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Solution of the multichannel Anderson impurity model: Ground state and thermodynamics
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We present the solution of the $) ® SU(M) Anderson impurity model using the Bethe-Ansatz. We first
explain what extensions to the formalism were required for the solution. Subsequently we determine the
ground state and derive the thermodynamics over the full range of temperature and fields. We identify the
different regimes of valence fluctuation at high temperatures, followed by moment formation or intrinsic mixed
valence at intermediate temperatures and a low temperature non-Fermi liquid phase. Among other things we
obtain the impurity entropy, charge valence, and specific heat over the full range of temperature. We show that
the low-energy physics is governed by a line of fixed points. This describes non-Fermi-liquid behavior in the
integral valence regime, associated with moment formation, as well as in the mixed valence regime where no
moment forms.
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I. INTRODUCTION the 52 configuration. The doublets hybridize with conduc-

Heavy-fermion materials have been a source of interes{on €lectrons in d'g representation carrying both spin and
and puzzlement since the experimental discovery of supefuadrupolar quantum numbers. This single-impurity ap-
conductivity in CeCySi, in 1979 By the turn of the 1990s proach was not uncontroversfal.For instance, whether the
the non-Fermi liquid character of these materials was comingnergy splitting between the two doublets is sufficiently large
to the center of attentioffor a recent review see Ref),2 for a quadrupolar Kondo scenario to be viable is still largely
coincidentally with the interest on marginal Fermi liquids unresolved. Alievet al. presented experimental evidence
generated by the normal state of hifjh-superconductors. suggesting that both doublets may in fact be nearly degener-
Since then, the number of examples of violation of Landau’&te, pointing to a mixed-valent state with a novel type of
Fermi liquid theory among lantanides and actinides has mulinterplay between magnetic and quadrupolar two-channel
tiplied. type screening.

Current theories trying to explain the non-Fermi liquid In this article we will study the general multichannel
behavior ind- and f-electron metals can be classified into Anderson impurity model that includes as particular cases
three broad categoriegi) models based on multichannel the two-channel model and, to some extent, most of its gen-
Kondo physics,(i) models considering the proximity of a eralizations alluded to above.The so-called S(N)
quantum critical point, andiii) models based on single- ® SU(M) Anderson impurity model, in its pseudoparticle
channel Kondo physics but in the presence of disorder thatepresentation, is given by the following Hamiltonian:
induces a distribution of impurity energy scales. These three

ingredients are not mutually exclusive and a number of re- Huicna = Hhost* qu bgba+ &5 fZ'fO'
cent theories try to address their effects in different combi- @ o
nations(see Ref. 2 for referencedn this article we will be +VE [f‘rb_¢ (0) + ¢T (O)bT_f ]
concerned with the first class of models. This approach origi- S L oeree Qoo

nated with the work of CoX,in turn motivated by the un-

usual experimental results in the heavy-fermion compoungubject to the constrainE ,blb+3 f'f =1. The first term
UBe,3.* He argued that the notably weak magnetic field de-in the Hamiltonian describes the host in which the impurity
pendence of the specific heat of this material excludes this embedded. For our purposes, we model it as a linearized
usual magnetic Kondo effect and proposed instead that théermi band,

observed anomalous behavior derives from the quenching of

quadrupolar degrees of freedom. In this case, the spin of the - + i

conduction band electrons plays the role of a channel degree Hhost= %f Va0 (=18t s X)X

of freedom. This is the two-channel quadrupolar Anderson

model, describing tetravalent uranium impurities in a cubic-The second and third terms model two multiplets with ener-
symmetric metallic matrix. The model was later generalizeddies s and g, and quantum numbersre SU(N) and

to include other crystal symmetries as well as more compli@€ SUM), respectively. We will refer to these two quan-
cated crystal field splittings; for a review see Ref. 5. In moretum numbers as generalized spin and flavor—in reference to
detail, Hund's rules and spin-orbit coupling in the presencehe Kramergmagneti¢ and non-Kramergquadrupolardou-

of a cubic crystalline electric field lead to the modeling of ablets of the two-channel case. The last term in the Hamil-
U ion in a Bgs host by al's Kramers doublet in a8  tonian describes the hybridization of the host electrons with
configuration and a quadrupolaronmagneticdoubletl’; in  the impurity.
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FIG. 1. Impurity level scheme for the case of an Anderson LMM LM
model with a threefold degenerate magnetic configuration of energy e : FP : e
es and a fivefold degenerate quadrupolar one of eneigyThe o — pos

energy difference =es—¢ is indicated with an arrow.
FIG. 2. Schematic representation of the two temperature scales
An illustrative level scheme is given in Fig. 1 where the indicating th_e crossovers among different regimes: fluctuating va-
magnetic configuration is taken to lie lower in energy than'énce(FV), fixed point(FP), and local magnetic and quadrupolar
the quadrupolar one. The particular example is for an Ander™°ment regime¢LMM and LQM).
son model with SUN=3) ® SU(M =5) symmetry. The impu-
rity can switch between the two configurations by giving oralternative approaches like the noncrossing approximation

taking an electron from the host band, a process that také®CA),?®?3the conserving slave boson thegi¥?® or other
place with an overlap amplitude given M types of 1N-expansiong? Since the general multichannel

As a result of the constraint, the impurity Hilbert space isAnderson model can be regarded as the extension of the
restricted toN+M states. NamelyN flavorless spin states infinitely-repulsive degenerate single-channel Anderson
|G>Ef3|o> plus M spinless flavor Statégzbq@_ Defining model to the multichannel case, the question about its inte-

(23 e . .
these states explicitly, we can rewrite the Hamiltonian in gorability arises naturally. During the last couple of years the

different notation that automatically accounts for the Hilbertintegrability was established, opening up the possibility of a
space restriction, full understanding of the model. In previous work, we pre-

sented the Bethe-Ansatz solution for the two-channel ¥se.

Subsequently, we developed the critical low-energy theory of

Hucna = Hhost* 842 [@)(a] + £52 [o)(o] that model using BCFT and combining it with results from
“ 7 thermodynamic Bethe-Ansat#:32

+V2 [|o)althao(0) + 4! ,(0)@¥a]].

A. Preview of main results

Both forms of the Hamiltonian are completely equivalent In the present work we will give a detailed and, to a large
when the constraint is treated exactly and both are widelextent, self-contained account of the Bethe-Ansatz solution
used in the literaturelt is the constraint acting in the Hilbert of the general multichannel Anderson model. We shall show
space that plays the role of a strong interaction and rendetsat, as in the case of the two channel model, the low energy
the problem highly nonperturbative. physics of the impurity is governed by a line of boundary

As a side remark notice that if eithdt or N is put to one,  fixed points with a nontrivial residual impurity entropy that
the model reduces to a degenerate single-channel Anders@constant along the line. We shall identify two energy scales
model in the limit of infinite Coulomb repulsio@ magnetic (T, andT,) that govern the screening process of the impurity
or a quadrupolar version of it, respectivel)'* While the  degrees of freedom. The screening occurs in two stages pa-
standard single-channel $2) Anderson modéf was found  rameterized by these scales as will be seen, for instance, in
to be integrablé3'4 its SUN) generalization is not inte- the temperature dependence of the impurity entropy. The
grable except for the strong repulsion limit when the impu-mixed valence regime will be discussed in detail, stressing
rity is constrained not to exceed single occupalcy. not only the differences, but also the unexpected similarities

Even though the multichannel Anderson model was putith the integer valence cases.
forward more than 15 years ago, progress in its theoretical In Fig. 2 we present the picture that emerges for the dif-
understanding has been slow. In the two-channel ¢bse ferent regimes of the model. As a function of temperature
=M=2) most of the early knowledge of its unusual physicsand energy difference between impurity configuratigas
came from the integer valence limit. In this limit the model =es—&y), we will characterize the different regimegV,
maps onto the two-channel Kondo model for which theLMM and LQM, and FP; see figure captiprin particular,
Bethe-Ansatz solution was availaBie!® Also numerical moment formation takes placéor a fixed and suitably large
renormalization grougNRG)?%2! and boundary conformal ) as the temperature falls beldly; the moment being mag-
field theory (BCFT)?? studies were carried out. Only more netic or quadrupolar depending on the signsofit is then
recently some progress was made in the study of the mixescreened as is further lowered below, when the system is
valence regime of the two-channel Anderson model usinggoverned by the infrared fixed point. Notice that the moment
Monte Carl@® and NRG*2> methods. The more general formation region becomes smaller|ais reduced and com-
multichannel case is, however, not quite within the presenpletely disappears at=0. In fact, over the whole mixed
reach of NRG and other approaches. On the other hand, thalence region(|s|<A=V?/2), valence fluctuations suffice
largeN and M case constitutes the natural starting point forto prevent moment formation.
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Another way of presenting the picture is to define twofrom the first equation and settir@;w
energy scalesT; and T,) associated with the spin and qua- haye (repeated indexes are summed gver
drupolar degrees of freedom. These scales cross each other in
the intermediate valence region and interchange roles as the (k- ¢)(- iax)EI;a-ﬁ(X) +V25(X)(9§(9§:Ez,a_ﬁ,(o) =0.
high-temperaturéT,) and low-temperaturé€T,) scales that ' '
indicate the transition zones among different regimes. Th&Ve make the following Bethe-type ansatz for the coordinate
meeting of the two scales in the intermediate valence regio@ependence of the= wave-function: E';U_B(X):[[g(-xﬂ
signa_ls the absence of a moment forma_tion regim_e betweepg(X)S]A]';U.B, whereS will be called the eiectron-impurity
the high and the low temperatures: the fixed point is reachedcattering matrix and is an arbitrary vector in the internal
without prior moment formation. space of the one-electron sector. In order to fully define the

The rest of this article is organized as follows: In the nextansatz we adopt the following convention for the step func-
section we will discuss the scattering matrices and the intet-

grability of the model(Sec. l); in the subsequent one we lon: ,0(0)_1/2' Let us introduce the operaton]a;Bﬁ
will present some necessary formal developments in th& 8205, that acts in flavor space and has the prope@fy
theory of quantum inverse scattering and the equations deeMQ (recall M is the number of values that the index
rived from them(Sec. lll); in the following two we will  takeg. SinceA is arbitrary, one has a matrix equation fr
discuss the thermodynamics of the model, we shall give forits solution is

(x)=eFX  (x) we

ao, B

mal derivationgSec. I\) and analytic and numerical results S =] .- i2v? Quo=11 o+ g olkae) - 1Q

(Sec. Vj; in the last section we will provide a summary and ~07 10 5 — o) 42 <107 10 M Lo

a discussion of our main results as well as an outlook of their ) )
applications in the theory of heavy fermiofSec. V). where we used the index “1” for the only electron present in

the system and introduced the use of the index “0” for the
impurity (the notationky= ¢ will be also used later For the
Il. S-MATRICES AND INTEGRABILITY second way of writingS; o we introduced the phasé(k
—-g)=2 arctarMV?/2(k-¢).
It is easy to verify unitarity,

SS' =S, S1=1.

The HamiltonianH,,.,a conserves the number of fermi-
onic excitationgelectrons,

Ne=2 J Voo oX) + 2 F1F, , ,
a0 o B. Electron-electron scattering matrix

allowing us to study the system for an arbitrary but fixed ~Consider now the case when there are two electrons

value of N.. We take No=0 as our reference sector, an presentin the systefiN.=2). The most general two-fermion

M-degenerate eigenstate with enesgyOur strategy will be ~ state that we can write has the following fofall indices are

the usual one in coordinate Bethe-Ansatz: we solve the sysummed over

tem forNg.=1,2,... and then generalize the solution to arbi-

trary values ofN.. Subsequently, as thé, — o limit is taken Ikyko) = f f Filllglazaz;ﬁ(xl’XZ) le(,l(xl) o

(discussed in later sectionghe field theory is recovered.

()8

202

kek T
+ | Gz, (X X1)|09).
A. Electron-impurity scattering matrix f “1”1'”2( 1)1’/,“1"1( Vlo2)

When there is only one electron present in the systenNow again we apply the Hamiltonian in order to obtain the
(Ne=1), the most general one-fermion state has the followingirst quantized Schrédinger equations for eigenstates with

form: eigenenergie€ 2=k, +k,+£, We arrive at the following
= Fﬁg;ﬁ(x)lﬂla(x)@"”dﬂ@- set of differential equations:
e S, Cid ~KLAFTEE | (x,%,)
To determine the eigenstates of the Hamiltonian in this sec- ' ok
tor, satisfyingH|k)=EXk), we apply the Hamiltonian to this +VA[5(X2)332GC}1£1;02(X1)] =0,
generic state and derive thiirst quantized Schrodinger
equationsin the sector. Using the expressiE‘1:k+sq for —ia ket e— keky
the eigenenergies of eigenstates we read off the equa- ( 9%, ky+e kZ)G“:L‘Tl?O"z(Xl)
tions: + V) O [AFTES . sX4,%) =0,

: K k_
(—iox=KFGpp(x) + BXVEG, =0, where A=1-P*s9=| -P*PSP1 is (twice) the antisymmetrizer

in coordinate, spin, andquadrupolarflavor space, ex-

(e-KG+2 ,Vaij‘;,U_B,(o) =0, pressed in terms d®, PS, P9 the permutation operators that
P ’ act in the spaces indicated.
where the energy difference=es—g, was introduced. We Now we make an ansatz for tlie wave-function similar

call F¥, 4(x) and G¥ the wave-functions. Eliminatings’  in spirit to the one we made in the one-electron sector. There
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are six regions in configuration space, corresponding to the  TABLE I. Three necessary conditions for integrability.
six possible line arrangements of the impurity and the two
electrons. The region with, say, electron “1” to the immediate Unitarity condition S;;S;i=|
left of the impurity is related via the S-matri&; o to the _ .
region with elgctroyn “1” to the immediate righlhéoposition Locality of the scattgnng 5507 S5

of electron “2” remains unchanggd\ similar role is played Yang-Baxter relation SikSikSij = Sij SkSik
by S, 0. However, we still need to determine how to relate
the regions where electrons “1” and “2” exchange places
(away from the impurity.

Consider then,

The first of these relations assures the reversibility of the
scattering processesr reversibility of the scattering paths
and the other two are enough to guarantee path independence
l:t:;?lazoz;ﬁ(xl’XZ) - eik1x1+ikzxz’ﬁl;lllzz_lazoz;ﬁ(xl’XZ) for arbitrary Ne.**3*With these conditions, any multiparticle
scattering process can be factorized into pairwise scattering
with the expression foF describing the six different ar- €vents and there is no ambiguity in the multiple ways of

rangements of particles, carrying out the factorization since they are all equivalent
(the reader can find an illustration of the situation in four-
N‘;lkgza . -5(X1,X2) = [[0(X10) O(— Xp)| + 6(Xp1) 6(— X1)S partiple space in the re\_/iew article of Ref.)3&Ve r(_amgrk _

e that in the case of impurity models, any one of the indices in
+ 0(=X1) 0(X2) S0+ (= X) 0(%1) Sy oS these relations can take the value “0” that stands for the

impurity.

+

00) 00012 S1.02 0 These three conditions together with the constraint com-
+ 0(x2)0(x21)SZVOSLOS]A]'%'EWZ‘,Z;B. ing from the Schrodinger equation, constitute an overcon-

strained algebraic system for determining the electron-

HereS, o andsS; o are the electron-impurity S-matrices found ejectron S-matrix (S=S, ;). Nevertheless, it admits a
above and5=S, , is the electron-electron S-matrix that we gg|ytion.

seek to determine in this section. As abdvés an arbitrary It can be shown that the only solution is the following:
vector in the internal space of the two-electron sector, deter-

mining the state of two electrons and the impurity. To define o - (ky = ko) = IVZPS , (kg — k) +iV2PY,
unamb|gugusly the ansatz we adopt the regularization 1,2~ (= ko) —IV2 (kg — ko) + V2

6(07)0(0")=0,23 consistent with the first order character of _ _ -

the differential equations. Let us mention that this ansatZ his matrix serves to describe the electron band with linear
assumes that the same momektek, characterize the wave- dispersion within a basis of reduced symmetry (8M)
function in all six regiondi.e., orderings This is at the heart — SU(N)® SU(M), consistent with the reduction in symme-

of the ansatz and will be shown to be valid later when welry operated by the addition of the impurity terms to the
discuss the Yang-Baxter conditions. Hamiltonian of the host band. It is important to emphasize

Inserting the wave-function into the first of the that the introduction ofS, ; does not signify that we have
Schrodinger equations above we verify after some algebrgnodified the original HamiltoniarHycna by introducing
that the equation holds, determining uniquely the form of theelectron-electron interaction. Instead, the choic&pj cor-

G wave-function. At this stage the electron-electron scatterr@sponds to a choice of basis in the space of free electfons.
ing matrix remains arbitrary and we turn our attention to the
second Schrddinger equation. Carrying out the algebra, we || PERIODIC BOUNDARY CONDITIONS AND
find that the equation holds provided the following matrix BETHE-ANSATZ EQUATIONS
constraint on the electron-electron S-matrix is obeyed:
We proceed to impose boundary conditions. This is re-
(S2,0=D(S1,65=1) = PIS; 0= 1)(S20-9) =0, quired in order to be able to properly count and label the

where the matrices without indexes act on the internal spacéiates. We will discuss here the case of periodic boundary
of the two electrons. A careful examination of this equationconditions, imposing the following set of conditions on the
reveals the presence of an overall left-prefacgr, Since Ne-electron wave-function,
this operator is not invertible, the solution of the constraint is

i s st i Fify (0= = Figy (<D
not unique and there is still a certain amount of freedom left {m x=L2 = P x;=-L/2>

in the choice ofS. o o
where we are considering a finite ring of lendithAs we are

1. An integrable solution able to move electropto the far left(x;=-L/2) or to the far
The equation above does not have a unique solution fofight (x;=L/2) using the S-matrices, the boundary condition
the two-electron S-matriXS. For our purpose we need to gives rise to the following eigenvalue problem:
identify, however, a particular solution having the appropri-

ate physical properties that ensure the generalization and Zj,&:zj,&,
consistency of the ansatz to any number of electrps _
These requirements are listed in Table I. where the eigenvalue§:e""iL of the transfer matrixz;,
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Zj = 31_1. . .%1%03'\‘. . 'Siﬂ' A%(M) =¢,
will allow us to find the spectrum of the Hamiltonian Via  and accordinglyMg9=N,, M{,=N;=1, andMy=0. One sees

:Ekj_ ,& is a vector in the internal space of thg electron that the effect of the impurity enters via the auxiliary condi-

sector. Equivalently, this condition corresponds to taking partions for theg-flavor rapidities This is a distinguishing fea-

ticle j around the ringand asking that the wave-function ture, different from what happens in the equations for the

should not change; it should hold for glk1,...,N.. The  single-channel Anderson model, or in those for the Kondo

original problem of finding the eigenenergies and eigenfuncmodel regardless of the number of channels.

tions of the Hamiltonian is thus reduced to that of finding the ~ Each solution of the BAE corresponds to an eigenstate of

vector amplitudes in internal spa(;é) that are simultaneous the Hamlltonlan. Th.e e|genfupct|on can in pnnuplg Bedes

eigenvectors of all these eigenvalue problems. termined from the eigenvectdk and the corresponding en-
The solution of this class of eigenvalue problems was firs€rgy eigenvalue is given by

tackled by Yang?® who solved the problem by means of a E=k

“second Bethe-Ansatz(see also the work of Baxt®). In B j I

the late 1970s the procedure was systematized into what is

known as theQuantum Inverse Scattering Metha@ISM).3®  The charge-, spin-, and quadrupolar-rapidities entering the

However, the existing technology is insufficient for our pur- solutions of the BAE are in general complex, and take the

pose; the structure of the impurity S-matrix in the multichan-form, in the thermodynamic limit, aftrings*®~#2An n-string

nel Anderson model requires a reformulation and extensio®f spin or g-flavor rapidities consists ofi equally spaced

of the standard formalism. We give a detailed account ofomplex numbers symmetrically arranged around the real

those developments in one of the appendices at the end of t1ais (X=s,0):

article. AO= A0 4in+1-209A with o=1,..,n.

A. Bethe-Ansatz equations for the multichannel Anderson Strings are thus specified by a single real n_umhéF, In
impurity model terms of which we shall rewrite the BAE. Similarly, there

_ kL . ) also complex values of the charge rapiditiesorresponding

~ The eigenvalueg; =e™™", of the transfer matrix are given o pound states among the bare electrons that build up the

in terms of thecharge rgp_|(j|t|es(sl(<#-)), which in their W,  theory. They too form strings and will be incorporated in the

together with thespin rapidities(A")and thequadrupolar-  BAE through the real part characterizing them. Consider a

flavor rapidities (A‘jf”), completely specify the particular bound state oh particles, the corresponding charge rapidi-

eigenstategsee Appendix A The spin rapidities{A‘jr)) and ties form a string:

the g-flavor rapidit.ies(A‘;(f)) describe, respectively, the spin KO=KMD4in+1-20)A with o=1,..,n

and flavor dynamics as well as the symmetry of each state.

The index x=s, (q) specifies thatA*” refers to a spin and we have spin-rapidity strings associated with them in the

(-flavor) degree of freedom, the indexdescribes theank  first =1 ranksk™¥=A3" for all ranks such thab=r+m.

(related to the spin or flavor symmetry of the sjatand We now incorporate the string solutions into the equations

finally « labels the different rapidities of each type and rank.2nd simplify them using the notations and relations given in
The charge, spin, and flavor rapidities must satisfy a set of\ippendix B. After some algebra, one arrives at the final ver-

equations—the Bethe-Ansatz equatidBAE)—that are de-  Sion of the discrete-real-BAE:

rived in Appendix A. These equations encode the full infor- ink™ DL _ v (-1 _ (m-1)

mation of the model: e t=1111 e”m(ki K™™)

m=1i=1
M3 . MY . -
L ﬁ k= ASY -iA Hl k = AV +iA < [T IT en(K™™ - AS)
== . . =1 B=1
n:]_kj_Aﬁ(l)'f'lAm:lkj—Ag.gl)—lA m=L B
: L X 7 (KI=D Z AdD)
with the conditions nl;[l /!:[1 ek )
M?\sr) _ As) _ MPio aSr) _ pS(r+o) _ s plus
HAn -An —i2A AV = AL =1A
min ASD = ASD 4124 T 2 ASD - AT A [T IT enn(AR - ARE) =TT en(A%) - K™Y)
o=t1 m=1 B=1 i=1
X e As(r)_As(r+¢r) ,
M? Ag(r) _ A%r) —i2A B M?‘fa’ Ag(r) _ Agw(ﬁa) —iA 01:11 ml_zll,Ll;[l nm( na mg )
AD - AID iAoy ALY - AU A
m#n 43n m m=1-+Yn m -
[T TT epn(a% - %) = IT TT (A% k™)
where for convenience we have used the definitions meL AL ML =1
1 2
A3 =k, < T T el A5 - A32),
n ! m=1 =1
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[T 1T el %0~ A =TT TT TT (A - 2357, M= 3 o
n=

m=1 g=1 o=+1m=1p=1

where we continue to use the notatm@("")zg, The set of whereN,= N, corresponds to the number of electrons in the
solutions of these equations determines the set of eigenvasystem. Further, the energthat coincides with the momen-
ues of the problem. Now all the unknowns are real valuedum for a system with linear dispersipand the number of
variables. particles with different spins og-flavors are given by

1. Continuum distributions formulation 1 1

_ N “E=eqt 20| k(K
One can study the system in tlieermodynamic limit L L .
where its sizel, and the number of electron¥,, both tend
to infinity with the densityN./L being held fixedone could
later consider thecaling limit when the density is allowed
to go to infinity while some physical scale is kept fixééin
that case the separation of distinct “solutions” is of order (D) o
O(1/Ny), so that rather than considering explicit “solutions,” Mgr=Mg = = Mg+ 5 1Nc,
one can describe the system in terms of “densities of soluwherer=1,...,X for SUX) (X=M, N) and we remind the
tions” typically to be denoted by(2), describing the number reader thatM™ =N;=1 is the number of impurities in the
of solutions falling in a particular rapidity intervalz,  system. Consistently with this convention we have the den-
z+d2* sity p;(lM)()\):L'lb‘()\—s). We will use these quantities to

_ To determine the densities one proceeds by taking 1098 ple to crystal fields when we compute the thermodynam-
rithms of the BAE obtaining transcendental equations for the.q

rapidities characterized by integers that arise from the loga- Starting from the derivatives of the logarithm of the BAE

rithmic branches. These integers label the “solutions” and arg, 4 using the density distributions defined just above plus

the quantum numbers of the eigenstate. One then construgigs convolution kernels defined in Appendix B one can write
the counting functior® for the different rapiditiegin our the continuum version of the BAE:

casevg, (2), v (2), and vg,i (2)]. The counting functions

mg, = M(sr_l) - Mg) + E Nem,

m=r

sn
range over all integers: those that have been selected for a L r(y)

. . =— = Com- pom— K oV + B - ptY),
state correspond to “solutions,” or “roots,” and those integers Pen= 5 7 ~nm Pem ™ Brm* Psm ™ Enm Pgm

that are omitted correspond to “holes.” We denotepbgnd
p" the various densities of roots and holes. For example,
p;(r:) (z) denotes the density of roots of ranks-strings of

uadrupolar rapidities. These density distributions are related n() _ -1 1
?o the cpountingpfunctions: ! Pan == Aam P + 81Bom- Pl * B P+ B Pl

h(r) —

(r-1) (r+1)
phe r(r r(r

_Anm'prs(mr)"'Kn'p::r"'Bnm'psm +Bom Psm s

(repeated indices are contracie@he way they are written,

L™40,0(2) = pea(2) = plnl(2) + a2, these equations determine the densities of holes as a function
of the densities of roots and their solutions correspond to the
L2a,00(2) = pln(2) = pi(2) + plV(2), different eigenvalues of the system.
A detailed analysis of these equations will be presented
L‘lazvgr)](z) :pg,:(z) :pa(,?(z) +p2§1’)(z), elsewhere. In the following we will use them as a starting

point to write a second set of equations whose solution al-
lows one to compute the free energy of the system and gives
that way access to all thermodynamic quantities.

and should also obey the following relations,

1
ENcn:f PEn(k),
k
IV. THERMODYNAMIC BETHE-ANSATZ

EM(r):f pr(r)()\) The extension of the Bethe-Ansatz formalism to obtain
LSt e finite temperature information was first done in the case of
the Bose gas by Yang and Yafilt was later adapted to the
1 study of spin chains in the works of Gaudfit’
EMg%:f pa(,?()\). Takahashf®4° and others. The formalism is by now well
A developed and goes under the name of thermodynamic
These quantities are combined to define further ones, Bethe-Ansatz(TBA). In the context of impurity models it
was extensively used to find the impurity contributions to
N = > NNgp, different thermodynamic quantities. In the following we out-
n=1 line the main steps and results of the TBA procedure as it
applies to the multichannel Anderson impurity model.
MY = nm0), We shall proceed in a standard manner and derive an ex-
n=1 pression for the free energy of the system. We will work in
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the grand canonical ensemhlevhere the free energy is de- 1., ¢ . h .
fined a8 [SWhph =0 In(L+7) +p"In(L +7),
F=E-TS- uNe— 2 hgmg = 2 hymy. where we introduced the notational conventions p"/p"
r r and7=75"1=p'/p". S{p", p"} measures the number of micro-

scopic states consistent with a given macroscagfhiermo-
Out of all the elements that enter this expression, the onlglynamig state given by" and p".4> For the sake of further
one not mentioned in the previous section, and requiring spesompactness, we also introduce the notatioak(1 +7) and
cial attention here, is the entropy. We define the entropy of d=In(1+7%). We write down the explicit expression offiee
density distribution as follow$subindices are suppressed  energy functionafor the system:

1 1 1 -
E}-{P;’h} = Esq + EhQM + 2 ,f [n(k T~ McT th) - E hgi = chn] PEn - 2 f chnpgn + 2 [_ (Ngre1 = hspn = Tf(r)]pr(r
n Jk n Jk r,n Ja

i=n
=2 | TRl + 2 [ [ (gres = hgdn = TiTpGY = 2 f(”pgﬁ)-
rnJa r,n

We next seek to determine the free energy that in the thermodynamic limit we are allowed to evaluate as a saddle point: we
vary F with respect to the distributions andp", subject to the constraint that they must satisfy the BAE. We thus obtain the
so-called thermodynamic Bethe-Ansatz equations:

fen=n(k = pc = hql)/T = On=ihsi T+ Copy- i:m_ K- ?g:\)q_ Bam* fglray
f(r) n(hs, = sr+1)/T + Ky '?cr + Ars féﬂm

fgri = n(hqr - hqr+l)/T - gj_Bnm . ?cm+ ALSm . ?E]Sr?n

(repeated indices are contracted and the kemiglsare given in Appendix B It is possible to reformulate the TBA equations

as a set of recursions linking the different unknown distributi§r8uch a formulation does not involve infinite sums and has

also the virtue of rendering the structure of the problem more transparent. After a few algebraic manipulations—making
extensive use of the recursion relations for the convolution kernels mentioned in Appendix B—one can reexpress the TBA
equations in what we call theiecursive formulatior{sometimes referred to as the Gaudin-Takahashi fofiney reac’!

(

Equations for the spin-rapidities:

£0) = lex(8,1G Tor + G - 10, + 3,16 - 1), - G - FI+ - G . F0-D)
Equations for the flavor-rapidities:

H0 = 1ex(= Ghen@rG Ton+ G - 10g + 301G 1),
Erquations for the charge-rapidities:

< fcn<N = leX(G fgln) +G- f(sg) =G fopa— 5n,1G ' f(:n—l)

plus the “driving” equation,

A .
fon= Iex(N; - RGMM. 0 + R -fcm>

fr+1) G- f(r 1))

A

_ A - _
fon= Iex(— M; - RGE,';‘;':) Femt RG&"“'AN) : fg",’\', ‘))

\ {

where the dimensionless variablas w(k—u)/2A and 7 kernels(GgqN’M)) and their regularized versionigG;qu")) are
=7T/4A were introducetf and, for convenience, we defined discussed in Appendix B. The expressionsffgrandf.y can
the function lexx)=In[1+expgx)]. The general recursion of course be derived from each other, but here we write
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000

000

000

FIG. 3. TBA diagram for a particular realiza-
tion of the multichannel Anderson model in
which the symmetry of the impurity is SN)
® SU(M) with N=4 andM =5. A detailed expla-
nation of this diagram is given in the text.

SU(N=4)

X

SUM=5)

q7

q8

down both of them explicitly because both are useful in thestripe extending towards the left represent g, (ii) those
numerical studies. in the vertical stripe extending downwards representr}fﬁe
These equations are complemented by asymptotic condind (ijii ) those in the vertical column enclosed in a box cor-
tions that are also a direct consequence of the “nonrecursiveespond to they,, The meaning of the straight and wavy
TBA equations: lines also gets interchanged: horizontal straight lines now
h h mean INzyneqe=—G T IN(1+7¢ighno) @Nd vertical wavy lines
Knep - f0 =Ky - £ — ol = L_’”, mean IN7noge= G- T IN(L+ 7neignuod- This duality plays a role
n— T when one considers the two different integral valence limits,
whereh,, is eitherhg,- or hg,= for the spin or qua- such fimits will be d'SCUSS?d later.
Xt sr=1,..N =" “qr=1,....M The two boxes shown in the graph enclose those nodes

drupolarf-distributions, respectively. . ; ! -
The structure of the recursive relations between the dif-that enter the expression for the impurity contribution to the

ferent distributions can be nicely visualized in a graph. lnfree energy. SFarting fr_om. the free energy functional and
Fig. 3 we show an example of such a graph, a “TBA_evaIuatlng it using the distributions that obey the TBA equa-

diagram” for a particular realization of the multichannel tions, af_ter zi certain amount of algebra, one arrives at the
expressior=F .+ Fim, Where
Anderson model. P

This representation of the equations highlights their con- L
nectivity and is the natural extension of the graphical repre- Fouk=— 2—2 nf TIn(1 +7,)
sentation commonly used in the case of other integrable Moo Jk
models(for comparison and an example of another relate
impurity model see the work on the multichannel Coqgblin-
(?chrleffer 'mo.déF‘.). Thg d|ffererjt nodes gorresponq to the Fimp = 8q+ g~ [2 GgM,M) -TIn(l + 778%)

ifferent distributions:(i) those in thelwél)orlzontal stripe ex- ¢

tending towards the left represent thg,, (ii) those in the _
vertical stripe extending downwards represent Tjﬁ% and +2 G(1M+m’M) -TlIn(1+ 7]cm)]
(iii) those in the vertical column enclosed in a box corre- m
spond to they.,,. The graph was drawn for the particular casefrom which all the different thermodynamic quantities of in-
of SUN=4)® SUM=5) symmetry, but its structure is ge- terest can be derived. HeFg, is the bulk contribution to
neric. The horizontal straight lines indicate that the nodes aréhe free energyan extensive part that recovers the standard
two-way connected by the equations according todfe  result for free electrons and is all there is in the absence of
=G-TIN(1+7neighno) @nd the vertical wavy lines indicate the impurity, on the other hany, is the extra contribution

k=e

that the two-way connections are given by 7Rg= due to the presence of the impurity. In the following we shall
—G-TIn(1+7neighoo)- The double straight lines highlight the pursue the study of the latter.
special kind of connections in the casemy. As expected for an infinite flatband, the bulk part of the

There is a dual interpretation of this graph in terms of thefree energy is found to be divergent. To study it, some form
reciprocals of all the distributions. Within this new picture of regularization should be introduced, e.g., a bandwidth cut-
the different nodes are as follows) those in the horizontal off. A convenient procedure that was successfully applied in
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the Bethe-Ansatz study of the single-channel degenerate E :G_[_(1)++§(n)+_§+ _3 £ ]
Anderson model is the introduction of a “Lorentzian cutoff NN an sl cn+1 ™ On1Sen-11s
scheme.*16:54|n that framework it is usual to fix the den- B A B B

sity and let the chemical potential be determined as an im- ¢)=4,.G- &, +G [ 0+ G 16 — gl - srn‘l)*],
plicit function of the cutoff parameter. As a result the impu-

rity thermodynamics is found to be naturally expressible in n_
terms of a certairscaling invariantparameterg”(e,A),%> an an ™~

implicit function of cutoff, temperature, and fiel@#s0On the _Té_—(r—l)+]

other hand, the impurity contribution to the free energy is an-

found to be regulafi.e., finite even in the limit of infinite where the variable is the shifted rapidiy k- u, and we use

cutoff). Since we shall be interested solely in the impurity the notationgn 1=1-6,,. These equations can be solved ex-
thermodynamics, we will introduce no cutoff and continue toactly whenm =N and there are no external applied fields. Let
work always in the grand canonical ensemble, keeping fixeqis start discussing the two-channel cébt=N=2). Since
the chemical potential rather than the density. With this conthere is only one rank we drop the rank superindex during
vention, we can continue to describe the physics in terms ofhis discussion. It is easy to see from the equations ghat
the original microscopic parameter =0 Onand&,,=0 On>2. Itis natural to assume in the zero
fields case thag; =0, which implies§,,=0. Notice that after
these considerations the equations for the spin rapidities are
decoupled from the rest. We solve them first, taking into
In this section we study the impurity contributions to the account the asymptotic conditidfy,.; - ésn— Ky - ésper— —2hs
different thermodynamic quantities of interest. We will first =0 (we use the standard definition for the magnetic jield
list some analytical results and then give an extended discud-he solution is very simple: put afi;'s to zero. We see also
sion of the numerical solution of the TBA equations and thethat in analogy to the spin case we can solve forgtfavor
results obtained for several thermodynamic quantities acrossector simply by taking al.f;n's with n# 2 to be zero. Only
the different regimes of the model. three nonzero distributions remain and are given directly by
the equations

_ 9 Hr+1
- 5nsN5r,lG ’ g:n"' G- [ qrr)1:1 + 5n,1§¢(3|rrt1 - qrr:r *

V. IMPURITY THERMODYNAMICS

A. Analytical results Ep=EL+E,=22,
As already pointed out in the two-channel c&8%the mul- X
tichannel Anderson model displays a nontrivial zero tem- é1=61=G &,
perature limit for the impurity contribution to the system
entropy. This is a clear indication of the non-Fermi liquid £p=Ep=G &y,

character of the ground state. We can find the value of this ) ) )
entropy and identify the relevant scale for the crossover intd hus, in the absence of external fields, the ground state is

the low temperature phase in closed analytical form and fobuilt out of a sea of charge-spin strings filled up to the
the general multichannel case. chemical potentiali.e., k=u) and a completely filled sea of

g-flavor 2-strings. We can derive the zero temperature impu-
rity valence, or level occupancy, in a closed fdwe use the
notations\=7z/2A and J=2A/(s—u), notice the charge

We begin the study of the TBA equations by taking thesysceptibility can be easily obtained taking a derivdtive
zero temperature limit of the equations in order to identify .

the ground state. This is a required preliminary step before 0o _ A\ — mlJ) d
abording the study of the impurity contribution to the re- Ne,imp = _ [ = m3)%+ ﬂ2]2§q2()‘) A
sidual entropy.

It is convenient to introduce the distributiogs=TIn 7. The occupancy is integrdl.e.,n’~0, 1) for |s—u|> A, and
Assuming that the derivative®¢ are bounded distributions, nonintegral otherwise. It is a simple exercise to show that the
or have at most isolated logarithmic divergencies, we derivémpurity contribution to the residual entropyﬁnpzlny”z, a

1. Zero temperature solution

the following limits#® result that is consistent with what was found in the integral
. _ . valence limit given by the two-channel Kondo modéWwe
T"”;jln(l +)=[ged) =&, will give below a derivation of§mp for the general multi-

channel case.
) TS Let us now return to the case with arbitrary valuedvbf
TI'”;+T|”(1 ) =ged) =&=-¢. andN, but always in the absence of applied external fields.
- The equations are more involved and one is not able to make
These limits are the key step in the derivation; using them igeneral statements about the positivity of the different distri-
is immediate to write down the zero temperature limit of thebutions the way we did in the two-channel case. We proceed
equations, by m?(k)ing the following educated guess:
- M-t)+ - 1 ¢7=0 0On,r (this is to ensure a paramagnetic ground
NMz=Cue_,, %N "= Cum- &m state, and it impliesggr<N:0.
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2 éqrgzo On#N and for n=N the distributions are [ n+r (n+M-r
negative, i.e.gf{ﬁ,*:o. , sin mJsinl "
The equations then take the form N = ( ; ) ( Y )
Sin T |sin T
N+M N+ M

NMz= Cy - &y = Can 'E;N!
Plugging this result in the expression for the free energy we

. . - read off the residual impurity entropy:
écn<N =G- I:gcml + 6n,1‘fcn—l]v

. 7M . @N
SInN M SInN Y
quzl+ = an . g;N +G- [gér;rllh + é{qr’\—ll)+:|. Somp =In - =In o
S

in sin
The first equation is decoupled from the rest and one should N+M N+M

solve it to determinet.y that will later play the role of a Thjs formula agrees with the one that was derived in the
driving term on the other equations. A solution that is exactntegral valence limf® using the multichannel version of the
when N=M but approximate otherwise is given by  Cogblin-Schrieffer modei’-58 That model is the Schrieffer-
=ZM6(-2)+N6(z)]. When approximate, this solution is not \woff [imit5° of the multichannel Anderson model that we
accurate in the rapidity intervdf| <A. This region corre- are studying. We now turn to the discussion of such limit.
sponds, in the free energy, to the mixed valence regime that

interpolates between two different multichannel Cogblin- 3. Integral valence or Schrieffer-Wolff limit

Schrieffer limits (this will be discussed more in detail in In the standard approach—at the level of the

Secs. V A3 and VL WhenN # M, the above solution can be 5 mijtonian—the Schrieffer-WoliSW) limit is defined as a
used as the initial guess for an iterative numerical SChemegn ated unitary transformation that eliminates the direct
t.h'.s idea will also be useful for the_n_umerlcal solution of theh bridization term and traces ovétiscard$ the less favor-
finite temperature case. The remaining two sets Qf equationgy|e states of valence from the impurity Hilbert space. This
can then be “L'm_nest(_ad".to thaln explicit EXpressions for thGﬁmit leads to a projection onto a Hilbert subspace with the
dnfferent remaining distributions, all of which are fully deter- impurity site permanently occupied by@cal momentStart-
mined by£ey (in complete analogy to the two-channel ¢ase g from H,,, ., one obtains this way the multichannel
Coqgblin-SchrieffeCS) model[the N-channel SWUM) model
2. Residual impurity entropy or theM-channel SUN) one depending on the sign of see

Regardless of its precise form, the solution fog, will ~ Pelow]. In the following we will discuss how this effective
have both positive and negative nonzero paas is clear limiting procedure can be carried out at the level of the TBA
from considering the largéz] asymptotic limitg. Thus the ~€quations. _ _
zero temperature and fields solution discussed earlier indi- Let us point out that the SW transformation can be viewed

cates thag”. and &"" are nonzero everywhefé.In turn @S @ first step in a more detailed renormalization group analy-
N aN ' sis (which we will not carry out in hene The multichannel
this means thag and 77(” are zero in the zero tempera- : .

limi h °”|<N | of qH . his h h CS model is therefore, when away from mixed valence, the
ture |m|t: At t' e level of t e TBA equrr;ltlong, t. IS | as.t € naivelow temperature effective Hamiltonian of the full mul-
effect of isolating the equations for thﬁénm distributions:  tichannel Anderson model. This effective Hamiltonian is rel-

evant for the description of the low energy dynamics for

In 74 =G [uncaln(L + 1) + Gnaln(1+ 700 ) energy scale§<T,. In other words,

— —(r- E . .
= In(L+757) = In(L + 7 1))]- Hucna — Hesy + {O<T_> corrections in all secto}s
H

The reader should notice our earlier result, that the relategNith x=s, q for the magnetic or quadrupolar sector, respec-
distributionsggrLN are all zero at zero temperature, merely tively). In the limit of |¢| — +, T;— + and the projection
indicates that the respectiv;gg<N are finite(i.e., neither zero is exact(albeit with a vanishing exchange conspaftor any
nor divergent The equations above contain no driving finite Ty, the effects of the corrections, though “subleading”
terms, therefore the distributions should be constant functO those kept itHcs,, may be important at low enough tem-
tions of z. In such a case we can make the replacen@nt Peratures if they combine with other operators to provide

— 8(2)/2 and performing the convolutions obtain a purely More singular contributions. This will be the case, .for inl—
algebraic set of equations stance, when the degeneracy of the lower-energy impurity

configuration exceeds that of tfidegeneragehigher-energy
one, as we shall stress in Sec. VI. We conclude therefore that

(N 2 (1 + 77(rr1+1)(1 + 77“%—1) i i i
(g0 )° = —(qr+1) _?r_l) the SW transformation needs to be used with extreme care in
N (17 ) (175, Y) circumstances like the one described above.
We now turn to studying the integral valence limit via the
that, is easy to verify, admits the solution Bethe-Ansatz. The discussion of the integral valence limit
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turns out to be simpler using an “inverted” set of TBA equa-coupling constan{J) dependence from the expression of the
tions (trading back the recursions on the rank indices forfree energy and move it into the TBA equations. The only
finite sum$. In this alternative formulation, the equations explicit dependence ahwill be in the driving terms and the

read(see Appendix B for the kernel definitions same is true for the explicit temperature dependence; this
0 s [e©® L%« _ 1 fact will allow us to identify the natural temperature scales of
—fsn =Ry '[fsn+1+ Onafsnit Gnafer =G 'fsn:l' the system. We remark that, in terms of the new variables,
[ the main contribution to the free energy comes from the
0= s FIAE+ RS9 45 O —G1.§® value of the distributions aroung~ 0.
an= TRNT T M L aned T A an a. High temperature scaleConsider the driving terms
- 5n<N55,1fch, AE{. Changing variables we obtain
_ — _ lapn nm [c(1) 4 ¢(m _ ~-1 % _ (N7 _ w ~ (N7
feon == 7 AEC+RY .I:fqm+fSl G -fcm<N:|, AEQ/T);J]K/T—( 72 Ellr= 3 /7.

where we defined the effectiwdriving terms(we remind the

reader thatr=T/4A). We shall thus define the Schottky temperature sctie

~ name will find its motivation later, with the discussion of the
AEY =R} - fou, specific heat
- N NA
AEY =R foy. re= 70 Te=—.
We need to discuss separately the quadrupolar and t or 7< 75 (andJ< 1), the valence fluctuations are quenched

magnetic scenarios. The calculations are very similar in bot . . . X
z?nd the model goes into a regime where an effective descrip-

cases. We turn ou(rsoattention to the former. In the quadrupolation in terms of a CS model becomes appropriate. The dis-
SW limit (sq=<e5),> the SUN) @ SUM) Anderson model tributions associated to the charge rapidities go to zero and

maps mtq ar’N_—channeI CS model for a !ocal .$M.) dua-  isolate the ones associated to the guadrupolar rapidities that
drupolar Impurity. The key to understanding this limit is theform a system of TBA equations identical to the one of the
stug%/kc))f t?:mdrg’r'gg rtséms'ﬁ 2 sense that will become precis CS model. Notice that, as the temperature is lowered, these
w peratures—i wifl become preci %riving terms diverge faster than the other ones that have to
below—and for|\|>1 (i.e., away from the intrinsic mixed- overcome a decaying exponential in the numerétarwith

vaIepce regionwe can make the foIIowing'approximation— O}he caveats about the SW transformation discussed above
motivated by our zero temperature solution for the groun b. Low temperature scal€onsider now the driving terms

state—that captures the leading functional dependence iQr : : :
temperature and rapidity of the distribution associated to theREq' Changing variables once more we obtain

maximal charge-spin bound statefgy=lex(M\/7) 6(—\) 2  a(M-r)

+lex(NN/7) 6(\). The effective driving terms can then be AE/ T;’lﬁs'” e
approximated agfor A>1 in the quadrupolar case
M2 m(M=1) where
AEE] == Rl;\jll' . [M)\]_—> _Sin—e_(Z/M))\, NM2 M 2
\>14ar M = ——e 2 T, = NA(—) e 2mMJ_
8 2

AED =RV [NAT" — nh.

o1 We have chosen to leave a factor of\Rdutside of the defi-

nition of the Kondo scale in order to have a complete resem-
As the temperature is lowered, both driving terms divergeplance between the resulting TBA equations and those for
But since we have thaAE¢> AE; due to the different de- the scaling limit of a multichannel CS moél(that CS
pendence in rapidityAES/ 7 will drive to zero the distribu-  model, together with a cutoff prescriptidd,;=NM?3A/472,
tions for the charge rapiditied.,_,) faster thamAE;/7will  is therefore the appropriate low energy effective thiory
drive thef{[\'s. That way thef{ s are effectively cut away ~Since the equations match, all the analysis done for that
from the other distributiongin this case thé’s) and they ~model (finding the leading exponents of the specific heat

sn .. Wy epege . . . . .
alone determine the impurity thermodynamics. The free encoefficient and susceptibilities, ex@pplies in this limit and

ergy is given by we do not need to repeat those considerations Here.
c. The two scalesFor the magnetic moment limiteg
sinit <egg) we would find again two scales with the roles\dfand
1 M N interchangedwe omit the details since the considerations
) = —— PR (] g
Fimp/ 7= £q+ g 2W;J ot fql(g) d¢. are very similay. As shorthand, we can extrapolate the two
COSM + cosh§ low energy scalesquadrupolar and magnetiinto the high

energy scales of the other regirtier the opposite sign of).
where we performed the change of variablg=27/J  This serves the extra purpose of providingamhhocinter-
-2\ and redefined tha‘e“;’s as functions of the new variable polation between both regimes and across the intrinsic mixed
& The goal of this change of variables is to remove thevalence region. We can define thus the two scles,
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2A 2A N lim foy= +o
Tq = _Tq ~ —(M/2)2 |n<1 + _e—ZW/MJ) ' Nt cN
T T 2w -
lim fCN =0
A—+o
2A 2A M i =
To= =1~ S (N2)2 |n<1 + —ezﬂ’NJ>. Jim fen=0
T T 2T _
. . ||m fCN: + o0,
The role of these two temperature scales was illustrated in P

the schematic picture of Fig. 2.

In terms of them we ca . . :
further write "We shall use this result to analyze the TBA equations in the

asymptotic limit. The two limits\ — £, are different and
we shall consider them separately.

Right asymptoticslet us first study the limit ok — +o
that we call the right asymptotics of the distributions. We
_ want to find the values;" = lim 7" that the different dis-
Ti(e) = min{Ty(e), Te(e)} — Tk(e), e

>4 tributions take in the limi{with x=s, q). Except forz.y that

that serve as boundaries among the high-, intermediate-, arll%unbounded, allthe otcbhegs acquire finite values and for

low-temperature regimes. At high temperatures the impurit);‘ very large can be taken as constants. From the ligit f

is in a mixed valence state. As the temperature is lowered,> *+* it follows that all the %, 's go to zero and the
the system crosses the first temperature scale indicafgg asr =+> —), -,

for |e|= A this coincides withTs (the chemical potential is €quations for thepg's and those for thep,'s form two
taken to be zero to lighten the notatjort this point the |dent|c_:al sets decoupled _from each other and obeying the
system enters a regime that can be approximately describd@llowing recurrence relation:

with the respective CS model. At first, the system is in the

Th(e) = ma){Ts(S)-Tq(s)}‘ |ZATs(S),

@2 (.=

“ ” - : , - 7 i
unscreened” local moment regime, extending betw&gn 1= (1 +7,§<’;1))ﬁ(1 +7" 1))_
and the lower scal@ =Tk. The larger the value of| the 1+ 70

wider the temperature window of this regime. Fgr< A the

two energy scales merge, indicating that there is N0 momentaring the large asymptotic condition are equal and an
formation. As the temperature is lowered beydpdthe mo-  paivtic solution for the asymptotic values is known. It is

ment screening commences and the physics is asymptoticalg/(,isy to show with some algebra that the solution83&#&3
governed by a line of fixed points parametrized by the value

In the case of uniform or “Zeeman” splitting, all thé’s

of ¢/A (or some observable that depends on it and varies 1), _sin(n+r1)a,Jsinf (n+ N, —1)ay]
along the line, as for instance the charge valence of the im- T T4 sinh(r a,)sinH (N, = r) e, ]
purity). The different points in the line share the same value

for the impurity entropy, and the same set of leading expo- . (n+1)(n+Ne—1)

nents of the specific heat coefficiefie., y=Ciy,,/T) or the 0 r(Ny=r) '

different susceptibilities. However, the prefactors of the dif- B _ ,

ferent leading terms will in general vary along the line andWN€réNs=N, Ny=M, anda, lost its dependence on the rank

could in principle be determined by direct measurementindex. A closed analytlp solutlpn is not known for the_ case of
Thus a multichannel Kondo effect takes place for angs a more generatrystal field splitting(more .gene(al splittings _

the temperature is lowered. It is amusing to note thatsfor Might be relevant to make the connection with the experi-

=0, in particular, the Kondo effect takes plasgthout mo- mental systems that motivated the model, this point will be
me,nt formation.' discussed further in the next sectjoiotice that when the

values of they’s are required for a particular splitting, they
can always be found numerically.
b. Left asymptoticsWe study now the opposite limit of
In this section we will be interested in finding the values) . -«, in order to find the asymptotic values‘yﬁ('ri
that the different distributiongin this case they's) take - | 20 Except for7g, that is unbounded, all the other
when A — . This corresponds to the limit of infinitg e
- | at finite temperatureThese results will be required in s acquire finite values and for very large can be taken as
the next section, where the numerical solution of the TBAconstants. From the limit,y, — +c it follows that all the
equations is discussed. Remark that, due to the behavior of pR—
the two energy scales derived above, in the limits considereé}”,l"s go to zero and the equations for the remaining distri-
in this section one always haf, << T<< T and the\ butions form two identical sets decoupled from each other
— + |imits shall be, respectively, identified with thefinite  and similar to those of the right asymptotic limit. The solu-
temperature limits of the effective quadrupolar and magnetition of that case can be applied to this one if the following

4. Asymptotic values

multichannel CS models. identifications are madef. with the discussion of Fig.)3
From the results above and inspection of the equations, 1) _ =)
the reader can convince himself that Msn = Msm+n
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=  _ -0 (discussed aboyeespecting the monotonicity properties of
Menoy = Tlsm» the solution. Then we iterate the equations to find new values
~ for the different distributions up to the leveis-ng, n,. At the
70 =5 end of each iteration we update the value of the boundary
qn_n SM-r» L. . . (r) s : ;
distributions(n=ng+1, n,+ 1) using thefxnxs suitably shifted
;](r& -0 and rescaled to match the analytically known asymptotic val-
q L

ues corresponding to the boundary levels. This procedure is
-1 _ =0 repeated until stable convergence is achieved on the free en-
Tan.y = Man-N- ergy function that we recalculate at each iteration.

These are the same identifications that would be required fo% The rspidity dependencg of the Qistr(ijbutions in. the case of
an explicit discussion of the Schrieffer-Wolff limit in the € Kondo TBA equations is associated to variations in tem-

local magnetic moment regiméss<z,), in order to match perature, and the two asymptotic limits correspond to the

the resulting TBA equations to those of the correspondingferct’. anfl |tnr:‘|n|te temf;)ﬁ:at_LIJ_rBeAllmﬁ%.;l_'hls |fs |r;hcontre|1t¢i-
magnetic multichannel CS model. inction to the case of the equations for the multichan-

Once the right and left asymptotic limits are both known,nel Anderson model, for which the rapidity dependence is

one is then ready to tackle the problem of solving the TBAr(alatEd to variations of the couplirg-1/J). We will there-

equations numerically, as we proceed to explain in the lattefore req]L(ure dr::fodest corlnputatlfonhal effort lFO comgu(tje the f_ree
parts of this section. energy for different values of the coupling and determine

quantities like charge susceptibilities, but temperature depen-
dence will require independent runs for each value of tem-
perature required. Since determining temperature depen-
In order to access the thermodynamics of the system at atlence is essential, our computational task becomes typically
temperatures, we shall resort to the numerical solution of théwo to three orders of magnitude larger than for Kondo im-
TBA equations. This task was carried out in the past for othepurities; depending on the range and number of temperature
integrable impurity model3¢4-6"The equations of the mul- points desired and not counting the inherent extra complexity
tichannel Anderson impurity model have many similaritiesof our TBA equations.
with those considered previously for other types of impuri- Once we have a finite number of equations involving a
ties, but they present also important differences. We givdinite number of continuous distributions, we need to dis-
below a brief outline of the numerical procedure that wecretize those distributions. This is conceptually done in two

B. Numerical solution

developed followed by the results we thus obtained. steps, the first one being the introduction of cutoffs on the
rapidity axis. We have to choose large right and left cutoffs
1. Outline of the numerical procedure that enter once the distributions are approximately constant

We solve the TBA equations using a standard iterativ

eIfunctions of the rapidity reaching their respective right and
scheme first introduced in the work of Raf#fiThe idea is to

eft asymptotic values. Second, we need to discretize the axis
use the TBA equations in their recursive formulation, start‘merva::petween tne cgtoffs. This (|js doneddeflnlngh three (;(.3'

with some educated initial guess, and iterate them until cer3'0"S: irst a small region centered around zero that we dis-
tain convergence criterion is méthis general scheme is C'€liZ€ using a fine mesh. The size of this region is chosen
sometimes known as Kepler's method; cf. Ref).88ur par- depending on t_he parameters Of. the pmb.'e”." SO that it en-
ticular implementation borrows ideas mainly from the preVi_closes all the intervals where different distributions show

ous work by Costi and Zarand for the anisotropic Kondorap'd variations. Th."?‘ typically happens for region boundary

model®® In that work, the closure of the infinite set of TBA Values of the rapidities such that the magnitude of their as-
equations into a finite set brings in a great simplification,S°Ciated coupling corresponds to a Kondo temperature of the
This is not, however, the case in general and we need t8rder of the temperature set for the system. Second, the two

address the issue of truncation of the infinite hierarchy OiEgions to the right and left of the central one are discretized
t

recursions. The standard procedure is to define some bountpdarithmically until reaching the cutoffs defined above. In
D for suitably large ese shoulder regions all the distributions vary slowly as

; (r) (
ary levels(in our casefsrg% and fq“gl_' they attain their asymptotic values.
valuesn, andn, of the level indexand fix them. It was done  Tp¢ gifferent convolution kernels required in the calcula-
in the past by taking those boundary distributions as conggng should be evaluated; this is done a single time at the
stants equal to the average of their right and left asymptotigeginning of the calculations when they are stored as matri-
values that are known analytically>*This approximation is e The kernels are relatively rapidly varying functions of
good whenns andn, are fairly large(depending on the par- ,q rapidities as compared with the TBA distributions, so we
ticular modeJ. In the case at hand the TBA equations aregiscretize them using a denser mesh. We use a mesh that is
more complicated than those for the Kondo ma@iela way  |oc4ly n times (typically n~ 10) finer than the one used for
that will become clear belonand we cannot afford the com- e TBA distributions and these are interpolated to the points
putational cost of taking too large values fyandng. The i the finer mesh using cubic splines. The extra points in the
alternative we found was to start with some educated guesger mesh are chosen to be thié order quadrature points of
for the distributions up td‘xiixﬂ (with x=s,0q) that interpo-  each subinterval of the coarser one. The convolution inte-
lates smoothly between the right and left asymptotic valuegrals can thus be split into the different subintervals and
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M=2
T T

m8 T T T LI | T T LI | T T ]

'/ """""""" 1vos FIG. 4. Impurity entropy as a
function of temperature. The dif-
ferent curves correspond te/A
L =0 (dashed lines e/A=+2, +4,
3 +6 (light lineg; and e/A=+8
R (dark solid lines. The different
1) panels give the results for differ-
— ent values oN andM as indicated
to the right and above, respec-
tively. Curves for different signs
of ¢ are degenerate in the diagonal
] panels. In the off-diagonal ones
they can be identified from the
value of the entropy in the inter-
1 mediate plateauxsee text

In1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

carried out with high precision in each one of them usingeach panel correspond to different values of the energy split-
Gaussian quadraturgorrections for the introduction of the ting between the two impurity configurationg=es-eg)
right and left cutoffs are also implemenje®&ince accuracy and, without loss of generality, the total chemical potential is
is very important for certain applicatiodsthe evaluation of taken to be zerd! In all the panels, the dark solid lines
the different kernels requires a high precision implementacorrespond taé/A=+8 and the dark dashed line corresponds
tion of the sums involving four digamma functions of com- to the extrememixed valence case of=0 (or e=u). The
plex argumentgsee Appendix B To carry it out we wrote emaining thin lines correspond to intermediate values of the
an algorithm based on “a precision approximation of the€nergy splitting(e/A=+2, +4, +6) and are given to illus-
gamma function” due to Lancz68. trate how the systermterpolatesamong the different limits

With everything set to start the iterative evaluation of the®f 12r9€, positive and negative, and vanishingon the one
TBA equations, one last point is worth mentioning. Thehand, in the high-temperature limit, the entropy is in each

evaluation of the right-hand side of these equations requires*>€ given bySi,,(N,M)=kg In(N+M); as expected since
the implementation of the ubiquitous function (x This N+M is the total size of the impurity Hilbert space. On the

implementation is, however, unsurprisingly subtle. We firstOther hand, in the low-temperature limit, the value. of the
notice that since lex) =[x]*+lex(~|x|), it suffices to imple- entropy tends to ths"mp (N, M) values we found analytically

ment the function for negative arguments. This we do by firs{See Sec. VA 2 We remark that both these limiting values

evaluatinge™ and then using a careful implementation of areFl(?rdﬁ]?(Srnrgzgita(ti. temperatures. the figure shows how the
In(1+x) with the property of cancellation of rounding P ’ 9

70 T: . - . impurity entropy is quenched from its high- to its low-
errors’® This algorithm ensures monotonicity, machine pre- .
- y N temperature values as the temperature decreases. This hap-
cision accuracy, and “graceful underflow.

We show below some of the results that were obtaine(f"ens as a two stage process for large values(sblid lines

with different implementations of the described numericaland as a single stage process in the mixed valence case
procedure P (dashed lines all in accordance with the theoretical discus-

sion given above(see Fig. 2 and the discussion in Sec.
V A 3). Following the solid lines as the temperature lowers,
the first quenching stage corresponds to the crossover scale
As stated above, one of the important issues that makebs and the impurity entropy attains the valukgIn(N) or
the numerical analysis of the TBA equations required is thekg IN(M) for eg<g, or £s> £, respectively(As expected, in
study of the temperature dependence in its full range. Wehe case oN=M, the curves for different positive and nega-
give below illustrative results of this dependence where théive values ofe are degenerate; on the other hand, for
presence of the two crossover scales discussed already &M, the curves for the same absolute values but opposite
analytic grounds is clearly observed. We start by showingsigns ofe are in precise correspondence upon exchange of
results for the model in the absence of crystalline or externathe values ofN and M).”? These intermediate-regime pla-
applied fields. teaux correspond to the formation of a free local moment
In Fig. 4 we show several plots of the entropy as a funcawhen |g|> A. As the temperature lowers further, following
tion of temperature. The different panels correspond to difalways the solid lines, the systems reach the Kondo cross-
ferent symmetries of the modeN=2, 3, 4 row-wise and over scale]T, below which the entropy tends to the univer-
M=2, 3, 4 column-wise as indicated. The different curves insal valueﬁomp (N, M) characteristic of the different infrared

2. Numerical results
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M=2 M=3
05 B
4‘9 04 - 1
J 03 i | FIG. 5. Impurity specific heat
021 / i ! as a function of temperature. The
01 / - ! different curves correspond to

e/A=0 (dashed lines e/A=%2,
05 - - +4, =6 (light lines); and /A

[ =+8 (dark solid line$. The differ-
ent panels give the results for dif-
ferent values oN andM as indi-
cated to the right and above,
respectively. Curves for different
signs ofe can be identified from
the location of the Kondo
anomaly or by comparison with
the entropy plots.

-4 0 2

10° 10* 10> 10" 10
T/A T/A
non-Fermi liquid fixed points. This second quenching stage . N
takes place as electrons in the different channels compete to Neimp(N,M) = N+M’

screen the local moment of the intermediate regime. It is this

dynamicalfrustrated screeningrocess that is responsible for

the nontrivial nature of the fixed point. In the mixed valenceqrresponding to the impurity Hilbert space fraction with
case, exemplified by the dashed line, the two crossover enmagnetic character.” This is an expression of the fact that,
e that limit, all the impurity states are equiprobable. Subse-
juently, as the temperature crosses the valii¢ghe impurity
harge valence changes and approaches rapidly what will be

its zero temperature valuegimp (N, M). This change is at

quenching of the entropy as the temperature is lowered ha
pens on a single stage. Remarkably, the same limiting valu
of the impurity entropy is found also in this case; all consis-
tent with the picture given above, that the infrared physics i L ) " .
governed by 2 line o?ﬁxed pointSec. VA 3. Ina prgvi}c/)us he origin of the _Schot_tky anomaly in the specific heat. As it
work, we explored this explicitlyin the N=M=2 cas¢ us- should be, the impurity approaches integer valence when
ing boundary conformal field theory and showed that thé?|>_>A- The charge valence goes to zero in theadrupolar
different points in the line are connected by an exactly marlimit of large and positives, and goes to one in the opposite,
ginal operato! magneticlimit, of ¢ large but negative. The values n@yim

The results for the impurity contribution to the specific for intermediate energy splittings are difficult to calculate
heat—obtained upon differentiation of the impurity and would constitute a good nontrivial test for approximate
entropy—are shown in Fig. 5. The different panels, and théheories like those based onN expansions. Careful com-
different lines in each of them, follow the same conventionsparisons of NCA and NRG were carried out this way in the
as in the entropy plots. In accordance with the generic twaingle-channel casé but for the multichannel case the NRG
steps shape of the entrofgegenerate in the mixed valence calculations rapidly become very demanding for present day
casg, the specific heat shows a general two humps structureomputational resources and this kind of comparisons were
(again degenerate for mixed valencehe lower temperature not done. Also, since the full crossover takes place at the
one is sometimes referred to in the experimental literature agighest energy scale, the convergencenbﬁnp should be
the “Kondo anomaly,” and its location is correspondingly rejatively fast in NRG calculations. Thus in the future it
given byTy. On the other hand, the higher temperature ongnight constitute a useful observable to monitor the progress

is referred to as the “Schottky anomaly” and its position isyf sych computations by comparing with the exact solution.
given by Ts. There is of course no new information in this  ag 5 check, we verified numerically that

figure as compared with the previous one, but it is the spe-
cific heat rather than the entropy or the free energy the quan-
tity that is most often “directly” accessible in the experi- ngimp(N1M)|s+ngimp(MvN)|—a: 1
ments’® ' '

It is illustrative to look as well at the behavior as a func-
tion of temperature of the impurity charge valencg;,,,  so that, in particular, one finds thaﬁ,imp(N,N)L:O:l/Z.
:E(,<f:r,f(,>. This is provided in Fig. 6 following identical The analytic form ohgim (N,M) can be computed using the
conventions as in the plots for the entropy and the specificero temperature results of Sec. V A(vith the caveats
heat. As expected, in the high-temperature limit, the impuritygiven there for the case &f# M). For instance, in the two-
valence approaches the values channel case, we have
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FIG. 6. Impurity charge va-
lence as a function of temperature.
The different curves correspond to
e/A=0 (dashed lines e/A=+2,
+4, =6 (light lines); and /A
=+8 (dark solid lineg. The differ-
ent panels give the results for dif-
ferent values olN andM as indi-
—t 4ttt cated to the right and above,
respectively. Curves fas positive
or negative are, respectively, be-
low or above the:=0 line.

10% 10° 10* 107 10° 10> 10* 10° 10* 10 10° 10° 10° 10° 10* 100 10" 10°
T/A T/A T/A
0 2 (= (0 zdz determine their derivatives. Using them one can calculate
Ne imp(zvz) = f J - directly (or with a smaller number of numerical differentia-
“* coshl —(x—-2) tions) the sought derived quantities. The procedure to solve
2A these auxiliary sets of equations will be in general similar to
w—g+Xx that used for the original TBA equations, making the total
X [(x-e +x)2+4A2]2 computational effort increase accordingly.
We turn now to discuss the effects of external fields on the
=1 for e<-A, physics of the impurity. For the sake of simplicity we restrict
ourselves to the two-channel cadd=M=2). Since mag-
- :5 for £=0, netic and quadrupolar fields arelevant perturbations, the
presence of any of them has important effects on the entropy.
~0 for e>A In fact these perturbations drive the system to a totally

different—this time Fermi liquid—line of fixed points char-
(where we reintroduced the chemical potentidlhe inner  acterized by a zero value of the residual impurity entr@dy
integral is related t@;, and has an exact expression in termswith the situation in the single-channel casehis is illus-
of dilogarithms. It is interesting to observe how, for certaintrated in Fig. 7 where the entropy as a function of tempera-
values of the energy splittings, the charge valence first inture is shown for different values of energy splitting between
creases and then decreases as a function of the lowering temeublets(e) and quadrupolar fieldh).

perature(or vice versa as it goes fromng;.,, to nC imp THIS In the upper left panel of the figure we reproduce again
behavior is already present in the case of single-channel déhe results for zero field. The curves with positive and nega-
generate Anderson impuritié$. tive e coincide in this case¢cemember we are setting=0 in

Before proceeding, let us add some remarks on the techhis discussion As we go from high to low temperatures, the
nical side. We calculated both the entropy and the specifisystem crosses over from a state with entrSpy=kg In 4 to
heat by numerically differentiating the free energy computecbne with entropy§,,,=kg In V2. This second value is one of
using the TBA distributions obtained with the algorithm de-the hallmarks of the nontrivial non-Fermi liquid fixed point
scribed in the section above. Numerical differentiation is athat governs the low energy physics of the moddh the
delicate procedure very susceptible to truncation and roundiext panel to the right we show the effect of turning on an
off errors and in general sensitive to any noise in the originaexternal field. Foh,/A= 10°© one observes that the positive-
data. The specific heat is, since a second derivative is ine curves stay in arsmp—kB In 2 plateau for a very short
volved, rather sensitive to this type of errdthe discretiza- temperature intervdthat disappears altogether when the im-
tion of the temperature plays an interrelated role as)wkell  purity energy splitting is sufficiently largeand a third
the event of better accuracy being required, alternative wayguenching step of the entropy takes it to a zero value final
of computing derived thermodynamic quantities are possiblestate, indicative of a Fermi liquid fixed point. As the reader
One common procedure is to set up secondary sets of intean observe across the different panels, the quenching to zero
gral equations for the different derivatives of the TBA distri- entropy of the large positive curves takes place when the
butions(see, for instance, Ref. §60nce the original distri- temperature is lowered until it becomes of the same order of
butions are found, these equations can be solved tmagnitude as the applied fie{d~hy).
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S,p! K5 I0(2)
S,0p! K5 I0(2)
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FIG. 7. Entropy as a function of temperature for various applied figlgshave chosen to consider quadrupolar flavor fieltise top-left
panel corresponds to the zero field case. To the left of it and following downwards the field increases 100-fold eachhjme as
=10A,...,10°A. The values ot are the same as in Fig.(the chemical potential was reintroduced in the notation for this figared the
top-left panels of both figures are in correspondence.

On the other hand, the fate of the negativeurves be- effective spin-half single-channel exchange model in which
comes more evident as we increase the field furthee the the impurity is “exactly” screened at low temperatures and
middle two panels In this case too, the non-Fermi liquid the fixed point is a Fermi liquid® Curves with intermediate
fixed point is unstable and the entropy goes to zero, but thisalues ofe interpolate continuously between these two be-
takes place at much lower temperatures than for positive haviors very much in the way they did in the other cases that
What happens is that at low temperatures the splitting of theve discussed above.
higher multiplet(that plays the role of the orbital channel in  As the field is increased and approaches the scale of the
the usual multichannel Kondo scenanienders the model an first stage of entropy quenchinge., Ts) and beyond, the
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FIG. 8. Schematic representation of the line of fixed points. (hereN=M is again the marginal case, for whichTrdepen-
dencies are expectgdSet for instance: in the quadrupolar
differente curves start to collapse and the temperature of theegime, then the correspondih@(s) is large while)\g(s) can
crossover transition moves up following the figltompare  pe arbitrarily small. However, one will still find that, for all
the last two panels in Fig. 7. The entropy is quenched in dinite values ofe, the spin susceptibility will eventually
single stage frong,,,=kg In 4 to zero at the same time as the dominate over the quadrupolar one if it happens to carry the
impurity charge valence goes from ,,=1/2 to zero. singular exponenti.e., for N<M).
Note that the level with the lower degeneracy always dic-
tates the physics at sufficiently low temperatures even if it is
VI. SUMMARY AND OUTLOOK a very high-energy level. This may be surprising from the
] ) ) ] point of view of the Schrieffer-Wolff limit(see Sec. V A B
We have carried out a detailed analysis of the multichannaively, one would expect that the effects of the energeti-
nel Anderson impurity model. We have demonstrated its in¢a)ly unfavorable level could be simply integrated out. This
tegrablllty, discussed the detalls.of the_Bethe—Ansatz SOlUs ot always the case. When the degeneracy of this level is
tion, and shown a number of illustrative results for thene smaller one, it will end up dominating at sufficiently low
thermodynamics of the model. T (as long ase| remains finitg.”® In other words, discarding
The Bethe-Ansatz allows the study of the model on alle energetically unfavorable yet less degenerate configura-
energy scales, we proceed now to summarize our findinggon 5150 eliminates the frustration that is induced in the bulk
and to put them into context. We begin by discussing the|ectrons when they try to screen the virtual moment of such
low-temperature regime and the characterization of the lowyn excited state; but it is this frustration that would have been

energy fixed point theory that corresponds to the minOSCOpiFesponsible for the appearance of singular exponents in the
model. We have identified the existence of a line of boundaryy,nrity thermodynamics.

criti(;al fixgd _points that_ governs the low energy physics of ‘This picture might help shed light upon some of the un-
the impurity (illustrated in Fig. 3, and shown how it is re-  explained and sometimes contradictory results observed in
lated to the fixed point theory of the multichannel Coqblin-he experiment3 In particular, interesting possibilities are
Schrieffer model. In fact, every point in the line describesgpen up for better understanding of the intermediate-to-low
non-Fermi liquid physics. At the extreme endls|— +=),  temperature phase of certain heavy fermion compounds, in-
the fixed point theory corresponds to an\d@M) or S(M)  especially those believed to be near mixed valdtive list is
Hamiltonian(in the sense of BCHT For any finite value of  rather large, for an example see beJow

e, and in particular for all the values that correspond to the  Thuys far we discussed the low-temperature regiffe—
mixed valence region, the physics is given by a line ofdominated by the line dixed points. We have also studied
SUw(N) @ SUy(M) theories. Along this line of fixed points in detail the other regimes: the high-temperature valence
the behavior, for instance, of the specific heat would be givemluctuation regime(FV) and the intermediate local moment

by (cf. Ref. 53 regimes (LMM and LQM)—the initialisms refer to the
names used in Fig. 2. We identified the two energy sadles
N2 20 \T2NI(N+M) 3 2( .\ T2M/(N+M) andT,), associated with the spin and quadrupolar degrees of
C'mpN¢M)\°(8)T+)\5(8)T +)\q(8)T freedom, that cross each other in the intermediate valence

region (Je|<=A) and interchange roles as the high-
temperaturgT,) and low-temperatur€T, ) scales that indi-
Tate the transition zones among different regimes. In the in-
termediate valence region the two scales *“coincide,”
indicating the direct transition between the high- and the
low-temperature behaviors. The system never develops a lo-
) cal moment, but goes directly into the low-temperature, mul-
not commute wherf<n for the SUY(n) end of the fixed {ichannel Kondo like, non-Fermi liquid phase governed by
points line(with n, =N, M>1). Notice therefore, that & 1o corresponding fixed points. In all the cases, i.e., for all
is varied along the line at small but finite temperature, thggyes ofe, the fixed points are unstable to the application of
observed critical behavior will vary accordingly. an external field acting either on the magnetic or the quadru-
The same finitéF crossover in non-Fermi liquid character polar degrees of freedom.
(magnetic vs quadrupolawould manifest itself in a com- In subsequent work we intend to use the results presented
parative study of both susceptibilities, whose expected leadsere 1o analyze the different multichannel scenarios for cer-
ing low-temperature behaviors, after subtraction ofi;, heavy-fermion compounds like;UTh Be,s2477 It was
asymptotic temperature-independent contributions, are  ghown that the two-channel Anderson model is not sufficient
to account for the relevant number of impurity degrees of
)\g(S)T(N—M)/(N+M) freedom required to explain the available specific heat
measurement®. More complicated impurity models, like,

(N=M corresponding to the marginal case when both spi
and quadrupolar sectors contribufdn T leading tempera-
ture dependences; cf. Ref.)3The smallest exponent domi-
nates ag — 0, except possibly at the limit when— +o and
\Z(e) or Ai(e) vanish, respectively. Thus these two limits do

s s
Ximp ™~ Xo ™
N#M
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for instqnce, an .SQ)®SU(5) modgl in the pres.enc.e of Ea(@) = San(a = an)- - -Sag(a = aq) Saol @ — ap)
crystal field splittings, hold a considerable promise in that = . ) . )
respecg?® 78 (this is equivalent to adding an auxiliary extra partide
=N+1). The purpose of the auxiliary space will be to allow
us to conveniently organize the products of the S-matrices
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As the amplitude#\ should be simultaneous eigenvectors

of all the eigenvalue problem;, it is necessary and suffi-
APPENDIX A: QUANTUM INVERSE SCATTERING cient that [Z;,Z]=0. We can go further and require
METHOD [T(a),T(B)]=0 for all values ofa and 3. This is guaranteed

. A ) if there exists a matriR such that
In the following we will skip the detailséand assume them

known) of the standard case of models with (Sin.ntern.aI . Ragla = B)Ea(a)Eg(B) = Eg(B)Ea(@)Ragla - B),
tsa/ én Eﬁt,ray] ei?gréiff)g/tgﬁ ereoafl(iﬁretgﬁ%gﬁg evc;ﬁ?g%%a“/: : I\r/]ve vyill refer to this identity as thtundamental commutation
notation very similar, though not identical, to the one inrelatlon (FCR.

those lecture$? We will discuss directly the case of $8)
symmetry conveniently generalized to the situation when
both “particles” and “antiparticles” are present. This gener- By repeated application of the Yang-Baxter relations, it
alization is required to solve the eigenvalue problem of thecan be shown that the matrix

multichannel Anderson modégthe standarchested Bethe- .

Ansatz(NBA) as discussed in the literature, see for instance Rag(@) = Sag(@) = @l aptiCPag

Ref. 80, does not suit this cdsend was done before only atic

for SU(3) spin chain$!#2Finally, we will close the appendix
with the generalization to the case of &) symmetry.

b. Fundamental commutation relations

satisfies the FCR. If we write down the expression for the
monodromy matrix explicitly in the auxiliary space, we have
(using a notation that is convenient for the nested Bethe-

1. Models with SU(3) symmetry, impurities, and periodic Ansat?:
boundary conditions Aa) Bz( ) B3( @)
Let us consider an integrable model with SUsymmet- S(a)=| CA@) D) D3(a) |,

ric scattering matrices given by C3a) D¥(q) D3%(a)
o o o

_(aj—ap)lj, +icPy, _
Sh0= J(aj ~ aln) +ic B =80(e)~a), T(a) = Ala) + D?¥a) + D3(a).

i Sai-ag) Fully expanding the FCR in the two auxiliary spaces, it can
So=ljo+ e - 1Q‘o= Sl — ag). be seen, after some algebra, that the submBtnerifies the
! 3 ! ! corresponding FCR of the $P) case,

We choose to con5|de_r a case Wh@,r@_has a d|ff_erent struc- Rfé(a - B)Da(@)Dg(B) = Dg(B)D A(a)ng(a -B)
ture thanS;,.o. In particular we consider the kind of impu-

rity S-matrix that arises in the flavor sector of the three-With

channel Anderson model. The parameteyg, are arbitrary

at this point, and will be chosen later to be those that specify R2(a) = S2(a) = _
the multichannel Anderson model. The eigenvalue problem atic

given in terms of the above S-matrices is not tractable withqp .o oo ihat Yang-Baxter is obeyed by the submatrix
the standard NBA formalism; we develop below the reqUiredDefining U = (a—i¢) @ ando. =ic/a, one can write the fol- .

extensions. . : : .
lowing commutation relations between different components
of the monodromy matri%3

al 3 +icP\d

a. Monodromy matrix . < <
. . . A BL=u, ;BA,+tv, B Az,
As a first step we define a matrix that captures the mono- a2p = Ha-pPpia ™ Va-pBalip

dromy conditions of our eigenvalue problem and use its < s 2 s ©
transfer matrix to rewrite the problem: DoBg= Uﬁ—aBﬁDaS(As +05-aB.DgPas,
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B38S, = B B3, 1B) = 3B BB e, 0
Using the FCR we findthe nomenclature ofvantedand
unwantedterms is standard, and the same as in Ref. 43

They will be used extensively in what follows.

c. Reference state or pseudovacuum

We use the following local basis for the individual Hilbert R M R
space of each particlgvhere the “antiparticle” one is for the Aa’ﬁ>|wamed= IT Uy-p ‘ﬂ)
impurity Hilbert spacg =1

1
M
|U>, |U> =0 , Da|18>|wanted: (H uBn—a>
0 n=1
X B BY DS S X, 5|0
dy,|dy=|1 [; "
0 trADa‘BMwanted: (H uﬁn—a) Bz’il' : 'BZ"K'ATEVZ)XSI- ~-sM|w>
n=1
0
9./9=0 where in the last line we made the following definitions:
1 E(Z)(a) - DasﬁM. . .S<A2gl,

and we define the followindpighest weight reference state
}/;m(?h we will use to construct the Fock space for the prob- T@(a) = tr 5 a).

Let us define theeducedmonodromy matrix,

N
o= §l|u>n) & 9o,

= Ale) B(a)
Using the definitionsa,=a/(a+ic) and b,=ic/(a+ic) =) :Sﬁf;m(a—ﬁ,vl)--- /\28)1(0‘_'81) = (E(a) 5(a)>
we can write down explicitly the scattering matrices in aux-
iliary space and see how they act on the reference stataritten in thereducedauxiliary space, and whose elements
Using that information we find for the monodromy matrix: act only on the space of indexé&s} (i.e., that spanned by all
) . N the possibleX, ... ). Notice that the elements & and
those ofD commute with each other. We write down their

E(@|wy=| 0 Aa)|w) * “combined” product explicitly:
0 0 A" (a)|w)
v 2)
with =(2) — D =0 — Aa Ba
— a— CEZZ) D(az) .

N
A'la) = Jl:ll e~ ), Since bothD and =@ satisfy the Yang-Baxter relations, we
have a new set of FCR that are obeyed:

2+t 2 =@ (=@ 3) = 2D 32D () R2.
A"(a) = —————Aa). Rigla = BER (0)E5"(B) = Eg (B EX ()Rzgla = B).
The eigenvalue we are seeking involves more than a par-

Notﬂice, foﬁr’ later use, that\"(¢;)=0. We define A(a@) ticular realization of the auxiliary tensof .5 (cf. with the
=A"(a)+A" (). For the transfer matrix we findverifying  NgAa formalism). We can define a highest weight reference

that the reference state is indeed an eigenstatg of it state for the space ¢} in the standard wagnotice thatS®
TJw)= (A, +D?+D¥)|w) = (1+A,)|w). is the usual monodromy matrix that appears in the(3U
casd. We therefore consider the “combined” reference state

d. Descendant states

M
We will construct descendant eigenstates from the refer- @)z =[@)|w)  with [w)= %m”

ence eigenstate that constitutes the highest weight state of the

largest possible representation. Let us consider a state ogiven by the direct product of a reference state in the space
tained by acting with the linear combination df flavor-  of indexes andw) the previously defined reference state. In
lowering operators(wherexsl...SM is an arbitrary tensor particular we have
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-~ *

=a < |~

0 Afw)
with Za:Hr“f'zla(a—Bn). We can act orjw), with the “com-
bined” monodromy matrix:
AYjw); * )

0 AaA,a"|w>2

Choosing the reference stdt®) is equivalent to considering

E(012)|w>2:(

only B%s and noB®s when building eigenstates. This is the
trivial case when the electrons do not hybridize with the
impurity (we want instead to include nontrivial eigenstates
involving someB®s as wel). In the more general case that

PHYSICAL REVIEW B 71, 205104(2005

MV
AN -
unwanted— quva—yq( H u'yq—yp> |a71' Vg VM)
p#q

AZ)

MI

o - -~ —

D(a)|7> unwanted™ A'qu,quU'yq—a( H u'yp—'yq) |a”yl. : '7q' : ”YM’>-
p#q

The cancellation of theinwantedterms gives a first set of

auxiliary conditions:
+ic
Yo~ @ TI5 M
a 2 Yq~ Bn

3 n=1 Vq_Bn"'iC’
Ya— @ptiZC
a 070

% ,
1—[ yq—yp—IC:
pq Yo~ Yp+iC

concerns us we write instedéhspired by the form of the \yhereas thavantedterms give the auxiliary eigenvalue:

unwanted terms

6.5)= % 07 -om o585 ), =8%-B%I7

Sl'

Let us denote by, the eigenvalue off(«) and bytf) the
eigenvalue ofr(z)(a):Af)+D(j). We need to solve the aux-
iliary eigenvalue subproblem:

219 =219
(notice that bothTf) and|y) are, although it is not explicitly

indicated, functions oﬁ’). Using the results from the SDP)
case we write down thevantedterms:

AZ)

M!
wanted— AZ( H Ua—yp) |';’>,
p=1

M’

wanted— AaAZ,( H uyp—a> |7_)’>,
p=1

and also the generic form of thenwantedones:

D7)

M’ M’
t(aZ) = A,c’z( H ua—yp) + A,a”Aa< H u'yp—a)
p=1 p=1
(notice that, since&’;j:O, the auxiliary eigenvalues vanish,
e, t?=0).
). .-
Having solved the auxiliary nested problem we can go

back to the original eigenvalue problem that we are trying to
solve. The combinewvantedterms are

M
wanted— B;;ll' ’ BZ'\,/\IA [ ( r{ ua—3n>
n=

M
+ (H uﬁn_a)t(j)] |5;> = ta|é= 5;>1
n=1

and we find that the eigenvalues qu:Taj read as

T.16.%)

M M Bn—ic
a -8B —
ZA:t_:Hu__ﬁ:H—J#_
aJ aJ n o
n=1 a; Bn
We are only left with the task of taking care of thawanted
terms. Generic ones read:

n=1

M
SiRSL. ..RSh...RSM 2 ...d2 y
Ua—ﬁn(ngn uﬁn—ﬁm)(Ba Bg - Bg, BBM)(%Sn L)

M
— SiRSL...BS...RM |(@ ...q? 2N =
uwarted D BB B B0 (&, %_1Sn)|y>"vﬁ"‘“(ngn Honh )

SiRS1. ..R%H. . .RS 2)...d2 =(2)| 2
X<Ba8311 BBn BB’\:/I)( 15 iﬂ—lsn)DBnH:Bnbl%

Aa‘é! ';’> unwanted™ A"‘(qunlelh ’ E/s,}n ’ BZTA)(i?Sn ’ i?_lsn”% =
and
D./B.7)
so that

trADa|é1 ’;>

M
— +(2) S$BSL...B%. - -BS 2)...942 by
unwanted™ tﬁnvﬁn—a< rgn uﬁm—,Bn) (Ba Bgll Bgn Bg’\:/l)( 1S, %_pﬂ” 7).
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Sincezﬁnzo, we have the following expression for the ei- Where therank varies in the range=1,...,N-1.
genvalue of the auxiliary problemt(ﬁzn):A’l’gn(l‘[’[\)":'luﬁn_yp). a. Generalization to models wit§U(N) ® SU(M) symmetry

Combining the two contributions to the sammewantedterm We start with the same auxiliary eigenvalue problem, but
and asking that it should vanish, we find a second set ofjiih the scattering matrices:
auxiliary conditions:

" _ N MY _ Spr0= (@) = ap)l5, —icPj, (aj — ap)l ) +icPj,

H Bn_ﬂm_lczl—[ Bn~ @ Bn~vp—lIC n+0 (a'j—an)—iC (Olj—a'n)+iC ,

men Bn~ BmtiC j=1 :Bn_aj+icp=1 Bn= "%

e—ié(aj—ao) -1
=9+ "4
e. Bethe-Ansatz equations SO IJO M Q;o-

_Let us collect the different equations, reanange them, anfye choose to consider a case wh&gacts nontrivially in
highlight the final result. Recalling tha=e™- and per- 1o “channel” degrees of freedom onfice., in “g-flavor”

. o A (D) . .
forming the standard Sh'fﬁn—Ag —ic/2, we write the ei-  space. This problem amounts to taking the one discussed

genvalue equation: above and adding an extra “isospin” to it. The monodromy
c matrix can be written as a direct producE(a)=E%a)
M; @ —Af}) + iE ® 2% a), and the transfer matrix becomes
kil — —
A S T, =ToTS = (AS + D3) (AL + DY),
a; — -i=
: " 2 The different steps go through as before and we get the

and after shiftingyn:Af)—ic, we write down also the aux- Bethe-Ansatz equation8AE):

iliary conditions: c C
MS a; —A§<1>—i5 Mg o= AXY +i7

C c . 2
1 ' 1 2) _j bt=T] I
My AL AD N AE‘)_ai_IE M, Aa)‘/\ﬁn)—l— kil =
r m 1C_ || 2 n=1 A1) 'E"‘:l _ q(l)_-E
D _ A 4ic a; = Aq o g AY 5
men A’ — Ay +ic

el .C .C
FEAW — g+ i 2™ AP - AR +iZ
2 2 with the conditions

and < s AS(D _ AS(r+o) _ iE
@ € A@_ A0 _;C AR - A - e o 2
AT —ag—iom Ay AT - = ,

Mg A? - AD _jc o 0715 M1 fAn n Tl ngn A — A +ic IT 11

I1

m#n A£12) - AE}? +ic B

o=+l m=1 As(r)_As(r+o-)+iE
n m
2

.Ch= .C
A<n2)—a0+|§“ 1A§$>—A<n1>+|5

c
[ — + H
where we have takeh;=M andM,=M". M a)_ pa0) ma,, AdD — AQrFe) =
[1 e e =11 11 :
2. Generalization to models with SYN) symmetry A4 A9 e T c’
m#n £dn m IC =41 me1 Aq(r) _ Aq(fﬂT) +i=
It is straightforward to generalize these results and write n m 2

down the Bethe-Ansatz equations for the more general case ) o
of SU(N) internal symmetry. We use the notatibty=N, for ~ Where for convenience we have used the definitions

the number of electrons andy=N; (=1) for the number of ASA0 = a,
impurities We define/\ﬁlo)zan (=k,) for the charge rapidities "
and ANV=¢, (=¢) (i.e., theimpurity rapidities. Then we AIM = g

write the eigenvalue equations:
and accordinglyMz9=N,, M{,=N;=1, andMy=0. One sees

m, AQ - AD 4 iE that the effect of the impurity enters via the auxiliary condi-
L 2 tions for theg-flavor rapidities
e = 1__[ c The solution thus far was general. To specify it to our
AT - AR - i3 model we takew;=k; andc=2A=V?, and obtain the Bethe-
Ansatz equations for the multichannel Anderson impurity
and the nested auxiliary conditions: model. Removing the impurityi.e., takingMy,=0) one re-
c covers the usual equations of the NBA formali&m.
(N _ A(+o) _ =
l“ﬂi A=A ¢ 1 Nﬁ” A = Am ™13 APPENDIX B: KERNELS AND IDENTITIES
men AN = AR +iC o2kt e A Z () 4 C In this appendix we collect a number of function and ker-
n m 2 nel definitions, and identities relating them, that are central to
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the writing, rewriting, and algebraic manipulation of the gifferent convolution kernels are simply related,
BAE and the equations of the TBA. Let us introduce the_3 =

=K;Chm and Bn,m—GAn'm. Where one defines the “basic re-
following notations aimed at lightening the writing of the cursion kernel.”

BAE,
z—inA ~ Kq(w 1
e2)= 2% Gw = ,
z+inA Ko(W) + Ko(w) 2 coshAw
min{m,n}
&= Il enni-2(2, G(2) = f—l{é(w)}(z): ,
=1 7
4A cosh1
. 2A
min{m,n}
ehm(2) = IT Emin-2-2), that we call so because it enters many recursion relations

connectmg the different convolution kerndfsr instance’?

Anm GAn+1m+(1 Sn 1)GAn 1m=Onm plus many others in-
em2 = 11 € mo(?.

e} volving also the convolution kernel?ih,m anan,m). All these

N _ _ relations are easy to prove in Fourier space.
For the purpose of writing a continuum version of the BAE,

we will need as well the derivatives of the logarithms of the
above functions. We define the following kernels:

nA The basic recursion kernel is ubiquitous in the TBA equa-

2. General recursion kernels

1
Kn(2) = (2mi) 9, In e (2) = — 24 (A tions of all integrable models. For the case of the multichan-
7"+ (nA) nel Anderson model, we are also going to need the more
plus the similar definitions general kernels:
— =1 ~

Knm(2) = (27i) 719, In e,n(2), G Aum _ o (N sinhimAw)

. A sinh(MAw

K., (2) = (2i) 4, In €,(2), Avin hMAw)’

, o ) of which the basic recursion kernel is a particular ca3e,
Khm(2) = (2711)7°0, In €4(2). =G%?. Whenm=N some of these kernels are singulaave
These last three definitions are the basis to define the follow?0onzero asymptotics in Fourier spac@/e regularize them

ing “convolution” kernels: according to
min{m,n} R~(N,M) (N,M)
GIMO) =GIM() = GV
Anm(z) = 5n,m5(z) + Knm(z) = 2 E Km+n+l+<r—27-(z)1
o=tl =1 where we have expressed them, in direct space, in terms of
_ the variablex=#7z/2A. When carrying out numerical calcu-
, min{rm,n} lations, we will use the following explicit expressions for
B2 =Kin(@d= 2 Kinvi—2/(2), these kernels:
=1
+
min{m,n} RG (NM) - ZLM_ > Tr<5N+rm0+ NZMTm +i I\jl—)\ )
Con(2) = 0D + K= 2 Kun-2rl2) T o= T
=1 -

that are used extensively in the continuum formulation of thewheref (z)=4,In I'(2) is the digamma function.
BAE.

1. Fourier space formalism 3. Rank recursion kernels

A great simplification in the algebraic manipulations is We also need, for intermediate manipulations, kernel op-
often achieved by working in terms of the Fourier trans-erators that act on the rank indices. The basic on&'s
formed densities. Our convention will be as follows: :52_(5;+1+5;—1)é_ Using it we can extend the convolution

- _ iz kernels asA, =G"A,, A particularly useful derived kernel

p(w) = Hp(@)}(w) = | p(z)e™dz is the one given by the invers&S=[G'G>]%, where the

indices vary in the range 1., ,N-1 or 1,...,M-1 depend-

So that, for instance the basic kernels adopt the simple formhg on the caséX=N,M). The explicit formu|a for this op-
K n(w) = g AW, Working in Fourier space is easy to see thaterator, in Fourier space, is
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'S
X

_ sinmin(r,s)Aw]sink{[ X — maxr,s) JAw}
N sinh(Aw)sinh(XAw)

and two particularly useful cases are given by the general

recursion kernels:
1 . a(M-r)
—sin——
™ M
M-r
oTM=-1) |
M

Ru(\) =Gt = o
cosh—
M

PHYSICAL REVIEW B71, 205104(2005

RUTH =GN = —————
cos— + cosh—
N N

(these will be used in the determination of the Schrieffer-
Wolff limit).
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