by_ a strgyng, we
(w) == ga(w) = ¢ (50) see that the off-diagonal phonon mechanism in the Pei-Hub
9c J3 0y’ . . . .
1+gcl model is more effective in enhancing both the charge and
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spin gap compared to the diagonal mechanism in the Hol-

Hub model.
At half-filling, the transition line between CDW and SDW

phases, called the Mott-Peierls transition, is determined b

g (w)=0. The critical el-ph couplings that define this phase
boundary are then

UV1 - (Uly)?
(1-Ulg) ™+ 2Ul,
(Peierls-Hubbard model: Mott-Peierls transitipn
1-Ul -
. arcsirfUl )

(59
ul4-3
1+Ul,

(Holstein-Hubbard model: Mott-Peierls transitjon
(60)

For )\pe,>)\S§,P in the half-filled Pei-Hub model, OR
)\SO, in the half-filled Hol-Hub model, the ground state is

GAP _
Pei —

GAP _
)\Hol -

PHYSICAL REVIEW B 71, 205113(2005

ZCUO
V1-(cUlg?

Klext 01,0 w) is used as the initial value to integrate fram
to w,, employing the RG flow equations withogd andgs

resulting in
) NG RS
(1+8Ulp)°

sul
f % dx &/2(1 +x)73"2.
0

Y= (65)

gl,pt{,“)
1+ gl,ph(#)Z/U

for either model, where

gl,ph(wo) = (

z

(67)

Sinceg, renormalizes in the same way for the half-filled and
incommensurate cases, we can just integrate Eano g in
one step using Eq29).

Again, the conditiongy”(wg) =9 (wo) +d; pH{ @) =0 deter-
mines the transition to a spin gap, which leads to the critical

a spin-gapped, ordered CDW. We plot the transition Ilne

given by Ape=Aga" in F|gs 12b) and 16, and the line de-
termined byhp,=\Ga" in Figs. 12a) and 18.

F. Near half-filling

Using the two-step RG technique, we have derived phase

boundaries for the strongly incommensurate caseEg, as
well as the half-filled casg=0. For the more general case
0<u<Eg, in other words at filling near but not equal to

half-filling, a three-step RG method is necessary. The three

distinct crossover scales are the high-endggylow-energy
scalewy, and chemical potential. As before, retarded inter-

values
UV[L - (cUIp?P

actions only renormalize when integrating out states betweewhere we defined

Er and wg. However, nowg; andgs o only play a role when
integrating out states at higher energies thartand if u
< wy, for states betweep and wg, only g; plays a role.

1. Doping dependence of the phase boundaries

We now employ the three-step RG technique to derive th

doping dependence of the phase boundariesvfed. First
consider the casey<u<Er. We begin by integrating out
degrees of freedom betwe&r and u=wy(Er/ wy)?, result-
ing in an effectiveg; p, of

TUEN [ 1 —cUl
gl,pi{ﬂ) == ( : |10I—) — ° (61)
1 =Ny X/U (1+cUlp)®
or
TUENpej 1
gl,ph(,u):‘< : Eel—) \ TRYGE
1-\peY/U [1-(cUlp?]
for the Hol-Hub and Pei-Hub models, respectively, with
c=1-5, (63)
~ 1-cUl —
x:z{z—z =Y —arcsir(cUIo)}, (64)
1+cUlg

\9ap—
Pei — —
4+ £+ 2cUl[3 = (cUlp)?]
(Peierls-Hubbard modgl (68)
gD = J{4+§\/ 1-cU —2arc5|r@cUI )}
HoI - 0
(1 +cUI0)3
(Holstein-Hubbard modg| (69)
£=(1+Ulg)F - 4(1 +cUlp) + Z, (70)
F=eM02(1 + 601y 2 (71)
The system is spin-gapped fape> N2> or Ao > NP5, for

the Pei-Hub and Hol-Hub models, respectively. The phase
boundaries determined bype=AEY and Ay =AY are
shown in Figs. 8-11 as thick solid lines. Fo=1, \§2P
=\, and we recover the incommensurate LL-LEL transi-
tion [Eq. (36)] with V=0.

We obtain analytic expressions for the remaining phase
boundaries by requiring thdﬁgﬁ equals 1 or 1/2depending
on the phase boundaryusing

IOt(wo) ge(p) + 01 ph(wo) 292 ,ph (72)

with gc(,u)z—U/(l—cUIO). The results for the critical cou-
plings, for wy< u<Eg, are then
A= U[B =+ VB?- SAQ2], (73)
A& = U[D + D2+ 5SAH4], (74)
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| FIE+7 -1 gap and causing divergent superconducting and/or CDW sus-
)\E,‘i‘i”: Ul Y+ — (75) ceptibilities(true long range order is formed when weak cou-
V[1-(cUlp?]® pling between 1D chains is includedThe ground state is
_ . strongly dependent on the band-filling, and, especially at or
with the definitions near half-filling, dependent on the microscopic model of the
g el-ph interaction. Compared to higher dimensions, the zero-
A=(SX+2)™, (76)  temperature phase diagram is far more complex, and, away
from commensurate filling, contains a subtle competition be-
B=[(2S-F)A+Cl/4, (77)  tween SDW, CDW, and superconductivity. The fact that di-

rect el-el interactions strongly influence the renormalizations
of the el-ph interactions adds to the richness of the phase
diagram. In 1D, intuitive concepts that apply to higher di-
mensional Fermi liquids, such as the suppression of super-
D=A[S(4- 553() - 5(E2+ F)/8, (79) conductivity by repulsive interactions at weak coupling,
must sometimes be abandoned.
When the bare el-el repulsion is much stronger than the

C=(1-cUly™, (78)

E=(6/U+3)/5-C, (80)  bare el-ph induced attraction, in 1D, unlike in higher dimen-
sions, it is not a requirement thEt> wq for the supercon-
s=(1 +Cm0)3/2(1 _CU|O)—1/2_ (81) ducting susceptibility to divergeln fact, in 1D, very large

values ofEg/ wy are harmful to superconductivijyNote that
For 6=1, Egs.(73)—(75) reduce to Eqgs(44), (46), and(49),  in the high-temperature superconductors, whEféw,~5
respectively, withvV=0. The conditions\;, =A% and Ao and the el-el repulsion is strong, it has been correctly argued
=\je determine the thin solid line in Figs. 9 and(@l In  that the small value d/ w, rules out conventional phonon-

Fig. 11(b), U is large enough such th&AC>2B? every- mediated superconductiviy. It is interesting to point out
where in the plot, therefore the phase with dominant SS ighat the arguments there apply only to a Fermi liquid and not
not present. The condition, =\ determines the dashed the quasi-1DEG.
line in Figs. 9, 11a), and 11b). The dashed lines in Figs. 10,  We now qualitatively summarize the phase diagrams, for
11(c), and 11d) are determined bypei=\0". the case of repulsive el-el interactions, beginning with a sys-
For the casg.< wy< Ef, sinceg; scales in the same way tem that is far from half-filling. In this case, the charge sector
at all energies and does not dependggnthe spin-gap phase is gapless. For either the Hol-Hub or Pei-Hub model, the
boundary is independent @f, and is given by Eq968) and  spin-gapped LEL phase is favored by sndllargeV, large
(69) with =0, or by Egs(59) and(60). \, and largeEr/wg. The LL phase is favored by largeg,
smallV, small\, and smallEg/ wy. For the Hol-Hub model,
2. Doping dependence of susceptibilities and isotope effects @ dominant superconducting fluctuation is favored by small

The doping dependence of the susceptibilities in the LglY: Small V, moderatedyq, and smallE/w,. For either

. . . model, the phase with dominank2CDW and subdominant
phase(Figs. 13 and 1¥is computed with the three-step RG e )
method using Eqs(6) and (9), combined with Eqs(38), superconductivity is favored by moderdig/ vy and moder

(43), (66), and(72) ate \ (th_e dependencg od andV is more subtje, see.the
T'he isbtope efféct off, (Fig. 15 is computed via phase diagramsFor either model, the phase with dominant
¢ ' 2ke CDW and subdominantkt CDW is favored by largé/,
1ATJT, large \, and largeEg/ w, (see the diagrams for the subtle
VT (82)  dependence ob).
Moving the incommensurate system toward half-filling
where{=E¢/wy=€0 andA{<{. Here,AT,=T.-T,, where increases the stability of the LEL phase relative to the LL
T, is the transition temperature determined from [ELD) phase in the Pei-Hub model, but decreases the stability of the
after changingo—1{=In({+A¢), c—c’=cly/l{, and 5—~1  LEL phase relative to the LL phase in the Hol-Hub model. In
—-c’. The changes irc and & are required so that, when the Hol-Hub model, moving toward half-filling suppresses
changing{, only the energy scaley, is changed, and the the phase with dominant superconductivity. For both models,
energy scale§r and u remain fixed. The isotope effect on moving toward half-filling decreases the stability of the
Ag is determined in a similar fashion. phase with subdominant SS and increases the stability of the
phase with subdominantkd CDW, but this effect is more
pronounced in the Pei-Hub model.
In the Hol-Hub model at half-filling, a spin-gapped CDW
We have explored the influence of the el-ph interaction orphase is favored by smdll and large\,,. The SDW phase
the quantum phase diagram of the most theoretically wellvith no spin gap is favored by lardé and small\,,. The
understood non-Fermi liquid, the interacting 1DEG. Thehalf-filled Hol-Hub phase diagram is weakly dependent on
backward and Umklapp scattering portions of the el-ph in-Egr/wy compared to the Pei-Hub phase diagram. In the half-
teraction are strongly renormalized, often toward strongefilled Pei-Hub model, the spin-gapped CDW phase is favored
couplings. Even in the presence of strong el-el repulsion, &y large Ape; large Ex/ wg, large V, and anyU other than
weak, retarded el-ph interaction is capable of creating a spimoderate values. The SDW phase is favored by simal

ar

VII. CONCLUSIONS
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small Er/wg, small V, and moderatd). Both models are fects in the quasi-1DEG coupled to phonons, since it is

charge-gapped at half-filling. perhaps the most easily studied unconventional phonon-
We have studied the strong doping dependencies of theediated superconductor. The calculated isotope effects bear

phonon-induced spin gap and various susceptibilities in the qualitative resemblance to those observed in the cuprates,

Luther-Emery liquid phase. The spin gap and charge densitys summarized in Sec. I.

wave susceptibilities decrease monotonically as the system is

doped away from half-filling. However, the superconducting

susceptibility, and therefor&, in a quasi-1D system with ACKNOWLEDGMENTS
fluctuating chains, can vary nonmonotonically with doping
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