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Explicit inclusion of paramagnetic current density in the exchange-correlation functionals
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Jianmin Tao
Department of Physics and Quantum Theory Group, Tulane University, New Orleans, Louisiana 70118, USA
(Received 29 November 2004; published 13 May 2005

Current-density functional theory has been formulated in terms of the paramagpretnonical current
densitiesj,,(r), whereo=1,|. Vignale and Rasolt argued thgj, enter the exchange-correlatigxc) func-
tional Ex{ny,n|,jp.Jp ] (@bbreviated ag&,n,.j,,]) only through the vorticitiess,(r)=V X [j,,(r)/n,(r)],
i.e., ExdNy.jpel =Exd Ny ¥6), Wheren,(r) are the spin electron densities. This has been generally accepted.
Alternatively this theory was also formulated in terms of (gauge-invariantphysical or full current densities
jo(r). We show that in both formulations the paramagnetic current dengjjiesan enter the exchange-
correlation functional explicitly. While this discovery favors the Vignale-Rasolt formulation of current-density
functional theory, it admits of the explicjt,, dependence, leading to a family of metageneralized gradient
current-density functionals and their hybrid versions.
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I. INTRODUCTION netic energy densitieg,(r) which are not gauge invariant, as
. . . . in a meta-GGA® and its hybrid versiod.(The GGA current-
The Kohn-Sham spin den3|ty_funct|onal thebrip t_he . density functional proposed in Ref. 16 is not gauge invariant,
most popular method for electronic structure calculations i

. ) "hecause it depends uppy, instead ofv,. explicitl )
condensed matter physics and quantum chemistry. In prin- Current—derFI)sity fuﬁg%onal theoryg mgy b}(/a naturally

qple this theory is an exa_ct many-body th_eow’ but in PraCtormulated in light of the gauge-invariant physical or full
tice the exchange-correlatidmc) energy which includes all ¢ rrent densitieg, (r). In this formulation, there is no similar
quantum many-body effects must be approximated as a funGastriction on the admissible form of the physical current
tional of the electron densitie,(r), wheres=1,|. Devel-  gensities imposed on current-density functionals, since the
opment of density functional approximations with improved physical current densities themselves are gauge invariant. A
accuracy and broader applicabilities for this quantity hasjisadvange in using the physical current densities is that in a
been the central task of the thedry. uniform electron gas in the presence of a uniform magnetic
Motivated by its successful application to real syst€mis, field, the physical current vanishes so that a LSD type ap-
the theory has been usefully extented to treat systems iproximation in terms of the physical current densities does
time-dependent stateand/or in a magnetic field'® which ot exist. This restricts the methods for the construction of
induces the orbital current of electrons. The latter eXtensmrburrent-density functionals. Furthermore, if we construct
current-density functional theory, has been applied to differgyrrent-density functionals from the conventional meta-
ent systemge.g., atoms; molecules;? and solid$®), since  GGAs (which are generally more accurate and more univer-
the pioneering work of Vignale and RasgiR).”®In the VR sa| than GGAB by introducing the gauge-invariant physical
formulation of this theory, in addition to the electron densi-cyrrent densities, these current-density functionals will not
tiesn,(r), the (Jauge-dependenparamagnetic or canonical pe gauge invariant, because the conventional meta-GGA
current densitieg,,(r) are chosen as only additional basic functionald®17-18 employ the gauge-dependent Kohn-Sham
variables which are admitted into the exchange-correlatioinetic energy densities as their local ingredients. For the
functional E, only through the vorticities defined by satisfaction of the gauge-invariance requirement, we have to
_ : explicitly include the paramagnetic current densities the
Voll) = V X [Jpo(n/Me(0)], @ vegtor gotential as ad%itional?ndependent varigbteswell.
for the satisfaction of the gauge-invariance principle. Gauge Current-density functionals are needed in many situations.
invariance is a basic principle that an observable must obeyor example, atomization, ionization, and bond breaking of-
By examining the gauge transformation of the usual locaten involve the treatment of open-shell systems such as open-
ingredients of the conventional density functionals, we findshell atoms or molecules. In most chemical reactions, open-
that while the constraint on the admissible form of the parashell free radicals are produced as short-life intermediates.
magnetic current densities imposed By for the satisfac- Because the electrons in a free atom or free radical in open-
tion of the gauge-invariance requirement is sufficient whershell states can occupy degenerate orbitals in different ways
an approximate density functional only depends upon gaugeand because different occupations of degenerate orbitals usu-
invariant quantities such as the electron densitiggas in  ally yield different densities, calculations of these open-shell
the local spin densityL SD) approximatiorj and their gradi-  systems with the conventional density functionals are prob-
ents Vn, [as in the generalized gradient approximatfon lematic. While many useful conventional density functionals
(GGA)] explicitly, it is not when we expand the local ingre- have been constructed and widely used in condensed matter
dients beyond those of GGA to include the Kohn-Sham ki-physics and quantum chemistry, tractable current-density
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functional  approximations are limited in the - "
Iiterature?'gvm'lgg) Ev(r,Aa[nmJ p(r] - <\I,|H|‘I,>

The aim of this work is to present a general method for ) s
constructing formally correct current-density functionals =FNpjpel + 2 | &,
from the conventional density functionals by releasing the 7

“vorticity-only” restriction, within the framework of the VR q - o 5 )
current-density functional theory. The approach allows the - EE drjpg - Ay + 2m022 d°rn,A,
paramagnetic current densities to enter iBtgexplicitly and 7 7

is complementary to the method suggested originally in the (6)
VR papers’® More importantly, current-density functionals

. . ; where
constructed from conventional density functionals such as
the meta-GGAs and their hybrids using the present approach Co : “
are guaranteed to satisfy the gauge-invariance principle, F[n”’Jp"]_qur{T:]m (W[T+Ved¥) ™
while those constructed from conventional density function- .
als with the original VR procedure are not ensured to bewith T==(%2/2m)S}L, V7 is the minimum expectation value
gauge invariant, because conventional density functionalsf the uniform-gas energy operaté'ﬁ\?ee after the Levy
may depend on gauge. Using this method, a family ofconstraint sear@ over all trial wave functions yielding,
current-density meta-GGAC-MGGA) functionals and their gnd jps for given external potentialy, and A,. Since
hybrid versions may be constructed from conventional ones[n, | oo does not contain any external potential, it is a uni-
The external scalafor Coulomb and vector potentials for versal functional of,, andj .
self-consistent calculations are given in a general form. To turn the variational problem into the one for solving a
set of self-consistent Kohn-Sham-type one-electron equa-
tions, we decomposE into

o) por

Il. CONSTRUCTION OF GAUGE-INVARIANT
CURRENT-DENSITY FUNCTIONALS FINoi pod = T Mg pord + U] + Exed N o], (8)

Consider a system dfl electrons with electric chargg ~ whereT; is the Kohn-Sham kinetic energy defined as
(g=-e) in the presence of an external magnetic fi&d ~
which induces the orbital current. The Hamiltonian of the TdNn,jpe]= min (WOIT|WwO) (9
system is written as WO—{n i pot

\ the functionalF of the Kohn-Sham system of noninteract-
- 114 q 2 - ing electronsU[n] is the Hartree potential energy given by
H=§{%L—Vk—EAU(fk)] +va(fk)}+Vee, 2 Uln]=(1/2) fd¥rd3 n(r)n(r)/|r=r’| with n=n,+n;, and

- E,. the exchange-correlation energy. Since the Kohn-Sham
noninteracting wave functio®® of Eq. (9) is a single(or a
combination of a fey Slater determinant that delivers the

minimum of('i’), we may write

where A, are the external vector potentials defined By

=V XA, v, are the external scalar potentials, aﬁge
=3<19%/|r,—r | is the interaction energy. The paramagnetic

current densities are found from the antisymmetric wave occup
function W(ro,r 0, -+, ryoy) by N =2 [l (10)
k=1
jpg(r):ﬂRe > Jd3r2-"d3rN\If*_§V\I’. (3) occup .,
M ooy ! To= 2 2 (ol = 5 Vo), (11)
o k=1

For a given vector potentid ,(r), the physical current den-

sitiesj,(r) are found by occup

jpo—(r) = ﬁ g [lﬂil;a'v ¢kﬂ_ ka'V lﬂ:;a—]: (12)

ja':ij'_(qnoij)Ao' (4) . .
where i, are the occupied Kohn-Sham orbitals that are the

plicit functionals ofn, andj,.

The Kohn-Sham self-consistent one-electron equéfion
may be derived by varyin&UU,AU of Eq. (6) with respect to
q i SUbject to(i| i) = 8¢

\E jpu—: RV ’ (nvo)- (5 occup

0 Ev ,A(r_ E 6ka’<¢ko’|¢ka’> =0. (13)

o’ e

and satisfy the static continuity equation for stationary statet"
V-j,=0, which may be expressed as

Using Eq.(3) the ground-state energy can be writi@m the
Coulomb gauge wher¥-A,=0) as The result is
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1% q N« R ) the gauge transformation of the local ingredients of the con-
oml T Y TGP o) + 2mc2[A"(r) = Act o(1)7] ventional density functional approximations, we find that
while this vorticity-only constraint is sufficient when the lo-
cal ingredients of a conventional density functional only in-
061t o) [ Yheo) = rtilT), (14) e ! Y

clude the gauge-invariant quantities such as the electron den-
) sitiesn, and their gradient¥n,, it is not when we construct
where A¢ft, and verr, are the effective vector and scalar cyrrent-density functionals from the conventional meta-GGA

potentials, respectively, given e ,=A,+Ayc » With functionals which employ the Kohn-Sham kinetic energy
. densities
_96 (0= OExd N po] (15)
c XC o é]pg(r) occup 4 o
— o 2
andvess =0+ Uy +0yc o With uy(r)=58U[n]/ én(r) being the (1) = gl 2m| V o) 22

Hartree potential and
as their additional local ingredients, because the Kohn-Sham

Uy o) :M (16) kinetic energy densities are not gauge invariant under the
on,(r) gauge transfromation of E¢18)
being the exchange-correlation scalar potentials. The ground-
state energy is found by T T (0) =7 () + 2{_ 9 2ol1) - ¥ xolr)
c
E=Tdn,.]j pa] +U[n] + 2 f dgmovzr +Eydngj po’] q2 2
+ N (NLV x,(r . 23
v 2NNV xo(1)] (23)

2
q . q
- EE fdsfl po* Agt 2m022 stmaAi- (17 The same conclusion also holds for the Capelle-Gross con-
7 7 traint on the admissible form of other currents in current-

Note thatA,=A =A. This is because the external magneticdensity functionals. Since the proper introduction 7ofin
field B does not depend upon the spin of electrons, the exneta-GGA® will generally improve GGA functionals due to

ternal potentialA does not either. the satisfaction of additional exact constraihté and due to
Consider now the gauge transformation the capability of simulating the nonlocality of exact
exchangé/?* ~dependent meta-GGA functionals have re-
A,— A=A,V x,l(r), (18)  ceived the most attention in the recent development of the

density functional theory. Furthermore, the Kohn-Sham ki-
where x,(r) is the arbitrary function satisfying the Laplace netic energy densities have been widely 38ééto construct
equationV?y,(r)=0. BecauseA,=A, x,=x. Guage invari-  self-interaction-free correlation functionals.
ance requires that the solutions of the Kohn-Sham equation The gauge-variance problem with meta-GGA functionals
describe the same physical states if we apply to the vectahay be solved by admitting the expligif, dependence of
potential the gauge transformation of H38). Because of E,.. A natural way is to replace the gauge-dependent Kohn-
the gauge-invariance requirement, the solutiggsand ¢,  Sham kinetic energy densities of E(R2) by the gauge-
of the Kohn-Sham equation correspondingAg and A/ invariant genuine kinetic energy densities
differ only by a phase factor

Yew = Yo = Yo XA (i9/0) X, (1)1, (19

since the one-electron Hamiltonian in B44) is gauge in- Which may be obtainéd by replacing the canonical momen-
variant. tum operator(#/i)V by the genuine momentum operator

VR discovered that under the gauge transformation ~ (#/)V=(a/¢)A in Eq. (2) and then performing integration
by parts. A problem with this approach is that the vector
Jpo = T po(1) =Jpo(r) = (A/MON,(r) V x,(r),  (20) potential A, [or both the paramagnetic and physical current
) densities via Eq(4)] must enterE,; as an additional inde-
leading to pendent basic variable, contradicting the assumption that we
. _ . construct current-density functionals by introducing the para-
Excl Nl po = (@M, V X6 ] = Bl Nl o] (21) magnetic current densities as only additional basic variables.
Based on this property, they have concluded Ehatlepends ~ Furthermore, current-density functionals constructed with
upon the paramagnetic current densifigsonly through the ~ this simple replacemeri€q. (24)] are not universal, since
vorticities v, of Eq. (1). A similar procedure has been used they depend upon the external vector potenfiglr).
by Capelle and Grodsto relate the Kohn-Sham spin density A better way is to replace,, by the modified kinetic en-
functional theory to current-density functional theory. This€rgy densities
would constrain the admissible form pf, in the construc-
tion of current-density functionals. However, by examining Ty — Ty = T, = M pol(20,) (25)

7o — 192 7,= (WOl po - A, + (@H2MENA,  (24)

o
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which are gauge invariant. This replacement is motivated by.SD plus VR correction which is exact, for a uniform den-
(1) the Taylor expansidi®?® of the spherically averaged sity in the presence of the uniform magnetic field. Thus our
gauge-invariant exchange holgs,(r ,u)) aroundu=0 C-MGGA functionals and their hybrid versions may be con-

structed as

occup 2

Pt == | Z dhuDhelr+0)| )i (0)=-n, Exe 0N dpridpi] = Exd N 7, + EVF
— 2_[]2 |: }VZ _'“7'. + EM} + ... = f dsrnEXC(no'r V nO’l’}(Tl eiﬁacs vo’)
314 78 n,

(28
where (py,(r,u)=(1/4m) [ dQypy,(r,u), (Note that the
exchange hole proposed in Ref. 16 does not satisfy thwhere . is the exchange-correlation energy per electron,
gauge-invariance requirement2) The second-order gradi- €5 are the exact Kohn-Sham exchange energy densities

ent expansion of the kinetic energy densities for slowly vary-which have been used to construct commonly used hybrid

ing densities and slowly varying current densities density  functionals,  and (n,,Vn,,7,, e v,)
, , =(n;,n;,Vn, Vn, 7,7, ei)fam, Eﬁi(am, v, p)). In the

= ﬁ_[i(Gﬂ.z)z/sns/s+ [V n,| + }Vzn + ] uniform-gas limit where the densities and currents are con-
7 10 v , 6 7 ' stant everywhere, because the vorticities of Elg.vanish

. and the modified Kohn-Sham kinetic energy densitie®f
and(3) for one-electron densities Eqg. (25) reduce to the ordinary kinetic energy densities, our
12|V n, |2 current-density functionals correctly reduce to the ordinary
7U=7-‘(’r"= -4 LSD, as expected.
m 8n, The exchange-correlation contribution to the effective

Note that in the gradient expansion of the kinetic energyveCtor potential is given as

densities, we have neglected a term containijg This

; . ) . SEyd NN L
second-order term, like other density gradient terms, will AL (0= xd - Lprlp]
vanish for a uniform density and currgpt. Furthermore, its ¢ 9 por)
effect on the current density functionals constructed below is _dney) 57, 1 ANeye)
very small, as discussed later. &5 i VX —— (29
VR derived from the second-order energy shift of the To Aps Do v
electron gas with slowly varying densities and slowly vary- 5.4 to the effective scalar potential is
ing current densities in the presence of a uniform magnetic
field _ {a(nexa _y e | } , e 7,
) . Xc o™
Evd N por) = Exd N O] + Ex N ] (26) Ny IV N, Tty Ny
H exact
n L ot T o, an. (30
Mkeo (1) | XLo(r)
EVR = der—” 2 1| (r)?, (27 . . - . .
=2 | e Lo L @D where 6,08, 0n il )Ty with Ty,

=jpo! li pol AN 87,/ N, = 87,1 N, +]j |/ 207 These current-
E.[ns, 0] is the conventional exchange-correlation func-dependent potentials may be used in self-consistent calcula-
tional, kg,=(672n,)Y® is the Fermi wave vector,XEU tions with the current-dependent Kohn-Sham equation of Eq.
=—(P/ 24m*mA)k, is the diamagnetic susceptibility for the (14), although a fully self-consistent solution of the current-
noninteracting electron gas, ang, is for the interacting dependent Kohn-Sham equation is quite demanding. Alterna-
electron gas which was calculated for spin-unpolarized unitively, nonself-consistent solutions to E(L4) may be ob-
form densities within the random-phase approximationtained perturbatively. First, one can self-consistently solve
(RPA) by Vignale, Rasolt, and Geldat.While the evalua- the conventional one-electron Kohn-Sham equation which
tion of y,, for a spin-polarized electron gas is not availablemay be obtained by dropping the vector potential terms in
yet, it might be constructed from the spin-unpolarized ver-Ed. (14), and then treat these vector potential terms as a

sion. perturbatior??
The VR linear-response current-density correction of Eq.
(27) may be added to the current-density functionals con- IIl. CONCLUSION
structed with the present approach from conventional density
functionals. Although thesdéconventional current-density In conclusion, we show that current-density functional

functionals may have similar second-order contributiongheory can be formulated in terms of the paramagnetic cur-
(like the VR correctioi due to the local ingredient,, they  rent density. This formulation allows us to construct gauge-
are very smalf® compared with the VR correction. There- invariant current-density functionals from the conventional

fore, this combination will essentially reduce to the ordinarydensity functionals such as the meta-GGAs and their hybrids
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