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The ground-state phase diagrams of the Falicov-Kimball model with local disorder are derived within the
dynamical mean-field theory and using the geometrically averageds“typical” d local density of states. Corre-
lated metal, Mott insulator, and Anderson insulator phases are identified. The metal-insulator transitions are
found to be continuous. The interaction and disorder compete with each other stabilizing the metallic phase
against the occurring one of the insulators. The Mott and Anderson insulators are found to be continuously
connected.
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I. INTRODUCTION

Motion of quantum particles can be suppressed or even
destroyed by Coulomb interactions and disorder, which are
the driving forces behind a metal-insulator transitionsMIT d.
The Mott-Hubbard MIT is caused by Coulomb correlations
in the pure system, i.e., without disorder.1 The Anderson
MIT, also referred to the Anderson localization, is due to
coherent backscattering from randomly distributed impurities
in a system without interaction.2 The properties of real ma-
terials are strongly influenced by both interaction and
randomness.3 It is therefore a challenge to investigate quan-
tum models where both correlations and disorder are simul-
taneously present.4–7

The Mott-Hubbard MIT is characterized by opening a gap
in the density of states at the Fermi level.8 At the Anderson
localization, the character of the spectrum at the Fermi level
changes from a continuous one to a dense pure point one.9 It
is plausible that both MITs could be detected by knowing a
single quantity, namely a local density of statessLDOSd.
Although the LDOS is not an order parameter associated
with a symmetry-breaking phase transition,5 it discriminates
between a metal and an insulator, which is driven by corre-
lations and disorder.

In a disordered system, the LDOS depends on particular
realization of the disorder. Then the entire probability distri-
bution function of the LDOS is required to know,10 which is
a very demanding task. Instead, one could use certain mo-
ments of the LDOS. This, however, is insufficient because
the arithmetically averaged LDOSsfirst momentd stays finite
at the Anderson MIT.11 It was already pointed out by
Anderson2 that the “typical” values of random quantities,
which are mathematically given by the most probable values
of the probability distribution functions,12 should be used to
describe localization. Thegeometricmean13,14 gives an ap-
proximation of the most probables“typical” d value of the
LDOS and vanishes at a critical strength of the disorder,
hence providing an explicit criterion for Anderson local-
ization.2,15–17

Theoretical descriptions of the MIT have to be nonpertur-
bative if no long-range order exists on either side of the
transition. In such a case, there is no obvious order parameter
and no Landau-type functional available. A nonperturbative
framework for investigation of the Mott-Hubbard MIT in

lattice electrons with a local interaction and disorder is given
by dynamical mean-field theorysDMFTd.18–21 If in this ap-
proach the effect of local disorder is taken into account
through the arithmetic mean of the LDOS,22 one obtains, in
the absence of interactions, the well known coherent poten-
tial approximation sCPAd,23 which does not describe the
physics of Anderson localization. To overcome this defi-
ciency Dobrosavljević and Kotliar15 formulated a variant of
the DMFT where the geometrically averaged LDOS is com-
puted from the solutions of the self-consistent stochastic
DMFT equations. Subsequently, Dobrosavljević et al.16 in-
corporated the geometrically averaged LDOS into the self-
consistency cycle and thereby derived a mean-field theory of
Anderson localization which reproduces many of the ex-
pected features of the disorder-driven MIT for noninteracting
electrons. This scheme uses only one-particle quantities and
is therefore easily incorporated into the DMFT for disordered
electrons in the presence of phonons24 or Coulomb
correlations.7 In particular, the nonmagnetic ground-state
phase diagram of the Anderson-Hubbard model at half-filling
was derived.7

In this paper, we investigate the Falicov-Kimball model25

with a local disorder. The pure Falicov-Kimball model de-
scribes two species of particles, mobile and immobile, which
interact with each other when both are on the same lattice
site.25,26 The Falicov-Kimball model captures some aspects
of the Mott-Hubbard MIT, i.e., upon increasing the interac-
tion the LDOS for mobile particles splits into two subbands
opening a correlation gap at the Fermi level ifne+nf =1,
where ne snfd is the density of mobile simmobiled
particles.26–29 Here we introduce theAnderson-Falicov-
Kimball modelwhere the mobile particles are disturbed by a
local random potential. Our aim is to obtain a phase diagram
of such a model and to identify MITs driven by correlations
and disorder. We find a subtle competition between interac-
tion and disorder yielding stabilization of metalicity in the
Anderson-Falicov-Kimball model. The model is solved
within the DMFT framework combined with geometric av-
eraging of the LDOS. The results are compared with those
obtained within the DMFT with arithmetic averages. Only
geometric averaging yields the Anderson transition.

In Sec. II, we define the Anderson-Falicov-Kimball model
and present the DMFT equations which provide the solution
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of this model. In Secs. III and IV, numerical results concern-
ing the ground-state phase diagram are shown and discussed
in details. The analytical approach to the MIT in the band
center is developed in Sec. V. Section VI presents our con-
clusions and final remarks.

II. ANDERSON-FALICOV-KIMBALL MODEL

A. The model

The Anderson-Falicov-Kimball model is defined by the
following Hamiltonian:

H = o
i j

ti jci
†cj + o

i

eici
†ci + Uo

i

f i
†f ici

†ci , s1d

whereci
† sf i

†d andci sf id are fermionic creation and annihila-
tion operators formobilesimmobiled particles at a lattice site
i. tij is a hopping amplitude for mobile particles between
sites i and j , andU is the local interaction energy between
mobile and immobile particles occupying the same site. The
ionic energyei is a random, independent variable in our
problem, describing the local disorder disturbing a motion of
mobile particles. We have assumed that only mobile particles
are subjected to the structural disorder. This assumption
could be relaxed in further generalizations of the model.

The position of the immobile particles on a lattice is ran-
dom if there is no long-range order. Therefore, we assume
that the occupation numberf i

†f i on the ith site is equal to 1
with probability w s0øwø1d and zero with probability 1
−w. The presence of the randomly distributed immobile par-
ticles introduces additional disorder apart from that given by
the ei term in the Hamiltonians1d. However, theU term in
the Hamiltonians1d must be treated differently from theei
term. TheU term is operator-valued in the immobile particle
Fock subspace and one has to take the quantum-mechanical
average over a given quantum state of thef particles. In
contrast, theei term does not depend on thef operators and
one has to average the quantum-mechanical expectation val-
ues over different realizations ofei or one has to study the
whole statistics of an interesting quantum-mechanical expec-
tation value. Whereas theU term does not change the ex-
tended states into the localized ones, theei term can lead to
such a change and thereby to the Anderson localization.

In this paper, we use the canonical description, where the
number of the immobile and mobile particles are indepen-
dent of each other and fixed. In the pure Falicov-Kimball
model, increasing the interaction leads to opening a correla-
tion sMottd gap in the spectrum atU=Uc.

26–29 If ne+nf =1,
the Fermi energy for mobile particles is inside of this corre-
lation gap, which means that the ground state is incompress-
ible. On the Bethe lattice with the bandwidthW, the critical
interaction obtained within the DMFT isUc=W/2 for ne
=nf =1/2.26–29 How the disorder changes this gap and how
the localized states enter into the mobile particle band are the
subjects of the present study. We neglect any long-range or-
der, which might be achieved on a fully frustrated lattice.19

B. Dynamical mean-field theory

The Anderson-Falicov-Kimball model, where the interac-
tion and disorder are local, is solved within the

DMFT.19–21,30,31 Introducing single- and double-particle
sZubarevd Green functions32 Gijsvd=kkci ucj

†llv and Gi jsvd
=kkf i

†f ici ucj
†llv, respectively, we derive the equations of mo-

tion

sv + m − ekdGklsvd − o
j

tkjGjlsvd = dkl + UGklsvd, s2ad

sv + m − ek − UdGklsvd = kfk
†fkldkl + o

j

tkjG jlsvd, s2bd

where we used that a number of the immobile particles is
conserved being zero or one, and hencef i

†f i f i
†f i = f i

†f i. The
chemical potentialm is introduced only for the mobile sub-
system and v denotes the energy. Defining the site-
independent self-energy, according to the DMFT scheme,30,33

Ssv,eid ; U
Gi jsvd
Gijsvd

, s3d

which depends implicitly onei, the system of the equations
s2d can be solved yielding an explicit formula for the self-
energy,

Ssv,eid = wU +
ws1 − wdU2

v + m − ei − s1 − wdU − hsvd
. s4d

We defined the averaged number of localized particles per
site kf i

†f il=nf =w and we introduced the hybridization func-
tion hsvd which is adynamical mean fieldsmolecular fieldd
describing the coupling of a selected lattice site with the rest
of the system. The local noninteracting Green function is
Gii

0svd=1/fv+m−ei −hsvdg;G0sv ,eid. Thereby, the lattice
system is mapped onto an ensemble of impurity problems,
each with randomly chosenei, embedded into a self-
consistently determined conduction bath. The spatial varia-
tion of the self-energySi jsvd due to disorder is reconciled
within the DMFT by using the whole ensemble of local self-
energiesSsv ,eid.

Using the self-energySsv ,eid and the hybridization func-
tion hsvd, we obtain a localsei-dependentd Green function

Giisvd =
1

v + m − ei − hsvd − Ssv,eid
; Gsv,eid, s5d

and hence theei-dependent LDOS

Asv,eid = −
1

p
Im Gsv,eid. s6d

From theei-dependent LDOSs6d, we obtain either the geo-
metrically averaged LDOS,

Ageomsvd = expfkln Asv,eidldisg, s7d

or the arithmetically averaged LDOS,

Aarithsvd = kAsv,eidldis, s8d

where kOseidldis=edeiPseidOseid is an arithmetic mean of
Oseid.34 Here we used thatei are independent random vari-
ables characterized by a probability distribution function
Pseid. The lattice, i.e., translationally invariant, Green func-
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tion is given by the corresponding Hilbert transform

Gsvd =E dv8
Aasv8d
v − v8

, s9d

where the subscripta stands for either “geom” or “arith.”
The Dyson self-energySsvd is determined from the
k-integrated Dyson equationSsvd=v−hsvd−1/Gsvd. The
self-consistent DMFT equations are closed through the Hil-
bert transformGsvd=edeN0sed / fv−e−Ssvdg, which relates
the lattice Green function to the self-energy; hereN0sed is the
noninteracting density of states.

The DMFT which usesAarith is an exact approach in the
limit of infinite dimension where quantum-mechanical res-
caling is imposed on hopping amplitudes.18,23 On the other
hand, the mathematically rigorous limit for the DMFT with
Ageom is not yet known.16 Nevertheless, it is very promising
single-site theory which has the ability to describe at least
some aspect of the Anderson localization, i.e., the localiza-
tion due to random fluctuations of the wave-function
amplitude.35 As a single-site theory, it cannot capture inter-
ference effects due to fluctuations of a phase of the wave
function and, thereby, weak localization aspects are not re-
covered.

The Anderson-Falicov-Kimball models1d is solved for a
semielliptic density of states for the Bethe lattice,N0sed
=4Î1−4se /Wd2/ spWd. Then hsvd=W2Gsvd /16. For a
probability distribution functionPseid we assume a box
model, i.e.,Pseid=QsD /2−ueiud /D, with Q as the step func-
tion. The parameterD is a measure of the disorder strength.
For numerical integrations we use discrete values ofei se-
lected according to the Gauss-Legendre algorithm. The num-
ber of ei levels depends onD and is adjusted so as to obtain
a smooth density of states. The chemical potentialm=U /2,
corresponding to a half-filled conducting bandsi.e.,ne=1/2d,
andw=1/2 areassumed in this paper.W=1 sets the energy
units.

C. Criteria for Anderson and Mott MIT

The arithmetically averaged LDOSAarithsvd at the energy
v in a band is always positive for noninteracting systems
with disorder.11 This quantity is noncritical for the Anderson
localization. However, it approaches zero when the gap is
opened at energyv in the spectrum of the correlated system.
On the other hand,Ageomsvd vanishes at the Anderson local-
ization. We therefore classify the states at energyv as local-
ized by disorder ifAgeomsvd=0 andAarithsvd.0. When both
Ageomsvd=0 andAarithsvd=0, it means that the states at en-
ergyv in a band are absent due to correlations. BothAarithsvd
andAgeomsvd are used to distinguish between gapped, local-
ized gapless, and extended gapless parts of the spectrum as is
discussed below.

III. SPECTRAL PHASE DIAGRAMS

Depending on the spectral properties of the Anderson-
Falicov-Kimball model, we distinguish three different re-
gimes:sid weak interaction regime for 0,U,W/2, sii d in-

termediate interaction regime forW/2,U&1.36W, andsiii d
strong interaction regime forU*1.36W. Examples of the
spectral phase diagrams on the energy-disordersv−Dd
planes in these three regimes are shown in Fig. 1 in the
upper, middle, and lower panels, respectively.

In the weak interaction regimesid the Mott gap is not
opened. Increasing the disorder strengthD leads to narrow-
ing of the spectrum with extended gapless statesscontinuous
spectrumd and to broadening of the total bandwidth. This is
illustrated in Fig. 2 presenting the evolution ofAgeomsvd and
Aarithsvd, upper and lower panels, respectively, upon increas-
ing D. The continuous spectrum corresponds to a support of
Ageomsvd, i.e., such an energy window for whichAgeomsvd
.0, whereas the full band is given by the support of
Aarithsvd. The trajectories of the band edgessdashed linesd
determined within the DMFT with arithmetic averaging and
the trajectory of the mobility edgessolid linesd determined
within the DMFT with geometric averaging are shown in
Fig. 1. In the weak interaction regime, the localized gapless
statesspure point spectrumd are in a compact part of the
spectral phase diagram between the mobility and band edges.
The spectral phase diagram of the Anderson-Falicov-Kimball
model in the weak interaction regimesid is qualitatively simi-
lar to that of the Anderson model without the interaction.16

In the intermediate interaction regimesii d, the Mott gap is
opened atD=0, as is shown in Fig. 3. Upon increasingD, the
Mott gap is shrunk and finally closed, cf. Fig. 3. The disorder
redistributes the spectral weight, filling in the correlation gap
completely by a continuous spectrum. The spectral phase
diagram is shown in the middle panel of Fig. 1. As previ-
ously, the total bandwidth, determined byAarithsvd, increases
by increasingD. However, in contrast tosid, in the present
case there are two trajectories representing externalsfrom the
band-gap sidesd and internalsfrom the Mott gap sidesd mo-
bility edges. Similarly, there are two band-edge trajectories,
external and internal ones. The extended gapless states are
bounded between mobility edge trajectories, as is shown in
the middle panel of Fig. 1. Two separated regions with local-
ized gapless states are bounded by the mobility edge and the
band-edge trajectories. If the correlation gap is opened, the
localized states appear in the spectrum from each side of the
Hubbard subbands.

In the strong interaction regimesiii d, the Mott gap, deter-
mined within the DMFT framework with geometrical aver-
aging, is never filled in even at large disorder. The LDOS
given byAgeomsvd and shown in Fig. 4 always has two sepa-
rate parts, remnants of the lower and the upper Hubbard
subbands. This is in contrast with the DMFT framework with
arithmetic averaging where these two subbands always
merge ifD is sufficiently large. It means that the Mott gap is
only filled in by localized states when the disorder increases.
In the spectral phase diagram, the spectrum of extended
states is given by two separate lobes bounded by the mobility
edge trajectories, as in the lower panel of Fig. 1. AtD.0,
these lobes are surrounded by localized gapless states.

IV. BAND CENTER

In the half-filled band case, the ground-state properties are
solely determined by the character of quantum states in the
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band centersv=0d. Corresponding phase diagrams in the
interaction-disordersU-Dd plane are shown in Fig. 5 and
discussed below. We define three phases:sad extended gap-
less phasesi.e., a gapless phase with extended states at the
Fermi leveld, sbd localized gapless phasesi.e., a gapless
phase with localized states at the Fermi leveld, and scd
gapped phasesi.e., a phase with a gap at the Fermi leveld.

The extended gapless phasesdisorder metallic phased is
characterized by a nonzero value of the LDOS. In the pure
Falicov-Kimball model, the Luttinger theorem is not satisfied
and quasiparticles at the Fermi level have a finite lifetime.36

It means that due to the interactionAasv=0d,N0sv=0d
even atD=0. IncreasingD at fixed U leads to further de-
creasing of the LDOS, as is shown in the upper panel of Fig.
6. Similarly, increasingU at constantD leads to a decreasing
of the LDOS, as is presented in the upper panel of Fig. 7.

Mott-Hubbard MIT, represented byDc
MHsUd lines in Fig.

5, occurs at small and intermediate disorder 0øD&1.70W

FIG. 1. Spectral phase diagrams of the ground states without a
long-range order for the Anderson-Falicov-Kimball model withw
=0.5 at U=0.3 supper paneld, U=0.9 smiddle paneld, and U=1.5
slower paneld. Solid lines show mobility edges determined within
DMFT with geometric averaging and dashed lines present band
edges determined within DMFT with arithmetic averaging.

FIG. 2. Geometricallysupper paneld and arithmeticallyslower
paneld averaged local density of states atw=0.5 andU=0.3 for
different disorder strengthD. Vanishing ofAgeomupon increasingD
is a signature of the Anderson localization.
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and the interactionW/2øU&1.36W. This MIT is continu-
ous, as is seen in the lower panel of Fig. 6 aroundD<0.8
and in Fig. 7 aroundU<0.7 supper paneld and U<1.3
slower paneld. IncreasingD aboveDc

MHsUd when W/2,U
&1.36W results in a transition from a correlated gapped in-
sulator into a bad metallic phase, as is illustrated in the lower
panel of Fig. 6. It means that the disorder stabilizes the me-
tallic phase. Similar Mott-Hubbard MIT is obtained within
the DMFT with arithmetic averaging and the corresponding
phase diagram is reproduced in the lower panel of Fig. 5.

The Anderson MIT lineDc
AsUd is an increasing function

of U for 0øU&0.95W starting from the valueDc
A=eW/2

<1.36W se<2.718 is the Euler constantd in the noninteract-
ing case.16 The interaction impedes the localization of par-
ticles due to impurity scattering. In particular, foreW/2
&D&2.03W and 0,U&0.95W, the interaction turns the
Anderson insulator into a bad correlated metal, as is shown
in the lower panel of Fig. 7.

Mott and Anderson insulators are rigorously defined only
for U.W/2 with D=0 and only forD.eW/2 with U=0,

respectively. In the presence of the interaction and disorder,
this distinction can no longer be made. However, as long as
the LDOS shows the characteristic Hubbard subbandsssee
Fig. 4d, one may refer to adisordered Mott insulatorsgapped
phased. With increasingD, the spectral weight of the Hub-
bard subbands vanishes and the system becomes acorrelated
Anderson insulatorslocalized gapless phased. The border be-
tween these two types of insulators occurs atDsUd
<eW/2Î2 whenU@W. To estimate this value, we used the
analytical result from Ref. 16. Our estimation is exact when
U→` since the bandwidth of the Hubbard satellites is rig-
orously known to beW/Î2 for the Falicov-Kimball model.37

The results obtained here within DMFT show that the Mott
and Anderson insulators are continuously connected. Hence,
by changingU andD it is possible to move from one type of
the insulator to the other without crossing the metallic phase.
This is plausible because the Anderson MITsU=0d and the
Mott-Hubbard MITsD=0d are not associated with a symme-
try breaking.

V. LINEARIZED DYNAMICAL MEAN-FIELD THEORY

At the MIT sdots and squares in Fig. 5d, the LDOS van-
ishes in the band center. Therefore, in the vicinity of the MIT
but on the metallic side the LDOS is arbitrarily small and the
transition points on the phase diagram can be determined
analytically by linearizing the DMFT equations.16,38 In the
band center, due to a symmetry ofAasvd, we find that
Gs0d=−ipAas0d and is purely imaginary. Hence the DMFT
self-consistency leads to the following recursive relation
hsn+1ds0d=−ipW2Aa

snds0d /16, where the left hand side in the
sn+1dth iteration step is given by the result from thesndth
iteration step. Using Eq.s5d with Eq. s4d and expanding them
with respect to smallAa

snds0d, we find from Eq.s6d that

Asn+1ds0,eid =
W2

16
Aa

snds0dYseid, s10d

where

FIG. 3. The same as in Fig. 2 but atU=0.9. The correlation
sMottd gap is closed by strong disorder and the system becomes a
bad metal.

FIG. 4. Geometrically averaged local density of states atw
=0.5 andU=1.5 for different disorder strengthD.
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Ysed =

e2 + SU

2
D2

Fe2 − SU

2
D2G2 . s11d

The recursive relations within the linearized DMFT
sL-DMFTd with geometrical averaging are

Ageom
sn+1ds0d = Ageom

snd s0d
W2

16
expF 1

D
E

−D/2

D/2

de ln YsedG , s12d

and within L-DMFT with arithmetical averaging are

Aarith
sn+1ds0d = Aarith

snd s0d
W2

16F 1

D
E

−D/2

D/2

deYsedG . s13d

In a metallic phase, the recursions are increasing, i.e.,
Aa

sn+1ds0d.Aa
snds0d, whereas in the insulating phase they are

decreasing. Therefore, at the boundary curves between me-
tallic and insulating solutions in Fig. 5 the recursions are
constant,Aa

sn+1ds0d=Aa
snds0d. This observation leads directly

to the exact swithin DMFTd equations determining the
curvesD=DsUd; i.e.,

1 =
W2

16
expF 1

D
E

−D/2

D/2

de ln YsedG ;
W2

16
expfIgeomsU,Ddg

s14d

for L-DMFT with geometrical averaging, and
FIG. 5. Ground-state phase diagrams for particles in a band

center determined by using geometricsupper paneld and arithmetic
slower paneld means. Dots and squares are determined from the
numerical solution of the DMFT equations. Solid lines are obtained
analytically from the linearized DMFT.

FIG. 6. Local density of states in a band centersv=0d as a
function of disorderD at w=0.5 with U=0.3 supper paneld andU
=0.9 slower paneld. Solid sdashedd lines are determined by using
geometricsarithmeticd averaging.

FIG. 7. Local density of states in a band centersv=0d as a
function of interactionU at w=0.5 with D=0.6 supper paneld and
D=1.6 slower paneld. Solid sdashedd lines are determined by using
geometricsarithmeticd averaging.
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1 =
W2

16F 1

D
E

−D/2

D/2

deYsedG ;
W2

16
IarithsU,Dd s15d

for L-DMFT with arithmetical averaging. Both integrals can
be evaluated analytically with the results

IgeomsU,Dd = 2 + lnFSU

2
D2

+ SD

2
D2G − 2 lnFSU

2
D2

− SD

2
D2G

+
2U

D
FarctanSD

U
D − lnUD + U

D − U
UG , s16d

and

IarithsU,Dd =
1

SU

2
D2

− SD

2
D2 . s17d

Solutions of Eqs.s14d ands15d are shown as solid curves in
the upper and the lower panels of Fig. 5, respectively. At
smallU, the critical disorder strength obtained from Eq.s14d
increases linearly with the interaction, i.e.,DsUd<We/2
+pU /2. This is because the total bandwidth increases
linearly with U. At small D, the solution of Eq.s14d
sL-DMFT with geometrical averagingd is found to beDsUd
<ÎU2−sW/2d2. It turns out that the curveDsUd
=ÎU2−sW/2d2 is also an exact solution of Eq.s15d
sL-DMFT with arithmetical averagingd for all UùW/2. At
weak disorder, both approaches give the same results.

VI. CONCLUSIONS

In the present paper, we introduced the Anderson-Falicov-
Kimball model and solved it obtaining the phase diagrams
for the ground state with the suppressed long-range order.
Three different phases—the disordered metal, the disordered
Mott insulator, and the correlated Anderson insulator—were
identified. It was shown that correlation and disorder com-
pete with each other stabilizing the metallic phase against the

occurring one of the insulators. We found that these two
insulators are continuously connected.

The phase diagram with the three phases in the ground
state for the Anderson-Falicov-Kimball model is similar to
the phase diagram for the Anderson-Hubbard model solved
within the DMFT with geometric averaging in Ref. 7. There
are, however, important qualitative differences between these
two solutions. In the Anderson-Falicov-Kimball model, the
Mott transition is continuous whereas in the Anderson-
Hubbard model there is a hysteresis at low and a crossover
transition at high disorder strengths. In addition, in the
Anderson-Hubbard model the Luttinger pinning in the disor-
dered metal is reconstructed by strong correlations. This fea-
ture is absent in the Anderson-Falicov-Kimball model, where
the Luttinger pinning is violated even in the pure case.36

A similar technique, i.e., the DMFT with geometric aver-
aging, could be used to solve other models with disorder and
interaction between quantumsmobiled and classicalsimmo-
biled degrees of freedom.39 In such cases, the self-energy
should be given analytically and this removes the problem of
using any numerical impurity solver, as was necessary in the
Anderson-Hubbard model.7 Then not only the LDOS at the
Fermi level but also mobility and band-edge trajectories can
be easily determined. Such models are important for under-
standing the physics of manganites40 or diluted magnetic
semiconductors,41,42 where charge carriers are coupled to
randomly distributed localized magnetic moments. The role
of the disorder and the Anderson localization are inherent for
those correlated systems.
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