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We develop an approach to build a material with negative refraction index that can be implemented for
optical and infrared frequencies. In contrast to conventional designs that require simultaneously negative
dielectric permittivity and magnetic permeability and rely on a resonance to achieve a nonzero magnetic
response, our material is intrinsically nonmagnetic and makes use of an anisotropic dielectric constant to
provide a lefthanded behavior in waveguide geometry. We demonstrate that the proposed material can support
surfacespolaritond waves, and show the connection between the polaritons and the enhancement of evanescent
fields, also known as superlensing.
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A large number of potential applications in optics, mate-
rials science, biology, and biophysics has instigated an exten-
sive research in the area of materials with negative phase
velocity, also known as left-handed mediasLHM d.1–6 The
LHMs, based on simultaneously negative dielectric permit-
tivity and magnetic permeability have been successfully
demonstrated in microwavesGHzd frequencies.7–10However,
while the direct scale down of the experimentally verified
systems is possible only to the THz region,11 most of practi-
cal applications of these unique materials are in the “faster”
soptical and infraredd part of the spectrum. Furthermore, the
requirement to have negative magnetic response at high fre-
quencies implies the presence of a resonance,12 which, usu-
ally accompanied by strong losses, makes the current LHM
designs almost impractical for real-life applications. In this
paper we propose anonmagnetic, nonresonantapproach to
build LHM, show the connection between the existence of
surfacespolaritond waves and enhancement of exponentially
decayingsevanescentd fields, and present several implemen-
tations of our LHM design in optical and infrared frequen-
cies.

Unlike most of the present LHM composites,7–9,13–15our
system is based on a planar waveguide with anisotropic di-
electric core, and does not have any magnetic response.
Moreover, in contrast to currentcomposite, resonance-based
LHMs, the proposed material may be homogeneous, and
does not require a resonance to achieve a negative phase
velocity, the fundamental property of LHM. We describe the
electromagnetic properties of our system, and derive the con-
ditions for its right-, and left-handed response, and for exci-
tation of surface wavesspolaritonsd.

We consider a planar waveguide, parallel to thesy,zd
plane of coordinate system, with the boundaries atx= ±d/2.
We assume that the material inside the waveguide is non-
magneticsm=1d, and has an anisotropicuniaxial dielectric
constante, with ex=e' andey=ez=ei ssee Fig. 1d.

Similarly to uniaxial crystals, our system may support two
different kinds of electromagnetic waves.16 The waves of the
first kind have their electric field vector in thesy,zd plane.
The propagation of such waves depends only onei, and is
not affected by anisotropy. These waves are also known as
ordinary waves. The waves of the second kindsknown as

extraordinary wavesd have their magnetic field in thesy,zd
plane. Correspondingly their electromagnetic properties are
affected by bothei ande'.

As we show below, the ordinary and extraordinary waves
are fundamentally distinct as they have different dispersion
relations and refraction properties.

A wave propagating in the proposed system can be repre-
sented as a series of the waves with their electricsmagneticd
field perpendicular to the direction of propagation, known as
TE sTMd waves, correspondingly.16,17 In our case of the pla-
nar waveguide with an anisotropic core, the extraordinary
wave has TM polarization, while the ordinary wave has the
TE form ssee Fig. 1d. As it can be explicitly verified, the
hx,y,zj components of ordinarysEsod ,Hsodd, and extraordi-
nary sEsed ,Hsedd waves propagating in thesy,zd direction can
be represented by the following expressions:
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wherek=v /c, and primes8d denotes the differentiation with
respect tox. Similar to Ref. 16, the fieldE0
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z is defined from the equation

E0
seuod9 + ûseuod2E0

seuod = 0, s2d

with the conventional boundary conditions for the tangential
sy,zd components of the electric field at the waveguide walls.
For simplicity, here we consider the case of perfectly con-
ducting waveguide boundaries; the straightforward extension
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of the presented theory to the case of dielectric walls, where
similar effects are anticipated, will be presented elsewhere
ssee also Fig. 2d.

Equation s2d yields a series of solutionssmodesd
E0

seuodsxd=Am
seuodcossûxd with û=s2m+1dp /d, and E0

seuodsxd
=Am

seuodsinsûxd ,û=2mp /d swhere m is an integer numberd.
Note that the structure of the mode in thex direction is fully
described by the parameterû, which for the case of perfectly
conducting walls, considered here is fully determined by
waveguide thicknessd and does not depend on the dielectric
properties of the core. Each waveguide mode has its own
dispersion relation

kz
seuod2 + ky

seuod2 = eseuodnseuodk2, s3d

where

esed = e';esod = ei;nseuod = 1 −ûseuod2/seik2d. s4d

Note that due to different geometry the TM and TE modes
defined here are somewhat different from the conventional
waveguide solutions presented in common textbooks.16 Here
we focus on the planar waveguide unbounded in thesy,zd
plane with an anisotropic core in contrast to bounded in the
sx,yd directions “tubular” one-dimensionals1Dd structure
with isotropic filling, where waves can propagate inz direc-
tion alone. It is straightforward to obtain the well-known TE
sEz=0d and TM sHz=0d isotropic tubular solutions as the
linear combination of the waves from Eq.s2d. Also, as an
alternative to the formalism presented in this paper, our sys-
tem may be described in the terms of introduced in Ref. 6
generalized dielectric tensor with spatial dispersion.

An arbitrary wave inside a planar waveguide can be rep-
resented as a linear combination of waveguide modesscor-
responding to different values ofûd. For simplicity for the
rest of the paper we limit ourselves to the case when only a
single mode is excited. This assumption does not restrict the
generality of our approach sincesid it does not limit thesy,zd
structure of the solutions nor their polarization andsii d dif-
ferent modes of the waveguide do not couple to each other.
The generalization of expressions presented here to a multi-
plemode case is straightforward.

It is clearly seen from Eq.s3d that a propagating solution
sdescribed by realkz and kyd is only possible in the case
when the corresponding parameterse andn are of the same
sign. The casee.0; n.0 is usually realized for an isotro-
pic material inside the planarstransmittingd waveguide;16 the
case e.0; n,0 corresponds to the so-called subcritical

waveguide, which does not support propagating modes and
reflects all “incident” radiation. The third case that can be
realized in a waveguide with an isotropic core,e,0; n.0,
describes a perfectly conducting interior, which again does
not support propagating waves.

Finally the casee,0; n,0, which is a primary focus of
this paper, can only be realized only for the extraordinary
wave in the anisotropic material. The corresponding structure
is transparent for a TM wave; the TE solution exponentially
decays into such a waveguide.

While Eq.s3d defines the magnitude of the phase velocity
of the mode, thesign of the phase velocity cannot be deter-
mined by Eq.s3d alone. To define the sign of the phase
velocity, and consequently the “handedness” of a media, we
consider the refraction of a wave at the interface between the
transparent isotropicsright-handedd media and a media with
e,0; n,0 inside the same waveguide. We assume that the
interface coincides with the coordinate planez=0 ssee Fig.
2d.

We first consider the special case of the normalszd propa-
gation of a TM-polarized wave. Since in such a wave
Hz=Hx=0, neither refracted nor reflected ordinary waves are
excited. Since forky=0 the componentsHy andEx are related
to each other:Hy=ske' /kzdEx fsee Eq.s1dg, the requirement
for continuity of tangential fields across the boundaryz=0
immediately shows that the sign ofkz should coincide with
the one ofe'. This is a clear indication that the media with
e,0,n,0 is lefthanded.

The analysis of a general case of an obliquely incident
wave sshown in Fig. 2d is more complicated, as in the gen-
eral ordinary reflected wave is also excited, and the direction
of the refractedsextraordinaryd wave should be determined
by the causality principle.16 We perform such an analysis via
exact three-dimensionals3Dd numerical calculations. We
represent the fields as a series of waveguide modes as de-
scribed above and use a full set of boundary conditions for
the E and H fields to find the necessary coefficients. We
assert that the propagating in the realsabsorbingd media
wave decays in the direction of its propagation. Our results
are shown in Fig. 2. It is clearly seen that Snell’s law is
reversed, meaning that phase velocity in the medium with
e,0; n,0 is negative and the resulting wave is lefthanded
for a general case of oblique incidence. As it is shown in Ref.
1, all optical effects directly related to a phase velocity
sSnell’s law, Doppler effect, Cherenkov radiation, etc.d are
reversed in such a medium.

Another class of phenomena commonly associated with
LHMs se.g., enhancement of the evanescent fields,2 nonlin-
ear surface waves5d, however requires the propagation of sur-
face waves, also known as polaritons, at the left- and right-
handed media interface. In the following calculations we
note that the surface wave on nonmagnetic interface always
has a TM structure.16 We represent the fields and electromag-
netic constant of the righthanded mediaswhich fills the re-
gion z,0d with superscripts−d and the ones in the LHM
region z.0 with s+d. We search for a polariton solution
sE,Hds−d~expfikyy+js−dzg ; sE,Hds+d~expfikyy−js+dzg, with
real ky, and positivejs−u+d sthe exponentially growing away
from the interface “antipolariton” solution corresponding to

FIG. 1. The extraordinarysTMd and ordinarysTEd waves propa-
gating in a planar waveguide with an anisotropic core.
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negativejs−u+d can exist only in finite region of spaced.
While the LHM region is bound to havee',0,ei .0, the

“right-handed” medium can be constructed by either
e'.0,ei .0 or bye'.0,ei ,0. These two combinations of
the dielectric constants lead to different conditions for polar-
iton propagation.

Specifically, for the caseei
s−d.0,e

'

s−d.0, usually realiz-
able in an isotropic right-handed medium, the polaritons are
only possible forky=0 and have the dispersion relationfsee
Eqs.s1d and s2dg

ns−d/e'
s−d = ns+d/e'

s+d s5d

Such waves, however, assume propagation along thex direc-
tion. The existence of these waves in the waveguide geom-
etry considered here is limited to a number of “modes,” each
forming a standing wave between the waveguide plates and
fulfilling the corresponding boundary conditionsfsee also
Eq. s2d and the discussion afterwardsg.

However if the right-hand medium hasei ,0, and
e'.0, the propagation of polaritons with nonzeroky is also
possible when

ei
s−dns−d = ei

s+dns+d. s6d

This equation again relatesû to k. When Eq.s6d is satisfied,
the surface wave exists for any givenukyu2.enk2, and the
relation betweenky and j is given by Eq.s3d, where we
substitutekz

2=−j2. Note that a similar situation takes place in
3D geometry on the boundary between the right-handed me-
dium ses−d.0,ms−d.0d and “conventional” LHM
ses+d,0,ms+d,0d, where for the same frequency the polari-

tons exist for any wave vector provided thates−d=−es+d,
ms−d=−ms+d.

We stress that it is the existence of surface waves for a
wide range of wave vectors that makes the proposed in Ref.
2 phenomenon of superlensing possible. The evanescent
components, which carry the information about the subwave-
length features of the source, exponentially decay away from
the object plane. Their resonant enhancement by a slab of
either planarsdescribed hered or 3D sdescribed in Refs. 1 and
2d LHM can be represented as a resonant coupling of the
original evanescent wave to the surface modes on both inter-
faces of the LHM lens. In such a process, the original eva-
nescent wave excites antipolaritonssurface mode growing
away from the interfaced on the front interfacessee Fig. 3d,
which, in turn, excites the true-polariton mode on the back
interface of the slab. The exponentially decaying away from
the lens part of this surface mode represents the LHM-
enhanced evanescent wave. This concept is illustrated in Fig.
3 where we calculate the transmission of an evanescent com-
ponent through the slab of planar LHM proposed here. It is
clearly seen that decaying through the right-handed media
evanescent wave, is resonantly enhanced inside LHM slab
only in the presence of polaritons.18

Finally, we consider the fabrication perspectives of the
proposed LHM materials. In GHz frequencies the required
strongly anisotropic response may be realized in a composite
of metallic wires aligned along thex axis proposed in Ref.
19. This idea to achievee',0 is realized in Refs. 7 and 8
snote thatei .0d. Also, we note that the “left-handed” trans-
mission line10 swhile it is not a homogeneous 3D materiald
may be described in terms of the proposed formalism since
the inductive elements formally corresponds toe,0, while
capacitors corresponds toe.0.

In optical and near-infrared frequencies negative dielec-
tric constant is achieved due to plasmon resonance of a free
electron gas inside the metalsAg, Au, etc.d or doped semi-
conductorsSid splasmonicd structures. There, electron con-
centration and effective mass define the region ofe,0.20 In
the midinfrared spectrum range negative dielectric constant
naturally occurs in polar crystalsse.g., SiCd.21 Also, both
plasmonic and polar materials generally have relatively small

FIG. 2. sColord Reflection and refraction at the boundary be-
tween right-sRHMd and left-handed mediasLHM d. sad Schematic
illustration of refraction of a TM wave at the RHM- LHM interface
sordinary wave not shownd. sbd stopd The results of the exact nu-
merical calculations of refraction of the mode in planar waveguide
with perfectly conducting walls;û=k/2; RHM parameterssz,0d:
e=n=1/2+0.002i; LHM sz.0d: e=n=−1/2+0.003i, angle of in-
cidence:p /10, normalized real part ofEx shown. sbottomd: the
same asstopd, but with a finite-conductive waveguidessilver;
l=0.75mm;ew=−25+0.3id. The red, green, and blue arrows show
the direction of incident, reflected, and refracted waves correspond-
ingly. scd The intensity profile ofEz for the systems insbd; sblued
and sredd correspond to perfect metalstopd and silver sbottomd
waveguide walls.

FIG. 3. sColord Amplification of an evanescent field by a paral-
lel slab of planar LHM sû=k/2d. The blue line corresponds to
nonplasmonic case. The right-hand mediasRHMd parameters:
esRHMd=nsRHMd=1/2, LHM parameters: esLHMd=nsLHMd=−1/2;
ky=2k. The red line shows the case of resonant excitation of polar-
iton waves esRHMd=3/2, nsRHMd=4; esLHMd=−6/5, nsLHMd=−5;
ky=Î9/8k; the LHM is positioned betweenz=0 andz=10l. The
resonant enhancement of evanescent components with surface
wavessoften attributed to superlens, originally proposed in Ref. 2d
is clearly seen.
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absorption, which in conjunction with negativee makes them
excellent candidates for proposed LHM. The anisotropic di-
electric response described here, may be achieved in the fol-
lowing composites:

sid A composite of subwavelengthsnanostructuredd inclu-
sions with anisotropicse.g., spheroidald shape in the isotropic
dielectric host. In this approach all the inclusions have to be
aligned, and homogeneously distributed in the dielectric
host. The shape of the inclusion defines the frequency range
of the LHM response. We stress that no special arrangement
of the inclusionssexcept for their aligningd is necessary to
achieve desired dielectric properties. To give just one ex-
ample, for the composite of 10% of SiC nanospheroids with
an aspect ratio of 1/2, aligned with their shorter axis along
the x axis and embedded in quartz, for a wavelength of
CO2 laser of 12mm we obtain e'<−2.7+6310−4i;
ei <1.6+1310−5i.22

sii d A composite based on isotropicssphericald inclusions
in a dielectric host. The anisotropy may be achieved by an-

isotropic distribution of inclusions. For example, one may
deposit a dielectric spacer followed by asrandomd deposition
of inclusions or deform the composite with isotropic inclu-
sion distribution. Our numerical calculations show that the
composite of 15% of Ag nanospheres in TiO2 with an aver-
age separation between inclusions in thex direction half of
that in y and z directions, hasei <90+10i; e'<−25+2i at
l=0.75mm. The detailed theory of such composites is not
presented here due to space limitations and is deferred to our
future work.

siii d A layered structure based either on multiple semicon-
ductor quantum wells where the mobility of the electrons is
different thex direction and they-z plane23 or on layered
plasmonicspolard materials as described in Ref. 15.

We also anticipate the desired response from intrinsically
anisotropic semimetal crystalssBi and its alloysd.24
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