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Current-density functional theory has been formulated in terms of the paramagneticsor canonicald current
densitiesj pssr d, wheres= ↑ ,↓. Vignale and Rasolt argued thatj ps enter the exchange-correlationsxcd func-
tional Excfn↑ ,n↓ , j p↑ , j p↓g sabbreviated asExcfns , j psgd only through the vorticitiesnssr d= = Ã fj pssr d /nssr dg,
i.e., Excfns , j psg=Ēxcfns ,nsg, wherenssr d are the spin electron densities. This has been generally accepted.
Alternatively this theory was also formulated in terms of thesgauge-invariantd physical or full current densities
j ssr d. We show that in both formulations the paramagnetic current densitiesj ps can enter the exchange-
correlation functional explicitly. While this discovery favors the Vignale-Rasolt formulation of current-density
functional theory, it admits of the explicitj ps dependence, leading to a family of metageneralized gradient
current-density functionals and their hybrid versions.
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I. INTRODUCTION

The Kohn-Sham spin density functional theory1 is the
most popular method for electronic structure calculations in
condensed matter physics and quantum chemistry. In prin-
ciple this theory is an exact many-body theory, but in prac-
tice the exchange-correlationsxcd energy which includes all
quantum many-body effects must be approximated as a func-
tional of the electron densitiesnssr d, wheres= ↑ ,↓. Devel-
opment of density functional approximations with improved
accuracy and broader applicabilities for this quantity has
been the central task of the theory.2

Motivated by its successful application to real systems,3–5

the theory has been usefully extented to treat systems in
time-dependent states6 and/or in a magnetic field7–10 which
induces the orbital current of electrons. The latter extension,
current-density functional theory, has been applied to differ-
ent systemsse.g., atoms,11 molecules,12 and solids13d, since
the pioneering work of Vignale and RasoltsVRd.7,8 In the VR
formulation of this theory, in addition to the electron densi-
ties nssr d, the sgauge-dependentd paramagnetic or canonical
current densitiesj pssr d are chosen as only additional basic
variables which are admitted into the exchange-correlation
functionalExc only through the vorticities defined by

nssr d = = Ã fj pssr d/nssr dg, s1d

for the satisfaction of the gauge-invariance principle. Gauge
invariance is a basic principle that an observable must obey.
By examining the gauge transformation of the usual local
ingredients of the conventional density functionals, we find
that while the constraint on the admissible form of the para-
magnetic current densities imposed onExc for the satisfac-
tion of the gauge-invariance requirement is sufficient when
an approximate density functional only depends upon gauge-
invariant quantities such as the electron densitiesns fas in
the local spin densitysLSDd approximationg and their gradi-
ents =ns fas in the generalized gradient approximation14

sGGAdg explicitly, it is not when we expand the local ingre-
dients beyond those of GGA to include the Kohn-Sham ki-

netic energy densitiestssr d which are not gauge invariant, as
in a meta-GGA15 and its hybrid version.3 sThe GGA current-
density functional proposed in Ref. 16 is not gauge invariant,
because it depends uponj ps instead ofns explicitly.d

Current-density functional theory may be naturally
formulated9 in light of the gauge-invariant physical or full
current densitiesj ssr d. In this formulation, there is no similar
restriction on the admissible form of the physical current
densities imposed on current-density functionals, since the
physical current densities themselves are gauge invariant. A
disadvange in using the physical current densities is that in a
uniform electron gas in the presence of a uniform magnetic
field, the physical current vanishes so that a LSD type ap-
proximation in terms of the physical current densities does
not exist. This restricts the methods for the construction of
current-density functionals. Furthermore, if we construct
current-density functionals from the conventional meta-
GGAs swhich are generally more accurate and more univer-
sal than GGAsd by introducing the gauge-invariant physical
current densities, these current-density functionals will not
be gauge invariant, because the conventional meta-GGA
functionals15,17,18 employ the gauge-dependent Kohn-Sham
kinetic energy densities as their local ingredients. For the
satisfaction of the gauge-invariance requirement, we have to
explicitly include the paramagnetic current densitiessor the
vector potential as additional independent variablesd as well.

Current-density functionals are needed in many situations.
For example, atomization, ionization, and bond breaking of-
ten involve the treatment of open-shell systems such as open-
shell atoms or molecules. In most chemical reactions, open-
shell free radicals are produced as short-life intermediates.
Because the electrons in a free atom or free radical in open-
shell states can occupy degenerate orbitals in different ways
and because different occupations of degenerate orbitals usu-
ally yield different densities, calculations of these open-shell
systems with the conventional density functionals are prob-
lematic. While many useful conventional density functionals
have been constructed and widely used in condensed matter
physics and quantum chemistry, tractable current-density
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functional approximations are limited in the
literature.7,8,16,19,20

The aim of this work is to present a general method for
constructing formally correct current-density functionals
from the conventional density functionals by releasing the
“vorticity-only” restriction, within the framework of the VR
current-density functional theory. The approach allows the
paramagnetic current densities to enter intoExc explicitly and
is complementary to the method suggested originally in the
VR papers.7,8 More importantly, current-density functionals
constructed from conventional density functionals such as
the meta-GGAs and their hybrids using the present approach
are guaranteed to satisfy the gauge-invariance principle,
while those constructed from conventional density function-
als with the original VR procedure are not ensured to be
gauge invariant, because conventional density functionals
may depend on gauge. Using this method, a family of
current-density meta-GGAsC-MGGAd functionals and their
hybrid versions may be constructed from conventional ones.
The external scalarsor Coulombd and vector potentials for
self-consistent calculations are given in a general form.

II. CONSTRUCTION OF GAUGE-INVARIANT
CURRENT-DENSITY FUNCTIONALS

Consider a system ofN electrons with electric chargeq
sq=−ed in the presence of an external magnetic fieldB
which induces the orbital current. The Hamiltonian of the
system is written as

Ĥ = o
k=1

N H 1

2m
F"

i
=k −

q

c
Assr kdG2

+ vssr kdJ + V̂ee, s2d

where As are the external vector potentials defined byB
= = ÃAs, vs are the external scalar potentials, andV̂ee
=ok,lq

2/ ur l −r ku is the interaction energy. The paramagnetic
current densities are found from the antisymmetric wave
function Csrs ,r 2s2,¯ ,r NsNd by

j pssr d =
N

m
Re o

s2,¯,sN

E d3r2 ¯ d3rNC* "

i
= C. s3d

For a given vector potentialAssr d, the physical current den-
sities j ssr d are found by

j s = j ps − sqns/mcdAs s4d

and satisfy the static continuity equation for stationary states
= · js=0, which may be expressed as

= · jps =
q

mc
= · snsAsd. s5d

Using Eq.s3d the ground-state energy can be writtensin the
Coulomb gauge where= ·As=0d as

Evs,As
fns,j psg = kCuĤuCl

= Ffns,j psg + o
s
E d3rnsvs

−
q

c
o
s
E d3r j ps · As +

q2

2mc2o
s
E d3rnsAs

2 ,

s6d

where

Ffns,j psg = min
C→hns,j psj

kCuT̂ + V̂eeuCl s7d

with T̂=−s"2/2mdok=1
N ¹k

2 is the minimum expectation value

of the uniform-gas energy operatorT̂+V̂ee after the Levy
constraint search21 over all trial wave functions yieldingns

and j ps for given external potentialsvs and As. Since
Ffns , j psg does not contain any external potential, it is a uni-
versal functional ofns and j ps.

To turn the variational problem into the one for solving a
set of self-consistent Kohn-Sham-type one-electron equa-
tions, we decomposeF into

Ffns,j psg = Tsfns,j psg + Ufng + Excfns,j psg, s8d

whereTs is the Kohn-Sham kinetic energy defined as

Tsfns,j psg = min
C0→hns,j psj

kC0uT̂uC0l s9d

the functionalF of the Kohn-Sham system ofN noninteract-
ing electrons,Ufng is the Hartree potential energy given by
Ufng=s1/2ded3rd3r8nsr dnsr 8d / ur −r 8u with n=n↑+n↓, and
Exc the exchange-correlation energy. Since the Kohn-Sham
noninteracting wave functionC0 of Eq. s9d is a singlesor a
combination of a fewd Slater determinant that delivers the

minimum of kT̂l, we may write

nssr d = o
k=1

occup

ucksu2, s10d

Ts = o
s

o
k=1

occup

kcksu −
"2

2m
=2ucksl, s11d

j pssr d =
"

2mi
o
k=1

occup

fcks
* = cks − cks = cks

* g, s12d

wherecks are the occupied Kohn-Sham orbitals that are the
implicit functionals ofns and j ps.

The Kohn-Sham self-consistent one-electron equation7,8

may be derived by varyingEvs,As
of Eq. s6d with respect to

cks subject tokcks uclsl=dkl

dFEvs,As
− o

k=1

occup

ekskcksuckslG = 0. s13d

The result8 is
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H 1

2m
F"

i
= −

q

c
Aeff ssr dG2

+
q2

2mc2fAs
2sr d − Aeff ssr d2g

+ veff ssr dJckssr d = eksckssr d, s14d

where Aeff s and veff s are the effective vector and scalar
potentials, respectively, given byAeff s=As+Axc s with

−
q

c
Axc ssr d =

dExcfns,j psg
dj pssr d

s15d

andveff s=vs+uH+vxc s with uHsr d=dUfng /dnsr d being the
Hartree potential and

vxc ssr d =
dExcfns,j psg

dnssr d
s16d

being the exchange-correlation scalar potentials. The ground-
state energy is found by

E = Tsfns,j psg + Ufng + o
s
E d3rnsvs + Excfns,j psg

−
q

c
o
s
E d3r j ps · As +

q2

2mc2o
s
E d3rnsAs

2 . s17d

Note thatA↑=A↓=A. This is because the external magnetic
field B does not depend upon the spin of electrons, the ex-
ternal potentialA does not either.

Consider now the gauge transformation

As → As8 = As − = xssr d, s18d

wherexssr d is the arbitrary function satisfying the Laplace
equation=2xssr d=0. BecauseAs=A, xs=x. Guage invari-
ance requires that the solutions of the Kohn-Sham equation
describe the same physical states if we apply to the vector
potential the gauge transformation of Eq.s18d. Because of
the gauge-invariance requirement, the solutionscks andcks8
of the Kohn-Sham equation corresponding toAs and As8
differ only by a phase factor

cks → cks8 = cks expf− siq/"cdxssr dg, s19d

since the one-electron Hamiltonian in Eq.s14d is gauge in-
variant.

VR discovered that under the gauge transformation

j ps → j ps8 sr d = j pssr d − sq/mcdnssr d = xssr d, s20d

leading to

Excfns,j ps − sq/mcdns = xsg = Excfns,j psg. s21d

Based on this property, they have concluded thatExc depends
upon the paramagnetic current densitiesj ps only through the
vorticities ns of Eq. s1d. A similar procedure has been used
by Capelle and Gross22 to relate the Kohn-Sham spin density
functional theory to current-density functional theory. This
would constrain the admissible form ofj ps in the construc-
tion of current-density functionals. However, by examining

the gauge transformation of the local ingredients of the con-
ventional density functional approximations, we find that
while this vorticity-only constraint is sufficient when the lo-
cal ingredients of a conventional density functional only in-
clude the gauge-invariant quantities such as the electron den-
sitiesns and their gradients=ns, it is not when we construct
current-density functionals from the conventional meta-GGA
functionals which employ the Kohn-Sham kinetic energy
densities

tssr d = o
k=1

occup
"2

2m
u = ckssr du2 s22d

as their additional local ingredients, because the Kohn-Sham
kinetic energy densities are not gauge invariant under the
gauge transfromation of Eq.s18d

ts → ts8sr d = tssr d + 2H−
q

c
j pssr d · = xssr d

+
q2

2mc2nssr df=xssr dg2J . s23d

The same conclusion also holds for the Capelle-Gross con-
traint on the admissible form of other currents in current-
density functionals. Since the proper introduction ofts in
meta-GGA15 will generally improve GGA functionals due to
the satisfaction of additional exact constraints,4,23 and due to
the capability of simulating the nonlocality of exact
exchange,17,24 t-dependent meta-GGA functionals have re-
ceived the most attention in the recent development of the
density functional theory. Furthermore, the Kohn-Sham ki-
netic energy densities have been widely used25,26to construct
self-interaction-free correlation functionals.

The gauge-variance problem with meta-GGA functionals
may be solved by admitting the explicitj ps dependence of
Exc. A natural way is to replace the gauge-dependent Kohn-
Sham kinetic energy densities of Eq.s22d by the gauge-
invariant genuine kinetic energy densities

ts → ts
gk = ts − sq/cdj ps · As + sq2/2mc2dnsAs

2 s24d

which may be obtained27 by replacing the canonical momen-
tum operators" / id= by the genuine momentum operator
s" / id=−sq/cdAs in Eq. s2d and then performing integration
by parts. A problem with this approach is that the vector
potentialAs for both the paramagnetic and physical current
densities via Eq.s4dg must enterExc as an additional inde-
pendent basic variable, contradicting the assumption that we
construct current-density functionals by introducing the para-
magnetic current densities as only additional basic variables.
Furthermore, current-density functionals constructed with
this simple replacementfEq. s24dg are not universal, since
they depend upon the external vector potentialAssr d.

A better way is to replacets by the modified kinetic en-
ergy densities

ts → t̃s = ts − muj psu2/s2nsd s25d
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which are gauge invariant. This replacement is motivated by
s1d the Taylor expansion20,28 of the spherically averaged
gauge-invariant exchange holeskrxssr ,udl aroundu=0

krxssr ,udl = −KU o
k=1

occup

cks
* sr dckssr + udU2L/nssr d = − ns

−
2u2

3
F1

4
¹2 − t̃s +

1

8

u ¹ nsu2

ns
G + ¯

where krxssr ,udl=s1/4pdeVu
dVurxssr ,ud, sNote that the

exchange hole proposed in Ref. 16 does not satisfy the
gauge-invariance requirement.d s2d The second-order gradi-
ent expansion of the kinetic energy densities for slowly vary-
ing densities and slowly varying current densities

t̃s =
"2

m
F 3

10
s6p2d2/3ns

5/3 +
u ¹ nsu2

8ns

+
1

6
¹2ns + ¯ G ,

and s3d for one-electron densities

t̃s = t̃s
W =

"2

m

u ¹ nsu2

8ns

.

Note that in the gradient expansion of the kinetic energy
densities, we have neglected a term containingns

2. This
second-order term, like other density gradient terms, will
vanish for a uniform density and currentj ps. Furthermore, its
effect on the current density functionals constructed below is
very small, as discussed later.

VR derived8 from the second-order energy shift of the
electron gas with slowly varying densities and slowly vary-
ing current densities in the presence of a uniform magnetic
field

Excfns,j psg = Excfns,0g + Exc
VRfns,j psg, s26d

where

Exc
VR = o

s
E d3r

mkFssr d
48p2 FxLssr d

xLs
0 sr d

− 1Gnssr d2, s27d

Excfns ,0g is the conventional exchange-correlation func-
tional, kFs=s6p2nsd1/3 is the Fermi wave vector,xLs

0

=−sq2/24p2mc2dkFs is the diamagnetic susceptibility for the
noninteracting electron gas, andxLs is for the interacting
electron gas which was calculated for spin-unpolarized uni-
form densities within the random-phase approximation
sRPAd by Vignale, Rasolt, and Geldart.29 While the evalua-
tion of xLs for a spin-polarized electron gas is not available
yet, it might be constructed from the spin-unpolarized ver-
sion.

The VR linear-response current-density correction of Eq.
s27d may be added to the current-density functionals con-
structed with the present approach from conventional density
functionals. Although thesesconventionald current-density
functionals may have similar second-order contributions
slike the VR correctiond due to the local ingredientt̃s, they
are very small,30 compared with the VR correction. There-
fore, this combination will essentially reduce to the ordinary

LSD plus VR correction which is exact, for a uniform den-
sity in the presence of the uniform magnetic field. Thus our
C-MGGA functionals and their hybrid versions may be con-
structed as

Excfn↑,n↓,j p↑,j p↓g = Excfns,t̃sg + Exc
VR

=E d3rnexcsns, ¹ ns,t̃s,exs
exact,nsd

s28d

where exc is the exchange-correlation energy per electron,
exs

exact are the exact Kohn-Sham exchange energy densities
which have been used to construct commonly used hybrid
density functionals, and sns , ¹ns , t̃s ,exs

exact,nsd
=sn↑ ,n↓ , ¹n↑ , ¹n↓ , t̃↑ , t̃↓ ,ex↑

exact,ex↓
exact,n↑ ,n↓d. In the

uniform-gas limit where the densities and currents are con-
stant everywhere, because the vorticities of Eq.s1d vanish
and the modified Kohn-Sham kinetic energy densitiest̃s of
Eq. s25d reduce to the ordinary kinetic energy densities, our
current-density functionals correctly reduce to the ordinary
LSD, as expected.

The exchange-correlation contribution to the effective
vector potential is given as

−
q

c
Axc ssr d =

dExcfn↑,n↓,j p↑,j p↓g
dj pssr d

=
]snexcd

]t̃s

dt̃s

dj ps

+
1

ns

= 3 F ]snexcd
]ns

G s29d

and to the effective scalar potential is

vxc s = F ]snexcd
]ns

− = ·
]snexcd
] = ns

+ ¯ G +
]snexcd

]t̃s

dt̃s

dns

+
j ps

ns

·Fq

c
Axc s +

]snexcd
]t̃s

dt̃s

dns
G +

dexs
exact

dns

s30d

where dt̃s /dj ps=sdts /duj psu− uj psu /nsdĵ ps with ĵ ps

= j ps / uj psu and dt̃s /dns=dts /dns+ uj psu /2ns
2. These current-

dependent potentials may be used in self-consistent calcula-
tions with the current-dependent Kohn-Sham equation of Eq.
s14d, although a fully self-consistent solution of the current-
dependent Kohn-Sham equation is quite demanding. Alterna-
tively, nonself-consistent solutions to Eq.s14d may be ob-
tained perturbatively. First, one can self-consistently solve
the conventional one-electron Kohn-Sham equation which
may be obtained by dropping the vector potential terms in
Eq. s14d, and then treat these vector potential terms as a
perturbation.31

III. CONCLUSION

In conclusion, we show that current-density functional
theory can be formulated in terms of the paramagnetic cur-
rent density. This formulation allows us to construct gauge-
invariant current-density functionals from the conventional
density functionals such as the meta-GGAs and their hybrids
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by replacing the Kohn-Sham kinetic energy density with the
modified kinetic energy density of Eq.s25d. Our current-
density functionals exactly recovers the uniform-gas limit.
We also show that current-density functionals may depend
upon the current densityexplicitly.
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