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We study the occupation of two electrostatically coupled single-level quantum dots with spinless electrons as
a function of gate voltage. While the total occupation of the double-dot system varies monotonically with gate
voltage, we predict that the competition between tunneling and Coulomb interaction can give rise to a non-
monotonic filling of the individual quantum dots. This nonmonotonicity is a signature of the correlated nature
of the many-body wave function in the reduced Hilbert space of the dots. We identify two mechanisms for this
nonmonotonic behavior, which are associated with changes in the spectral weights and the positions, respec-
tively, of the excitation spectra of the individual quantum dots. An experimental setup to test these predictions
is proposed.
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INTRODUCTION

Quantum dots coupled to an electron reservoir can be
filled with electrons one by one in a controlled way. With
increasing gate voltage, the number of electrons on the dot
increases in a steplike manner. As long as Coulomb interac-
tion among the dot electrons is negligible, the dot levels are
filled independently from each other. However, small semi-
conductor quantum dots are usually subject to strong Cou-
lomb interaction: charging energy gives rise to extended pla-
teaus of salmostd fixed dot charge as a function of gate
voltage. The aim of the present paper is to demonstrate that
more dramatic signatures of Coulomb correlations can be
found in studying the filling of the individual levels in the
quantum dot. While the total occupation of the dot remains a
monotonic function of the gate voltage, we predict that, un-
der circumstances specified below, the individual levels are
filled in a nonmonotonic way. The physics proposed here
enables one to observe nontrivial many-body correlations in
a particularly simpleseffectived four-dimensional Hilbert
space.

To illustrate the signature and mechanisms of the non-
monotonic filling, we consider the simplest possible model
system that allows for a separate access to the individual
level occupation: two electrostatically coupled single-level
quantum dots with spinless electrons,ssee Fig. 1d. The
double dot is equivalent to a single-quantum dot accommo-
dating two levels. The advantage of the double-dot setup lies
in the possibility to read out separately each dot’s occupation
by electrostatically coupled quantum point contacts. This
kind of charge sensing has been experimentally demon-
strated for single1 and double dots2 recently. The quantum
dots are tunnel coupled to one common or to two separate
electron reservoirs.

We model the double-dot system with the standard tunnel
Hamiltonian H=Hdot1+Hdot2+Hch+Hlead1+Hlead2+HT,1
+HT,2. Quantum doti =1,2, described byHdot,i =eici

†ci, ac-
commodates a level with energyei, measured relative to
the Fermi energy in the leads. The level energies can be
tuned by the gate electrodes. Without loss of generality,

we always assumee2ùe1. The charging energy is accounted
for by Hch=Un1n2. Each dot is coupled to an electron
reservoir,3,4 Hlead,i =okekiaki

† aki. Tunneling is modeled by
HT,i =okstici

†aki+h.c.d, where we assume the tunnel matrix
elements to be energy independent. The tunnel coupling in-
troduces a linewidthGi =2putiu2ri, whereri is the density of
states of leadi at the Fermi energy.

There are four possible states for the double-dot system:
the double dot being emptysx=0d, singly sx=1,2d, or dou-
bly sx=dd occupied. The corresponding energies areEx sRef.
5d. To address the question of how the occupationskn1l and
kn2l of the dots vary as both levelse1 and e2 are simulta-
neously pulled down, we keep the bare level separation
D=e2−e1 fixed. The fact that tunneling does not commute
with the kinetic and charging terms is essential for the phys-
ics outlined below.

REGIMES

We begin with identifying the regime at which a non-
monotonic filling of the individual dots is expected. Consider
first U=0. The spectral density of doti is a Lorentzian cen-
tered aroundei with a width Gi. As ei crosses the Fermi
energy of the lead, the occupationknil of level i changes

FIG. 1. Two electrostatically coupled single-level quantum dots
are attached to electron reservoirs and gated by gate electrodes. The
individual occupation is determined by adjacent quantum point
contacts.
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from 0 to 1. The width of this transition is governed by
maxhGi ,kBTj. It is obvious that in this case the occupation of
each level is a monotonic function of the gate voltage. We
thus turn our attention to the limitU@maxhD ,G ,kBTj.

For temperatures larger than the level broadening,
kBT@G, the influence of the tunnel couplings on the occu-
pations is negligible and the double-dot system is filled ac-
cording to the Boltzmann factors exp(−Ex

s0d /kBT) of the
corresponding bare energiesEx

s0d with ei =Ei
s0d−E0

s0d and
U=Ed

s0d−E1
s0d−E2

s0d+E0
s0d. Now the occupations of the two

dots are correlated due to charging energy,kn1n2l−kn1lkn2l
,0, but the individual dot occupationsknil are still found to
depend monotonically on the gate voltage. Therefore, we re-
quire G*kBT.

If the level separation is small compared to either the
level width or temperature, maxhkBT,Gj@D, then the double
dot will be filled in a symmetric way,kn1l<kn2l, which
again yields a monotonic filling. This restricts the regime of
interest toD*G*kBT.

MECHANISMS FOR NONMONOTONICITY

We identify two different mechanisms by which a non-
monotonic filling of the individual levels can occur. They are
both related to the Coulomb interaction, with two different
consequences concerning the spectral density. First, as men-
tioned above, there is a spectral weight of level 2 not only
arounde2 sdescribing filling or depleting of dot 2 while dot 1
is emptyd but also arounde2+U sdescribing transitions when
dot 1 is filledd. The total spectral weight is normalized to 1,
with the relative spectral weight between the two peaks be-
ing determined by occupation of dot 1. Both peaks of level 2
are broadened byG2 sRef. 6d, which yields a partial filling of
the dot once the peak is close to the Fermi energy. As the
level in dot 1 passes through the Fermi level and dot 1 is
filled, the spectral weight for the level in dot 2 is transferred
from the peak arounde2 to the one arounde2+U, which is
further away from the Fermi level, yielding a reduction of
the partial occupation of dot 2, giving rise to a nonmonotonic
filling. This mechanism will be visible forD@kBT sFig. 2d

ssince otherwise the filling is dominated by thermal fluctua-
tionsd and is most pronounced forD,G@kBT.

The second mechanism is based on a renormalization of
the peak positions in the spectral density due to Coulomb
interaction.7 As discussed in more detail below, tunneling in
and out of dot 2 yields a renormalization of dot level 1,
e1→ ẽ1. The renormalization is strongest when level 2 is
close to the Fermi energy. This renormalization can give rise
to a nonmonotonic filling of dot 2 under the condition
D,kBT and kn1l+kn2l<1. In this case, both dots will be
partially filled onceẽ1 and ẽ2 are below the Fermi level. The
relative occupation is approximately given by exps−D /kBTd.
A renormalization of the level splittingD then changes the
relative occupation. If level 2 is close to the Fermi level, then
level 1 is strongly renormalized towards higher energies. As
a consequence, the occupation of dot 2 is increased at the
cost of level 1, i.e., there is a reshuffling of the relative oc-
cupation. When the gate voltage is increased further, the
renormalization becomes weaker, and level 1 gains back
some of the occupation it lost to level 2, which leads to a
nonmonotonicity ofkn2l. It turns out that for symmetric cou-
pling, G1=G2=G, the renormalization of the level separation
is negligible in the regimeD,G,kBT since both levels are
renormalized approximately by the same amount. To get a
nonmonotonic dot filling, an asymmetric couplingG1ÞG2 is
required.

PERTURBATION EXPANSION

To substantiate the qualitative ideas outlined above, we
perform a perturbation expansion of the dot occupations in
the tunnel-coupling strengthG. For this, we employ a dia-
grammatic imaginary-time technique that was introduced to
study charge fluctuations in a metallic single-electron box,8

adjusted to a two single-level-dot system. The central quan-
tity is the partition function Z=ox exps−bExd. The
corresponding effective energiesEx=Ex

s0d+Ex
s1d+OsG2d

can be expanded in orders ofG. Evaluation of Ex
s1d

yields E0
s1d=−fs1se1d+s2se2dg, E1

s1d=−fs1se1d+s2se2+Udg,
E2

s1d=−fs1se1+Ud+s2se2dg, and Ed
s1d=−fs1se1+Ud+s2se2

+Udg, with sisvd=Gi /2pflnsbD /2pd−ReCs 1
2 + ibv /2pdg,

where the bandwidthD appears as a high-energy cutoff at
this intermediate step but drops out for all physical observ-
ables since they only depend on differences ofEx’s. As a
result, the dot levels are renormalized according to
ẽi =ei +ei

s1d with

e1
s1d =

G2

2p
ReFCS1

2
+ i

bse2 + Ud
2p

D − CS1

2
+ i

be2

2p
DG ,

s1d

for e2
s1d the same expression holds with 1 replaced by 2, and

U remains unrenormalized in first order inG. Here,Csxd is
the digamma function. From Eq.s1d we see that the renor-
malization of the level in dot 1 is proportional to the tunnel
coupling of dot 2sand vice versad. It is maximal whene2 or
e2+U is in resonance with the Fermi level, and vanishes in
the absence of Coulomb charging.

FIG. 2. ForkBT@G or G@D, the occupation of the individual
dots is a monotonic function of the gate voltage. Nonmonotonicities
due to mechanism 1 are strongest forD,G@kBT, and mechanism
2 becomes effective forD,G,kBT andG1ÞG2.
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Thermodynamic quantities such as the occupation of the
dots are obtained by adequate logarithmic derivatives of the
partition function. In particular,

knil = −
1

b

]

]ei
ln Z, s2d

kn1n2l = −
1

b

]

]U
ln Z. s3d

The first-order corrections of these quantities are directly ob-
tained from

sln Zds1d

kBT
= hf1 − kn2ls0dgs1se1d + kn2ls0ds1se1 + Ud

+ f1 − kn1ls0dgs2se2d + kn1ls0ds2se2 + Udj, s4d

plus a constant that is independent ofe1, e2, andU. The set
of Eqs.s2d–s4d provides the starting point for the subsequent
quantitative analysis. For example, the correction to occupa-
tion of dot 2 is

kn2ls1d = − f1 − kn1ls0dg
]s2se2d

]e2
− kn1ls0d]s2se2 + Ud

]e2

+
]kn2ls0d

]e1
fs2se2d − s2se2 + Udg +

]kn2ls0d

]e2
fs1se1d

− s1se1 + Udg, s5d

where we have used]kn2ls0d /]e1=]kn1ls0d /]e2.

RESULTS

In Fig. 3 we show the dot occupations as a function of the
mean-level positione=se1+e2d /2 in the regime D,G
@kBT. We find nonmonotonicities which we relate to mecha-
nism 1 discussed above. For an approximate analytical un-
derstanding of the result, we concentrate on the nonmonoto-
nicity of kn2l on the right step. Sincee2.e1 andD@kBT, we
can setkn2ls0d<0 for the whole region over which level 1 is
filled up, andkn1ls0d is independent ofe2. Nevertheless, level
2 is partially filled due to quantum fluctuations,

kn2ls1d < f1 − kn1ls0dg
G2

2pe2
+ kn1ls0d G2

2pse2 + Ud
. s6d

As level 1 passes through the Fermi level, filling up quantum
dot 1, the occupation of dot 2 drops fromG2/ s2pe2d down to
G2/ f2pse2+Udg. Within our perturbative analysis, the width
of this drop is provided by temperature, as a broadening of
level 1 due to quantum fluctuations would enter in higher
orders only. When going to higher order inG, the width is
expected to be maxhkBT,G1j. The amplitude of the drop is
approximately

dkn2l <
G2U

2pDsD + Ud
. s7d

We now turn to the regimeD,G,kBT to discuss mecha-
nism 2. From inspection of Eq.s1d we realize that in the
given regime the renormalization of both levels is roughly
the same. In order to generate a substantial renormalization
of the level separation that can give rise to a nonmonotonic-
ity, we choose different coupling strengthsG1ÞG2. In the
following we discuss the caseG2.G1. The result is shown in
Fig. 4. The second line of Eq.s5d is associated with the
renormalization of level 1. The renormalizationstowards
higher energiesd is strongest whene2 passes through the
Fermi energy. The peak of the nonmonotonicity is therefore
located to the left as compared to the one related with
mechanism 1. The width is given byG2. For an estimate of
its height dkn2l, we neglect both the possibility of the
double dot being empty or doubly occupied, i.e.,
kn2ls0d<exps−bDd / fexps−bDd+1g, and we assumeU@kBT.
We find

dkn2l <
be−bD

se−bD + 1d2

G2 − G1

2p
ln

bU

2p
. s8d

If we reverse the asymmetry of the coupling strengths,
G1.G2, we find, by using analogous arguments as above, a
nonmonotonicity ofkn1l on the left step, whilekn2l remains
monotonic.

In Fig. 5 we show the correlatorkn1n2l−kn1lkn2l, ex-
panded up to first order inG, for the two sets of parameters

FIG. 3. Nonmonotonic dot filling due to mechanism 1. The pa-
rameters areD=0.1U, G1=G2=0.1U, andkBT=0.01U sRef. 9d. In-
set: Result for the symmetrized Hartree approximation. FIG. 4. Nonmonotonic dot filling due to mechanism 2 for

D=0.1U, G1=0.01U, G2=0.1U, andkBT=0.05U.
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chosen in Figs. 3 and 4. We find that the nonmonotonicity of
the dot occupation is accompanied with an enhancement of
correlation.

Throughout our analysis, we assumed flatbands, i.e.,
particle-hole-symmetric densities of states, in the leads. As a
consequence,kn1l at e for given G1,G2 is identical to
1−kn2l at U−e with the values ofG1 and G2 being inter-
changed. Thus our discussion, which was focused on the
right step ofkn2l, holds for the left step ofkn1l as wellsafter
interchangingG1↔G2d.

In parallel to this perturbation theory, we have performed
an equation-of-motionsEOMd analysis up to the second hi-
erarchy solving a set of 11 coupled equations for the various
Green’s functions. This approach, however, is not systemati-

cally controllable. Truncating the EOMs on the first hierar-
chy results in the symmetrized Hartree approximation10 with
the Green’s function G11

retsvd given by fG11
retsvdg−1

=fs1−kn2ld / sv−e1d+kn2l / sv−e1−Udg−1+ iG1/2 and similar
for G22

retsvd. The resultingkn1l and kn2l tend to be biased
towards each other, but the nonmonotonicity is still observed
ssee the inset of Fig. 3d.

SUMMARY

We predict that the competition between tunneling and
charging energy can give rise to nonmonotonic filling of in-
dividual quantum-dot levels. We identify two different
mechanisms leading to nonmonotonicities and determine the
regimes at which they occur. Based on a perturbation expan-
sion in the tunnel couplings, we derive analytic expressions
for the location and the strength of the signal.

Note added. While performing this work, we became
aware of parallel work11 in which nonmonotonic level occu-
pations are discussed as well.
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