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Metal-insulator transitions in the Falicov-Kimball model with disorder
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The ground-state phase diagrams of the Falicov-Kimball model with local disorder are derived within the
dynamical mean-field theory and using the geometrically averétigoical’) local density of states. Corre-
lated metal, Mott insulator, and Anderson insulator phases are identified. The metal-insulator transitions are
found to be continuous. The interaction and disorder compete with each other stabilizing the metallic phase
against the occurring one of the insulators. The Mott and Anderson insulators are found to be continuously

connected.
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I. INTRODUCTION lattice electrons with a local interaction and disorder is given

Motion of quantum particles can be suppressed or eveRY dynamical mean-field theoDMFT).1*"2 If in this ap-
destroyed by Coulomb interactions and disorder, which ar@roach the effect of local disorder is taken into account
the driving forces behind a metal-insulator transitighiT).  through the arithmetic mean of the LDGSpne obtains, in
The Mott-Hubbard MIT is caused by Coulomb correlationsthe absence of interactions, the well known coherent poten-
in the pure system, i.e., without disordehe Anderson tial approximation(CPA),?® which does not describe the
MIT, also referred to the Anderson localization, is due tophysics of Anderson localization. To overcome this defi-
coherent backscattering from randomly distributed impuritiesciency Dobrosavljevi and Kotliat® formulated a variant of
in a system without interactiohThe properties of real ma- the DMFT where the geometrically averaged LDOS is com-
terials are strongly influenced by both interaction andputed from the solutions of the self-consistent stochastic
randomnes3.It is therefore a challenge to investigate quan-DMFT equations. Subsequently, Dobrosavijeet all® in-
tum models where both correlations and disorder are simulcorporated the geometrically averaged LDOS into the self-
taneously preserit’ consistency cycle and thereby derived a mean-field theory of

The Mott-Hubbard MIT is characterized by opening a gapAnderson localization which reproduces many of the ex-
in the density of states at the Fermi le¥e\t the Anderson  pected features of the disorder-driven MIT for noninteracting
localization, the character of the spectrum at the Fermi leveglectrons. This scheme uses only one-particle quantities and
changes from a continuous one to a dense pure point tine. is therefore easily incorporated into the DMFT for disordered
is plausible that both MITs could be detected by knowing aelectrons in the presence of phonghsor Coulomb
single quantity, namely a local density of statgDOS). correlations’. In particular, the nonmagnetic ground-state
Although the LDOS is not an order parameter associateghhase diagram of the Anderson-Hubbard model at half-filling
with a symmetry-breaking phase transitfit,discriminates ~ was derived.
between a metal and an insulator, which is driven by corre- In this paper, we investigate the Falicov-Kimball ma@el
lations and disorder. with a local disorder. The pure Falicov-Kimball model de-

In a disordered system, the LDOS depends on particulagcribes two species of particles, mobile and immobile, which
realization of the disorder. Then the entire probability distri-interact with each other when both are on the same lattice
bution function of the LDOS is required to knddwhich is  site?>2¢ The Falicov-Kimball model captures some aspects
a very demanding task. Instead, one could use certain m®f the Mott-Hubbard MIT, i.e., upon increasing the interac-
ments of the LDOS. This, however, is insufficient becausdion the LDOS for mobile particles splits into two subbands
the arithmetically averaged LDO@rst moment stays finite  opening a correlation gap at the Fermi levelnif+n;=1,
at the Anderson MIT! It was already pointed out by where n, (ny) is the density of mobile (immobile)
AndersoR that the “typical” values of random quantities, particles?®2° Here we introduce theAnderson-Falicov-
which are mathematically given by the most probable valueKimball modelwhere the mobile particles are disturbed by a
of the probability distribution function® should be used to local random potential. Our aim is to obtain a phase diagram
describe localization. Thgeometricmeart®!* gives an ap- of such a model and to identify MITs driven by correlations
proximation of the most probabl€typical’) value of the and disorder. We find a subtle competition between interac-
LDOS and vanishes at a critical strength of the disorderfion and disorder yielding stabilization of metalicity in the
hence providing an explicit criterion for Anderson local- Anderson-Falicov-Kimball model. The model is solved
ization215-17 within the DMFT framework combined with geometric av-

Theoretical descriptions of the MIT have to be nonpertur-eraging of the LDOS. The results are compared with those
bative if no long-range order exists on either side of theobtained within the DMFT with arithmetic averages. Only
transition. In such a case, there is no obvious order parametgeometric averaging yields the Anderson transition.
and no Landau-type functional available. A nonperturbative In Sec. I, we define the Anderson-Falicov-Kimball model
framework for investigation of the Mott-Hubbard MIT in and present the DMFT equations which provide the solution
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of this model. In Secs. Il and IV, numerical results concern-DMFT.1%-21.3031 ntroducing single- and double-particle
ing the ground-state phase diagram are shown and discussétlibarey Green function¥ Gj(w)=((c; |cJ-T>)w and I'jj(w)

in details. The analytical approach to the MIT in the band:((finici|ch>)w, respectively, we derive the equations of mo-
center is developed in Sec. V. Section VI presents our conggn

clusions and final remarks.

(0+ 1= €)C(®) = 2 t;Gj(w) = 84+ UTy(w), (2a)
II. ANDERSON-FALICOV-KIMBALL MODEL j

A. The model

_ 5t
The Anderson-Falicov-Kimball model is defined by the (@+p=e&=Ul(w) _<fkfk>5k'+2. gl (@), (2b)
following Hamiltonian: .
where we used that a number of the immobile particles is
H=2 tcle;+ X ecle + U fficlc, (1) conserved being zero or one, and herfitkf'f;=ff,. The
ij i i chemical potential is introduced only for the mobile sub-
wherec! (f/) andc; (f;) are fermionic creation and annihila- SYSt€m andw denotes the energy. Defining the site-

tion operators fomobile immobilg particles at a lattice site Ndependent self-energy, according to the DMFT schéhie,

i. tj is a hopping amplitude for mobile particles between ()
sitesi andj, andU is the local interaction energy between S(w,6) =U-—, 3
mobile and immobile particles occupying the same site. The Gij(w)
ionic energy¢; is a random, independent variable in our which depends implicitly or;, the system of the equations
problem, describing the local disorder disturbing a motion of(2) can be solved yielding an explicit formula for the self-
mobile particles. We have assumed that only mobile particlegnergy,
are subjected to the structural disorder. This assumption )
could be relaxed in further generalizations of the model. S (w,6)=wU + w(l-wUu _
The position of the immobile particles on a lattice is ran- ’ w+tu—€6-(1-wU - 7o)
dom if there is no long-range order. Therefore, we assum

e e oreeeliy 1 it (T/f)=n=w and we inoduced the hybridizaton func-
—w. The presence of the randomly distributed immobile par-'°" m{w) which is adynamical mean fiel@molecular field
ticles introduces additional disorder apart from that given byA€Scribing the coupling of a selected lattice site with the rest
the ¢ term in the Hamiltoniar(1). However, theU term in ofothe system. The local norg)lnteractlng Green functl_on is
the Hamiltonian(1) must be treated differently from the Gii(w)=1/[w+p-€-n(w)]=GYw,€). Thereby, the lattice
term. TheU term is operator-valued in the immobile particle SYStém is mapped onto an ensemble of impurity problems,
Fock subspace and one has to take the quantum-mechani€iCch with randomly choser;, embedded into a self-
average over a given quantum state of fhearticles. In qonS|stentIy determined conduction path. Thg spatial varia-
contrast, the; term does not depend on thieoperators and  tion of the self-energys;;(w) due to disorder is reconciled
one has to average the quantum-mechanical expectation vaithin the DMFT by using the whole ensemble of local self-
ues over different realizations ef or one has to study the energ_|e52(w,ei). o

whole statistics of an interesting quantum-mechanical expec- Using the self-energ¥.(w, ) and the hybridization func-
tation value. Whereas the term does not change the ex- tion 7(w), we obtain a locale-dependentGreen function
tended states into the localized ones, ¢heerm can lead to 1

(4)

e defined the averaged number of localized particles per

such a change and thereby to the Anderson localization. Gii(w) = =G(w,g), (5)
In this paper, we use the canonical description, where the w+pu= €= o) -(w€)

number of the immobile and mobile particles are indepensng nence the,-dependent LDOS

dent of each other and fixed. In the pure Falicov-Kimball '

model, increasing the interaction leads to opening a correla- 21

tion (Mott) gap in the spectrum ai=U,26-2°If n,+n,;=1, Alw, &) = —Im Gl €). (6)

the Fermi energy for mobile particles is inside of this corre- L
lation gap, which means that the ground state is incompres&fom the¢-dependent LDOS6), we obtain either the geo-
ible. On the Bethe lattice with the bandwidé, the critical ~ Metrically averaged LDOS,
interaction obtained within the DMFT i8);=W/2 for ng = exd(In Alw. € ) 7
=n;=1/225-2How the disorder changes this gap and how . A?eon{w) LI Ale, €))ail, 0
the localized states enter into the mobile particle band are ther the arithmetically averaged LDOS,
subjects of the present study. We neglect any long-range or-

: P ’ g O o o At ©) = (A0, €) e, (8)

der, which might be achieved on a fully frustrated latfige.
where (O(¢))qis=/deP(€)O(g) is an arithmetic mean of

O(e;).3* Here we used thag are independent random vari-
The Anderson-Falicov-Kimball model, where the interac-ables characterized by a probability distribution function
tion and disorder are local, is solved within the P(e). The lattice, i.e., translationally invariant, Green func-

B. Dynamical mean-field theory
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tion is given by the corresponding Hilbert transform termediate interaction regime fov/2<U < 1.36N, and(iii)
) strong interaction regime fod=1.36/N. Examples of the
_ Ado) spectral phase diagrams on the energy-disorderA)
G(w)= | dw , 9) : . S .
w-o' planes in these three regimes are shown in Fig. 1 in the

. . ) upper, middle, and lower panels, respectively.
where the subscripi stands for either ‘geom” or “arith.” In the weak interaction regimé) the Mott gap is not
The Dyson self-energyX(w) is determined from the neneq. ncreasing the disorder strengtieads to narrow-
k-integrated Dyson equatioli(w)=w=7(w)~1/G(w). The  jnq of the spectrum with extended gapless stétestinuous
self-consistent DMFT equations are closed through the H"Spectrum and to broadening of the total bandwidth. This is
bert trgnsfomﬁ(w):queNo(e)/[w—e—E(w)], which rglates illustrated in Fig. 2 presenting the evolution Afeq{w) and
the lattice Green function to the self-energy; higée) is the  a_.. (), upper and lower panels, respectively, upon increas-
noninteracting density of states. _ ing A. The continuous spectrum corresponds to a support of
The DMFT which use®\,i is an exact approach in the conf®), i.€., such an energy window for whioRyeon{®)
limit of infinite dimension where quantum-mechanical res->0, whereas the full band is given by the support of
caling is imposed on hopping amplitud¥s® On the other Aitn(w). The trajectories of the band edgetashed lines
hand, the mathematlcegly rigorous limit for the DMFT with jetermined within the DMFT with arithmetic averaging and
Ageomis Not yet known'® Nevertheless, it is very promising e trajectory of the mobility edgésolid lines determined
single-site theory which has the aplllty_ to Qescrlbe at 'e_aSF/vithin the DMFT with geometric averaging are shown in
some aspect of the Anderson !ocallzatlon, i.e., the Ioca_llzaFig_ 1. In the weak interaction regime, the localized gapless
tion _due to rand_om fIL_Jctuatlons _of the Wave-fun_ctlon states(pure point spectruinare in a compact part of the
amplitude?® As a single-site theory, it cannot capture inter- o a| phase diagram between the mobility and band edges.
ference effects due to fluctuations of a phase of the wave gpectral phase diagram of the Anderson-Falicov-Kimball
function and, thereby, weak localization aspects are not reg,oqel in the weak interaction regini@ is qualitatively simi-
covered. _ , _ lar to that of the Anderson model without the interactén.
The Anderson-Falicov-Kimball modéL) is solved for a In the intermediate interaction regintié), the Mott gap is
semMnsﬂy of states for the Bethe lattidés(e)  gpened an=0, as is shown in Fig. 3. Upon increasiagthe
=4y1-4(e/W)?/ (mW). Then 7(w)=WG(w)/16. For a \ott gap is shrunk and finally closed, cf. Fig. 3. The disorder
probability distribution function”(e) we assume a box redistributes the spectral weight, filling in the correlation gap
model, i.e.,P(&)=0(A/2-|¢[)/A, with © as the step func-  completely by a continuous spectrum. The spectral phase
tion. The parameted is a measure of the disorder strength. diagram is shown in the middle panel of Fig. 1. As previ-
For numerical integrations we use discrete values;afe-  ously, the total bandwidth, determined By ), increases
lected according to the Gauss-Legendre algorithm. The nunmy increasingA. However, in contrast tdi), in the present
ber of ¢ levels depends oA and is adjusted so as to obtain case there are two trajectories representing extéfiah the
a smooth density of states. The chemical potential/2,  pand-gap sidésand internal(from the Mott gap sidésmo-
corresponding to a half-filled conducting bae.,n.=1/2),  pility edges. Similarly, there are two band-edge trajectories,
andw=1/2 areassumed in this papeW=1 sets the energy external and internal ones. The extended gapless states are
units. bounded between mobility edge trajectories, as is shown in
the middle panel of Fig. 1. Two separated regions with local-
C. Criteria for Anderson and Mott MIT ized gapless states are bounded by the mobility edge and the
band-edge trajectories. If the correlation gap is opened, the

The arithmetically averaged LDO&in(w) at the energy  |ocajized states appear in the spectrum from each side of the
o in a band is always positive for noninteracting systemsy,ppard subbands.

with disordert* This quantity is noncritical for the Anderson |, the strong interaction regim@i ), the Mott gap, deter-
localization. However, it approaches zero when the gap ignined within the DMFT framework with geometrical aver-
opened at energy in the spectrum of the correlated system. aqing, is never filled in even at large disorder. The LDOS
On the other handieon{ @) Vanishes at the Anderson local- gjyen by Ageon{ @) and shown in Fig. 4 always has two sepa-
ization. We therefore classify the states at enesgys local-  rate parts, remnants of the lower and the upper Hubbard
ized by disorder iAgeon{ @) =0 andAgin(w) >0. When both g ppands. This is in contrast with the DMFT framework with
Ageonf @) =0 andA,n(w)=0, it means that the states at en- grithmetic averaging where these two subbands always
ergyw in a band are absent due to correlations. Bafi(®)  merge ifA is sufficiently large. It means that the Mott gap is
and Ageon{ ) are used to distinguish between gapped, localonly filled in by localized states when the disorder increases.
ized gapless, and extended gapless parts of the spectrum agristhe spectral phase diagram, the spectrum of extended
discussed below. states is given by two separate lobes bounded by the mobility
edge trajectories, as in the lower panel of Fig. 1.0+ 0,
Il SPECTRAL PHASE DIAGRAMS these lobes are surrounded by localized gapless states.
Depending on the spectral properties of the Anderson- IV. BAND CENTER

Falicov-Kimball model, we distinguish three different re- In the half-filled band case, the ground-state properties are
gimes: (i) weak interaction regime forQU<W/2, (ii) in-  solely determined by the character of quantum states in the
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FIG. 2. Geometricallyupper paneland arithmetically(lower
pane) averaged local density of stateswat0.5 andU=0.3 for
different disorder strength. Vanishing ofAye,mUpon increasings
is a signature of the Anderson localization.

band centerfw=0). Corresponding phase diagrams in the
interaction-disordefU-A) plane are shown in Fig. 5 and
discussed below. We define three phagasextended gap-
less phasdi.e., a gapless phase with extended states at the
Fermi leve), (b) localized gapless phasé.e., a gapless
phase with localized states at the Fermi lg¢velnd (c)
gapped phasé.e., a phase with a gap at the Fermi lgvel
The extended gapless phasksorder metallic phages
characterized by a nonzero value of the LDOS. In the pure
Falicov-Kimball model, the Luttinger theorem is not satisfied
and quasiparticles at the Fermi level have a finite lifetihe.
It means that due to the interactio,(w=0)<Ny(w=0)

FIG. 1. Spectral phase diagrams of the ground states without 8v€n atA=0. IncreasingA at fixed U leads to further de-

long-range order for the Anderson-Falicov-Kimball model with
=0.5 atU=0.3 (upper pangl U=0.9 (middle panel, andU=1.5

creasing of the LDOS, as is shown in the upper panel of Fig.
6. Similarly, increasing) at constani\ leads to a decreasing

(lower pane). Solid lines show mobility edges determined within of the LDOS, as is presented in the upper panel of Fig. 7.
DMFT with geometric averaging and dashed lines present band Mott-Hubbard MIT, represented b&{ﬁ"H(U) lines in Fig.
edges determined within DMFT with arithmetic averaging.

5, occurs at small and intermediate disordez H<1.70N
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< <
0.4 i 0.4 + -
0.8
02t ] 02 r T
0 L 1 1
0_1 1 -1.5 -1 -0.5 0 0.5 1 1.5
(a) ®
12 FIG. 4. Geometrically averaged local density of stateswvat
=0.5 andU=1.5 for different disorder strength.
r | respectively. In the presence of the interaction and disorder,
this distinction can no longer be made. However, as long as
0.8 | - the LDOS shows the characteristic Hubbard subbgrds
Fig. 4), one may refer to disordered Mott insulatotgapped
5 phase. With increasingA, the spectral weight of the Hub-
- 061 | bard subbands vanishes and the system becomeseated
< Anderson insulatoflocalized gapless phasdhe border be-
04t - tween these two types of insulators occurs &tU)
~eW/2y2 whenU>W. To estimate this value, we used the
oz b ' | analytical result from Ref. 16. Our estimation is exact when
' i U— since the bandwidth of the Hubbard satellites is rig-
': orously known to ban/ 2 for the Falicov-Kimball modet!
0 ; The results obtained here within DMFT show that the Mott

|
(b) 15 - 05 3) 05 15 and Anderson insulators are continuously connected. Hence,

by changingJ andA it is possible to move from one type of
FIG. 3. The same as in Fig. 2 but &t=0.9. The correlation  the insulator to the other without crossing the metallic phase.
(Mott) gap is closed by strong disorder and the system becomes Bhis is plausible because the Anderson MIT=0) and the
bad metal. Mott-Hubbard MIT(A=0) are not associated with a symme-
and the interactio®WV/2<U=1.36N. This MIT is continu- Y breaking.
o l':sigfe;e”a'rgl}gaji""g; p(igile?fngéfaﬁgo'gf 2:2 V. LINEARIZED DYNAMICAL MEAN-FIELD THEORY
(lower panel. IncreasingA aboveAy'™(U) whenW/2<U At the MIT (dots and squares in Fig),3he LDOS van-
=1.36N results in a transition from a correlated gapped in-ishes in the band center. Therefore, in the vicinity of the MIT
sulator into a bad metallic phase, as is illustrated in the loweput on the metallic side the LDOS is arbitrarily small and the
panel of Flg 6. It means that the disorder stabilizes the Metransition points on the phase diagram can be determined
tallic phase. Similar Mott-Hubbard MIT is obtained within analytically by linearizing the DMFT equatioﬁ@?g In the
the DMFT with arithmetic averaging and the correspondingband center, due to a symmetry éf(w), we find that
phase diagram is reproduced in the lower panel of Fig. 5. G(0)=~iA,(0) and is purely imaginary. Hence the DMFT
The Anderson MIT lineAc(U) is an increasing function  selt-consistency leads to the following recursive relation
of U for 0<U=0.95W starting from the value\f=eW/2 7#™D(0)=-i "WPA™(0)/16, where the left hand side in the
~1.36/V (e~ 2.718 is the Euler constanin the noninteract- -
ing caset® The interaction impedes the localization of par-
ticles due to impurity scattering. In particular, fe\WW/2
=A=<2.03V and 0<U=0.95, the interaction turns the
Anderson insulator into a bad correlated metal, as is shown W2
in the lower panel of Fig. 7. A™D(0,€) = 1—6A(C?)(0)Y(6i), (10
Mott and Anderson insulators are rigorously defined only
for U>W/2 with A=0 and only forA>eW/2 with U=0, where

(n+1)th iteration step is given by the result from th@th
iteration step. Using Eq5) with Eq. (4) and expanding them
with respect to smaIAg‘)(O), we find from Eq.(6) that
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o4 | ' ' ' ' ' ' T FIG. 6. Local density of states in a band center=0) as a
oo [ ] function of disorderA at w=0.5 with U=0.3 (upper pangland U
' =0.9 (lower panel. Solid (dashed lines are determined by using
2r ] geometric(arithmetig averaging.
1.8 E
16 F extended gapless phase - In a metallic phase, the recursions are increasing, i.e.,
1al Ag‘+l)(0)>Ag‘)(O), whereas in the insulating phase they are
a0l decreasing. Therefore, at the boundary curves between me-
' tallic and insulating solutions in Fig. 5 the recursions are
r constant,Ag”l)(O):Ag‘)(O). This observation leads directly
08 f to the exact(within DMFT) equations determining the
06 | curvesA=A(U); i.e.,
04 F \/\/2 1fA/2
gapped phase l=—exp — delnY(e) | = — exdl U,A
02 | _ 16 &P 3] denY(e) | = J¢ exillgeon{U.0)]
O 1 1 L 2 1 1 1 1 1
0 02 04 06 08 1 1.2 1.4 (14
U
for L-DMFT with geometrical averaging, and
FIG. 5. Ground-state phase diagrams for particles in a band
center determined by using geometfipper pangland arithmetic 1.2
(lower panel means. Dots and squares are determined from the 1 A=0.6
numerical solution of the DMFT equations. Solid lines are obtained W=05
analytically from the linearized DMFT. =
L o6
<
U\? 0.4
2 0.2
Y(e) = 70\ (11 0 . . , .
€= <2> A=16
R 00w, W05
The recursive relations within the linearized DMFT g 04 .
(L-DMFT) with geometrical averaging are s “m
02} |
W2 1 (22 E
(n+1) — AN 0 -
Ageom(0) = Ageon(0) 16 exp N delnY(e) |, (12 e . . .
0 02 04 06 08 1 12 14 18
u

and within L-DMFT with arithmetical averaging are

W2 1 A2
A0 = A0 —| ~ f deY(e)|. (13
16] AJ ap
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FIG. 7. Local density of states in a band center=0) as a
function of interactionU at w=0.5 with A=0.6 (upper paneland
A=1.6 (lower pane). Solid (dashed lines are determined by using
geometric(arithmetig averaging.
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W2| 1 (a2 W2 occurring one of the insulators. We found that these two
1 =16 ZJ deY(e) | = Elarith(UaA) (15  insulators are continuously connected.
—A/2 The phase diagram with the three phases in the ground

state for the Anderson-Falicov-Kimball model is similar to
the phase diagram for the Anderson-Hubbard model solved
within the DMFT with geometric averaging in Ref. 7. There

o (UA) =2+ In{<9>2+ (é)z] s In[(g)z ~ (é)z] are, however, important qualitative differences between these
geomY,R) = 2

for L-DMFT with arithmetical averaging. Both integrals can
be evaluated analytically with the results

2 2 2 two solutions. In the Anderson-Falicov-Kimball model, the

Mott transition is continuous whereas in the Anderson-
+ E{arctar<é> —In A+U ‘ } (16) Hubbard model there is a hysteresis at low and a crossover
A U A-U| ]| transition at high disorder strengths. In addition, in the

Anderson-Hubbard model the Luttinger pinning in the disor-

and dered metal is reconstructed by strong correlations. This fea-
1 ture is absent in the Anderson-Falicov-Kimball model, where
laritn(U,A) = TO\Z (A2 (17)  the Luttinger pinning is violated even in the pure c3%e.
(E) - (E) A similar technique, i.e., the DMFT with geometric aver-

aging, could be used to solve other models with disorder and

Solutions of Eqs(14) and(15) are shown as solid curves in interaction between quantutmobile) and classicalimmo-

the upper and the lower panels of Fig. 5, respectively. APile) degrees of freedorf. In such cases, the self-energy
smallU, the critical disorder strength obtained from Etg) sh_ould be given analytlcally and this removes the problgm of
increases linearly with the interaction, i.e\(U)~We/2 using any numerical impurity solver, as was necessary in the
+7U/2. This is because the total bandwidth increased\nderson-Hubbard modélThen not only the LDOS at the
linearly with U. At small A, the solution of Eq.(14) Fermi level but also mobility and band-edge trajectories can

(L-DMFT with geometrical averagings found to beA(U) ~ Pe €asily determined. Such models are important for under-
02— (W/22 It turns out that the curve A(U) standing the physics of manganittor diluted magnetic

~\JU%-(W/2)2. ) .
e . semiconductor$!#? where charge carriers are coupled to
(_L\ILDJMF('}'N \ivzl'zh ;ith?ric'zicgp a\?é(rz(;tin);glrjt;cl)lnu0>fV\/E/g(l,§)t randomly distributed localized magnetic moments. The role

weak disorder. both aoproaches dive the same results of the disorder and the Anderson localization are inherent for
’ PP 9 ' those correlated systems.
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