
Solution of the multichannel Anderson impurity model: Ground state and thermodynamics

C. J. Bolech1,2 and N. Andrei2
1Département de Physique de la Matière Condensée, Université de Genève, Quai Ernest Ansermet 24, CH-1211 Genève 4, Switzerland

2Center for Materials Theory, Serin Physics Laboratory, Rutgers University, 136 Frelinghuysen Road, Piscataway,
New Jersey 08854-8019, USA

sReceived 24 July 2004; revised manuscript received 13 October 2004; published 6 May 2005d

We present the solution of the SUsNd ^ SUsMd Anderson impurity model using the Bethe-Ansatz. We first
explain what extensions to the formalism were required for the solution. Subsequently we determine the
ground state and derive the thermodynamics over the full range of temperature and fields. We identify the
different regimes of valence fluctuation at high temperatures, followed by moment formation or intrinsic mixed
valence at intermediate temperatures and a low temperature non-Fermi liquid phase. Among other things we
obtain the impurity entropy, charge valence, and specific heat over the full range of temperature. We show that
the low-energy physics is governed by a line of fixed points. This describes non-Fermi-liquid behavior in the
integral valence regime, associated with moment formation, as well as in the mixed valence regime where no
moment forms.
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I. INTRODUCTION

Heavy-fermion materials have been a source of interest
and puzzlement since the experimental discovery of super-
conductivity in CeCu2Si2 in 1979.1 By the turn of the 1990s
the non-Fermi liquid character of these materials was coming
to the center of attentionsfor a recent review see Ref. 2d,
coincidentally with the interest on marginal Fermi liquids
generated by the normal state of high-Tc superconductors.
Since then, the number of examples of violation of Landau’s
Fermi liquid theory among lantanides and actinides has mul-
tiplied.

Current theories trying to explain the non-Fermi liquid
behavior ind- and f-electron metals can be classified into
three broad categories:sid models based on multichannel
Kondo physics,sii d models considering the proximity of a
quantum critical point, andsiii d models based on single-
channel Kondo physics but in the presence of disorder that
induces a distribution of impurity energy scales. These three
ingredients are not mutually exclusive and a number of re-
cent theories try to address their effects in different combi-
nationsssee Ref. 2 for referencesd. In this article we will be
concerned with the first class of models. This approach origi-
nated with the work of Cox,3 in turn motivated by the un-
usual experimental results in the heavy-fermion compound
UBe13.

4 He argued that the notably weak magnetic field de-
pendence of the specific heat of this material excludes the
usual magnetic Kondo effect and proposed instead that the
observed anomalous behavior derives from the quenching of
quadrupolar degrees of freedom. In this case, the spin of the
conduction band electrons plays the role of a channel degree
of freedom. This is the two-channel quadrupolar Anderson
model, describing tetravalent uranium impurities in a cubic-
symmetric metallic matrix. The model was later generalized
to include other crystal symmetries as well as more compli-
cated crystal field splittings; for a review see Ref. 5. In more
detail, Hund’s rules and spin-orbit coupling in the presence
of a cubic crystalline electric field lead to the modeling of a
U ion in a Be13 host by aG6 Kramers doublet in a 5f3

configuration and a quadrupolarsnonmagneticd doubletG3 in

the 5f2 configuration. The doublets hybridize with conduc-
tion electrons in aG8 representation carrying both spin and
quadrupolar quantum numbers. This single-impurity ap-
proach was not uncontroversial.6,7 For instance, whether the
energy splitting between the two doublets is sufficiently large
for a quadrupolar Kondo scenario to be viable is still largely
unresolved. Alievet al. presented experimental evidence
suggesting that both doublets may in fact be nearly degener-
ate, pointing to a mixed-valent state with a novel type of
interplay between magnetic and quadrupolar two-channel
type screening.8

In this article we will study the general multichannel
Anderson impurity model that includes as particular cases
the two-channel model and, to some extent, most of its gen-
eralizations alluded to above.5 The so-called SUsNd
^ SUsMd Anderson impurity model, in its pseudoparticle
representation, is given by the following Hamiltonian:

HMchA = Hhost+ «qo
a

bā
†bā + «so

s

fs
† fs

+ Vo
ā,s

f fs
†bāca,ss0d + ca,s

† s0dbā
† fsg

subject to the constraint:oabā
†bā+osfs

† fs=1. The first term
in the Hamiltonian describes the host in which the impurity
is embedded. For our purposes, we model it as a linearized
Fermi band,

Hhost= o
a,s
E ca,s

† sxds− i]xdca,ssxddx.

The second and third terms model two multiplets with ener-
gies «s and «q and quantum numberss[SUsNd and
a[SUsMd, respectively.9 We will refer to these two quan-
tum numbers as generalized spin and flavor—in reference to
the Kramerssmagneticd and non-Kramerssquadrupolard dou-
blets of the two-channel case. The last term in the Hamil-
tonian describes the hybridization of the host electrons with
the impurity.
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An illustrative level scheme is given in Fig. 1 where the
magnetic configuration is taken to lie lower in energy than
the quadrupolar one. The particular example is for an Ander-
son model with SUsN=3d ^ SUsM =5d symmetry. The impu-
rity can switch between the two configurations by giving or
taking an electron from the host band, a process that takes
place with an overlap amplitude given byV.

As a result of the constraint, the impurity Hilbert space is
restricted toN+M states. Namely,N flavorless spin states
usl; fs

†u0l plusM spinless flavor statesuāl;bā
†u0l. Defining

these states explicitly, we can rewrite the Hamiltonian in a
different notation that automatically accounts for the Hilbert
space restriction,

HMchA = Hhost+ «qo
a

uālkāu + «so
s

uslksu

+ Vo
a,s

fuslkāuca,ss0d + ca,s
† s0duālksug .

Both forms of the Hamiltonian are completely equivalent
when the constraint is treated exactly and both are widely
used in the literature.5 It is the constraint acting in the Hilbert
space that plays the role of a strong interaction and renders
the problem highly nonperturbative.

As a side remark notice that if eitherM or N is put to one,
the model reduces to a degenerate single-channel Anderson
model in the limit of infinite Coulomb repulsionsa magnetic
or a quadrupolar version of it, respectivelyd.10,11 While the
standard single-channel SUs2d Anderson model12 was found
to be integrable,13,14 its SUsNd generalization is not inte-
grable except for the strong repulsion limit when the impu-
rity is constrained not to exceed single occupancy.15,16

Even though the multichannel Anderson model was put
forward more than 15 years ago, progress in its theoretical
understanding has been slow. In the two-channel casesN
=M =2d most of the early knowledge of its unusual physics
came from the integer valence limit. In this limit the model
maps onto the two-channel Kondo model for which the
Bethe-Ansatz solution was available.17–19 Also numerical
renormalization groupsNRGd20,21 and boundary conformal
field theory sBCFTd22 studies were carried out. Only more
recently some progress was made in the study of the mixed
valence regime of the two-channel Anderson model using
Monte Carlo23 and NRG24,25 methods. The more general
multichannel case is, however, not quite within the present
reach of NRG and other approaches. On the other hand, the
largeN andM case constitutes the natural starting point for

alternative approaches like the noncrossing approximation
sNCAd,26,23 the conserving slave boson theory,27,28 or other
types of 1/N-expansions.29 Since the general multichannel
Anderson model can be regarded as the extension of the
infinitely-repulsive degenerate single-channel Anderson
model to the multichannel case, the question about its inte-
grability arises naturally. During the last couple of years the
integrability was established, opening up the possibility of a
full understanding of the model. In previous work, we pre-
sented the Bethe-Ansatz solution for the two-channel case.30

Subsequently, we developed the critical low-energy theory of
that model using BCFT and combining it with results from
thermodynamic Bethe-Ansatz.31,32

A. Preview of main results

In the present work we will give a detailed and, to a large
extent, self-contained account of the Bethe-Ansatz solution
of the general multichannel Anderson model. We shall show
that, as in the case of the two channel model, the low energy
physics of the impurity is governed by a line of boundary
fixed points with a nontrivial residual impurity entropy that
is constant along the line. We shall identify two energy scales
sTH andTLd that govern the screening process of the impurity
degrees of freedom. The screening occurs in two stages pa-
rameterized by these scales as will be seen, for instance, in
the temperature dependence of the impurity entropy. The
mixed valence regime will be discussed in detail, stressing
not only the differences, but also the unexpected similarities
with the integer valence cases.

In Fig. 2 we present the picture that emerges for the dif-
ferent regimes of the model. As a function of temperature
and energy difference between impurity configurationss«
=«s−«qd, we will characterize the different regimessFV,
LMM and LQM, and FP; see figure captiond. In particular,
moment formation takes placesfor a fixed and suitably large
«d as the temperature falls belowTH; the moment being mag-
netic or quadrupolar depending on the sign of«. It is then
screened asT is further lowered belowTL when the system is
governed by the infrared fixed point. Notice that the moment
formation region becomes smaller asu«u is reduced and com-
pletely disappears at«.0. In fact, over the whole mixed
valence regionsu«u&D;V2/2d, valence fluctuations suffice
to prevent moment formation.

FIG. 1. Impurity level scheme for the case of an Anderson
model with a threefold degenerate magnetic configuration of energy
«s and a fivefold degenerate quadrupolar one of energy«q. The
energy difference«=«s−«q is indicated with an arrow.

FIG. 2. Schematic representation of the two temperature scales
indicating the crossovers among different regimes: fluctuating va-
lence sFVd, fixed point sFPd, and local magnetic and quadrupolar
moment regimessLMM and LQMd.
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Another way of presenting the picture is to define two
energy scalessTs andTqd associated with the spin and qua-
drupolar degrees of freedom. These scales cross each other in
the intermediate valence region and interchange roles as the
high-temperaturesTHd and low-temperaturesTLd scales that
indicate the transition zones among different regimes. The
meeting of the two scales in the intermediate valence region
signals the absence of a moment formation regime between
the high and the low temperatures: the fixed point is reached
without prior moment formation.

The rest of this article is organized as follows: In the next
section we will discuss the scattering matrices and the inte-
grability of the modelsSec. IId; in the subsequent one we
will present some necessary formal developments in the
theory of quantum inverse scattering and the equations de-
rived from themsSec. IIId; in the following two we will
discuss the thermodynamics of the model, we shall give for-
mal derivationssSec. IVd and analytic and numerical results
sSec. Vd; in the last section we will provide a summary and
a discussion of our main results as well as an outlook of their
applications in the theory of heavy fermionssSec. VId.

II. S-MATRICES AND INTEGRABILITY

The HamiltonianHMchA conserves the number of fermi-
onic excitationsselectronsd,

Ne = o
a,s
E ca,s

† sxdca,ssxd + o
s

fs
† fs

allowing us to study the system for an arbitrary but fixed
value of Ne. We take Ne=0 as our reference sector, an
M-degenerate eigenstate with energy«q. Our strategy will be
the usual one in coordinate Bethe-Ansatz: we solve the sys-
tem for Ne=1,2,… and then generalize the solution to arbi-
trary values ofNe. Subsequently, as theNe→` limit is taken
sdiscussed in later sectionsd, the field theory is recovered.

A. Electron-impurity scattering matrix

When there is only one electron present in the system
sNe=1d, the most general one-fermion state has the following
form:

ukl = o
a,b,s

E Fas;b
k sxdcas

† sxdub̄l + Gs
k usl.

To determine the eigenstates of the Hamiltonian in this sec-
tor, satisfyingHukl=Ekukl, we apply the Hamiltonian to this
generic state and derive thefirst quantized Schrödinger
equationsin the sector. Using the expressionEk=k+«q for
the eigenenergies of eigenstatesukl, we read off the equa-
tions:

s− i]x − kdFas;b
k sxd + dsxdVda

bGs
k = 0,

s« − kdGs
k + oa8,b8

Vda8
b8Fa8s;b8

k s0d = 0,

where the energy difference«=«s−«q was introduced. We
call Fas;b

k sxd and Gs
k the wave-functions. EliminatingGs

k

from the first equation and settingFas;b
k sxd=eikxF̃as;b

k sxd we
havesrepeated indexes are summed overd

sk − «ds− i]xdF̃as;b
k sxd + V2dsxdda

bda8
b8F̃a8s;b8

k s0d = 0.

We make the following Bethe-type ansatz for the coordinate

dependence of theF wave-function: F̃as;b
k sxd=ffus−xdI

+usxdSgAgas;b
k , whereS will be called the electron-impurity

scattering matrix andA is an arbitrary vector in the internal
space of the one-electron sector. In order to fully define the
ansatz we adopt the following convention for the step func-

tion: us0d=1/2. Let us introduce the operatorfQga;b
a8;b8

=da
bda8

b8 that acts in flavor space and has the propertyQ2

=MQ srecall M is the number of values that the indexa
takesd. SinceA is arbitrary, one has a matrix equation forS.
Its solution is

S1,0= I 1,0−
i2V2

2sk1 − «d + iMV2Q1;0 = I 1,0+
e−idsk1−«d − 1

M
Q1;0,

where we used the index “1” for the only electron present in
the system and introduced the use of the index “0” for the
impurity sthe notationk0;« will be also used laterd. For the
second way of writingS1,0 we introduced the phasedsk
−«d=2 arctanMV2/2sk−«d.

It is easy to verify unitarity,

SS† = S1,0S0,1= I .

B. Electron-electron scattering matrix

Consider now the case when there are two electrons
present in the systemsNe=2d. The most general two-fermion
state that we can write has the following formsall indices are
summed overd:

uk1k2l =E E Fa1s1a2s2;b
k1k2 sx1,x2dca1s1

† sx1dca2s2

† sx2dubl

+E Ga1s1;s2

k1k2 sx1dca1s1

† sx1dus2l.

Now again we apply the Hamiltonian in order to obtain the
first quantized Schrödinger equations for eigenstates with
eigenenergiesEk1k2=k1+k2+«q. We arrive at the following
set of differential equations:

on=1,2
s− i]xn

− kndfAFga1s1a2s2;b
k1k2 sx1,x2d

+ VAfdsx2dda2

b Ga1s1;s2

k1k2 sx1dg = 0,

s− i]x1
− k1 + « − k2dGa1s1;0s2

k1k2 sx1d

+ Vdsx2dda2

b fAFga1s1a2s2;b
k1k2 sx1,x2d = 0,

whereA= I −Pxsq= I −PxPsPq is stwiced the antisymmetrizer
in coordinate, spin, andsquadrupolard-flavor space, ex-
pressed in terms ofPx, Ps, Pq the permutation operators that
act in the spaces indicated.

Now we make an ansatz for theF wave-function similar
in spirit to the one we made in the one-electron sector. There
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are six regions in configuration space, corresponding to the
six possible line arrangements of the impurity and the two
electrons. The region with, say, electron “1” to the immediate
left of the impurity is related via the S-matrixS1,0 to the
region with electron “1” to the immediate rightsthe position
of electron “2” remains unchangedd. A similar role is played
by S2,0. However, we still need to determine how to relate
the regions where electrons “1” and “2” exchange places
saway from the impurityd.

Consider then,

Fa1s1a2s2;b
k1k2 sx1,x2d = eik1x1+ik2x2F̃a1s1a2s2;b

k1k2 sx1,x2d

with the expression forF̃ describing the six different ar-
rangements of particles,

F̃a1s1a2s2;b
k1k2 sx1,x2d = ffusx12dus− x2dI + usx21dus− x1dS

+ us− x1dusx2dS2,0+ us− x2dusx1dS1,0S

+ usx1dusx12dS1,0S2,0

+ usx2dusx21dS2,0S1,0SgAga1s1a2s2;b
k1k2 .

HereS1,0 andS2,0 are the electron-impurity S-matrices found
above andS;S1,2 is the electron-electron S-matrix that we
seek to determine in this section. As aboveA is an arbitrary
vector in the internal space of the two-electron sector, deter-
mining the state of two electrons and the impurity. To define
unambiguously the ansatz we adopt the regularization

us0−dus0+d=
æ

0,33 consistent with the first order character of
the differential equations. Let us mention that this ansatz
assumes that the same momentak1, k2 characterize the wave-
function in all six regionssi.e., orderingsd. This is at the heart
of the ansatz and will be shown to be valid later when we
discuss the Yang-Baxter conditions.

Inserting the wave-function into the first of the
Schrödinger equations above we verify after some algebra
that the equation holds, determining uniquely the form of the
G wave-function. At this stage the electron-electron scatter-
ing matrix remains arbitrary and we turn our attention to the
second Schrödinger equation. Carrying out the algebra, we
find that the equation holds provided the following matrix
constraint on the electron-electron S-matrix is obeyed:

sS2,0− I dsS1,0S− I d − PqssS1,0− I dsS2,0− Sd = 0,

where the matrices without indexes act on the internal space
of the two electrons. A careful examination of this equation
reveals the presence of an overall left-prefactorQ2;0. Since
this operator is not invertible, the solution of the constraint is
not unique and there is still a certain amount of freedom left
in the choice ofS.

1. An integrable solution

The equation above does not have a unique solution for
the two-electron S-matrixS. For our purpose we need to
identify, however, a particular solution having the appropri-
ate physical properties that ensure the generalization and
consistency of the ansatz to any number of electronsNe.
These requirements are listed in Table I.

The first of these relations assures the reversibility of the
scattering processessor reversibility of the scattering pathsd
and the other two are enough to guarantee path independence
for arbitraryNe.

34,35With these conditions, any multiparticle
scattering process can be factorized into pairwise scattering
events and there is no ambiguity in the multiple ways of
carrying out the factorization since they are all equivalent
sthe reader can find an illustration of the situation in four-
particle space in the review article of Ref. 36d. We remark
that in the case of impurity models, any one of the indices in
these relations can take the value “0” that stands for the
impurity.

These three conditions together with the constraint com-
ing from the Schrödinger equation, constitute an overcon-
strained algebraic system for determining the electron-
electron S-matrix sS;S1,2d. Nevertheless, it admits a
solution.

It can be shown that the only solution is the following:

S1,2=
sk1 − k2d − iV2P1,2

s

sk1 − k2d − iV2

sk1 − k2d + iV2P1,2
q

sk1 − k2d + iV2 .

This matrix serves to describe the electron band with linear
dispersion within a basis of reduced symmetry SUsNMd
→SUsNd ^ SUsMd, consistent with the reduction in symme-
try operated by the addition of the impurity terms to the
Hamiltonian of the host band. It is important to emphasize
that the introduction ofS1,2 does not signify that we have
modified the original HamiltonianHMchA by introducing
electron-electron interaction. Instead, the choice ofS1,2 cor-
responds to a choice of basis in the space of free electrons.37

III. PERIODIC BOUNDARY CONDITIONS AND
BETHE-ANSATZ EQUATIONS

We proceed to impose boundary conditions. This is re-
quired in order to be able to properly count and label the
states. We will discuss here the case of periodic boundary
conditions, imposing the following set of conditions on the
Ne-electron wave-function,

FhmW j
hkj ushxjduxj=L/2 = FhmW j

hkj ushxjduxj=−L/2,

where we are considering a finite ring of lengthL. As we are
able to move electronj to the far leftsxj =−L /2d or to the far
right sxj =L /2d using the S-matrices, the boundary condition
gives rise to the following eigenvalue problem:

ZjAW = zjAW ,

where the eigenvalueszj =e−ikjL of the transfer matrixZj,

TABLE I. Three necessary conditions for integrability.

Unitarity condition Si jSji = I

Locality of the scattering Si jSkl=SklSi j

Yang-Baxter relation SjkSikSi j =Si jSikSjk
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Zj = Sjj −1¯Sj1Sj0SjN¯Sjj +1,

will allow us to find the spectrum of the Hamiltonian viaE

=okj. AW is a vector in the internal space of theNe electron
sector. Equivalently, this condition corresponds to taking par-
ticle j around the ringand asking that the wave-function
should not change; it should hold for allj =1,… ,Ne. The
original problem of finding the eigenenergies and eigenfunc-
tions of the Hamiltonian is thus reduced to that of finding the

vector amplitudes in internal spacesAW d that are simultaneous
eigenvectors of all these eigenvalue problems.

The solution of this class of eigenvalue problems was first
tackled by Yang,35 who solved the problem by means of a
“second Bethe-Ansatz”ssee also the work of Baxter38d. In
the late 1970s the procedure was systematized into what is
known as theQuantum Inverse Scattering MethodsQISMd.39

However, the existing technology is insufficient for our pur-
pose; the structure of the impurity S-matrix in the multichan-
nel Anderson model requires a reformulation and extension
of the standard formalism. We give a detailed account of
those developments in one of the appendices at the end of the
article.

A. Bethe-Ansatz equations for the multichannel Anderson
impurity model

The eigenvalues,zj =e−ikjL, of the transfer matrix are given
in terms of thecharge rapiditiesskjd, which in their turn,
together with thespin rapiditiessLa

ssrddand thequadrupolar-
flavor rapidities sLa

qsrdd, completely specify the particular
eigenstatessee Appendix Ad. The spin rapiditiessLa

ssrdd and
the q-flavor rapiditiessLa

qsrdd describe, respectively, the spin
and flavor dynamics as well as the symmetry of each state.
The index x=s, sqd specifies thatLa

xsrd refers to a spin
sq-flavord degree of freedom, the indexr describes therank
srelated to the spin or flavor symmetry of the stated, and
finally a labels the different rapidities of each type and rank.

The charge, spin, and flavor rapidities must satisfy a set of
equations—the Bethe-Ansatz equationssBAEd—that are de-
rived in Appendix A. These equations encode the full infor-
mation of the model:

eikjL = p
n=1

M1
s

kj − Ln
ss1d − iD

kj − Ln
ss1d + iD

p
m=1

M1
q

kj − Lm
qs1d + iD

kj − Lm
qs1d − iD

with the conditions

p
mÞn

Mr
s

Ln
ssrd − Lm

ssrd − i2D

Ln
ssrd − Lm

ssrd + i2D
= p

m = 1
s=±1

Mr+s
s

Ln
ssrd − Lm

ssr+sd − iD

Ln
ssrd − Lm

ssr+sd + iD
,

p
mÞn

Mr
q

Ln
qsrd − Lm

qsrd − i2D

Ln
qsrd − Lm

qsrd + i2D
= p

m = 1
s=±1

Mr+s
q

Ln
qsrd − Lm

qsr+sd − iD

Ln
qsrd − Lm

qsr+sd + iD
,

where for convenience we have used the definitions

Ln
s,qs0d = kn,

L1
qsMd = «,

and accordinglyM0
s,q=Ne, MM

q =Ni =1, andMN
s =0. One sees

that the effect of the impurity enters via the auxiliary condi-
tions for theq-flavor rapidities. This is a distinguishing fea-
ture, different from what happens in the equations for the
single-channel Anderson model, or in those for the Kondo
model regardless of the number of channels.

Each solution of the BAE corresponds to an eigenstate of
the Hamiltonian. The eigenfunction can in principle be de-

termined from the eigenvectorAW and the corresponding en-
ergy eigenvalue is given by

E = o
j

kj .

The charge-, spin-, and quadrupolar-rapidities entering the
solutions of the BAE are in general complex, and take the
form, in the thermodynamic limit, ofstrings.40–42An n-string
of spin or q-flavor rapidities consists ofn equally spaced
complex numbers symmetrically arranged around the real
axis sx=s,qd:

Lns
xsrd = Ln

xsrd + isn + 1 − 2sdD with s = 1,…,n.

Strings are thus specified by a single real numberLn
xsrd, in

terms of which we shall rewrite the BAE. Similarly, there
also complex values of the charge rapiditieskj corresponding
to bound states among the bare electrons that build up the
theory. They too form strings and will be incorporated in the
BAE through the real part characterizing them. Consider a
bound state ofn particles, the corresponding charge rapidi-
ties form a string:

ks
s0d = ksn−1d + isn + 1 − 2sdD with s = 1,…,n

and we have spin-rapidity strings associated with them in the
first n−1 ranks:ksn−1d=Lm

ssrd for all ranks such thatn=r +m.
We now incorporate the string solutions into the equations

and simplify them using the notations and relations given in
Appendix B. After some algebra, one arrives at the final ver-
sion of the discrete-real-BAE:

einkj
sn−1dL = p

m=1
p
i=1

enm9 skj
sn−1d − ki

sm−1dd

3 p
m=1

p
b=1

emskj
sn−1d − Lmb

ssndd

3 p
m=1

p
b=1

enm8
* skj

sn−1d − Lmb
qs1dd

plus

p
m=1

p
b=1

enmsLna
ssrd − Lmb

ssrdd = p
i=1

ensLna
ssrd − ki

sr−1dd

3 p
s=±1

p
m=1

p
b=1

enm8 sLna
ssrd − Lmb

ssr+sdd ,

p
m=1

p
b=1

enmsLna
qs1d − Lmb

qs1dd = p
m=1

p
i=1

enm8 sLna
qs1d − ki

sm−1dd

3 p
m=1

p
b=1

enm8 sLna
qs1d − Lmb

qs2dd ,
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p
m=1

p
b=1

enmsLna
qsrd − Lmb

qsrdd = p
s=±1

p
m=1

p
b=1

enm8 sLna
qsrd − Lmb

qsr+sdd ,

where we continue to use the notationL1
qsMd=«. The set of

solutions of these equations determines the set of eigenval-
ues of the problem. Now all the unknowns are real valued
variables.

1. Continuum distributions formulation

One can study the system in thethermodynamic limit
where its size,L, and the number of electrons,Ne, both tend
to infinity with the densityNe/L being held fixedsone could
later consider thescaling limit, when the density is allowed
to go to infinity while some physical scale is kept fixedd.43 In
that case the separation of distinct “solutions” is of order
Os1/Ned, so that rather than considering explicit “solutions,”
one can describe the system in terms of “densities of solu-
tions” typically to be denoted byrszd, describing the number
of solutions falling in a particular rapidity intervalsz,
z+dzd.44

To determine the densities one proceeds by taking loga-
rithms of the BAE obtaining transcendental equations for the
rapidities characterized by integers that arise from the loga-
rithmic branches. These integers label the “solutions” and are
the quantum numbers of the eigenstate. One then constructs
the counting functions43 for the different rapiditiesfin our
casencn szd, nsn

srd szd, and nqn
srd szdg. The counting functions

range over all integers: those that have been selected for a
state correspond to “solutions,” or “roots,” and those integers
that are omitted correspond to “holes.” We denote byrr and
rh the various densities of roots and holes. For example,
rqn

rsrd szd denotes the density of roots of rank-r n-strings of
quadrupolar rapidities. These density distributions are related
to the counting functions:

L−1]zncnszd = rcnszd = rcn
r szd + rcn

h szd,

L−1]znsn
srdszd = rsn

srdszd = rsn
rsrdszd + rsn

hsrdszd,

L−1]znqn
srdszd = rqn

srdszd = rqn
rsrdszd + rqn

hsrdszd,

and should also obey the following relations,

1

L
Ncn =E

k

rcn
r skd,

1

L
Msn

srd =E
l

rsn
rsrdsld,

1

L
Mqn

srd =E
l

rqn
rsrdsld.

These quantities are combined to define further ones,

Nc = o
n=1

nNcn,

Ms
srd = o

n=1
nMsn

srd,

Mq
srd = o

n=1
nMqn

srd,

whereNc;Ne corresponds to the number of electrons in the
system. Further, the energysthat coincides with the momen-
tum for a system with linear dispersiond and the number of
particles with different spins orq-flavors are given by

1

L
E =

1

L
«q + o

n=1
nE

k

krcn
r skd,

msr = Ms
sr−1d − Ms

srd + o
m=r

Ncm,

mqr = Mq
sr−1d − Mq

srd + dr,1Nc,

where r =1,… ,X for SUsXd sX=M, Nd and we remind the
reader thatMq

sMd=Ni =1 is the number of impurities in the
system. Consistently with this convention we have the den-
sity rq1

rsMdsld=L−1dsl−«d. We will use these quantities to
couple to crystal fields when we compute the thermodynam-
ics.

Starting from the derivatives of the logarithm of the BAE
and using the density distributions defined just above plus
the convolution kernels defined in Appendix B one can write
the continuum version of the BAE:

rcn
h =

n

2p
− Cnm· rcm

r − Km · rsm
rsnd + Bnm· rqm

rs1d,

rsn
hsrd = − Anm· rsm

rsrd + Kn · rcr
r + Bnm· rsm

rsr−1d + Bnm· rsm
rsr+1d,

rqn
hsrd = − Anm· rqm

rsrd + dr,1Bnm· rcm
r + Bnm· rqm

rsr−1d + Bnm· rqm
rsr+1d

srepeated indices are contractedd. The way they are written,
these equations determine the densities of holes as a function
of the densities of roots and their solutions correspond to the
different eigenvalues of the system.

A detailed analysis of these equations will be presented
elsewhere. In the following we will use them as a starting
point to write a second set of equations whose solution al-
lows one to compute the free energy of the system and gives
that way access to all thermodynamic quantities.

IV. THERMODYNAMIC BETHE-ANSATZ

The extension of the Bethe-Ansatz formalism to obtain
finite temperature information was first done in the case of
the Bose gas by Yang and Yang.45 It was later adapted to the
study of spin chains in the works of Gaudin,46,47

Takahashi,48,49 and others. The formalism is by now well
developed and goes under the name of thermodynamic
Bethe-AnsatzsTBAd. In the context of impurity models it
was extensively used to find the impurity contributions to
different thermodynamic quantities. In the following we out-
line the main steps and results of the TBA procedure as it
applies to the multichannel Anderson impurity model.

We shall proceed in a standard manner and derive an ex-
pression for the free energy of the system. We will work in
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the grand canonical ensemble, where the free energy is de-
fined as50

F = E − TS− mcNc − o
r

hsrmsr − o
r

hqrmqr.

Out of all the elements that enter this expression, the only
one not mentioned in the previous section, and requiring spe-
cial attention here, is the entropy. We define the entropy of a
density distribution as followsssubindices are suppressedd:

1

L
Shrr,rhj = rr lns1 + hd + rh lns1 + hd,

where we introduced the notational conventionsh=rh/rr

andh=h−1=rr /rh. Shrr ,rhj measures the number of micro-
scopic states consistent with a given macroscopicsthermo-
dynamicd state given byrr andrh.45 For the sake of further
compactness, we also introduce the notationsf =lns1+hd and
f =lns1+hd. We write down the explicit expression of afree
energy functionalfor the system:

1

L
Fhrx

r,hj =
1

L
«q +

1

L
hqM + o

n
E

k
Fnsk − mc − hq1d − o

iøn

hsi − TfcnGrcn
r − o

n
E

k

Tfcnrcn
h + o

r,n
E

l

f− shsr+1 − hsrdn − Tfsn
srdgrsn

rsrd

− o
r,n
E

l

Tfsn
srdrsn

hsrd + o
r,n
E

l

f− shqr+1 − hqrdn − Tfqn
srdgrqn

rsrd − o
r,n
E

l

Tfqn
srdrqn

hsrd.

We next seek to determine the free energy that in the thermodynamic limit we are allowed to evaluate as a saddle point: we
vary F with respect to the distributionsrr andrh, subject to the constraint that they must satisfy the BAE. We thus obtain the
so-called thermodynamic Bethe-Ansatz equations:

fcn = nsk − mc − hq1d/T − dnùihsi/T + Cnm· fcm− Km · fsm
snd − Bnm· fqm

s1d ,

fsn
srd = nshsr − hsr+1d/T + Kn · fcr + Anm

rs · fsm
ssd ,

fqn
srd = nshqr − hqr+1d/T − d1

r Bnm· fcm+ Anm
rs · fqm

ssd

srepeated indices are contracted and the kernelsAnm
rs are given in Appendix Bd. It is possible to reformulate the TBA equations

as a set of recursions linking the different unknown distributions.48 Such a formulation does not involve infinite sums and has
also the virtue of rendering the structure of the problem more transparent. After a few algebraic manipulations—making
extensive use of the recursion relations for the convolution kernels mentioned in Appendix B—one can reexpress the TBA
equations in what we call theirrecursive formulationssometimes referred to as the Gaudin-Takahashi formd. They read:51

5
Equations for the spin-rapidities:

fsn
srd = lexsdn,1G · fcr + G · fsn+1

srd + d̂n,1G · fsn−1
srd − G · fsn

sr+1d − G · fsn
sr−1dd

Equations for the flavor-rapidities:

fqn
srd = lexs− dnøNdr,1G · fcn + G · fqn+1

srd + d̂n,1G · fqn−1
srd − G · fqn

sr+1d − G · fqn
sr−1dd

Equations for the charge-rapidities:

5
fcn,N

= lexsG · fqn
s1d + G · fs1

snd − G · fcn+1 − d̂n,1G · fcn−1d
plus the “driving” equation,

5fcN = lexSN
l

t
− RGt

sM,Md · fqN
sM−td + RGm

sN,Md · fcmD
fcN = lexS− M

l

t
− RGm,N

sN,Nd · fcm+ RGtøM

sM,Nd · fqN
sM−tdD

where the dimensionless variablesl=psk−md /2D and t
=pT/4D were introduced52 and, for convenience, we defined
the function lexsxd=lnf1+expsxdg. The general recursion

kernelssGm
sN,Mdd and their regularized versionssRGm

sN,Mdd are
discussed in Appendix B. The expressions forfcN and fcN can
of course be derived from each other, but here we write
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down both of them explicitly because both are useful in the
numerical studies.

These equations are complemented by asymptotic condi-
tions that are also a direct consequence of the “nonrecursive”
TBA equations:

Kn+1 · fxn
srd − Kn · fxn+1

srd →
n→`

ax
r ;

hxr+1 − hxr

T
,

wherehxr is eitherhsr=1,…,N or hqr=1,…,M for the spin or qua-
drupolar f-distributions, respectively.

The structure of the recursive relations between the dif-
ferent distributions can be nicely visualized in a graph. In
Fig. 3 we show an example of such a graph, a “TBA-
diagram” for a particular realization of the multichannel
Anderson model.

This representation of the equations highlights their con-
nectivity and is the natural extension of the graphical repre-
sentation commonly used in the case of other integrable
modelssfor comparison and an example of another related
impurity model see the work on the multichannel Coqblin-
Schrieffer model53d. The different nodes correspond to the
different distributions:sid those in the horizontal stripe ex-
tending towards the left represent thehsn

srd, sii d those in the
vertical stripe extending downwards represent thehqn

srd, and
siii d those in the vertical column enclosed in a box corre-
spond to thehcn. The graph was drawn for the particular case
of SUsN=4d ^ SUsM =5d symmetry, but its structure is ge-
neric. The horizontal straight lines indicate that the nodes are
two-way connected by the equations according to lnhnode
=G·T lns1+hneighbord and the vertical wavy lines indicate
that the two-way connections are given by lnhnode=
−G·T lns1+hneighbord. The double straight lines highlight the
special kind of connections in the case ofhcN.

There is a dual interpretation of this graph in terms of the
reciprocals of all the distributions. Within this new picture
the different nodes are as follows:sid those in the horizontal

stripe extending towards the left represent thehsn
srd, sii d those

in the vertical stripe extending downwards represent thehqn
srd,

and siii d those in the vertical column enclosed in a box cor-
respond to thehcn. The meaning of the straight and wavy
lines also gets interchanged: horizontal straight lines now
mean lnhnode=−G·T lns1+hneighbord and vertical wavy lines
mean lnhnode=G·T lns1+hneighbord. This duality plays a role
when one considers the two different integral valence limits,
such limits will be discussed later.

The two boxes shown in the graph enclose those nodes
that enter the expression for the impurity contribution to the
free energy. Starting from the free energy functional and
evaluating it using the distributions that obey the TBA equa-
tions, after a certain amount of algebra, one arrives at the
expressionF=Fbulk+Fimp where

Fbulk = −
L

2p
o
n

nE
k

T lns1 + hcnd

and

Fimp = «q + mq − Fo
t

Gt
sM,Md ·T lns1 + hq1

stdd

+ o
m

G1
sM+m,Md ·T lns1 + hcmdG

k=«

from which all the different thermodynamic quantities of in-
terest can be derived. HereFbulk is the bulk contribution to
the free energysan extensive part that recovers the standard
result for free electrons and is all there is in the absence of
the impurityd, on the other handFimp is the extra contribution
due to the presence of the impurity. In the following we shall
pursue the study of the latter.

As expected for an infinite flatband, the bulk part of the
free energy is found to be divergent. To study it, some form
of regularization should be introduced, e.g., a bandwidth cut-
off. A convenient procedure that was successfully applied in

FIG. 3. TBA diagram for a particular realiza-
tion of the multichannel Anderson model in
which the symmetry of the impurity is SUsNd
^ SUsMd with N=4 andM =5. A detailed expla-
nation of this diagram is given in the text.
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the Bethe-Ansatz study of the single-channel degenerate
Anderson model is the introduction of a “Lorentzian cutoff
scheme.”15,16,54In that framework it is usual to fix the den-
sity and let the chemical potential be determined as an im-
plicit function of the cutoff parameter. As a result the impu-
rity thermodynamics is found to be naturally expressible in
terms of a certainscaling invariantparameter,«*s« ,Dd,55 an
implicit function of cutoff, temperature, and fields.54 On the
other hand, the impurity contribution to the free energy is
found to be regularsi.e., finite even in the limit of infinite
cutoffd. Since we shall be interested solely in the impurity
thermodynamics, we will introduce no cutoff and continue to
work always in the grand canonical ensemble, keeping fixed
the chemical potential rather than the density. With this con-
vention, we can continue to describe the physics in terms of
the original microscopic parameter«.

V. IMPURITY THERMODYNAMICS

In this section we study the impurity contributions to the
different thermodynamic quantities of interest. We will first
list some analytical results and then give an extended discus-
sion of the numerical solution of the TBA equations and the
results obtained for several thermodynamic quantities across
the different regimes of the model.

A. Analytical results

As already pointed out in the two-channel case,30 the mul-
tichannel Anderson model displays a nontrivial zero tem-
perature limit for the impurity contribution to the system
entropy. This is a clear indication of the non-Fermi liquid
character of the ground state. We can find the value of this
entropy and identify the relevant scale for the crossover into
the low temperature phase in closed analytical form and for
the general multichannel case.

1. Zero temperature solution

We begin the study of the TBA equations by taking the
zero temperature limit of the equations in order to identify
the ground state. This is a required preliminary step before
abording the study of the impurity contribution to the re-
sidual entropy.

It is convenient to introduce the distributionsj;T ln h.
Assuming that the derivatives]Tj are bounded distributions,
or have at most isolated logarithmic divergencies, we derive
the following limits:48

lim
T→0+

T lns1 + hd = ujuusjd ; j+,

lim
T→0+

T lns1 + hd = ujuusjd ; j+ = − j−.

These limits are the key step in the derivation; using them it
is immediate to write down the zero temperature limit of the
equations,

NMz= CMtøM
· jqN

sM−td+ − CNm· jcm
+ ,

jcn,N
= G · fjqn

s1d+ + js1
snd+ − jcn+1

+ − d̂n,1jcn−1
+ g ,

jsn
srd = dn,1G · jcr

+ + G · fjsn+1
srd+ + d̂n,1jsn−1

srd+ − jsn
sr+1d+ − jsn

sr−1d+g ,

jqn
srd = − dnøNdr,1G · jcn

+ + G · fjqn+1
srd+ + d̂n,1jqn−1

srd+ − jqn
sr+1d+

− jqn
sr−1d+g ,

where the variable is the shifted rapidityz=k−m, and we use

the notationd̂n,1=1−dn,1. These equations can be solved ex-
actly whenM =N and there are no external applied fields. Let
us start discussing the two-channel casesM =N=2d. Since
there is only one rank we drop the rank superindex during
this discussion. It is easy to see from the equations thatjsn

−

=0 ∀n andjqn
− =0 ∀n.2. It is natural to assume in the zero

fields case thatjc1
− =0, which impliesjq1

− =0. Notice that after
these considerations the equations for the spin rapidities are
decoupled from the rest. We solve them first, taking into
account the asymptotic conditionKn+1·jsn−Kn·jsn+1→−2hs
=0 swe use the standard definition for the magnetic fieldd.
The solution is very simple: put alljsn’s to zero. We see also
that in analogy to the spin case we can solve for theq-flavor
sector simply by taking alljqn

+ ’s with nÞ2 to be zero. Only
three nonzero distributions remain and are given directly by
the equations

jc2 = jc2
+ + jc2

− = 2z,

jc1 = jc1
+ = G · jc2

+ ,

jq2 = jq2
− = G · jc2

− .

Thus, in the absence of external fields, the ground state is
built out of a sea of charge-spin strings filled up to the
chemical potentialsi.e., k=md and a completely filled sea of
q-flavor 2-strings. We can derive the zero temperature impu-
rity valence, or level occupancy, in a closed formfwe use the
notations l=pz/2D and J=2D / s«−md, notice the charge
susceptibility can be easily obtained taking a derivativeg:

nc,imp
0 =E

−`

+` 4sl − p/Jd
fsl − p/Jd2 + p2g2jq2sld dl.

The occupancy is integralsi.e., nc
0<0, 1d for u«−mu@D, and

nonintegral otherwise. It is a simple exercise to show that the
impurity contribution to the residual entropy isSimp

0 = lnÎ2, a
result that is consistent with what was found in the integral
valence limit given by the two-channel Kondo model.17 We
will give below a derivation ofSimp

0 for the general multi-
channel case.

Let us now return to the case with arbitrary values ofM
andN, but always in the absence of applied external fields.
The equations are more involved and one is not able to make
general statements about the positivity of the different distri-
butions the way we did in the two-channel case. We proceed
by making the following educated guess:

1 jsn
srd=0 ∀n,r sthis is to ensure a paramagnetic ground

stated, and it impliesjcr,N

+ =0.
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2 jqn
srd=0 ∀nÞN and for n=N the distributions are

negative, i.e.,jqN
srd+=0.

The equations then take the form

NMz= CMM · jcN
+ − CNN · jcN

+ ,

jcn,N

+ = G · fjcn+1
+ + d̂n,1jcn−1

+ g ,

jqN
srd+ = dr,1G · jcN

+ + G · fjqN
sr+1d+ + jqN

sr−1d+g .

The first equation is decoupled from the rest and one should
solve it to determinejcN that will later play the role of a
driving term on the other equations. A solution that is exact
when N=M but approximate otherwise is given byjcN
=zfMus−zd+Nuszdg. When approximate, this solution is not
accurate in the rapidity intervaluzu,D. This region corre-
sponds, in the free energy, to the mixed valence regime that
interpolates between two different multichannel Coqblin-
Schrieffer limits sthis will be discussed more in detail in
Secs. V A 3 and VId. WhenNÞM, the above solution can be
used as the initial guess for an iterative numerical scheme;
this idea will also be useful for the numerical solution of the
finite temperature case. The remaining two sets of equations
can then be “unnested” to obtain explicit expressions for the
different remaining distributions, all of which are fully deter-
mined byjcN sin complete analogy to the two-channel cased.

2. Residual impurity entropy

Regardless of its precise form, the solution forjcN will
have both positive and negative nonzero partssas is clear
from considering the largeuzu asymptotic limitsd. Thus the
zero temperature and fields solution discussed earlier indi-
cates thatjcn,N

+ and jqN
srd+ are nonzero everywhere.56 In turn

this means thathcn,N
andhqN

srd are zero in the zero tempera-
ture limit. At the level of the TBA equations, this has the
effect of isolating the equations for thehqn,N

srd distributions:

ln hqn,N

srd = G · fd̂n,N−1lns1 + hqn+1
srd d + d̂n,1lns1 + hqn−1

srd d

− lns1 + hqn
sr+1dd − lns1 + hqn

sr−1ddg .

The reader should notice our earlier result, that the related
distributionsjqn,N

srd are all zero at zero temperature, merely

indicates that the respectivehqn,N

srd are finitesi.e., neither zero
nor divergentd. The equations above contain no driving
terms, therefore the distributions should be constant func-
tions of z. In such a case we can make the replacementG
→dszd /2 and performing the convolutions obtain a purely
algebraic set of equations,

shqn,N

srd d2 =
s1 + hqn+1

srd ds1 + hqn−1
srd d

s1 + hqn
sr+1dds1 + hqn

sr−1dd

that, is easy to verify, admits the solution

hqn
srd =

sinS n + r

N + M
pDsinSn + M − r

N + M
pD

sinS r

N + M
pDsinS M − r

N + M
pD − 1.

Plugging this result in the expression for the free energy we
read off the residual impurity entropy:

Simp
0 = ln

sin
pM

N + M

sin
p

N + M

= ln

sin
pN

N + M

sin
p

N + M

.

This formula agrees with the one that was derived in the
integral valence limit53 using the multichannel version of the
Coqblin-Schrieffer model.57,58 That model is the Schrieffer-
Wolff limit 59 of the multichannel Anderson model that we
are studying. We now turn to the discussion of such limit.

3. Integral valence or Schrieffer-Wolff limit

In the standard approach—at the level of the
Hamiltonian—the Schrieffer-WolffsSWd limit is defined as a
truncated unitary transformation that eliminates the direct
hybridization term and traces oversdiscardsd the less favor-
able states of valence from the impurity Hilbert space. This
limit leads to a projection onto a Hilbert subspace with the
impurity site permanently occupied by alocal moment. Start-
ing from HMchA, one obtains this way the multichannel
Coqblin-SchrieffersCSd modelftheN-channel SUsMd model
or theM-channel SUsNd one depending on the sign of«, see
belowg. In the following we will discuss how this effective
limiting procedure can be carried out at the level of the TBA
equations.

Let us point out that the SW transformation can be viewed
as a first step in a more detailed renormalization group analy-
sis swhich we will not carry out in hered. The multichannel
CS model is therefore, when away from mixed valence, the
naive low temperature effective Hamiltonian of the full mul-
tichannel Anderson model. This effective Hamiltonian is rel-
evant for the description of the low energy dynamics for
energy scalesE!TH. In other words,

HMchA → HCS,x + FOS E

TH
D corrections in all sectorsG

swith x=s, q for the magnetic or quadrupolar sector, respec-
tivelyd. In the limit of u«u→ +`, TH→ +` and the projection
is exactsalbeit with a vanishing exchange constantd. For any
finite TH, the effects of the corrections, though “subleading”
to those kept inHCS,x, may be important at low enough tem-
peratures if they combine with other operators to provide
more singular contributions. This will be the case, for in-
stance, when the degeneracy of the lower-energy impurity
configuration exceeds that of thesdegenerated higher-energy
one, as we shall stress in Sec. VI. We conclude therefore that
the SW transformation needs to be used with extreme care in
circumstances like the one described above.

We now turn to studying the integral valence limit via the
Bethe-Ansatz. The discussion of the integral valence limit
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turns out to be simpler using an “inverted” set of TBA equa-
tions strading back the recursions on the rank indices for
finite sumsd. In this alternative formulation, the equations
readssee Appendix B for the kernel definitionsd

− fsn
srd = RN

rs · f fsn+1
ssd + d̂n,1fsn−1

ssd + dn,1fcr − G−1 · fsn
ssdg ,

− fqn
srd = − dn,Nt−1DEq

r + RM
rs · f fqn+1

ssd + d̂n,1fqn−1
ssd − G−1 · fqn

ssd

− dn,Nds,1fcng ,

− fcn,N
= − t−1DEs

n + RN
nm· ffqm

s1d + fs1
smd − G−1 · fcm,Ng ,

where we defined the effectivedriving termsswe remind the
reader thatt=pT/4Dd,

DEq
r /t ; RM

r1 · fcN,

DEs
n/t ; RN

nN−1 · fcN.

We need to discuss separately the quadrupolar and the
magnetic scenarios. The calculations are very similar in both
cases. We turn our attention to the former. In the quadrupolar
SW limit s«q!«sd,60 the SUsNd ^ SUsMd Anderson model
maps into anN-channel CS model for a local SUsMd qua-
drupolar impurity. The key to understanding this limit is the
study of the driving terms.

At low temperatures—in a sense that will become precise
below—and forulu@1 si.e., away from the intrinsic mixed-
valence regiond we can make the following approximation—
motivated by our zero temperature solution for the ground
state—that captures the leading functional dependence in
temperature and rapidity of the distribution associated to the
maximal charge-spin bound states:fcN. lexsMl /td us−ld
+lexsNl /td usld. The effective driving terms can then be
approximated assfor l@1 in the quadrupolar cased

DEq
r . − RM

r1 · fMlg− →
l@1

M2

4p
sin

psM − rd
M

e−s2/Mdl,

DEs
n . RN

nN−1 · fNlg+ →
l@1

nl.

As the temperature is lowered, both driving terms diverge.
But since we have thatDEs

n@DEq
r due to the different de-

pendence in rapidity,DEs
n/t will drive to zero the distribu-

tions for the charge rapiditiessfcn,N
d faster thanDEq

r /t will
drive the fqN

srd ’s. That way thefqn
srd’s are effectively cut away

from the other distributionssin this case thefsn
srd’sd and they

alone determine the impurity thermodynamics. The free en-
ergy is given by

Fimp/t . «q + mq −
1

2p
o

t
E sin

pt

M

cos
pt

M
+ coshj

fq1
stdsjd dj,

where we performed the change of variablesMj=2p /J
−2l and redefined thefq1

std’s as functions of the new variable
j. The goal of this change of variables is to remove the

coupling constantsJd dependence from the expression of the
free energy and move it into the TBA equations. The only
explicit dependence onJ will be in the driving terms and the
same is true for the explicit temperature dependence; this
fact will allow us to identify the natural temperature scales of
the system. We remark that, in terms of the new variables,
the main contribution to the free energy comes from the
value of the distributions aroundj<0.

a. High temperature scale.Consider the driving terms
DEs

n. Changing variables we obtain

DEs
n/t →

l@1
nl/t = Snp

J
−

nM

2
jD/t < Snp

J
D/t.

We shall thus define the Schottky temperature scalesthe
name will find its motivation later, with the discussion of the
specific heatd:

tS ;
Np

2J
⇒ TS =

ND

J
.

For t,tS sandJ,1d, the valence fluctuations are quenched
and the model goes into a regime where an effective descrip-
tion in terms of a CS model becomes appropriate. The dis-
tributions associated to the charge rapidities go to zero and
isolate the ones associated to the quadrupolar rapidities that
form a system of TBA equations identical to the one of the
CS model. Notice that, as the temperature is lowered, these
driving terms diverge faster than the other ones that have to
overcome a decaying exponential in the numeratorscf. with
the caveats about the SW transformation discussed aboved.

b. Low temperature scale.Consider now the driving terms
DEq

r . Changing variables once more we obtain

DEq
r /t →

l@1

2

N
sin

psM − rd
M

ej−lnst/tkd

where

tK ;
NM2

8p
e−2p/MJ ⇒ TK = NDS M

2p
D2

e−2p/MJ.

We have chosen to leave a factor of 2/N outside of the defi-
nition of the Kondo scale in order to have a complete resem-
blance between the resulting TBA equations and those for
the scaling limit of a multichannel CS model53 sthat CS
model, together with a cutoff prescriptionDeff=NM2D /4p2,
is therefore the appropriate low energy effective theoryd.
Since the equations match, all the analysis done for that
model sfinding the leading exponents of the specific heat
coefficient and susceptibilities, etc.d applies in this limit and
we do not need to repeat those considerations here.53

c. The two scales.For the magnetic moment limits«s

!«qd we would find again two scales with the roles ofM and
N interchangedswe omit the details since the considerations
are very similard. As shorthand, we can extrapolate the two
low energy scalessquadrupolar and magneticd into the high
energy scales of the other regimesfor the opposite sign of«d.
This serves the extra purpose of providing anad hoc inter-
polation between both regimes and across the intrinsic mixed
valence region. We can define thus the two scales,61
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Tq ;
2D

p
tq <

2D

p
sM/2d2 lnS1 +

N

2p
e−2p/MJD ,

Ts ;
2D

p
ts <

2D

p
sN/2d2 lnS1 +

M

2p
e2p/NJD .

The role of these two temperature scales was illustrated in
the schematic picture of Fig. 2. In terms of them we can
further write

THs«d ; maxhTss«d,Tqs«dj →
u«u@D

TSs«d,

TLs«d ; minhTss«d,Tqs«dj →
u«u@D

TKs«d,

that serve as boundaries among the high-, intermediate-, and
low-temperature regimes. At high temperatures the impurity
is in a mixed valence state. As the temperature is lowered,
the system crosses the first temperature scale indicated asTH,
for u«u*D this coincides withTS sthe chemical potential is
taken to be zero to lighten the notationd. At this point the
system enters a regime that can be approximately described
with the respective CS model. At first, the system is in the
“unscreened” local moment regime, extending betweenTH
and the lower scaleTL =TK. The larger the value ofu«u the
wider the temperature window of this regime. Foru«u&D the
two energy scales merge, indicating that there is no moment
formation. As the temperature is lowered beyondTL, the mo-
ment screening commences and the physics is asymptotically
governed by a line of fixed points parametrized by the value
of « /D sor some observable that depends on it and varies
along the line, as for instance the charge valence of the im-
purityd. The different points in the line share the same value
for the impurity entropy, and the same set of leading expo-
nents of the specific heat coefficientsi.e., g=Cimp/Td or the
different susceptibilities. However, the prefactors of the dif-
ferent leading terms will in general vary along the line and
could in principle be determined by direct measurement.
Thus a multichannel Kondo effect takes place for any« as
the temperature is lowered. It is amusing to note that for«
=0, in particular, the Kondo effect takes placewithout mo-
ment formation.

4. Asymptotic values

In this section we will be interested in finding the values
that the different distributionssin this case theh’sd take
when l→ ±`. This corresponds to the limit of infiniteu«
−mu at finite temperature. These results will be required in
the next section, where the numerical solution of the TBA
equations is discussed. Remark that, due to the behavior of
the two energy scales derived above, in the limits considered
in this section one always hasTk,,,T,,,Ts and the l
→ ±` limits shall be, respectively, identified with theinfinite
temperature limits of the effective quadrupolar and magnetic
multichannel CS models.

From the results above and inspection of the equations,
the reader can convince himself that

lim
l→+`

fcN = + `

lim
l→+`

fcN = 0

lim
l→−`

fcN = 0

lim
l→−`

fcN = + `.

We shall use this result to analyze the TBA equations in the
asymptotic limit. The two limits,l→ ±`, are different and
we shall consider them separately.

Right asymptotics.Let us first study the limit ofl→ +`
that we call the right asymptotics of the distributions. We
want to find the valueshY xn

srd= lim
l→+`

hxn
srd that the different dis-

tributions take in the limitswith x=s, qd. Except forhcN that
is unbounded, all the otcbherh’s acquire finite values and for
l very large can be taken as constants. From the limit fcN

→
l→+`

+` it follows that all the h̄Y cn,N
’s go to zero and the

equations for theh̄sn
srd’s and those for thehY qn

srd’s form two
identical sets decoupled from each other and obeying the
following recurrence relation:

hY xn+1
srd + 1 = s1 + h̄Y xn

sr+1dd shY xn
srdd2

s1 + hY xn−1
srd d s1 + h̄Y xn

sr−1dd .

In the case of uniform or “Zeeman” splitting, all theax
r ’s

entering the largen asymptotic condition are equal and an
analytic solution for the asymptotic values is known. It is
easy to show with some algebra that the solutions are53,62,63

hY xn
srd + 1 =

sinhfsn + rdaxgsinhfsn + Nx − rdaxg
sinhsraxdsinhfsNx − rdaxg

→
ax→0

sn + rdsn + Nx − rd
rsNx − rd

,

whereNs=N, Nq=M, andax lost its dependence on the rank
index. A closed analytic solution is not known for the case of
a more generalcrystal field splittingsmore general splittings
might be relevant to make the connection with the experi-
mental systems that motivated the model, this point will be
discussed further in the next sectiond. Notice that when the
values of theh̄’s are required for a particular splitting, they
can always be found numerically.

b. Left asymptotics.We study now the opposite limit of
l→−`, in order to find the asymptotic valueshT xn

srd

= lim
l→−`

hxn
srd. Except for h̄cN that is unbounded, all the other

h’s acquire finite values and forl very large can be taken as
constants. From the limitfcN →

l→−`

+` it follows that all the

hT qN
srd ’s go to zero and the equations for the remaining distri-

butions form two identical sets decoupled from each other
and similar to those of the right asymptotic limit. The solu-
tion of that case can be applied to this one if the following
identifications are madescf. with the discussion of Fig. 3d:

hT sn
srd = hY sM+n

srd ,
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h̄T cn,N
= hY sM

snd ,

hYT qn,N

srd = hY sM−r
snd ,

hT qN
srd = 0,

hT qn.N

srd = hY qn−N
srd .

These are the same identifications that would be required for
an explicit discussion of the Schrieffer-Wolff limit in the
local magnetic moment regime,s«s!«qd, in order to match
the resulting TBA equations to those of the corresponding
magnetic multichannel CS model.

Once the right and left asymptotic limits are both known,
one is then ready to tackle the problem of solving the TBA
equations numerically, as we proceed to explain in the latter
parts of this section.

B. Numerical solution

In order to access the thermodynamics of the system at all
temperatures, we shall resort to the numerical solution of the
TBA equations. This task was carried out in the past for other
integrable impurity models.53,64–67The equations of the mul-
tichannel Anderson impurity model have many similarities
with those considered previously for other types of impuri-
ties, but they present also important differences. We give
below a brief outline of the numerical procedure that we
developed followed by the results we thus obtained.

1. Outline of the numerical procedure

We solve the TBA equations using a standard iterative
scheme first introduced in the work of Rajan.64 The idea is to
use the TBA equations in their recursive formulation, start
with some educated initial guess, and iterate them until cer-
tain convergence criterion is metsthis general scheme is
sometimes known as Kepler’s method; cf. Ref. 68d. Our par-
ticular implementation borrows ideas mainly from the previ-
ous work by Costi and Zaránd for the anisotropic Kondo
model.66 In that work, the closure of the infinite set of TBA
equations into a finite set brings in a great simplification.
This is not, however, the case in general and we need to
address the issue of truncation of the infinite hierarchy of
recursions. The standard procedure is to define some bound-
ary levels sin our casefsns+1

srd and fqnq+1
srd , for suitably large

valuesns andnq of the level indexd and fix them. It was done
in the past by taking those boundary distributions as con-
stants equal to the average of their right and left asymptotic
values that are known analytically.64,68This approximation is
good whenns andnq are fairly largesdepending on the par-
ticular modeld. In the case at hand the TBA equations are
more complicated than those for the Kondo modelsin a way
that will become clear belowd and we cannot afford the com-
putational cost of taking too large values forns andnq. The
alternative we found was to start with some educated guess
for the distributions up tofxnx+1

srd swith x=s,qd that interpo-
lates smoothly between the right and left asymptotic values

sdiscussed aboved respecting the monotonicity properties of
the solution. Then we iterate the equations to find new values
for the different distributions up to the levelsn=ns, nq. At the
end of each iteration we update the value of the boundary
distributionssn=ns+1, nq+1d using thefxnx

srd ’s suitably shifted
and rescaled to match the analytically known asymptotic val-
ues corresponding to the boundary levels. This procedure is
repeated until stable convergence is achieved on the free en-
ergy function that we recalculate at each iteration.

The rapidity dependence of the distributions in the case of
the Kondo TBA equations is associated to variations in tem-
perature, and the two asymptotic limits correspond to the
zero and infinite temperature limits.36 This is in contradis-
tinction to the case of the TBA equations for the multichan-
nel Anderson model, for which the rapidity dependence is
related to variations of the couplings,1/Jd. We will there-
fore require modest computational effort to compute the free
energy for different values of the coupling and determine
quantities like charge susceptibilities, but temperature depen-
dence will require independent runs for each value of tem-
perature required. Since determining temperature depen-
dence is essential, our computational task becomes typically
two to three orders of magnitude larger than for Kondo im-
purities; depending on the range and number of temperature
points desired and not counting the inherent extra complexity
of our TBA equations.

Once we have a finite number of equations involving a
finite number of continuous distributions, we need to dis-
cretize those distributions. This is conceptually done in two
steps, the first one being the introduction of cutoffs on the
rapidity axis. We have to choose large right and left cutoffs
that enter once the distributions are approximately constant
functions of the rapidity reaching their respective right and
left asymptotic values. Second, we need to discretize the axis
interval between the cutoffs. This is done defining three re-
gions. First a small region centered around zero that we dis-
cretize using a fine mesh. The size of this region is chosen
depending on the parameters of the problem so that it en-
closes all the intervals where different distributions show
rapid variations. This typically happens for region boundary
values of the rapidities such that the magnitude of their as-
sociated coupling corresponds to a Kondo temperature of the
order of the temperature set for the system. Second, the two
regions to the right and left of the central one are discretized
logarithmically until reaching the cutoffs defined above. In
these shoulder regions all the distributions vary slowly as
they attain their asymptotic values.

The different convolution kernels required in the calcula-
tions should be evaluated; this is done a single time at the
beginning of the calculations when they are stored as matri-
ces. The kernels are relatively rapidly varying functions of
the rapidities as compared with the TBA distributions, so we
discretize them using a denser mesh. We use a mesh that is
locally n times stypically n,10d finer than the one used for
the TBA distributions and these are interpolated to the points
in the finer mesh using cubic splines. The extra points in the
finer mesh are chosen to be thenth order quadrature points of
each subinterval of the coarser one. The convolution inte-
grals can thus be split into the different subintervals and
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carried out with high precision in each one of them using
Gaussian quadraturescorrections for the introduction of the
right and left cutoffs are also implementedd. Since accuracy
is very important for certain applications,31 the evaluation of
the different kernels requires a high precision implementa-
tion of the sums involving four digamma functions of com-
plex argumentsssee Appendix Bd. To carry it out we wrote
an algorithm based on “a precision approximation of the
gamma function” due to Lanczos.69

With everything set to start the iterative evaluation of the
TBA equations, one last point is worth mentioning. The
evaluation of the right-hand side of these equations requires
the implementation of the ubiquitous function lexsxd. This
implementation is, however, unsurprisingly subtle. We first
notice that since lexsxd=fxg++ lexs−uxud, it suffices to imple-
ment the function for negative arguments. This we do by first
evaluatinge−uxu and then using a careful implementation of
lns1+xd with the property of cancellation of rounding
errors.70 This algorithm ensures monotonicity, machine pre-
cision accuracy, and “graceful underflow.”

We show below some of the results that were obtained
with different implementations of the described numerical
procedure.

2. Numerical results

As stated above, one of the important issues that makes
the numerical analysis of the TBA equations required is the
study of the temperature dependence in its full range. We
give below illustrative results of this dependence where the
presence of the two crossover scales discussed already on
analytic grounds is clearly observed. We start by showing
results for the model in the absence of crystalline or external
applied fields.

In Fig. 4 we show several plots of the entropy as a func-
tion of temperature. The different panels correspond to dif-
ferent symmetries of the model;N=2, 3, 4 row-wise and
M =2, 3, 4 column-wise as indicated. The different curves in

each panel correspond to different values of the energy split-
ting between the two impurity configurationss«=«s−«qd
and, without loss of generality, the total chemical potential is
taken to be zero.71 In all the panels, the dark solid lines
correspond to« /D= ±8 and the dark dashed line corresponds
to the extrememixed valence case of«=0 sor «=md. The
remaining thin lines correspond to intermediate values of the
energy splittings« /D= ±2, 64, 66d and are given to illus-
trate how the systeminterpolatesamong the different limits
of large, positive and negative, and vanishing«. On the one
hand, in the high-temperature limit, the entropy is in each
case given bySimp

` sN,Md=kB lnsN+Md; as expected since
N+M is the total size of the impurity Hilbert space. On the
other hand, in the low-temperature limit, the value of the
entropy tends to theSimp

0 sN, Md values we found analytically
ssee Sec. V A 2d. We remark that both these limiting values
are independent of«.

For intermediate temperatures, the figure shows how the
impurity entropy is quenched from its high- to its low-
temperature values as the temperature decreases. This hap-
pens as a two stage process for large values of« ssolid linesd
and as a single stage process in the mixed valence case
sdashed linesd, all in accordance with the theoretical discus-
sion given abovessee Fig. 2 and the discussion in Sec.
V A 3d. Following the solid lines as the temperature lowers,
the first quenching stage corresponds to the crossover scale
TS and the impurity entropy attains the valueskB lnsNd or
kB lnsMd for «s!«q or «s@«q, respectively.sAs expected, in
the case ofN=M, the curves for different positive and nega-
tive values of« are degenerate; on the other hand, forN
ÞM, the curves for the same absolute values but opposite
signs of« are in precise correspondence upon exchange of
the values ofN and Md.72 These intermediate-regime pla-
teaux correspond to the formation of a free local moment
when u«u@D. As the temperature lowers further, following
always the solid lines, the systems reach the Kondo cross-
over scale,TK, below which the entropy tends to the univer-
sal valuesSimp

0 sN, Md characteristic of the different infrared

FIG. 4. Impurity entropy as a
function of temperature. The dif-
ferent curves correspond to« /D
=0 sdashed linesd; « /D= ±2, 64,
66 slight linesd; and « /D= ±8
sdark solid linesd. The different
panels give the results for differ-
ent values ofN andM as indicated
to the right and above, respec-
tively. Curves for different signs
of « are degenerate in the diagonal
panels. In the off-diagonal ones
they can be identified from the
value of the entropy in the inter-
mediate plateauxssee textd.
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non-Fermi liquid fixed points. This second quenching stage
takes place as electrons in the different channels compete to
screen the local moment of the intermediate regime. It is this
dynamicalfrustrated screeningprocess that is responsible for
the nontrivial nature of the fixed point. In the mixed valence
case, exemplified by the dashed line, the two crossover en-
ergy scales are of comparable magnitude and as a result the
quenching of the entropy as the temperature is lowered hap-
pens on a single stage. Remarkably, the same limiting value
of the impurity entropy is found also in this case; all consis-
tent with the picture given above, that the infrared physics is
governed by a line of fixed pointssSec. V A 3d. In a previous
work, we explored this explicitlysin the N=M =2 cased us-
ing boundary conformal field theory and showed that the
different points in the line are connected by an exactly mar-
ginal operator.31

The results for the impurity contribution to the specific
heat—obtained upon differentiation of the impurity
entropy—are shown in Fig. 5. The different panels, and the
different lines in each of them, follow the same conventions
as in the entropy plots. In accordance with the generic two
steps shape of the entropysdegenerate in the mixed valence
cased, the specific heat shows a general two humps structure
sagain degenerate for mixed valenced. The lower temperature
one is sometimes referred to in the experimental literature as
the “Kondo anomaly,” and its location is correspondingly
given byTK. On the other hand, the higher temperature one
is referred to as the “Schottky anomaly” and its position is
given by TS. There is of course no new information in this
figure as compared with the previous one, but it is the spe-
cific heat rather than the entropy or the free energy the quan-
tity that is most often “directly” accessible in the experi-
ments73

It is illustrative to look as well at the behavior as a func-
tion of temperature of the impurity charge valence,nc,imp
=oskfs

† fsl. This is provided in Fig. 6 following identical
conventions as in the plots for the entropy and the specific
heat. As expected, in the high-temperature limit, the impurity
valence approaches the values

nc,imp
` sN,Md =

N

N + M
,

corresponding to the impurity Hilbert space fraction with
“magnetic character.” This is an expression of the fact that,
in that limit, all the impurity states are equiprobable. Subse-
quently, as the temperature crosses the valueTS, the impurity
charge valence changes and approaches rapidly what will be
its zero temperature value,nc,imp

0 sN, Md. This change is at
the origin of the Schottky anomaly in the specific heat. As it
should be, the impurity approaches integer valence when
u«u@D. The charge valence goes to zero in thequadrupolar
limit of large and positive«, and goes to one in the opposite,
magneticlimit, of « large but negative. The values ofnc,imp

0

for intermediate energy splittings are difficult to calculate
and would constitute a good nontrivial test for approximate
theories like those based on 1/N expansions. Careful com-
parisons of NCA and NRG were carried out this way in the
single-channel case,74 but for the multichannel case the NRG
calculations rapidly become very demanding for present day
computational resources and this kind of comparisons were
not done. Also, since the full crossover takes place at the
highest energy scale, the convergence ofnc,imp

0 should be
relatively fast in NRG calculations. Thus in the future it
might constitute a useful observable to monitor the progress
of such computations by comparing with the exact solution.

As a check, we verified numerically that

nc,imp
0 usN,Mdu« + nc,imp

0 usM,Ndu−« = 1

so that, in particular, one finds thatnc,imp
0 usN,Ndu«=0=1/2.

The analytic form ofnc,imp
0 sN,Md can be computed using the

zero temperature results of Sec. V A 1swith the caveats
given there for the case ofNÞMd. For instance, in the two-
channel case, we have

FIG. 5. Impurity specific heat
as a function of temperature. The
different curves correspond to
« /D=0 sdashed linesd; « /D= ±2,
64, 66 slight linesd; and « /D
= ±8 sdark solid linesd. The differ-
ent panels give the results for dif-
ferent values ofN andM as indi-
cated to the right and above,
respectively. Curves for different
signs of« can be identified from
the location of the Kondo
anomaly or by comparison with
the entropy plots.
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nc,imp
0 s2,2d =

2

p
E

−`

+` E
−`

0 zdz

coshF p

2D
sx − zdG

3
m − « + x

fsm − « + xd2 + 4D2g2dx

→ 5
<1 for « ! − D,

=
1

2
for « = 0,

<0 for « @ D

swhere we reintroduced the chemical potentiald. The inner
integral is related tojq2 and has an exact expression in terms
of dilogarithms. It is interesting to observe how, for certain
values of the energy splittings, the charge valence first in-
creases and then decreases as a function of the lowering tem-
peraturesor vice versad as it goes fromnc,imp

` to nc,imp
0 . This

behavior is already present in the case of single-channel de-
generate Anderson impurities.74

Before proceeding, let us add some remarks on the tech-
nical side. We calculated both the entropy and the specific
heat by numerically differentiating the free energy computed
using the TBA distributions obtained with the algorithm de-
scribed in the section above. Numerical differentiation is a
delicate procedure very susceptible to truncation and round-
off errors and in general sensitive to any noise in the original
data. The specific heat is, since a second derivative is in-
volved, rather sensitive to this type of errorssthe discretiza-
tion of the temperature plays an interrelated role as welld. In
the event of better accuracy being required, alternative ways
of computing derived thermodynamic quantities are possible.
One common procedure is to set up secondary sets of inte-
gral equations for the different derivatives of the TBA distri-
butionsssee, for instance, Ref. 66d. Once the original distri-
butions are found, these equations can be solved to

determine their derivatives. Using them one can calculate
directly sor with a smaller number of numerical differentia-
tionsd the sought derived quantities. The procedure to solve
these auxiliary sets of equations will be in general similar to
that used for the original TBA equations, making the total
computational effort increase accordingly.

We turn now to discuss the effects of external fields on the
physics of the impurity. For the sake of simplicity we restrict
ourselves to the two-channel casesN=M =2d. Since mag-
netic and quadrupolar fields arerelevant perturbations, the
presence of any of them has important effects on the entropy.
In fact these perturbations drive the system to a totally
different—this time Fermi liquid—line of fixed points char-
acterized by a zero value of the residual impurity entropyscf.
with the situation in the single-channel cased. This is illus-
trated in Fig. 7 where the entropy as a function of tempera-
ture is shown for different values of energy splitting between
doubletss«d and quadrupolar fieldshqd.

In the upper left panel of the figure we reproduce again
the results for zero field. The curves with positive and nega-
tive « coincide in this casesremember we are settingm=0 in
this discussiond. As we go from high to low temperatures, the
system crosses over from a state with entropySimp=kB ln 4 to
one with entropySimp=kB ln Î2. This second value is one of
the hallmarks of the nontrivial non-Fermi liquid fixed point
that governs the low energy physics of the model.17 In the
next panel to the right we show the effect of turning on an
external field. Forhq/D=10−6 one observes that the positive-
« curves stay in anSimp=kB ln Î2 plateau for a very short
temperature intervalsthat disappears altogether when the im-
purity energy splitting is sufficiently larged and a third
quenching step of the entropy takes it to a zero value final
state, indicative of a Fermi liquid fixed point. As the reader
can observe across the different panels, the quenching to zero
entropy of the large positive« curves takes place when the
temperature is lowered until it becomes of the same order of
magnitude as the applied fieldsT,hqd.

FIG. 6. Impurity charge va-
lence as a function of temperature.
The different curves correspond to
« /D=0 sdashed linesd; « /D= ±2,
64, 66 slight linesd; and « /D
= ±8 sdark solid linesd. The differ-
ent panels give the results for dif-
ferent values ofN andM as indi-
cated to the right and above,
respectively. Curves for« positive
or negative are, respectively, be-
low or above the«=0 line.
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On the other hand, the fate of the negative-« curves be-
comes more evident as we increase the field furtherssee the
middle two panelsd. In this case too, the non-Fermi liquid
fixed point is unstable and the entropy goes to zero, but this
takes place at much lower temperatures than for positive«.
What happens is that at low temperatures the splitting of the
higher multipletsthat plays the role of the orbital channel in
the usual multichannel Kondo scenariod renders the model an

effective spin-half single-channel exchange model in which
the impurity is “exactly” screened at low temperatures and
the fixed point is a Fermi liquid.75 Curves with intermediate
values of« interpolate continuously between these two be-
haviors very much in the way they did in the other cases that
we discussed above.

As the field is increased and approaches the scale of the
first stage of entropy quenchingsi.e., TSd and beyond, the

FIG. 7. Entropy as a function of temperature for various applied fieldsswe have chosen to consider quadrupolar flavor fieldsd. The top-left
panel corresponds to the zero field case. To the left of it and following downwards the field increases 100-fold each time ashq

=10−6D ,… ,102D. The values of« are the same as in Fig. 4sthe chemical potential was reintroduced in the notation for this figured, and the
top-left panels of both figures are in correspondence.
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different-« curves start to collapse and the temperature of the
crossover transition moves up following the fieldscompare
the last two panels in Fig. 7. The entropy is quenched in a
single stage fromSimp=kB ln 4 to zero at the same time as the
impurity charge valence goes fromnc,imp=1/2 to zero.

VI. SUMMARY AND OUTLOOK

We have carried out a detailed analysis of the multichan-
nel Anderson impurity model. We have demonstrated its in-
tegrability, discussed the details of the Bethe-Ansatz solu-
tion, and shown a number of illustrative results for the
thermodynamics of the model.

The Bethe-Ansatz allows the study of the model on all
energy scales, we proceed now to summarize our findings
and to put them into context. We begin by discussing the
low-temperature regime and the characterization of the low
energy fixed point theory that corresponds to the microscopic
model. We have identified the existence of a line of boundary
critical fixed points that governs the low energy physics of
the impurity sillustrated in Fig. 8d, and shown how it is re-
lated to the fixed point theory of the multichannel Coqblin-
Schrieffer model. In fact, every point in the line describes
non-Fermi liquid physics. At the extreme endssu«u→ +`d,
the fixed point theory corresponds to an SUMsNd or SUNsMd
Hamiltoniansin the sense of BCFTd. For any finite value of
«, and in particular for all the values that correspond to the
mixed valence region, the physics is given by a line of
SUMsNd % SUNsMd theories. Along this line of fixed points
the behavior, for instance, of the specific heat would be given
by scf. Ref. 53d

Cimp ,
NÞM

lc
2s«dT + ls

2s«dT2N/sN+Md + lq
2s«dT2M/sN+Md

sN=M corresponding to the marginal case when both spin
and quadrupolar sectors contributeT ln T leading tempera-
ture dependences; cf. Ref. 31d. The smallest exponent domi-
nates asT→0, except possibly at the limit when«→ ±` and
ls

2s«d or lq
2s«d vanish, respectively. Thus these two limits do

not commute whenf ,n for the SUfsnd end of the fixed
points lineswith n, f =N, M .1d. Notice therefore, that as«
is varied along the line at small but finite temperature, the
observed critical behavior will vary accordingly.

The same finite-T crossover in non-Fermi liquid character
smagnetic vs quadrupolard would manifest itself in a com-
parative study of both susceptibilities, whose expected lead-
ing low-temperature behaviors, after subtraction of
asymptotic temperature-independent contributions, are

ximp
s − x0

s ,
NÞM

ls
2s«dTsN−Md/sN+Md

ximp
q − x0

q ,
NÞM

lq
2s«dTsM−Nd/sN+Md

shereN=M is again the marginal case, for which lnT depen-
dencies are expectedd. Set for instance« in the quadrupolar
regime, then the correspondinglq

2s«d is large whilels
2s«d can

be arbitrarily small. However, one will still find that, for all
finite values of «, the spin susceptibility will eventually
dominate over the quadrupolar one if it happens to carry the
singular exponentsi.e., for N,Md.

Note that the level with the lower degeneracy always dic-
tates the physics at sufficiently low temperatures even if it is
a very high-energy level. This may be surprising from the
point of view of the Schrieffer-Wolff limitssee Sec. V A 3d.
Naively, one would expect that the effects of the energeti-
cally unfavorable level could be simply integrated out. This
is not always the case. When the degeneracy of this level is
the smaller one, it will end up dominating at sufficiently low
T sas long asu«u remains finited.76 In other words, discarding
the energetically unfavorable yet less degenerate configura-
tion also eliminates the frustration that is induced in the bulk
electrons when they try to screen the virtual moment of such
an excited state; but it is this frustration that would have been
responsible for the appearance of singular exponents in the
impurity thermodynamics.

This picture might help shed light upon some of the un-
explained and sometimes contradictory results observed in
the experiments.2,5 In particular, interesting possibilities are
open up for better understanding of the intermediate-to-low
temperature phase of certain heavy fermion compounds, in-
especially those believed to be near mixed valencesthe list is
rather large, for an example see belowd.

Thus far we discussed the low-temperature regimesFP—
dominated by the line offixed pointsd. We have also studied
in detail the other regimes: the high-temperature valence
fluctuation regimesFVd and the intermediate local moment
regimes sLMM and LQMd—the initialisms refer to the
names used in Fig. 2. We identified the two energy scalessTs
andTqd, associated with the spin and quadrupolar degrees of
freedom, that cross each other in the intermediate valence
region su«u&Dd and interchange roles as the high-
temperaturesTHd and low-temperaturesTLd scales that indi-
cate the transition zones among different regimes. In the in-
termediate valence region the two scales “coincide,”
indicating the direct transition between the high- and the
low-temperature behaviors. The system never develops a lo-
cal moment, but goes directly into the low-temperature, mul-
tichannel Kondo like, non-Fermi liquid phase governed by
the corresponding fixed points. In all the cases, i.e., for all
values of«, the fixed points are unstable to the application of
an external field acting either on the magnetic or the quadru-
polar degrees of freedom.

In subsequent work we intend to use the results presented
here to analyze the different multichannel scenarios for cer-
tain heavy-fermion compounds like U1−xThxBe13.

24,77 It was
shown that the two-channel Anderson model is not sufficient
to account for the relevant number of impurity degrees of
freedom required to explain the available specific heat
measurements.30 More complicated impurity models, like,

FIG. 8. Schematic representation of the line of fixed points.
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for instance, an SUs2d ^ SUs5d model in the presence of
crystal field splittings, hold a considerable promise in that
respect.30,78
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APPENDIX A: QUANTUM INVERSE SCATTERING
METHOD

In the following we will skip the detailssand assume them
knownd of the standard case of models with SUs2d internal
symmetry, and refer the reader to the presentation given in
the ICTP lectures by one of the authors.43 We will adopt a
notation very similar, though not identical, to the one in
those lectures.79 We will discuss directly the case of SUs3d
symmetry conveniently generalized to the situation when
both “particles” and “antiparticles” are present. This gener-
alization is required to solve the eigenvalue problem of the
multichannel Anderson modelfthe standardnested Bethe-
AnsatzsNBAd as discussed in the literature, see for instance
Ref. 80, does not suit this caseg, and was done before only
for SUs3d spin chains.81,82Finally, we will close the appendix
with the generalization to the case of SUsNd symmetry.

1. Models with SU(3) symmetry, impurities, and periodic
boundary conditions

Let us consider an integrable model with SUs3d symmet-
ric scattering matrices given by

SjnÞ0 =
sa j − andI jn + icPjn

sa j − and + ic
= Sjnsa j − and,

Sj0 = I j0 +
e−idsa j−a0d − 1

3
Q j0 = Sj0sa j − a0d.

We choose to consider a case whereSj0 has a different struc-
ture thanSjnÞ0. In particular we consider the kind of impu-
rity S-matrix that arises in the flavor sector of the three-
channel Anderson model. The parametersa j,a0 are arbitrary
at this point, and will be chosen later to be those that specify
the multichannel Anderson model. The eigenvalue problem
given in terms of the above S-matrices is not tractable with
the standard NBA formalism; we develop below the required
extensions.

a. Monodromy matrix

As a first step we define a matrix that captures the mono-
dromy conditions of our eigenvalue problem and use its
transfer matrix to rewrite the problem:

JAsad = SANsa − aNd¯SA1sa − a1dSA0sa − a0d

sthis is equivalent to adding an auxiliary extra particleA
=N+1d. The purpose of the auxiliary space will be to allow
us to conveniently organize the products of the S-matrices
ssee belowd. We define thetransfer matrixas

Tsad = trAJAsad,

where trA denotes taking the trace in the auxiliary spaceA,
and it follows that

Tsa jd = Zj .

As the amplitudesAW should be simultaneous eigenvectors
of all the eigenvalue problemsZj, it is necessary and suffi-
cient that fZj ,Zlg=0. We can go further and require
fTsad ,Tsbdg=0 for all values ofa andb. This is guaranteed
if there exists a matrixR such that

RABsa − bdJAsadJBsbd = JBsbdJAsadRABsa − bd,

we will refer to this identity as thefundamental commutation
relation sFCRd.

b. Fundamental commutation relations

By repeated application of the Yang-Baxter relations, it
can be shown that the matrix

RABsad = SABsad =
aI AB + icPAB

a + ic

satisfies the FCR. If we write down the expression for the
monodromy matrix explicitly in the auxiliary space, we have
susing a notation that is convenient for the nested Bethe-
Ansatzd:

Jsad = 1 Asad B2sad B3sad
C2sad D22sad D23sad
C3sad D32sad D33sad

2 ,

Tsad = Asad + D22sad + D33sad.

Fully expanding the FCR in the two auxiliary spaces, it can
be seen, after some algebra, that the submatrixD verifies the
corresponding FCR of the SUs2d case,

RAB
s2dsa − bdDAsadDBsbd = DBsbdDAsadRAB

s2dsa − bd

with

RAB
s2dsad = SAB

s2dsad =
aI AB

s2d + icPAB
s2d

a + ic
.

This means that Yang-Baxter is obeyed by the submatrix.
Defining ua=sa− icd /a andva= ic /a, one can write the fol-
lowing commutation relations between different components
of the monodromy matrix:83

AaBb
s = ua−bBb

sAa + va−bBa
sAb,

DaBb
s = ub−aBb

sDaSAs
s2d + vb−aBa

sDbPAs
s2d,
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Bb
sBb8

s8 = Bb8
s8 Bb

sSss8
s2d .

They will be used extensively in what follows.

c. Reference state or pseudovacuum

We use the following local basis for the individual Hilbert
space of each particleswhere the “antiparticle” one is for the
impurity Hilbert spaced:

uul,uul = 11

0

0
2;

udl,udl = 10

1

0
2;

usl,usl = 10

0

1
2

and we define the followinghighest weight reference state
which we will use to construct the Fock space for the prob-
lem:

uvl = S^
n=1

N

uulnD ^ usl0.

Using the definitionsaa=a / sa+ icd and ba= ic / sa+ icd
we can write down explicitly the scattering matrices in aux-
iliary space and see how they act on the reference state.
Using that information we find for the monodromy matrix:

Jsaduvl = 1uvl * *

0 D9saduvl *

0 0 D-saduvl
2

with

D9sad = p
j=1

N

asa − a jd,

D-sad =
2 + e−idsa−a0d

3
D9sad.

Notice, for later use, thatD9sa jd=0. We define Dsad
=D9sad+D-sad. For the transfer matrix we findsverifying
that the reference state is indeed an eigenstate of itd

Tauvl = sAa + Da
22 + Da

33duvl = s1 + Daduvl.

d. Descendant states

We will construct descendant eigenstates from the refer-
ence eigenstate that constitutes the highest weight state of the
largest possible representation. Let us consider a state ob-
tained by acting with the linear combination ofM flavor-
lowering operatorsswhereXs1¯sM

is an arbitrary tensord:

ubW l = o
hsij

Bs1sb1d¯BsMsbMdXs1¯sM
uvl.

Using the FCR we findsthe nomenclature ofwantedand
unwantedterms is standard, and the same as in Ref. 43d

uAaubW luwanted= Sp
n=1

M

ua−bnDubW l ,

uDaubW luwanted= Sp
n=1

M

ubn−aD
3 Bb1

s1
¯BbM

sM DaSAsM
s2d

¯SAs1
s2d Xs1¯sM

uvl

utrADaubW luwanted= Sp
n=1

M

ubn−aDBb1

s1
¯BbM

sM Ta
s2dXs1¯sM

uvl

where in the last line we made the following definitions:

Js2dsad = DaSAsM
s2d

¯SAs1
s2d ,

Ts2dsad = trAJs2dsad.

Let us define thereducedmonodromy matrix,

J̃s2dsad = SAsM
s2d sa − bMd¯SAs1

s2d sa − b1d ; SÃsad B̃sad

C̃sad D̃sad
D

written in thereducedauxiliary space, and whose elements
act only on the space of indexeshsij si.e., that spanned by all

the possibleXs1¯sM
d. Notice that the elements ofJ̃s2d and

those ofD commute with each other. We write down their
“combined” product explicitly:

Ja
s2d = DaJ̃a

s2d = SAa
s2d Ba

s2d

Ca
s2d Da

s2d D .

Since bothD andJ̃s2d satisfy the Yang-Baxter relations, we
have a new set of FCR that are obeyed:

RAB
s2dsa − bdJA

s2dsadJB
s2dsbd = JB

s2dsbdJA
s2dsadRAB

s2dsa − bd.

The eigenvalue we are seeking involves more than a par-
ticular realization of the auxiliary tensorXs1¯sM

scf. with the
NBA formalismd. We can define a highest weight reference

state for the space ofhsij in the standard wayfnotice thatJ̃s2d

is the usual monodromy matrix that appears in the SUs2d
caseg. We therefore consider the “combined” reference state

uvl2 = uṽluvl with uṽl = ^
n=1

M

u↑ln

given by the direct product of a reference state in the space
of indexes anduvl the previously defined reference state. In
particular we have
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J̃a
s2duṽl = Suṽl *

0 D̃auṽl
D

with D̃a=pn=1
M asa−bnd. We can act onuvl2 with the “com-

bined” monodromy matrix:

Ja
s2duvl2 = SDa9 uvl2 *

0 D̃aDa-uvl2
D .

Choosing the reference stateuṽl is equivalent to considering
only B2’s and noB3’s when building eigenstates. This is the
trivial case when the electrons do not hybridize with the
impurity swe want instead to include nontrivial eigenstates
involving someB3’s as welld. In the more general case that
concerns us we write insteadsinspired by the form of the
unwanted termsd:

ubW ,gWl = o
hsij

Bb1

s1
¯BbM

sM fBg1

s2d
¯BgM8

s2d uvl2gs1¯sM

; Bb1

s1
¯BbM

sM ugW l.

Let us denote byta the eigenvalue ofTsad and by ta
s2d the

eigenvalue ofTs2dsad=Aa
s2d+Da

s2d. We need to solve the aux-
iliary eigenvalue subproblem:

Ta
s2dugW l = ta

s2dugW l

snotice that bothTa
s2d and ugW l are, although it is not explicitly

indicated, functions ofbW d. Using the results from the SUs2d
case we write down thewantedterms:

uAa
s2dugW luwanted= Da9Sp

p=1

M8

ua−gp
DugW l,

uDa
s2dugW luwanted= D̃aDa-Sp

p=1

M8

ugp−aDugW l,

and also the generic form of theunwantedones:

uAa
s2dugW luunwanted= Dgq

9 va−gq
Sp

pÞq

M8

ugq−gp
Duag1¯gq̂¯gM8l,

uDa
s2dugW luunwanted= D̃gq

Dgq
- vgq−aSp

pÞq

M8

ugp−gq
Duag1¯gq̂¯gM8l.

The cancellation of theunwantedterms gives a first set of
auxiliary conditions:

p
pÞq

M8
gq − gp − ic

gq − gp + ic
=

gq − a0 + i
c

2

gq − a0 + i
3

2
c
p
n=1

M
gq − bn

gq − bn + ic
,

whereas thewantedterms give the auxiliary eigenvalue:

ta
s2d = Da9Sp

p=1

M8

ua−gp
D + Da-D̃aSp

p=1

M8

ugp−aD
snotice that, sinceDa j

9 =0, the auxiliary eigenvalues vanish,
i.e., ta j

s2d=0d.
Having solved the auxiliary nested problem we can go

back to the original eigenvalue problem that we are trying to
solve. The combinedwantedterms are

uTaubW ,gWluwanted= Bb1

s1
¯BbM

sMFSp
n=1

M

ua−bnD
+ Sp

n=1

M

ubn−aDta
s2dGugW l = taubW ,gWl ,

and we find that the eigenvalues ofZj =Ta j
read as

zj = ta j
= p

n=1

M

ua j−bn
= p

n=1

M
a j − bn − ic

a j − bn
.

We are only left with the task of taking care of theunwanted
terms. Generic ones read:

uAaubW ,gWluunwanted= AasBbn

sn Bb1

s1
¯Bbn

sn̂
¯BbM

sM dsSs1sn

s2d
¯Ssn−1sn

s2d dugW l = va−bnS p
mÞn

M

ubn−bmDsBa
snBb1

s1
¯Bbn

sn̂
¯BbM

sM dsSs1sn

s2d
¯Ssn−1sn

s2d dugW l

and

uDaubW ,gWluunwanted= DasBbn

sn Bb1

s1
¯Bbn

sn̂
¯BbM

sM dsSs1sn

s2d
¯Ssn−1sn

s2d dugW l = vbn−aS p
mÞn

M

ubm−bnD
3sBa

snBb1

s1
¯Bbn

sn̂
¯BbM

sM dsSs1sn

s2d
¯Ssn−1sn

s2d dDbn
Jbn

s2dugW l,

so that

utrADaubW ,gWluunwanted= tbn

s2dvbn−aS p
mÞn

M

ubm−bnDsBa
snBb1

s1
¯Bbn

sn̂
¯BbM

sM dsSs1sn

s2d
¯Ssn−1sn

s2d dugW l.
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Since D̃bn
=0, we have the following expression for the ei-

genvalue of the auxiliary problem:tbn

s2d=Dbn
9 spp=1

M8 ubn−gp
d.

Combining the two contributions to the sameunwantedterm
and asking that it should vanish, we find a second set of
auxiliary conditions:

p
mÞn

M
bn − bm − ic

bn − bm + ic
= p

j=1

N
bn − a j

bn − a j + icp
p=1

M8
bn − gp − ic

bn − gp
.

e. Bethe-Ansatz equations

Let us collect the different equations, rearrange them, and
highlight the final result. Recalling thatzj =e−ikjL and per-
forming the standard shiftbn=Ln

s1d− ic /2, we write the ei-
genvalue equation:

eikjL = p
n=1

M1 a j − Ln
s1d + i

c

2

a j − Ln
s1d − i

c

2

and after shiftinggn=Ln
s2d− ic, we write down also the aux-

iliary conditions:

p
mÞn

M1 Ln
s1d − Lm

s1d − ic

Ln
s1d − Lm

s1d + ic
= p

j=1

N Ln
s1d − a j − i

c

2

Ln
s1d − a j + i

c

2

p
m=1

M2 Ln
s1d − Lm

s2d − i
c

2

Ln
s1d − Lm

s2d + i
c

2

and

p
mÞn

M2 Ln
s2d − Lm

s2d − ic

Ln
s2d − Lm

s2d + ic
=

Ln
s2d − a0 − i

c

2

Ln
s2d − a0 + i

c

2

p
n=1

M1 Ln
s2d − Ln

s1d − i
c

2

Ln
s2d − Ln

s1d + i
c

2

,

where we have takenM1=M andM2=M8.

2. Generalization to models with SU„N… symmetry

It is straightforward to generalize these results and write
down the Bethe-Ansatz equations for the more general case
of SUsNd internal symmetry. We use the notationM0=Ne for
the number of electrons andMN=Ni s=1d for the number of
impurities. We defineLn

s0d=an s=knd for the charge rapidities
and Ln

sNd=«n s=«d si.e., the impurity rapiditiesd. Then we
write the eigenvalue equations:

eiknL = p
m=1

M1 Ln
s0d − Lm

s1d + i
c

2

Ln
s0d − Lm

s1d − i
c

2

and the nested auxiliary conditions:

p
mÞn

Mr Ln
srd − Lm

srd − ic

Ln
srd − Lm

srd + ic
= p

s=±1
p
m=1

Mr+s Ln
srd − Lm

sr+sd − i
c

2

Ln
srd − Lm

sr+sd + i
c

2

where therank varies in the ranger =1,… ,N−1.

a. Generalization to models withSU„N…‹SU„M… symmetry

We start with the same auxiliary eigenvalue problem, but
with the scattering matrices:

SjnÞ0 =
sa j − andI jn

s − icPjn
s

sa j − and − ic

sa j − andI jn
q + icPjn

q

sa j − and + ic
,

Sj0 = I j0
q +

e−idsa j−a0d − 1

M
Q j0

q .

We choose to consider a case whereSj0 acts nontrivially in
the “channel” degrees of freedom onlysi.e., in “q-flavor”
spaced. This problem amounts to taking the one discussed
above and adding an extra “isospin” to it. The monodromy
matrix can be written as a direct product:Jsad=Jssad
^ Jqsad, and the transfer matrix becomes

Ta = Ta
sTa

c = sAa
s + Da

sdsAa
q + Da

qd.

The different steps go through as before and we get the
Bethe-Ansatz equationssBAEd:

eikjL = p
n=1

M1
s a j − Ln

ss1d − i
c

2

a j − Ln
ss1d + i

c

2

p
m=1

M1
q a j − Lm

qs1d + i
c

2

a j − Lm
qs1d − i

c

2

with the conditions

p
mÞn

Mr
s

Ln
ssrd − Lm

ssrd − ic

Ln
ssrd − Lm

ssrd + ic
= p

s=±1
p
m=1

Mr+s
s Ln

ssrd − Lm
ssr+sd − i

c

2

Ln
ssrd − Lm

ssr+sd + i
c

2

,

p
mÞn

Mr
q

Ln
qsrd − Lm

qsrd − ic

Ln
qsrd − Lm

qsrd + ic
= p

s=±1
p
m=1

Mr+s
q Ln

qsrd − Lm
qsr+sd − i

c

2

Ln
qsrd − Lm

qsr+sd + i
c

2

,

where for convenience we have used the definitions

Ln
s,qs0d = an,

L1
qsMd = a0,

and accordinglyM0
s,q=Ne, MM

q =Ni =1, andMN
s =0. One sees

that the effect of the impurity enters via the auxiliary condi-
tions for theq-flavor rapidities.

The solution thus far was general. To specify it to our
model we takea j =kj andc=2D;V2, and obtain the Bethe-
Ansatz equations for the multichannel Anderson impurity
model. Removing the impuritysi.e., takingMM

q =0d one re-
covers the usual equations of the NBA formalism.80

APPENDIX B: KERNELS AND IDENTITIES

In this appendix we collect a number of function and ker-
nel definitions, and identities relating them, that are central to
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the writing, rewriting, and algebraic manipulation of the
BAE and the equations of the TBA. Let us introduce the
following notations aimed at lightening the writing of the
BAE,

enszd =
z− inD

z+ inD
,

enm8 szd = p
t=1

minhm,nj

em+n+1−2tszd,

enm9 szd = p
t=1

minhm,nj

em+n−2tszd,

enmszd = p
s=±1

en m+s8 szd.

For the purpose of writing a continuum version of the BAE,
we will need as well the derivatives of the logarithms of the
above functions. We define the following kernels:

Knszd = s2pid−1]z ln enszd =
1

p

nD

z2 + snDd2

plus the similar definitions

Knmszd = s2pid−1]z ln enmszd,

Knm8 szd = s2pid−1]z ln enm8 szd,

Knm9 szd = s2pid−1]z ln enm9 szd.

These last three definitions are the basis to define the follow-
ing “convolution” kernels:

Anmszd = dn,mdszd + Knmszd = o
s=±1

o
t=1

minhm,nj

Km+n+1+s−2tszd,

Bnmszd = Knm8 szd = o
t=1

minhm,nj

Km+n+1−2tszd,

Cnmszd = dn,mdszd + Knm9 szd = o
t=1

minhm,nj

Km+n−2tszd

that are used extensively in the continuum formulation of the
BAE.

1. Fourier space formalism

A great simplification in the algebraic manipulations is
often achieved by working in terms of the Fourier trans-
formed densities. Our convention will be as follows:

r̃swd ; Fhrszdjswd =E rszde−iwzdz.

So that, for instance the basic kernels adopt the simple form

K̃nswd=e−nDuwu. Working in Fourier space is easy to see that

different convolution kernels are simply related:B̃n,m

=K̃1C̃n,m and B̃n,m=G̃Ãn,m. Where one defines the “basic re-
cursion kernel,”

G̃swd =
K̃1swd

K̃0swd + K̃2swd
=

1

2 coshDw
,

Gszd = F−1hG̃swdjszd =
1

4D cosh
pz

2D

,

that we call so because it enters many recursion relations
connecting the different convolution kernelssfor instance,43

Ãn,m−G̃Ãn+1,m+s1−dn,1dG̃Ãn−1,m=dn,m plus many others in-

volving also the convolution kernelsB̃n,m andC̃n,md. All these
relations are easy to prove in Fourier space.

2. General recursion kernels

The basic recursion kernel is ubiquitous in the TBA equa-
tions of all integrable models. For the case of the multichan-
nel Anderson model, we are also going to need the more
general kernels:

G̃m
sN,Md =

ÃNm

ÃMM

= e−sN−MdDuwu sinhsmDwd
sinhsMDwd

,

of which the basic recursion kernel is a particular case,G
=G1

s2,2d. Whenm=N some of these kernels are singularshave
nonzero asymptotics in Fourier spaced. We regularize them
according to

RGm
sN,Mdsld = Gm

sN,Mdsld − dm,Ndsld

where we have expressed them, in direct space, in terms of
the variablel=pz/2D. When carrying out numerical calcu-
lations, we will use the following explicit expressions for
these kernels:

RGm
sN,Md =

1

2p

1

Mp
o

s=±1
t=±1

tzSdN+tm,0 +
N + tm

2M
+ i

sl

Mp
D ,

wherezszd;]z ln Gszd is the digamma function.

3. Rank recursion kernels

We also need, for intermediate manipulations, kernel op-

erators that act on the rank indices. The basic one isG̃rs

=ds
r −sds

r+1+ds
r−1dG̃. Using it we can extend the convolution

kernels asÃnm
rs =G̃rsÃnm. A particularly useful derived kernel

is the one given by the inverse:RX
rs;fG−1Gsrg−1, where the

indices vary in the range 1,… ,N−1 or 1,… ,M −1 depend-
ing on the casesX=N,Md. The explicit formula for this op-
erator, in Fourier space, is
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R̃X
rs =

sinhfminsr,sdDwgsinhhfX − maxsr,sdgDwj
sinhsDwdsinhsXDwd

and two particularly useful cases are given by the general
recursion kernels:

RM
r1sld = GM−r

sM,Mdsld =

1

pM
sin

psM − rd
M

cos
psM − rd

M
+ cosh

2l

M

,

RN
nN−1sld = Gn

sN,Ndsld =

1

pN
sin

pn

N

cos
pn

N
+ cosh

2l

N

sthese will be used in the determination of the Schrieffer-
Wolff limit d.
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