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Nanoscale physics and dynamical mean-field theory have both generated increased interest in complex
guantum impurity problems and so have focused attention on the need for flexible quantum impurity solvers.
Here we demonstrate that the mapping of single-quantum impurity problems onto spin chains can be exploited
to yield a powerful and extremely flexible impurity solver. We implement this cluster algorithm explicitly for
the Anderson and Kondo Hamiltonians, and illustrate its use in the “mesoscopic Kondo problem.” To study
universal Kondo physics, a large ratio between the effective bandWigifand the temperaturg is required;
our cluster algorithm treats the mesoscopic fluctuations exactly while being able to approach tie.4aige
limit with ease. We emphasize that the flexibility of our method allows it to tackle a wide variety of quantum
impurity problems; thus, it may also be relevant to the dynamical mean-field theory of lattice problems.
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The Kondo problem, which describes the coupling of aexperiments have motivated new questions that are usually
quantum magnetic impurity to an electron gas, has a riclignored in the study of quantum impurity problems. One
history in condensed-matter physic§.Recent experimental may ask, for instance, “What is the effect of confining the
and theoretical developments have generated consideralidath electrons to a finite, fully coherent, region of space?” In
renewed interest in this field. On the experimental sidethis case, the local electronic density of states fluctuates
nanostructures in ultrasmall metal particles, semiconductostrongly, and a flatband description is no longer applicable.
heterostructures, carbon nanotubes, and organometallic mdh addition to the effects caused by a finite mean level spac-
ecules all show physics that can be mapped onto quantuing A (Refs. 19-2}], confinement leads to mesoscopic fluc-
impurity problems=” On the theoretical side, dynamical tuations associated with interference efféets that cannot
mean-field theor  DMFT) has reduced lattice problems in be captured exactly by analytic methods. Numerically, NRG
infinite dimensions to self-consistent quantum impurityis not natural for a situation with discrete levels, and involves
problemst® Nanoscale physics and DMFT have furthermoresome approximationgssentially neglecting part of the con-
emphasized the richness and variety of these questions: buction electrons’ Hilbert spagéhat have yet to be tested for
mesoscopic physics quantum dots behave as impurities; thestructured density of states. Although the Hirsch and Fye
tunability, as well as the new energy scales implied by thelgorithm does not depend on the conduction band, the for-
confined geometry, have lead to several new impurity probmulation of the algorithm makes it impractical to use in the
lems. In DMFT, lattice models map onto complex self- most interesting regime whebD. (the effective bandwidth
consistent quantum impurity problems that may not havewvhere the impurity is magnefibecomes large compared to
arisen in previous contexts. Clearly, the paradigm of a spinthe temperaturd. Hence, a detailed study of the effects of
1/2 magnetic impurity in a metallic host proposed by Kondomesoscopic fluctuations on universal Kondo physics requires
(Ref. 2 is only a starting point in exploring a vast array of new numerical tools, able to handle any kind of discrete
physically relevant quantum impurity problems. density of states while allowing the study of lar@gy/T.

In order to understand quantum impurity problems inThe goal of this paper is to show that such a QMC algorithm
depth and to compare with experiments, it is desirable tondeed exists.
have exact results. Since exact analytic solufiémsake ap- We develop our QMC method explicitly for two quantum
proximations that are invalid beyond the simplest situations;mpyrity problems, the Anderson and Kondo models, and
it is necessary to resort to numerical approaches. The neeghint ot later that our algorithm is very flexible and has a
for precise numerical solvers has been especially highlighte], -4 range of applications. The Hamiltonian for both mod-
by DMFT (Ref. 18. Many numerical methods have been g can he written as a sum of two terids Ho+H,, where
dev_eloped for quantum impurity problems, including the nu—HO describes the free-electron barlrd):ENzlEoﬂeacT Con
merical renormalization grouNRG) (Ref. 3 and the quan- dis entirel ified by th eand the eiganfunc.
tum Monte Carlo(QMC) algorithm introduced by Hirsch and1s entirely specified by the energessand Ih€ eigentunc

tions ¢,(r) of the confined electron gas. We will assume

and Fye® Although these methods are powerful, they have . . o
individual weaknesses related to the principles on which they P = €z=D, whereD is the bandwidth. A *flat” band would

are formulated. Here we propose a unique quantum Montgorrespond to the choice,=aA and|¢a(r)|2=1/Q,'wh|ch,
Carlo method for quantum impurity problems. Being formu- for temperatures larger than the mean level spadingpuld
lated on a different principle from, for instance, either NRGjust reproduce the bulk behavior. Hefieis the volume of the
or the Hirsch and Fye Monte Carlo method, this approactelectron gas. For fully coherent confined systems, however,
has a different set of strengths and weaknesses; it is, in fadboth of these quantities display mesoscopic fluctuations from
more efficient than the traditional methods in some casekevel to level, or as a function of some external parameter.
where these latter have difficulties. For chaotic systems with time-reversal symmetry, a good
One example where the weaknesses of the standard metmodel for these fluctuations is provided by the Gaussian or-
ods show up is the “mesoscopic Kondo problem.” Nanoscal¢hogonal ensembléGOE) of random matrix theory* The
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averaged quantities are kept the same as in the flatband cas @ (b)
and in particulakp(e))=po=1/(AQ), where{p(e)) is the av- 047 v T * 104
erage over realizations of the local density of stgiés e " . "
=3,|p.(r)]?8(e—¢€,). In the following, we shall study both a i o L m
flatband and some realizations drawn from GOE for illustra- ° 4 9 4
tion. %1 0z o5 1 5 7 02 05 1 s 7 °
The interactions of the conduction electrons with the im- T, T,

0.1F

pur_ity are encoded iH; along with the impurity Hamil- o Lo © ||— 0.132(T,M) 2% (d)
tonian. For the Anderson mod@, | A 110 =
S ol T 5
HY =V [Wi(ro)d, + diW,(ro)]+ X egdhd, + Udld,dld), & 0% - - R |, &
o o * = Im
-0.41, Jos2
&y 085 5 10 15 20 0.:5 05 T1/T 2 4
* . ® =(2n+1)nT y
Where\lfl(r0)=2a¢a(ro)czo creates an electron of spinat
the locationr, of the impurity. Similarly for the Kondo FIG. 1. Comparison of the local susceptibilitigsbtained using
model? the spin-chain algorithn(circles and the Hirsch and Fye algorithm
J . (open squargsin the symmetric Anderson model fdd=5000,
HK == Wl(r))G,e ¥, (ro) - S, (2)  2D=40, andU/T'=8/1.6(T¢=0.148. T« is in units of (gug/2)>.
200, Three different realizations are show@) Clean case antb) two

R realizations drawn from GOHc) The real and imaginary parts of
whereS? is the impurity spin andr is the vector formed by  the thermal Green’s function vs Matsubara frequencies for the clean
the Pauli matrices. For a flatband and whgr-U/2 (sym-  case aiT/T¢=0.55.(d) The time required in the spin-chain algo-
metric casgthe Anderson model turns into the Kondo model rithm to obtain two percent errors gpas a functionT/T. In the
when U — o with Jp=8I"/7U and D fixed. Here we have low-temperature regime, an almost quadratic dependenceTins1/
definedI" = mpyV2. observed compared to 1T° for a single sweep at fixedr in the

The basic strategy we are going to apply here relies on thiirsch and Fye algorithn{Ref. §]. The value of Ty used was
fact that the single-impurity Hamiltonians are essentiallyobtained from the two-loop RG equation of the Kondo model.
one-dimensional problems. Indeed, for both the Anderso
and Kondo models, the impurity couples to the electron g
only locally, atr. Starting fromf,, =V (r), one can find a
basis of one-particle statefs,, i=1,2,...,N such that the
noninteracting Hamiltoniaitl, becomes tridiagonal26:27

l?ity one-particle thermal Green'’s functi@y(7) and the local
a%usceptibilityx. Gy(7) for the impurity can be measured
while directed loops for changing the fermion occupation
numbers are being construct®dMoreover, the Green’s
function at Matsubara frequencies, Gy(iw,)
N . - . =[¥TdHd(nd"(0))é“n", necessary in a DMFT calculation
Ho=2 E (aifigtic + Bifigfisio + Bifisisfic), (3 can be directly measured since the Fourier integral involved
o = in Gy(iw,) can be performed analytically during the loop
with By=0. In this form we see thatl, describes two open construction in the continuous-time path-integral implemen-
fermion chains. Each open fermion chain is identical to atation of the directed-loop algorithm. Similarly,y
spin chain since fermions hopping in one dimension canno?fé”dr(@(r)$(0)> can be measured while directed loops
permute. Thus, there is no fermion sign problem to worryfor flipping the fermion spins are being constructed. We have
about when constructing quantum Monte Carlo algorithmstested our algorithm against exact diagonalization methods
Adding the interaction ternii,; merely couples the two fer- on small systems. As a further check, we have reproduced
mion chains at=1 with the impurity(see, for example, the the results obtained from the Hirsch and Fye algorithm for
illustration in Ref. 27. In this form, one merely has to solve the Anderson model. In Fig. 1 we compare results for three
a spin-chain problem. Today spin-chain problems can belifferent realizations ofH,. We see that there is perfect
solved very efficiently in continuous tirf&?° using the re- agreement between the Hirsch and Fye and the spin-chain
cently developed directed-loop cluster algoritffimin the  approach in the Anderson model. The thermal Green’s func-
present case, to make the algorithm efficient one must petion for Matsubara frequencies is also shown for the clean
form two types of directed-loop updates: one that changesase[Fig. 1(c)].
the fermion occupation numbers and the other that flips the To test our algorithm at largdd, we cannot compare to
fermion spingchangesr). Since the directed-loop algorithm the Hirsch and Fye algorithm as it is very difficult to make
is well established, we will not discuss it here. large in that approach. Hence, we compare our results to
We have implemented this algorithm for both the Ander-those of a general algorithm we recently developed to study
son and the Kondo models using the continuous-time patha variety of quantum impurity problenid The local suscep-
integral directed-loop algorithif.Although the algorithm is tibility obtained in the spin-chain algorithm matches very
equally applicable to the symmetric and the asymmetriavell the result published in Ref. 3gparametersN=2000,
Anderson models, here we focus only on the symmetric caseD=20, U=25, andU/I'=4). In Fig. 2 we show how the
for convenience. The two directed-loop updates discussednderson model results approach those of the Kondo model
above can readily give two correlation functions: the impu-asU becomes large at fixedl (Refs. 8 and 3B
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FIG. 2. (Color onling Local susceptibilities in the symmetric e o
Anderson model for various values & at fixed 8/7U=Jp 0 L
=1/, N=1000, D=10(T¢=0.122 for a flatband. Data for the 0 ) 10
Kondo model at the samkandp is also shown. The value di is «
obtained from the two-loop RG equation in the Kondo model. FIG. 3. (Color online Local susceptibilities using logarithmic

blocking, for the three realizations shown in Fig. 1—the clean case
We believe that the effort in the spin-chain cluster algo-(top) and with mesoscopic fluctuatiorsottom. The values oN,
rithm scales as a function of the system size as, in dimenare roughly 80 ah=1.2, 40 atA=1.4, and 24 at\=2. The Kondo
sionless units, eithei,/T)(D/A) or (|8]/T)(D/A), which-  temperatureTi(A) is obtained using the renormalizelg(A) for
ever dominates. This shows that there is one disadvantage {9garithmic discretizatior(Ref. 26: Tx=0.145, 0.141, and 0.132,
the spin-chain approach: Our inability to deal with a con-for A=1.2, 1.5, and 2.0, respectively.
tinuum density of states, i.eA=0. As one approaches this

limit, the number of sites in the chaill, will grow, and this N. ~loa N/lod A which : deratd ‘
in turn will increase the effort in updating the chain. As we ''A =~ '091V/10g A, which €ven for moderata represents a
very significant reduction.

have demonstrated, without any special effort we can simu- . .
y sP In order to check the usefulness of the logarithmic block-

late systems wittN=5000 on desktop computers; this could . wdied th diff t Hamiltoni | d
presumably be increased somewhat without too much diffil"d We studied three ditierent Hami oniakene clean an
wo realizations drawn from GOEFor each case we calcu-

culty. On the other hand, in the Hirsch and Fye approach th Do . :
effort does not depend ak. We can mitigate this disadvan- %ted th.e local susceptibilities using the blocked Ha_lmllt'o-
tage by noticing that in the spin-chain approach it is reIa-g'a(gS W|thA:1.2,h1.5,hand 2'?' (f)ur reﬁultslari Sg'%wn '.T F'g'
tively straightforward to apply a logarithmic blocking of the °: ©N€ crz]anhsee t ?t t _ehresub}s lr(qm t_f 0(/:\ € a:m tonian
energy levels very similar to the one introduced by Wifson approach the result without bloc "@‘__ )_as gets closer
in his work on the NRG. Similar ideas have also been devell© 1; all theA=1.2 data are almost statistically indistinguish-
oped by several authors to study pseudogap proBfethim able from the exact results. Clearly, the optimal valueAof
single-impurity models. will depend on the parameters of the problem, the observ-

The starting point of the logarithmic blocking is to divide 2Pés measured, and their needed accuracies. However, the
the bandwidth-D,D] into a finite number of energy inter- reduction in the number of electron sites needed is dramatic
val 1.1 and 1. | where 1 =[DA™, DA™ for even for smallA. In the example here, one could reduce the
n>01’ar21.dul :[_DXLEZ'_[SN] for n”<0 with a constant number of sites from 5000 to roughly 80 with=1.2, to

n 1 L]

A>1.As|n| increases, the size of a logarithmic bin becomesrothly. 40 W'thA:l's’ and o roughly 24.W'tm:2'0' .
The inability to treat a continuous density of state, even if

so small that they may contain only a few states. When this . o . .
number is less than some constinive stop the logarithm it can be mitigated by the logarithmic blocking described

discretization and keep all the remaining states. The optim qbove, will impose some limitations on the scope of applica-
value forl should be deFJ)termined by trial gf];md errdr but irﬁ)theéhon of our spin-chain cluster algorithm. It has, however, a
: s : y N number of strengths which we review briefly now, and com-
following we will just take it to be one. For each interig) . : .
we define the operator pare more particularly to the well-established Hirsch and Fye
P method® Some of the advantages of our method &t¢One

N, ~logN. For a constant mean density of energy levels,

1 remarkable feature of our algorithm is illustrated in Figd)1
s = 11 2 a1o)Capn (4)  which shows the computer time needed to obtain the local
ne, el 1thili 1 1 1 1 1 1
aSin susceptibility within a fixed statistical error as a function of
WhereMn:(EEaeln(ﬁi)l/z' Note that sincelf(ro)=S,M,af , ~ temperature. We find that the time grows approximately as

1/T2. For the Hirsch and Fye method the time for a QMC
sweef grows as 173, and the scaling with fixed fractional
error is likely to be worse. Thus the present algorithm should

the interaction terms in the Anderson and Kondo Hamilto-
nians depend only os,, and azg. Thus, the only approxi-

mation in the blocking scheme comes from repladigb _ .
~ " g_ 22 pladigby outperform Hirsch and Fye for low temperatur€.There is
Ho=Znen2nan, Wheree,=2, .| €,|d,|*/My. Note that ash 1o %imaginary time discretization error in the present ap-

approaches ]l-,|o—>H0; the blocking disappears and all statesproach.(3) A big advantage of our spin-chain cluster algo-
are taken into account exactly. Blocking reduces the numbeiithm is that it is essentially unaffected by the valuelbfin
of sites necessary in the spin-chain formulation tocontrast, the relevant dimensionless parameter determining
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the computational effort for the Hirsch and Fye Andersonmutation of fermions in distinct channels is also forbidden.
model algorithm isU/T. SinceU is proportional to the ef- Finally, based on our experience we believe that the spin-
fective bandwidthDeg within which charge fluctuation can chain algorithm may be extendable to more complex impu-
be neglected, the ratieq/ T is limited to a relatively modest ity problems, involving, for instance, more than one orbital.
value(~100) in the Hirsch and Fye algorithm. This value is  “14 summarize, we have proposed a QMC method that can
not large enough to fully study the implications of the meso-,q ¢4 jated for a large class of quantum impurity prob-
scopic fluctuations on the renormalization of the coupllngIems in continuous time without a sign problem. We have

constant which dominates Kondo physiég4) We wish to . X e :
stress that although we have illustrated our spin-chain ap|1Iustrated this method specifically to simulate the Anderson

proach for the two simplest impurity models, the genera@nd Kondo single-impurity models, and shown how it is par-
method is extreme|y ﬂexib'e and iS app“cab'e toa W|de C|as§ICU|al‘|y useful for simulations of these models in the context
of multiband fermionic or spin quantum impurity problems. of mesoscopic physics. The effort in computing quantities
The flexibility is already illustrated by the fact that the grows as a function of ¢N/T. In this workN of order 5000
implementation for the Kondo model E@®) is essentially as andTx/T of the order of 10 could easily be reached. If sig-
simple as for the Anderson model E@). The Kondo nificantly larger values oN are required, it is possible to
versiorf of the Hirsch and Fye algorithm is, in contrast, sub- approximate the problem using logarithmic blocking, similar
stantially more complex than its original Anderson counter-to that used in the NRG approach. This reduces the effective
part, and appears in any case significantly less used. Furthafumber of levels in the spin chain and should allow one to
more, although in Hirsch and Fye, the one-channel problemyrope significantly lower temperature. The ideas presented
may not suffer from the sign problem, in general the tWo-nere can be extended easily to the multichannel Kondo

channel problem do€e¥.In our method there is no sign prob- model3® and the algorithm should be applicable to DMFT
lem in either case. That thé-channel Kondo probleffidoes calculations.8

not suffer from a sign problem in our method can be easily
proved because, first, fermions in one channel cannot per- This work was supported in part by the N§SPMR-
mute, and, second, since channel number is conserved, p&103003.
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