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Nanoscale physics and dynamical mean-field theory have both generated increased interest in complex
quantum impurity problems and so have focused attention on the need for flexible quantum impurity solvers.
Here we demonstrate that the mapping of single-quantum impurity problems onto spin chains can be exploited
to yield a powerful and extremely flexible impurity solver. We implement this cluster algorithm explicitly for
the Anderson and Kondo Hamiltonians, and illustrate its use in the “mesoscopic Kondo problem.” To study
universal Kondo physics, a large ratio between the effective bandwidthDeff and the temperatureT is required;
our cluster algorithm treats the mesoscopic fluctuations exactly while being able to approach the largeDeff /T
limit with ease. We emphasize that the flexibility of our method allows it to tackle a wide variety of quantum
impurity problems; thus, it may also be relevant to the dynamical mean-field theory of lattice problems.
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The Kondo problem, which describes the coupling of a
quantum magnetic impurity to an electron gas, has a rich
history in condensed-matter physics.1–8 Recent experimental
and theoretical developments have generated considerable
renewed interest in this field. On the experimental side,
nanostructures in ultrasmall metal particles, semiconductor
heterostructures, carbon nanotubes, and organometallic mol-
ecules all show physics that can be mapped onto quantum
impurity problems.9–17 On the theoretical side, dynamical
mean-field theorysDMFTd has reduced lattice problems in
infinite dimensions to self-consistent quantum impurity
problems.18 Nanoscale physics and DMFT have furthermore
emphasized the richness and variety of these questions: In
mesoscopic physics quantum dots behave as impurities; their
tunability, as well as the new energy scales implied by the
confined geometry, have lead to several new impurity prob-
lems. In DMFT, lattice models map onto complex self-
consistent quantum impurity problems that may not have
arisen in previous contexts. Clearly, the paradigm of a spin-
1/2 magnetic impurity in a metallic host proposed by Kondo
sRef. 2d is only a starting point in exploring a vast array of
physically relevant quantum impurity problems.

In order to understand quantum impurity problems in
depth and to compare with experiments, it is desirable to
have exact results. Since exact analytic solutions4,5 make ap-
proximations that are invalid beyond the simplest situations,
it is necessary to resort to numerical approaches. The need
for precise numerical solvers has been especially highlighted
by DMFT sRef. 18d. Many numerical methods have been
developed for quantum impurity problems, including the nu-
merical renormalization groupsNRGd sRef. 3d and the quan-
tum Monte CarlosQMCd algorithm introduced by Hirsch
and Fye.6 Although these methods are powerful, they have
individual weaknesses related to the principles on which they
are formulated. Here we propose a unique quantum Monte
Carlo method for quantum impurity problems. Being formu-
lated on a different principle from, for instance, either NRG
or the Hirsch and Fye Monte Carlo method, this approach
has a different set of strengths and weaknesses; it is, in fact,
more efficient than the traditional methods in some cases
where these latter have difficulties.

One example where the weaknesses of the standard meth-
ods show up is the “mesoscopic Kondo problem.” Nanoscale

experiments have motivated new questions that are usually
ignored in the study of quantum impurity problems. One
may ask, for instance, “What is the effect of confining the
bath electrons to a finite, fully coherent, region of space?” In
this case, the local electronic density of states fluctuates
strongly, and a flatband description is no longer applicable.
In addition to the effects caused by a finite mean level spac-
ing D sRefs. 19–21d, confinement leads to mesoscopic fluc-
tuations associated with interference effects22,23 that cannot
be captured exactly by analytic methods. Numerically, NRG
is not natural for a situation with discrete levels, and involves
some approximationssessentially neglecting part of the con-
duction electrons’ Hilbert spaced that have yet to be tested for
structured density of states. Although the Hirsch and Fye
algorithm does not depend on the conduction band, the for-
mulation of the algorithm makes it impractical to use in the
most interesting regime whenDeff sthe effective bandwidth
where the impurity is magneticd becomes large compared to
the temperatureT. Hence, a detailed study of the effects of
mesoscopic fluctuations on universal Kondo physics requires
new numerical tools, able to handle any kind of discrete
density of states while allowing the study of largeDeff /T.
The goal of this paper is to show that such a QMC algorithm
indeed exists.

We develop our QMC method explicitly for two quantum
impurity problems, the Anderson and Kondo models, and
point out later that our algorithm is very flexible and has a
broad range of applications. The Hamiltonian for both mod-
els can be written as a sum of two termsH=H0+H1, where
H0 describes the free-electron band,H0=oa=1

N os±1eacas
† cas,

and is entirely specified by the energiesea and the eigenfunc-
tions fasr d of the confined electron gas. We will assume
−DøeaøD, whereD is the bandwidth. A “flat” band would
correspond to the choiceea=aD and ufasr du2=1/V, which,
for temperatures larger than the mean level spacingD would
just reproduce the bulk behavior. HereV is the volume of the
electron gas. For fully coherent confined systems, however,
both of these quantities display mesoscopic fluctuations from
level to level, or as a function of some external parameter.
For chaotic systems with time-reversal symmetry, a good
model for these fluctuations is provided by the Gaussian or-
thogonal ensemblesGOEd of random matrix theory.24 The
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averaged quantities are kept the same as in the flatband case,
and in particularkrsedl=r0=1/sDVd, wherekrsedl is the av-
erage over realizations of the local density of statesrsed
=oaufasr du2dse−ead. In the following, we shall study both a
flatband and some realizations drawn from GOE for illustra-
tion.

The interactions of the conduction electrons with the im-
purity are encoded inH1 along with the impurity Hamil-
tonian. For the Anderson model,25

H1
A = Vo

s

fCs
†sr 0dds + ds

†Cssr 0dg + o
s

edds
†ds + Ud↑

†d↑d↓
†d↓,

s1d

whereCs
†sr 0d=oafa

* sr 0dcas
† creates an electron of spins at

the location r 0 of the impurity. Similarly for the Kondo
model,3

H1
K =

J

2o
ss8

Cs
†sr 0dsW ss8Cs8sr 0d ·SWd, s2d

whereSWd is the impurity spin andsW is the vector formed by
the Pauli matrices. For a flatband and whened=−U /2 ssym-
metric cased the Anderson model turns into the Kondo model
when U→` with Jr=8G /pU and D fixed. Here we have
definedG=pr0V

2.
The basic strategy we are going to apply here relies on the

fact that the single-impurity Hamiltonians are essentially
one-dimensional problems. Indeed, for both the Anderson
and Kondo models, the impurity couples to the electron gas
only locally, atr 0. Starting fromf1s=Cssr 0d, one can find a
basis of one-particle statesf is , i =1,2,… ,N such that the
noninteracting HamiltonianH0 becomes tridiagonal,1,3,26,27

H0 = o
s

o
i=1

N

sai f is
† f is + bi

* f is
† f i+1s + bi f i+1s

† f isd, s3d

with bN=0. In this form we see thatH0 describes two open
fermion chains. Each open fermion chain is identical to a
spin chain since fermions hopping in one dimension cannot
permute. Thus, there is no fermion sign problem to worry
about when constructing quantum Monte Carlo algorithms.
Adding the interaction termH1 merely couples the two fer-
mion chains ati =1 with the impurityssee, for example, the
illustration in Ref. 27d. In this form, one merely has to solve
a spin-chain problem. Today spin-chain problems can be
solved very efficiently in continuous time28,29 using the re-
cently developed directed-loop cluster algorithm.30 In the
present case, to make the algorithm efficient one must per-
form two types of directed-loop updates: one that changes
the fermion occupation numbers and the other that flips the
fermion spinsschangessd. Since the directed-loop algorithm
is well established, we will not discuss it here.

We have implemented this algorithm for both the Ander-
son and the Kondo models using the continuous-time path-
integral directed-loop algorithm.30 Although the algorithm is
equally applicable to the symmetric and the asymmetric
Anderson models, here we focus only on the symmetric case
for convenience. The two directed-loop updates discussed
above can readily give two correlation functions: the impu-

rity one-particle thermal Green’s functionGdstd and the local
susceptibility x. Gdstd for the impurity can be measured
while directed loops for changing the fermion occupation
numbers are being constructed.31 Moreover, the Green’s
function at Matsubara frequencies, Gdsivnd
=e0

1/Tdtkdstdd†s0dleivnt, necessary in a DMFT calculation
can be directly measured since the Fourier integral involved
in Gdsivnd can be performed analytically during the loop
construction in the continuous-time path-integral implemen-
tation of the directed-loop algorithm. Similarly,x
=e0

1/TdtkSz
dstdSz

ds0dl can be measured while directed loops
for flipping the fermion spins are being constructed. We have
tested our algorithm against exact diagonalization methods
on small systems. As a further check, we have reproduced
the results obtained from the Hirsch and Fye algorithm for
the Anderson model. In Fig. 1 we compare results for three
different realizations ofH0. We see that there is perfect
agreement between the Hirsch and Fye and the spin-chain
approach in the Anderson model. The thermal Green’s func-
tion for Matsubara frequencies is also shown for the clean
casefFig. 1scdg.

To test our algorithm at largerU, we cannot compare to
the Hirsch and Fye algorithm as it is very difficult to makeU
large in that approach. Hence, we compare our results to
those of a general algorithm we recently developed to study
a variety of quantum impurity problems.32 The local suscep-
tibility obtained in the spin-chain algorithm matches very
well the result published in Ref. 32sparameters:N=2000,
2D=20, U=25, andU /G=4d. In Fig. 2 we show how the
Anderson model results approach those of the Kondo model
asU becomes large at fixedJ sRefs. 8 and 33d.

FIG. 1. Comparison of the local susceptibilitiesx obtained using
the spin-chain algorithmscirclesd and the Hirsch and Fye algorithm
sopen squaresd in the symmetric Anderson model forN=5000,
2D=40, andU /G=8/1.6sTK=0.146d. xTK is in units ofsgmB/2d2.
Three different realizations are shown:sad Clean case andsbd two
realizations drawn from GOE.scd The real and imaginary parts of
the thermal Green’s function vs Matsubara frequencies for the clean
case atT/TK=0.55. sdd The time required in the spin-chain algo-
rithm to obtain two percent errors onx as a functionTK /T. In the
low-temperature regime, an almost quadratic dependence in 1/T is
observedfcompared to 1/T3 for a single sweep at fixedDt in the
Hirsch and Fye algorithmsRef. 6dg. The value ofTK used was
obtained from the two-loop RG equation of the Kondo model.
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We believe that the effort in the spin-chain cluster algo-
rithm scales as a function of the system size as, in dimen-
sionless units, eithersTK /TdsD /Dd or sub1u /TdsD /Dd, which-
ever dominates. This shows that there is one disadvantage of
the spin-chain approach: Our inability to deal with a con-
tinuum density of states, i.e.,D=0. As one approaches this
limit, the number of sites in the chain,N, will grow, and this
in turn will increase the effort in updating the chain. As we
have demonstrated, without any special effort we can simu-
late systems withN=5000 on desktop computers; this could
presumably be increased somewhat without too much diffi-
culty. On the other hand, in the Hirsch and Fye approach the
effort does not depend onD. We can mitigate this disadvan-
tage by noticing that in the spin-chain approach it is rela-
tively straightforward to apply a logarithmic blocking of the
energy levels very similar to the one introduced by Wilson3

in his work on the NRG. Similar ideas have also been devel-
oped by several authors to study pseudogap problems34,35 in
single-impurity models.

The starting point of the logarithmic blocking is to divide
the bandwidthf−D ,Dg into a finite number of energy inter-
val I1,I2… and I−1,I−2, … where In=fDL−n,DL1−ng for
n.0 and In=f−DL1+n,−DLng for n,0, with a constant
L.1. As unu increases, the size of a logarithmic bin becomes
so small that they may contain only a few states. When this
number is less than some constantl, we stop the logarithm
discretization and keep all the remaining states. The optimal
value forl should be determined by trial and error, but in the
following we will just take it to be one. For each intervalIn,
we define the operator

ans =
1

Mn
o

eaPIn

fasr 0dcas, s4d

whereMn=soeaPIn
fa

2d1/2. Note that sinceCs
†sr 0d=onMnans

† ,
the interaction terms in the Anderson and Kondo Hamilto-
nians depend only onans and ans

† . Thus, the only approxi-
mation in the blocking scheme comes from replacingH0 by

H̃0=onenan
†an, whereen=oeaPIn

eaufau2/Mn
2. Note that asL

approaches 1,H̃0→H0; the blocking disappears and all states
are taken into account exactly. Blocking reduces the number
of sites necessary in the spin-chain formulation to

NL, log N. For a constant mean density of energy levels,
NL. log N/ log L, which even for moderateL represents a
very significant reduction.

In order to check the usefulness of the logarithmic block-
ing we studied three different Hamiltonianssone clean and
two realizations drawn from GOEd. For each case we calcu-
lated the local susceptibilities using the blocked Hamilto-
nians withL=1.2, 1.5, and 2.0. Our results are shown in Fig.
3. One can see that the results from the blocked Hamiltonian
approach the result without blockingsL=1d asL gets closer
to 1; all theL=1.2 data are almost statistically indistinguish-
able from the exact results. Clearly, the optimal value ofL
will depend on the parameters of the problem, the observ-
ables measured, and their needed accuracies. However, the
reduction in the number of electron sites needed is dramatic
even for smallL. In the example here, one could reduce the
number of sites from 5000 to roughly 80 withL=1.2, to
roughly 40 withL=1.5, and to roughly 24 withL=2.0.

The inability to treat a continuous density of state, even if
it can be mitigated by the logarithmic blocking described
above, will impose some limitations on the scope of applica-
tion of our spin-chain cluster algorithm. It has, however, a
number of strengths which we review briefly now, and com-
pare more particularly to the well-established Hirsch and Fye
method.6 Some of the advantages of our method are:s1d One
remarkable feature of our algorithm is illustrated in Fig. 1sdd,
which shows the computer time needed to obtain the local
susceptibility within a fixed statistical error as a function of
temperature. We find that the time grows approximately as
1/T2. For the Hirsch and Fye method the time for a QMC
sweep6 grows as 1/T3, and the scaling with fixed fractional
error is likely to be worse. Thus the present algorithm should
outperform Hirsch and Fye for low temperatures.s2d There is
no imaginary time discretization error in the present ap-
proach.s3d A big advantage of our spin-chain cluster algo-
rithm is that it is essentially unaffected by the value ofU. In
contrast, the relevant dimensionless parameter determining

FIG. 2. sColor onlined Local susceptibilities in the symmetric
Anderson model for various values ofU at fixed 8G /pU=Jr
=1/p , N=1000, 2D=10 sTK=0.122d for a flatband. Data for the
Kondo model at the sameJ andr is also shown. The value ofTK is
obtained from the two-loop RG equation in the Kondo model. FIG. 3. sColor onlined Local susceptibilities using logarithmic

blocking, for the three realizations shown in Fig. 1—the clean case
stopd and with mesoscopic fluctuationssbottomd. The values ofNL

are roughly 80 atL=1.2, 40 atL=1.4, and 24 atL=2. The Kondo
temperatureTKsLd is obtained using the renormalizedJeffsLd for
logarithmic discretizationsRef. 26d: TK=0.145, 0.141, and 0.132,
for L=1.2, 1.5, and 2.0, respectively.
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the computational effort for the Hirsch and Fye Anderson
model algorithm isU /T. SinceU is proportional to the ef-
fective bandwidthDeff within which charge fluctuation can
be neglected, the ratioDeff /T is limited to a relatively modest
values,100d in the Hirsch and Fye algorithm. This value is
not large enough to fully study the implications of the meso-
scopic fluctuations on the renormalization of the coupling
constant which dominates Kondo physics.23 s4d We wish to
stress that although we have illustrated our spin-chain ap-
proach for the two simplest impurity models, the general
method is extremely flexible and is applicable to a wide class
of multiband fermionic or spin quantum impurity problems.
The flexibility is already illustrated by the fact that the
implementation for the Kondo model Eq.s2d is essentially as
simple as for the Anderson model Eq.s2d. The Kondo
version8 of the Hirsch and Fye algorithm is, in contrast, sub-
stantially more complex than its original Anderson counter-
part, and appears in any case significantly less used. Further-
more, although in Hirsch and Fye, the one-channel problem
may not suffer from the sign problem, in general the two-
channel problem does.37 In our method there is no sign prob-
lem in either case. That theN-channel Kondo problem36 does
not suffer from a sign problem in our method can be easily
proved because, first, fermions in one channel cannot per-
mute, and, second, since channel number is conserved, per-

mutation of fermions in distinct channels is also forbidden.
Finally, based on our experience we believe that the spin-
chain algorithm may be extendable to more complex impu-
rity problems, involving, for instance, more than one orbital.

To summarize, we have proposed a QMC method that can
be formulated for a large class of quantum impurity prob-
lems in continuous time without a sign problem. We have
illustrated this method specifically to simulate the Anderson
and Kondo single-impurity models, and shown how it is par-
ticularly useful for simulations of these models in the context
of mesoscopic physics. The effort in computing quantities
grows as a function ofTKN/T. In this workN of order 5000
andTK /T of the order of 10 could easily be reached. If sig-
nificantly larger values ofN are required, it is possible to
approximate the problem using logarithmic blocking, similar
to that used in the NRG approach. This reduces the effective
number of levels in the spin chain and should allow one to
probe significantly lower temperature. The ideas presented
here can be extended easily to the multichannel Kondo
model,36 and the algorithm should be applicable to DMFT
calculations.18
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