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We present anab initio method for calculation of the electronic structure and electronic transport of nanos-
cale systems coupled to electrodes with applied voltage bias. The method is based on the local density
approximation of density functional theory and implemented in the framework of the tight-binding linear
muffin-tin orbital approach in its atomic sphere approximation. A fully atomistic description of the electrodes
and the nanosystem is used, and the self-consistent charge and electrostatic potential for the system under
applied bias is calculated using the nonequilibrium Green’s functionsNEGFd approach. General expressions
for the lesser Green’s function and transmission coefficient obtained within NEGF theory are rewritten using
auxiliary Green’s functions that are defined by the inverse of the short-ranged structural constants. This
reformulation of the theory with auxiliary Green’s functions allows the use of very effective and well-
developed tight-binding techniques. The method is applied to three systems: a single benzene di-thiol molecule
coupled tos111d gold electrodes, a single gold atom coupled tos100d gold electrodes, and a single platinum
atom coupled tos100d platinum electrodes.
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I. INTRODUCTION

Recent experimental developments have made it possible
to fabricate electronic devices where the active part is a mol-
ecule, a nanotube, or a similar structure of nanometer-scale
dimension. These developments have given rise to growing
interest in theoretical methods that can calculate the elec-
tronic structure and transport properties of nanoscale devices.
By nature, first-principles quantum-mechanical approaches
are necessary for such calculations because quantum effects
dominate the transport properties of these nanoscale systems.
The first-principles electronic structure methods available to-
day are highly developed and sophisticated but are imple-
mented mostly to describe systems that ares1d in equilibrium
and s2d either periodic or have a finite number of atoms.
However, nanoscale systems connected to bulk electrodes
should be described by methods that can treat nonperiodic
and infinite sizeopensystems. Additionally, in the presence
of finite voltage bias applied across the electrodes, the sys-
tem is out of equilibrium. The required theoretical methods
should properly describe this nonequilibrium situation.

The firstab initio nonequilibrium calculations for an open
system were performed by using a jellium approximation for
the electrodes.1,2 Other approaches have used a first-
principles Hamiltonian for the nanostructure and semiempir-
ical approximations to describe the electrodes for an equilib-
rium system3–6 or a system with applied bias voltage.7–9 Still
other approaches employed first-principles treatment of both
a nanosystem and electrodes for a system in equilibrium10,11

or a system at finite applied bias described by nonself-
consistent electrostatic potential.12–15 Three methods that al-
low first-principles treatment of both a nanosystem and elec-
trodes in the nonequilibrium situation have been proposed
recently by Damleet al.16 simplemented on the basis of
GAUSSIAN98 quantum chemistry softwared, by Taylor et

al.17,18 simplemented in the simulation packageMCDCALd
and by Brandbygeet al.19 simplemented in the simulation
packageTRANSIESTAd. All three of these methods use a
pseudopotential approximation for the core electrons and the
local density approximationsLDA d for the exchange-
correlation potential. These three approaches have been ap-
plied to calculations of electronic structure and transport
properties of different nanosystems.16–29

An entirely different first-principles approach based on
the tight-binding linear muffin-tin orbital method
sTB-LMTOd30 has been proposed by Kudrnovskyet al.31 and
Turek et al.32 for description ofequilibrium transport prop-
erties of a nanoscale system connected to two electrodes.
Starting with the Kubo-Greenwood formulation of equilib-
rium transport theory, they derived an expression for the con-
ductance in the framework of the TB-LMTO method in its
atomic sphere approximationsASAd. The LMTO method is
an all-electron method which does not use the pseudopoten-
tial approximation. The advantage of an all-electron method
over the pseudopotential method, beyond the fact that the
latter one is an approximation to the former, is that the prob-
lem of constructing the potentials formagneticsystems can
be solved straightforwardly in an all-electron calculation,
while for pseudopotential methods this problem constitutes a
real challenge if traditional norm-conserving or ultrasoft
pseudopotentials are used.33 The equilibrium TB-LMTO-
ASA transport theory of Kudrnovskyet al. has been applied
recently, mainly to magnetic systems, to study magnetotrans-
port in metallic multilayers,31,34 resistivity of bulk random
alloys,32 resonant tunneling magnetoresistance,35 and spin-
dependent tunneling in metal/vacuum/metal systems.36

The aim of this paper is to formulate a theory based on the
TB-LMTO-ASA method that can be used for self-consistent
calculations of the electronic structure and transport proper-
ties of an open system in thenonequilibriumsituation. This
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theory can be applied to calculate current-voltage curves for
a nanoscale system connected to two electrodes. Beyond
this, such a theory may be considered as a first step to for-
mulate a more accurate full-potential versionswithout atomic
spheres approximationd of a TB-LMTO method for an open
system out of equilibrium.

The starting point of our implementation is a principal
layers TB-LMTO-ASA code37 that exploits equilibrium
Green’s functions techniques. This code has been tested for
several systems35–37 and results are in good agreement with
full-potential equilibrium LMTO calculations.38 The advan-
tage of the tight-binding formulation of the LMTO-ASA
method30 is that effectively only a few nearest neighbor at-
oms interact with each other, thus making numerical compu-
tations very efficient.

The organization of the paper is as follows. In Sec. II we
derive the expressions for electron density and current based
on the nonequilibrium Green’s function formulation of TB-
LMTO-ASA method. Section III describes numerical proce-
dures of the implementation. In Sec. IV we apply our method
to calculate the electronic structure and current-voltage curve
for three systems: a single benzene di-thiol molecule coupled
to semi-infinite gold electrodes, a single gold atom coupled
to semi-infinite gold electrodes, and a single platinum atom
coupled to semi-infinite platinum electrodes. We compare re-
sults presented in Sec. IV with otherab initio calculations
and existing experimental results. Conclusions are presented
in Sec. V.

II. THEORY OF NONEQUILIBRIUM ELECTRON
TRANSPORT IN THE TB-LMTO-ASA FRAMEWORK

A. System description and introduction to the TB-LMTO-ASA
method

The system is defined by an infinite set of atomic posi-
tions hRj. We partition the system in principal layers as fol-
lows: the semi-infinite left lead has principal layer indices
p=0,−1,−2,… ,−`, the central region of the system has in-
dicesp=1,… ,N, and the semi-infinite right lead has indices
p=N+1,N+2,… , +`. The width of each layer is chosen in
such a way that only adjacent layers interact with each other.
The total size of the central regionsor the numberN of
principal layersd is chosen so that all charge and potential
relaxations take place in the central region and lead regions
have charge and potential close to the bulk values. The re-
sults of numerical simulations can be verified by including
more layers from the lead regions in the central region and
by increasing the width of individual layers. The left and
right leads may in general be of different atomic composi-
tions, and are assumed to be in thermal equilibrium with
chemical potentialsmL andmR, respectively. The difference
between chemical potentialsmR−mL=eVdefines the voltage
biasV applied to the leads, wheree is the electron charge.

The basic blocks of the linear muffin-tin orbitals30,39

sLMTO’sd are functions defined inside each atomicsWigner-
Seitzd sphere centered at siteR, namely,

fRLsr d = fRlsrdYLsr̂ d,
s1d

ḟRLsr d = ḟRlsrdYLsr̂ d,

where the radial amplitudefRlsrd is a regular solution of the
radial Schrödinger equationsor scalar Dirac equationd inside
the sphere at a linearization energyEn,Rl, and ḟRlsrd is the
first energy derivative offRlsrd. In the ASA, the potential
entering the Schrödinger equation is assumed to be spheri-
cally symmetric in each sphere. The potential is a sum of
contributions from nuclei, Hartree, and LDA exchange-
correlation potentials. The functionsYLsr̂ d in Eq. s1d are real
spherical harmonics,r̃ =r / r, andL=hl ,mj is an orbital mo-
mentum index. We will ignore the spin index throughout this
paper for the sake of brevity, although it can be trivially
reconstructed: All matrix quantitiessi.e. Hamiltonian,
Green’s functionsd are diagonal in the spin index. The radial
amplitudes satisfy standard normalization and orthogonality
relations30,39

E
0

sR

fRl
2 srdr2dr = 1, E

0

sR

fRlsrdḟRlsrdr2dr = 0, s2d

wheresR denotes the radius of theRth sphere. In the ASA,
the interstitial part of the orbital is omitted and the functions
fRlsrd and ḟRlsrd are set to zero outside theRth sphere.
Using the notation r R=r −R an orthonormal basis of
LMTO’s hxRLsr dj reads

xRLsr d = fRLsr Rd + o
R8L8

ḟR8L8sr R8dhR8L8,RL, s3d

wherehR8L8,RL is a real symmetric matrix defined in a stan-
dard way.30,40The first term on the right-hand side of Eq.s3d
represents the head of the LMTO’s and the second term rep-
resents the tail.

The second-order TB-LMTO-ASA Hamiltonian in the or-
thonormal basis given by Eq.s3d reads30,40

HRL,R8L8 = CRLdRL ,R8L8 + ÎDRL

3hSaf1 + sa − gdSag−1jRL,R8L8
ÎDR8L8, s4d

where the real constantsCRL, DRL, and gRL are standard
potential parameters. The superscripta denotes a LMTO
representation defined by a set of screening constantsaRL,
andSRL,R8L8

a is a real symmetric matrix of screened structural
constants in thea representation. The Hamiltonian in Eq.s4d
is invariant with respect to the LMTO representation, so with
suitable choice ofaRL the screened structural constant matrix
can typically be reduced to the second-nearest neighbors for
close-packed lattices.30 It can be shown30,40 that the Hamil-
tonian in Eq.s4d is related to the coefficientshR8L8,RL of Eq.
s3d by a simple diagonal shift

HRL,R8L8 = En,RldRL,R8L8 + hRL,R8L8. s5d

FALEEV et al. PHYSICAL REVIEW B 71, 195422s2005d

195422-2



B. Charge density of a nonequilibrium system in LMTO-ASA
approach

Within the NEGF approach the electron density distribu-
tion can be obtained by

rsr d = − i
1

2p
o
RL

o
R8L8

E dExRLsr dGRL,R8L8
, sEdxR8L8sr d.

s6d

The lesser Green’s function is defined as41

GRL,R8L8
, sEd =

i

"
E dst − t8deiEst−t8d/qkcR8L8

† st8dcRLstdl ,

s7d

wherecRL
† st8d andcRLstd are Heisenberg’s operators for cre-

ation and annihilation of an electron in thexRL state.
For sitesR and R8 within the central region, the lesser

Green’s function is given by42

GcBL,c8B8L8
, sEd = i o

c1=1

N

o
c2=1

N

hGcBL,c1B1L1
sE+d

3 ffLsEdGc1B1L1,c2B2L2

L sEd

+ fRsEdGc1B1L1,c2B2L2

R sEdg

3 Gc2B2L2,c8B8L8sE−dj . s8d

The Fermi-Dirac distributions for the left and right leads
fLsEd and fRsEd are defined with chemical potentialsmL and
mR, respectively. In Eq.s8d we decompose the index of the
site R in the combinationR=hp,Bj, wherep is a principal
layer index andB is the index of an atom in principal layer
p. Here and below we assume the following convention for
the indices of principal layers: indices denoted asc,c8 ,c9 are
indices corresponding to the central region and run from 1 to
N, indices denoted asl , l8 , l9 are indices corresponding to the
left lead and run from −̀ to 0, indices denoted asr ,r8 ,r9 are
indices corresponding to the right lead and run fromN+1 to
+`, and indices denoted asp,p8 ,p9 are indices correspond-
ing to the entire system and run from −` to +`. Summation
is implied over repeating indicesB1L1 andB2L2 in Eq. s8d.
In what follows we will omit indicesBL and assume that all
corresponding quantities are matrices in these indicessmatrix
representationd. EnergiesE+ and E− have infinitesimally
small complex partsE±=E± i0, so GsE+d and GsE−d are
well-known retarded and advanced Green’s functions. The
Green’s functionGp,p8szd of complex energyz is defined as
the inverse of the Hamiltonian of Eq.s4d of the entire system

o
p8=−`

+`

szdp,p8 − Hp,p8dGp8,p9szd = dp,p9. s9d

MatricesGc,c8
L/RsEd in Eq. s8d read

Gc,c8
L/RsEd = ifSc,c8

L/RsE+d − Sc,c8
L/RsE−dg , s10d

where the so-called self-energy termsoc,c8
L and oc,c8

R repre-
sent the interaction with the left and right leads, and are
defined as

Sc,c8
L szd = o

l,1
o

l8,1

Hc,lGl,l8
L szdHl8,c8, s11d

Sc,c8
R szd = o

r.N
o

r8.N

Hc,rGr,r8
R szdHr8,c8. s12d

Here the Green’s function of the leftsrightd lead is defined as
the inverse of the Hamiltonian in Eq.s4d with all matrix
elements with indices outside the leftsrightd lead set to zero

o
l8,1

szdl,l8 − Hl,l8dGl8,l9
L szd = dl,l9 s13d

o
r8.N

szdr,r8 − Hr,r8dGr8,r9
R szd = dr,r9. s14d

Note thatGszd, GLszd, GRszd, and henceG,szd are invariant
with respect to the LMTO representation because the Hamil-
tonian is invariant.

If both indicesR andR8 of the lesser Green’s function in
Eq. s6d belong to the leftsrightd lead, then the equilibrium
formula for the lesser Green’s function can be applied41

GRL,R8L8
, sEd = fsEdfGRL,R8L8sE−d − GRL,R8L8sE+dg, s15d

where fsEd= fLsEd for the left lead andfsEd= fRsEd for the
right lead.

In Appendix A we show that Eq.s6d can be rewritten in
terms of diagonal elements of the lesser Green’s function

rsr d = − i
1

2p
o
LL8

E dEffRLsr Rd + ḟRLsr RdsE − En,Rldg

3GRL,RL8
, sEdffRL8sr Rd + ḟRL8sr RdsE − En,Rl8dg,

s16d

where the indexR labels a sphere which contains the vector
r . In the ASA, the charge-density distribution inside each
sphere is assumed to be spherically symmetric, thus the
angle averaged expression for the radial charge distribution
inside theRth sphere takes the form

rRsrd ;
1

4p
E dr̂rRsr d

= − i
1

8p2o
L
E dEGRL,RL

, sEd

3ffRlsrd + ḟRlsrdsE − En,Rldg2. s17d

In equilibrium, whenfLsEd= fRsEd= fsEd, the lesser Green’s
function takes the standard forms15d and the expression for
the charge densitys17d reduces to
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rRsrd = −
1

4p2o
L
E dEfsEdImhGRL,RLsE+dj

3ffRlsrd + ḟRlsrdsE − En,Rldg2. s18d

One can see that expressions18d is a linearized approxima-
tion to the exact charge-density formula for a system in equi-
librium

rR
KKRsrd ; −

1

4p2o
L
E dEfsEdImhGRL,RLsE+djfRl

2 sE;rd,

s19d

obtained by the multiple scattering method of Korringa,
Kohn and RostokersKKRd.40 Here fRlsE; rd is the solution
of the radial Schrödinger equation inside sphereR at energy
E. To minimize the error introduced by the linearization,
En,Rl in our approach is chosen in the center of gravity of
GRL,RL

, sEd for each sphereR and angular momentuml

o
m=−l

l E dEGRL,RL
, sEdsE − En,Rld = 0. s20d

C. Tight-binding formulation of LMTO-ASA

Expressionss8d–s14d and s17d completely define the
charge density of the system under nonequilibrium condi-
tions, but they are not suitable for practical applications.
Structural constants in the maximally screened representa-
tions are shortranged, but the Hamiltonian in Eq.s4d is sig-
nificantly longer ranged, so it is computationally very de-
manding to construct the Hamiltonian from known structural
constants, to solve directly for the Green’s functions, and to
determineGc,c8

L/RsEd for all principal layers in the central re-
gion. In order to take advantage of the short-ranged struc-
tural constants, one needs to rewrite the expression for the
lesser Green’s functions8d in terms of so-called auxiliary
Green’s functions40 which can be found by tight-binding
techniques the same way as it is done in equilibrium.

In order to address this problem let us introduce step ma-
tricesQ0 andQN, which are diagonal in all indicespBL with
diagonal elements given byQp,p

0 =1 for p.0, andQp,p
0 =0 for

pø0, and, analogously,Qp,p
N =1 for p.N, and Qp,p

N =0 for
pøN. The matrixQi si =0 or Nd can be interpreted as an
operator of the number of electrons that populate principal
layers withp. i. It is easy to see that

o
p=−`

`

o
p8=−`

`

Gc,psE+dfQ0,Hgp,p8Gp8,c8sE−d

= o
l,1

o
c9=1

N

fGc,c9sE+dHc9,lGl,c8sE−d

− Gc,lsE+dHl,c9Gc9,c8sE−dg, s21d

wherefQ,Hg=QH−HQ denotes the commutator of two ma-
trices. We assume here that the matrix elements of the
Hamiltonian between the left and right leads vanish. The

Green’s functions with mixed indicesGl,c and Gc,l can be
expressed in terms of surface Green’s function and Green’s
function of the central region by using the Dyson equations

Gl,cszd = o
l8,1

o
c8=1

N

Gl,l8
L szdHl8,c8Gc8,cszd,

s22d

Gc,lszd = o
l8,1

o
c8=1

N

Gc,c8szdHc8,l8Gl8,l
L szd.

Applying Eq. s22d to Eq. s21d and using the definition of
Gc1,c2

L one can find

o
p=−`

`

o
p8=−`

`

Gc,psE+dfQ0,Hgp,p8Gp8,c8sE−d

= i o
c1=1

N

o
c2=1

N

Gc,c1
sE+dGc1,c2

L sEdGc2,c8sE−d. s23d

Using the matrixQN instead ofQ0 yields an analogous equal-
ity for the right lead. Thus, the expressions8d for the lesser
Green’s function can be rewritten in the form

Gc,c8
, sEd = o

p=−`

`

o
p8=−`

`

Gc,psE+dhfLsEdfQ0,Hg

− fRsEdfQN,Hgjp,p8Gp8,c8sE−d. s24d

In the full matrix notation, where we omit all indices in-
cluding the principal layer index, the Hamiltonian reads

H = C + ÎDSaf1 + sa − gdSag−1ÎD. s25d

The commutator ofQi with the Hamiltonian takes the form

fQi,Hg = ÎDf1 + Sasa − gdg−1fQi,Sagf1 + sa − gdSag−1ÎD,

s26d

where we used the fact thatC, D, g, a, andQi are diagonal
matrices with respect topBL indices. Using the definition of
the Green’s functionGszd=fz−Hg−1 one can obtain

f1 + sa − gdSag−1ÎDGszd

= fsz− Cd/ÎDs1 + sa − gdSad − ÎDSag−1

= gaszdfD + sg − adsz− Cdg−1ÎD. s27d

Heregaszd is the so-called auxiliary Green’s function defined
as the inverse of the short-ranged matrixPaszd−Sa

o
p8=−`

+`

sPp
aszddp,p8 − Sp,p8

a dgp8,p9
a szd = dp,p9. s28d

The potential functionPaszd is diagonal overpBL indices,
and is defined as

Paszd = sz− CdfD + sg − adsz− Cdg−1. s29d

Similarly to equalitys27d one may obtain
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GszdÎDf1 + Sasa − gdg−1 = ÎDfD + sg − adsz− Cdg−1gaszd.

s30d

Utilizing equalitiess27d ands30d the lesser Green’s function
s24d can be rewritten as

Gc,c8
, sEd = hmasE+dgasE+dsfLsEdfQ0,Sag

− fRsEdfQN,SagdgasE−dmasE−djc,c8, s31d

where the diagonal matrixmaszd is defined by

maszd = ÎDfD + sg − adsz− Cdg−1. s32d

It can be shown that expressions31d does not have a
singularity at D+sg−adsz−Cd=0. Algebraically, Eq.s31d
looks exactly the same as Eq.s24d with Paszd−Sa taking the
place ofz−H. Similarly, the equivalent of Eq.s8d is

Gc,c8
, sEd = mc

asEdhfLsEdgc,1
a sE+dG1,1

a sEdg1,c8
a sE−d

+ fRsEdgc,N
a sE+dGN,N

a sEdgN,c8
a sE−djmc8

a sEd.

s33d

In the maximally screened LMTO representation the struc-
tural constantsSa connect only adjacent layers,Sp,p8

a =0 for
up−p8u.1; hence theGa matrix that appears in Eq.s33d has
only two nonzero componentsG1,1

a andGN,N
a defined as

G1,1
a sEd = iS1,0

a fg0,0
aLsE+d − g0,0

aLsE−dgS0,1
a ,

s34d
GN,N

a sEd = iSN,N+1
a fgN+1,N+1

aR sE+d − gN+1,N+1
aR sE−dgSN+1,N

a .

Here the surface auxiliary Green’s function of the leftsrightd
lead is defined as the inverse of thePaszd−Sa matrix which
has all matrix elements with indices outside the leftsrightd
lead set to zero

o
l8,1

fPl
aszddl,l8 − Sl,l8

a ggl8,l9
aL szd = dl,l9, s35d

o
r8.N

fPr
aszddr,r8 − Sr,r8

a ggr8,r9
aR szd = dr,r9. s36d

Equationss33d and s34d that define the lesser Green’s
function in terms of auxiliary Green’s function and surface
auxiliary Green’s functions form the central part of this
work. The matrixPaszd−Sa is tridiagonal in the principal
layer indices. This allows the use of well
developed30,37,40,42–45and very efficient tight-binding LMTO
approaches to calculate the auxiliary Green’s functiongc,c8

a szd
in the center region and surface auxiliary Green’s functions
g0,0

aLszd andgN+1,N+1
aR szd. The charge density can be calculated

then by using Eq.s17d.
One may verify that in equilibriumffLsEd= fRsEd= fsEdg

Eq. s33d takes the standard form41

G,sEd = − 2i f sEdImfGsE+dg. s37d

Importantly, formulas37d remains true even in the nonequi-
librium situation for energiesE such that the equality
fLsEd= fRsEd is satisfied.

D. Transmission coefficient and current in TB-LMTO-ASA

The current density can be obtained as

I =
e

A

d

dt
kQ̂0stdl , s38d

whereA is the cross-sectional area of the system in a plane

perpendicular to the direction of the current andQ̃0 is an
operator of the total number of electrons in principal layers
p.0

Q̂0std = o
p=−`

`

o
BL

QpBL,pBL
0 cpBL

† stdcpBLstd. s39d

Eq. s38d can be rewritten as

I = − i
e

"A
kfQ̂0,Ĥgl

=
2e

h
E dEo

p.0
o
l,1

trhHl,pGp,l
, sEd − Hp,lGl,p

, sEdj, s40d

where trh…j means trace over indicesBL, and the factor of 2
is for spin degeneracy. If the Hamiltonian is not spin degen-
erate the trace in Eq.s40d is also taken over spins. It can be
shown42 that expressions40d can be transformed to the Meir-
Wingreen form46

I =
2e

hA
E dETsE,VdffLsEd − fRsEdg, s41d

whereTsE,Vd is the transmission coefficient for the system
with finite bias voltageV applied to the electrodes, and given
by42

TsE,Vd = o
c1=1

N

o
c2=1

N

o
c3=1

N

o
c4=1

N

trhGc1,c2

L sEdGc2,c3
sE+d

3 Gc3,c4

R sEdGc4,c1
sE−dj. s42d

We show explicitly the dependence of the transmission coef-
ficient TsE,Vd on applied voltageV in order to stress that it
should be calculated for the nonequilibrium system whose
charge density and electrostatic potentials are found self-
consistently by using the theory described above.

In Appendix B we derive an expression for the transmis-
sions42d in terms of the auxiliary Green’s functions obtained
in the maximally screened LMTO representation

TsE,Vd = trhG1,1
a sEdg1,N

a sE+dGN,N
a sEdgN,1

a sE−dj. s43d

Note that the transmissions43d is invariant with respect to
the LMTO representation by constructionfsee definition
s42dg. In the linear response regime, when the applied volt-
age is small, the conductance takes the form

C =
I

V
=

2e2

hA
TsEF,V = 0d, s44d

whereEF is the Fermi energy of the entire system in equi-
librium. Expressionss43d ands44d for conductance coincide
with that obtained by Kudrnovskyet al.31 and Tureket al.32
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within the Kubo-Greenwood framework for equilibrium sys-
tems. Note, that our derivation of the expression for the
transmission coefficients43d obtained within the NEGF for-
malism does not exploit the approximation of piecewise con-
stant coordinate that was used in Ref. 32.

The equations for the lesser Green’s functions33d and the
transmission coefficients43d can be directly used for calcu-
lations of the ASA charge-density distributions17d and cur-
rent densitys41d for systems with a finite number of atoms in
each principal layer. In the case when the system has two-
dimensional translational invariance in thexy plane splane
perpendicular to the principal layers growth direction, thez
axisd these formulas may be easily modified. Let us assume
one and the same two-dimensional translational symmetry in
each principal layer. Then the Hamiltonian can be trans-
formed to thek representation

HpBL,p8B8L8skd = o
Ti

HpBL,p8sB8+TidL8e
ikT i. s45d

Herek is a two-dimensional vector in thexy plane from the
corresponding surface Brillouin zonesSBZd, and the index of
site R is rewritten in the formR=sp,B ,T id, wherep is the
principal layer index,B denotes the atom in the finite-sized
unit cell corresponding to thep-th principal layer, andT i is a
two-dimensional translation vector such thatR=B+T i.
Analogously, the structural constants can be transformed to
the k representation. Consequently, the physical Green’s
functions defined by Eqs.s9d, s13d, ands14d, and the auxil-
iary Green’s functions defined by Eqs.s28d, s35d, and s36d
will have momentum indexk. Thus, the expressions17d for
ASA charge density and expressions41d for current density
should be transformed to

rRsrd = − i
1

8p2

1

Ni
o
k

o
L
E dE

GRL,RL
, sk ,EdffRlsrd + ḟRlsrdsE − En,Rldg2 s46d

and

I =
2e

hA
o
k
E dETsk,E,VdffLsEd − fRsEdg, s47d

where expressions forGRL,RL
, sk ,Ed and Tsk ,E,Vd take the

same form as in Eqs.s33d and s43d with the only difference
that the structural constants and the auxiliary Green’s func-
tions will have momentum indexk. Ni in Eq. s46d is the
number ofk points in SBZ.

III. NUMERICAL PROCEDURE

The starting point of our implementation is a principal
layers TB-LMTO-ASA code37 that describes systems with
two-dimensional translational symmetry in equilibrium at
zero temperature. We present here a zero temperaturenon-
equilibrium version of the code that assumes one and the
same two-dimensional translational symmetry in each prin-
cipal layer. Before starting the self-consistent calculation of
the charge density in the central region, separate equilibrium
self-consistent calculations for the leads are performed in a

bulk geometry. From these calculations the surface auxiliary
Green’s functionss35d and s36d and Ga matricess34d are
determined using a very effective decimation technique.45

A. Energy integration

In order to calculate the radial charge density distribution
in Eq. s46d one needs to calculate three energy moments of
the lesser Green’s function

MRL
n =

− i

Ni
o
k
E dEGRL,RL

, sk,EdsE − En,Rldn, s48d

where n=0,1,2. Theenergy integration in Eq.s48d is di-
vided into integrations along two separate contours: from an
energyEB below the bottom of the valence band tomL sequi-
librium contourd, and frommL to mR snonequilibrium con-
tourd

MRL
n = − ImH 2

Ni
o
k
E

EB

mL
dzGRL,RLsk,zdsz− En,RldnJ

−
i

Ni
E

mL

mR
dEGRL,RL

R, sk,EdsE − En,Rldn. s49d

Here we used Eq.s37d and the fact that at zero temperature
fLsEd and fRsEd are simple step functions.GR,sEd is a part
of G,sEd in Eq. s33d proportional tofRsEd. Expressions49d
is valid for any sign of the applied potential. The first inte-
grand on the right-hand side of Eq.s49d is an analytical
function in the upper half plane of complex energyz. To
avoid sharp features of the Green’s function on the real axis,
the integration is performed along the complex contour

z= smL + EBd/2 + fcosu + is1 − «dsinugsmL − EBd/2,

s50d

whereu runs from −p to 0. We found that the values of the
momentss49d are not very sensitive to the eccentricity pa-
rameter« of the contour. Typical« in our calculations ranged
from 0.3 to 0.5. Also we checked that the values of the mo-
ments do not depend on the choice of the energyEB as long
as it is below the bottom of the valence band, where the
lesser Green’s functionGRL,RLsk ,Ed vanishes for allR, L,
andk. The integral is evaluated by Gaussian quadrature with
10 to 20 points along the contour. In most cases, 14 points is
enough for accurate evaluation of the integral.

The second integrand on the right-hand side of Eq.s49d is
not an analytical function and has to be evaluated along the
real axis. Two broadening parameters are used for evaluation
of GR,. The first parameterd is an imaginary part of energy
E±=E± id used to find the surface auxiliary Green’s func-
tions s35d and s36d. The second parameterd2 is the imagi-
nary part of energyE±=E± id2 used to find auxiliary Green’s
functions of the central regionga s28d. The second broaden-
ing parameterd2 has to be set very smallstypically d2
=10−10 Ryd because broadening ofga should be determined
by the complex part of the surface self-energy matricesG1,1

a

andGN,N
a and not by the complex part of the energy. In fact,

if the contribution ofd2 to the broadening ofga becomes
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comparable with the contribution fromGa factors, then for-
mula s8d for the lesser Green’s function is not longer valid.
The d2 parameter is kept finite to avoid a false singularity at
D+sg−adsz−Cd=0. The value of the parameterd deter-
mines how many energy points are needed to evaluate the
energy integral along the nonequilibrium contour. This inte-
gral is calculated using a trapezoidal method. In some cases
the integrand has very sharp features, so care should be taken
with respect to the broadening parameterd and the number
of energy points used along the nonequilibrium contour.

B. Electrostatic potential

The total potential is a sum of the LDA exchange-
correlation potential and electrostatic potential. The later in-
cludes the Hartree potential and nuclei potentials. The elec-
trostatic potential and charge distribution are determined
self-consistently using an iteration scheme. A supercell is set
up that includes the central region with layersp=1,… ,N,
two layers from the left leadp=−1,0, and two layers from
the right leadp=N+1,N+2. The atoms in the leads are as-
sumed to have bulk charges and the atoms in the central
region have charges determined in the previous iteration. The
supercell is assumed to repeat itself in thexy plane stwo
translation vectorsd and in the third directionsthird transla-
tion vectord, in such a way that atoms in principal layer −1
from the left lead become adjacent to atoms in principal
layer N+2 from the right lead. In the case of leads of the
same material the best choice of the third translation vector
is when the coordinates of the atoms in principal layer −1
after translation coincide with coordinates of the atoms in
principal layerN+3. The electrostatic potential in the center
of theBth sphere belonging to the supercell is determined by
three-dimensional Ewald summation of Coulomb contribu-
tions from all spheres of the infinitely repeated supercell. The

Ewald summation produces a periodic potentialṼB+T =ṼB,
where T is a translation vector of the supercell. A linear
contribution is added to the potential in order to satisfy the
condition of potential dropV at the boundaries of the super-
cell. Thus, the electrostatic potential in the center of theBth
sphere reads

VB = ṼB + V
z

Lz
+ C, s51d

whereLz is thez component of the third translation vector of
the supercell. The constant shiftC is determined at the last
stage of the iteration, when the charges are calculated, from
the condition of charge neutrality of the central regionseach
principal layer in the lead regions is charge neutral alreadyd.
The spherically symmetric electrostatic potential inside the
Bth sphere is obtained from the radial charge distribution in
this sphere by the solution of the radial Poisson’s equation.

At the next step of the iteration the Schrödinger equation
is solved to find the radial amplitudesfRlsrd and ḟRlsrd for
atoms in the central region.sThus, in the LMTO approach,
the basis functionss3d are updated on each iteration in ac-
cordance with the potential. This is different from other tech-
niques that use fixed basis functions, optimized for the free

atom potentials.d Then, potential parameters for these atoms
are calculated.40 Using these potential parameters as well as
structural constants in the maximally screened LMTO repre-
sentation, the auxiliary Green’s function and the lesser physi-
cal Green’s function are calculated. ThenEn,Rl is updated. It
is chosen as a center of gravity of theRl projected density of
statessDOSd, from the condition

o
m=−l

l

MRL
1 = 0. s52d

Finally, the energy moments and the radial density distribu-
tions are found. This completes the iteration. The described
iteration cycle is repeated until input and output charge den-
sities coincide with prescribed accuracy.

We checked how much the values of the electrostatic po-
tentials and charges in the “bulk” principal layersp=0 and
p=N+1 calculated using the above procedure for multilayer
geometry differ from the corresponding values obtained by
separate equilibrium bulk calculations for infinitely repeated
leadssthe bulk values were used for layersp,1 andp.N in
actual multilayer calculationsd. If the difference was not
small the size of the central region was increased. Addition-
ally, we checked the convergence of the final results with
respect to the size of the central region.

C. Test system

In order to test the method we perform calculations for a
“capacitor” system of two golds111d surfaces with a vacuum
region between them. The central region of the system con-
sists of four layers of gold atoms, three layers of empty
spheres, and then again four layers of gold atoms. An empty
sphere is a sphere which does not contain nuclear charge and
represents vacuum regions in the ASA method. Semi-infinite
gold right and left leads are assumed to be attached to the
central region of the system. Positions and radii of all
spheres correspond to bulk gold and thexy plane corre-
sponds to the golds111d surface. In the numerical implemen-
tation each principal layer consists of a single gold atomic
sphere or an empty sphere. The self-consistent charge density
and potential were calculated for this system in two different
ways. First, we applied ournonequilibrium approach de-
scribed above to the system withV=1.36 V applied biass0.1
Ryd. Then we applied the well-tested originalequilibrium
TB-LMTO-ASA method to the same system with a linear
external potential that contains a 1.36 V discontinuity in the
center of the vacuum region

Vextszd = HVs− z/Lz + 0.5d, z. 0

Vs− z/Lz − 0.5d, z, 0
J . s53d

The results for induced potential in the center of the spheres
and induced charge on the spheres calculated by these two
methods are shown in Fig. 1 for the central region with two
additional principal layers from each leads15 spheres totald.
Since the vacuum region is thick, there is essentially no cur-
rent flowing through the system. Hence, the two methods
produce essentially identical results. It is seen from the figure
that the potential is very effectively screened by the first gold
atoms adjacent to the vacuum region.
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IV. APPLICATIONS

A. Benzene di-thiol molecule coupled to gold electrodes

The problem of understanding the contact resistance of a
single molecule coupled to metallic electrodes has attracted
great interest in recent years. A common way to attach a
molecule to electrodes is by using thiol endgroups that easily
bind to gold surfaces. A benzene di-thiolsBDTd molecule
attached to golds111d surfaces, one of the simplest systems
of this type, has been studied experimentally47–49 and
theoretically.3–5,9,11,13,16,20,26,50–54There is no general agree-
ment among theoretical groups or among experimental
groups about the value of the small bias conductance for this
system. Theoretical and experimental results for conductance
of the system differ by more then two orders of magnitude,
with theoretical results ranging from 0.1 to 32mS, and ex-
perimental results ranging from 0.003 to 0.8mS. The large
spread in experimental results can be explained by the diffi-
culty in controlling the exact geometry of the system. The
theoretical results differ because different approximations are
employed for the calculation. Di Ventraet al.51 employed a
jellium approximation for the electrodes, while other
groups3–5,9 used semi-empirical approaches to describe the
electrodes. In Refs. 11,13,16,26 the electrodes were treated
on the same footing as the molecule. Damleet al.16 and the
TRANSIESTA group26 used the NEGF formalism to calculate

the current at finite bias, while Tomfohr and Sankey13 and
Everset al.11 calculated the zero bias transmission. Impor-
tantly, all of these approaches employed the pseudopotential
approximation to treat core electrons. Our approach differs
from these calculations in that all electrons are treated, which
allows, for example, a simple treatment of magnetic
systems.33 A further distinction is that the ASA-LMTO basis
functions are constructed differently from the LCAO or
Gaussian basis; for example, in the LMTO approach the ba-
sis functions are updated at each iteration following the
change in the potential, while in other approaches they are
fixed and optimized for the description of free atoms. An-
other distinction is that our LMTO basis functions are long
ranged, while LCAO and Gaussian functions are localized.

In this section we apply our method to calculate the elec-
tronic structure and transport characteristics of the BDT mol-
ecule coupled to two Aus111d surfaces. Recently, several the-
oretical studies have shown9,13,51–54that the conductance of
the benzene di-thiol molecule strongly depends on the geom-
etry how the molecule is positioned with respect to the gold
electrodes. Moreover, the precise geometry of the system is
not known in the experiment. Thus, we may only quantita-
tively compare the results of different theoretical approaches
obtained for the same geometry. The geometry of the system
that we study is shown in Fig. 2. The central region of the
system consists of three Aus111d-s333d layers, the layer
with the BDT molecule, and then three more Aus111d-
s333d layers, positioned symmetrically to the first three Au
layers. The semi-infinite left and right gold electrodes are
attached to the ends of the central region. The cell is assumed
to repeat itself periodically in thexy plane. Atomic positions
were determined as follows. First, we find the Au-S distance
by positioning a single S atom over the Aus111d surface at a
threefold site and then relax the positions of the atoms by
using theVASP molecular dynamics program55 with LDA
exchange-correlation potential. Then we placed the BDT
molecule between the gold surfaces with the calculated Au-S
distance and relaxed the structure again with fixed dimen-
sions of the unit cell. In this procedure we obtained a Au-S
distance of 2.42 Å and a S-C distance of 1.74 Å, in agree-
ment with the values obtained in Ref. 26. We checked that
our results do not change significantly if we choose relaxed
Au positions or ideal bulk positions of Au, thus confirming

FIG. 1. sColor onlined The difference between the electrostatic
potentialDV in the center of the spheresstop paneld and chargesDQ
on the spheressbottom paneld for the “capacitor” with applied bias
V=−1.36 V and with zero bias as a function of the sphere’sz co-
ordinatesin units of Bohr radiusa0d calculated by the NEGF ap-
proachscirclesd and by the equilibrium approachssquaresd. For the
sake of comparison the potential of the equilibrium calculation is
shown shifted by +V/2 for z.0 and by −V/2 for z,0. The circles
are connected by solid lines and squares are connected by dashed
lines. Vertical dotted lines show the positions of the left-most and
right-most gold layers of the capacitor surfaces.

FIG. 2. sColor onlined The computational cell used for simula-
tion of transport properties of the BDT molecule coupled to two
gold s111d surfaces. The cell repeats itself in thexy plane. Left and
right semi-infinite gold leads are attached to the cell. The atoms
between the two vertical lines constitute the central region, while all
atoms in the figure form a supercell, periodic in three dimensions,
used to calculate the electrostatic potential.
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the result of theTRANSIESTA group.26 Also we checked that
variation of the atomic positions of the gold atoms or atoms
of the benzene di-thiol molecule within 0.03 Å range do not
affect our results significantly.

In our calculations we neglected the electron-phonon cou-
pling effects and changes of the atomic positions due to the
current-induced forces. It has been shown recently56 that the
current-induced forces do not substantially affect the value of
the current for biases as high as 5 V. The electron-phonon
coupling effects were also estimated to be small,57 at least for
biases up to 0.1 V. Also we checked the effect of increasing
the cell size. We performed calculations for a Aus111d-s4
34d system and found that increasing thex-y cell size from
s333d to s434d has only minor effects on the equilibrium
DOS and transmission spectrum.

The other source of error in our approach is the use of the
local density approximation to describe a many-body system.
It is well known that LDA suffers from many deficiencies, in
particular its underestimate of band gaps in semiconductors
and insulators. The error in the determination of the molecule
energy levels may affect the position of the resonant peaks in
the DOS and transmission function and hence the magnitude
of the current. The natural way to go beyond LDA is to
perform calculations within the so-called GW approximation
of the many-body theory. It has been shown recently that the
GW approximation can accurately predict electronic struc-
ture and band gaps even for strongly correlated systems.58

Unfortunately, the GW calculations are very time consuming
and cannot be performed, at least for now, with the large
number of atoms required for the present calculations.

The atomic sphere approximation assumes that all space
is filled by soverlappingd spheres and that the volume of the
interstitial region vanishes. In order to fill the vacuum space
between Au electrodes with spheres, we used the Stuttgart
LMTO-ASA program.59 This program fills space by empty
spheres using the following criteria: The sum of the volume
of all spheres should be equal to the volume of all space, the
average overlap between the spheres should be minimal, and
the radii of all spheres should be chosen in such a way that
the spheres overlap in the region close to the local maximum
of the electrostatic potential. The choice of the empty spheres
packing structure is not unique. This is the main drawback of
ASA when applied to systems that contain large vacuum re-
gions. On the other hand, for a large enough number of
closely packed empty spheres the results only weakly depend
on the empty spheres packing structure. In our case we used
139 empty spheres to fill the vacuum space in the central
region in addition to 54 Au atomic spheres and 12 BDT
atomic spheres. In order to verify that this number of empty
spheres is sufficient for an accurate description of the elec-
tronic structure of the system we performed full potential
calculations38 for a supercell with three-dimensional period-
icity containing the BDT molecule and from four to five
Aus111d-s333d layers. The results for the density of states
projected on the BDT molecule atomic spheres obtained by
full-potential supercell calculations and by LMTO-ASA cal-
culations for an equilibrium system in the multilayer geom-
etry are shown in Fig 3. It is seen from the figure that these
two methods produce similar results for the DOS, confirming
the appropriateness of the empty sphere packing structure.

The general shape of the molecule-projected DOS in Fig.
3, the position of the maximum of the broad peak at about
−1.3 eV as well as the 5.2 eV difference in positions of the
two sharp peaks at −2.1 and +3.1 eV agree well with results
obtained by theTRANSIESTA group,26 although the positions
of the last two peaks are shifted to lower energies by about
0.3 eV compared to our results. Also, our DOS does not
show the fine structure between peaks at −2.1 and −1.3 eV
that can be found in theTRANSIESTA results. The DOS pro-
jected on the BDT molecule found in Ref. 3 differs some-
what with our results and with the results presented in Ref.
26 . Note that the authors of Ref. 3 used a system setup of a
single BDT molecule on the surface of gold electrodes with a
finite number of atoms in thexy plane, while our calculation
and Ref. 26 use a system setup of a self-assembled mono-
layer with s333d periodicity in thexy plane. Also, the au-
thors of Ref. 26 used only onek =0 point in the SBZ to
reduce the computational efforts,19 while we use an3n grid
in the SBZ, wheren is the number ofk points along each
translation vector of SBZ. Our results are well converged for
n=10, giving 36 irreduciblek points in the SBZ. We found
that the use of just onek=0 point in SBZ is not sufficient to
obtain accurate DOS and transmission function, although,
because of the large size of the unit cell in thex-y plane, the
dependence on the number ofk points is weak and results
begin to converge already forn,5.

It is interesting to see how the DOS changes if a finite
bias is applied to the leads. Figure 4 shows the DOS pro-
jected on the left and right sulfur atomic spheres for four
different applied voltages. The figure shows that the sulfur
peaks in the DOS move symmetrically, relative to the aver-
age chemical potentialsmR+mLd /2, essentially following the
left and right Fermi levels. Indeed, the difference between
the positions of the peaks for the left and right sulfur DOS
corresponds to the value of the applied bias multiplied
roughly by a factor of 0.85. It can be concluded that the
energy levels of the Kohn-Sham wave functions that are spa-
tially concentrated inside a sulfur atomic sphere, essentially

FIG. 3. sColor onlined The density of states projected on the
BDT molecule atomic spheres obtained by the LMTO-ASA method
ssolid lined for an equilibrium system in the multilayer geometry
and by full potential supercell calculationssdotted lined.
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follow the chemical potential of the gold electrode adjacent
to that sulfur atom.

The DOS projected on the left-most and right-most car-
bon atomic spheres are shown in Fig. 5. One can see that the
outer carbon DOS changes only weakly with applied bias.
The small changes in DOS around the peak at −2.1 eV cor-
respond to the contribution of long-ranged wave functions
that respond to the change in the chemical potentials of the
leads. Figure 6 shows the DOS projected on the four inner

carbon spheres and four hydrogen spheres. The DOS of the
inner C4H4 atoms is almost unaffected by applied bias. The
small changes in DOS around the peak at −2.1 eV foreight
atomic spheres in Fig. 6 are about the same order of magni-
tude as those for thesingle right-most or left-most carbon
sphere in Fig. 5. Thus, the applied bias affects mostly the
states with wave functions concentrated in the sulfur spheres
by shifting the energy levels of these states close to the
chemical potential of the nearest electrode. Analyzing Figs.
4–6, we can clearly identify the origin of the peaks in the
zero-bias molecule-projected DOS shown in Fig. 3. The
broad peak at −1.3 eV corresponds to the Kohn-Sham wave
functions that are mostly concentrated inside sulfur atomic
spheres and have small weight inside other atomic spheres of
the BDT molecule. The three narrow peaks at −3.8, −2.1, and
3.1 eV correspond to the wave functions distributed over the
inner ring of six carbon and four hydrogen atomic spheres
with smaller weight inside the sulfur spheres.

The induced potentialDV, defined as the difference be-
tween the electrostatic potential in the center of a sphere for
the system with an applied bias of 2.72 V and that for the
system with zero bias, is shown in Fig. 7 as a function of the
z coordinate of the sphere’s center. The induced potential is
basically a smooth function of the coordinatez, with an al-
most linear behavior in the molecule region. Two small kinks
at z= ±5.87a0 correspond to the sulfur spheres. These kinks
in the potential can be explained by the fact that the induced
charge on a sulfur sphere is more then two times larger then
induced charges on neighboring spheres.

It can be seen from Fig. 7 that the induced potential is
well screened beyond the second Au layersz= ±13.28a0d,
thus supporting our choice for the central region. We also
confirmed that results do not change significantly if a larger
number of Au layers are included in the central region. The
difference between the values of the electrostatic potential
near the left and right sulfur spheres is about equal to the
applied bias multiplied by a factor of 0.85. This explains the
value of the shift of the sulfur DOS in Fig 4. The very small
dependence on the applied bias of the DOS projected on the
carbon and hydrogen atomsssee Figs. 5 and 6d can be ex-
plained by the fact that the wave functions of the inner ring

FIG. 4. sColor onlined DOS projected on the leftstop paneld and
right sbottom paneld sulfur atomic sphere for four different bias
voltages.

FIG. 5. sColor onlined DOS projected on the left-moststop
paneld and right-mostsbottom paneld carbon atomic sphere for four
different bias voltages.

FIG. 6. sColor onlined DOS projected on the C4H4 inner atoms
of the BDT molecule for four different bias voltages.

FALEEV et al. PHYSICAL REVIEW B 71, 195422s2005d

195422-10



of the BDT molecule are distributed over the whole ring and
have symmetry with respect to inversion of thez coordinate.
Treating the induced potential, antisymmetric with respect to
inversion of thez coordinate, as a small perturbation, the
correction to the energy level of such wave functions in first-
order perturbation theory vanishes. This symmetry argument
does not apply to thedegenerateequilibrium states concen-
trated mostly inside the left and right sulfur atomic spheres
and whose energy levels follow the induced potential.

The current as a function of applied bias is shown in Fig.
8. For comparison we also show the current calculated by
using the zero-bias transmission functionTsk,E,V=0d in Eq.

s47d. It is seen that the currents obtained by these two meth-
ods coincide only for small bias; for voltage larger then 2 V
they significantly deviate. Thus, the nonequilibrium effects
become essential for transport properties of the system for
biases larger then 2 V. In order to better understand the de-
pendence of the current on applied bias we present in Fig. 9
the transmission spectrum calculated by the NEGF approach
for four different bias voltages. The bias window, corre-
sponding tomR and mL, is shown in the figure by vertical
dotted lines. At zero bias the peaks in the transmission func-
tion correspond to the peaks of the DOSssee Fig. 3d except
that the narrow DOS peak at −2.1 eV is not present in the
zero-bias transmission. This may be explained by the fact
that the very narrow peak of the DOS at −2.1 eV corre-
sponds to a localized molecule state which has weak cou-
pling to the gold leads. The broad sulfur peak 1.3 eV below
the Fermi energy determines the value of the zero-bias con-
ductance.

The zero-bias transmission spectrum presented in the top
panel in Fig. 9 is in rough agreement with the transmission
spectrum obtained by Xueet al.,3 and Xue and Ratner,9 by
Evers et al.,11 and by TRANSIESTA.26 In particular, all four
methods show that the transmission peak closest to the Fermi
energy is located about 1.3 eV below the Fermi energy. This
result is in disagreement with results of Di Ventraet al.,51

FIG. 7. The Induced potential at the sphere centers as a function
of the sphere’sz coordinate for the system of BDT molecules at-
tached to twos111d gold electrodes with an applied bias of 2.72 V.
The induced potential for 241 spheres is shown, including 139
empty spheres, 12 BDT spheres, 54 Au spheres in the central re-
gion, and an additional 36 Au spheres in the two left lead layers and
two right lead layers that are included in the construction of the
supercell for electrostatic potential calculation. The atomic spheres
that have the same values of thez-coordinate and induced potential
value are shown in the figure as a single point. Vertical dotted lines
show the positions of the left-most and right-most gold layers of the
right and left electrode, respectively.

FIG. 8. Current as a function of bias. Solid line with dots rep-
resents current obtained by the NEGF approach. Dashed line repre-
sents current calculated from zero-bias transmission coefficientssee
text for detailsd.

FIG. 9. Transmission coefficient calculated by the NEGF ap-
proach for four different bias voltages. The bias window is shown
with the vertical dotted lines.
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who found that the Fermi energy is closer to the LUMO
transmission peak.

The zero-bias conductance is proportional to the transmis-
sion coefficient at the Fermi energy, as given by Eq.s44d. We
obtain a value for the zero-bias conductance of 5.0mS. Di
Ventraet al.51 found a conductance of 3mS. Xu et al. found
a conductance of 2.8mS,3 and later corrected it to 4.8mS.9

Evers et al.11 obtain the value of 12mS, Tomfohr and
Sankey13 found the value of 7mS, and Damleet al.16 found
the value of 6mS. TheTRANSIESTA group obtained a con-
ductance value of 32mS. Such a large conductance arises
because the transmission peak at −1.3 eV obtained in Ref. 26
is twice as broad as the zero-bias transmission peak shown in
Fig. 9.

The experimental value of the zero-bias conductance was
measured as 0.003mS in earlier work by Reedet al.47 In
more recent experiments,49 this value was measured to be
more then two orders of magnitude larger, namely, 0.85mS.
This large difference in experimental results may be ex-
plained by the fact that the exact geometry of the system
cannot be controlled when measurements of the conductance
are made.

It is interesting to see how the transmission spectrum cal-
culated by the NEGF approach changes with bias. The peak
in the zero-bias transmission at −1.3 eV splits into two peaks
that move away from each other as the bias increases, in
accordance with splitting of the left and right sulfur projected
DOS ssee Fig. 4d. The maximum of the “right sulfur” trans-
mission peak that moves to higher energy decreases with
bias. It can be explained by the fact that for finite bias the
energy of an electron propagating from right to left cannot be
simultaneously a resonant energy of both left and right sulfur
projected DOS as it happens at zero bias. The maximum of
the “left sulfur” transmission peak that moves to lower ener-
gies decreases for applied bias less then,1 V but after this
it begins to increase because it becomes resonant with the
energy levels of the inner ring of the BDT molecule. The
peak of the transmission spectrum at 3 eV is not changed
much with applied bias, in accordance with the behavior of
the inner ring projected DOSssee Fig. 6d.

We can now explain the behavior of the current as func-
tion of applied bias shown in Fig. 8. At firstsV&1.4 Vd, the
current increases supralinearly, as the width of the Fermi-
level window increases and the left Fermi level rides up the
peak of the right sulfur. Current saturationsat ,1.6 Vd arises
as the maximum of the right sulfur transmission peak reaches
the left Fermi level. Around a bias of 3 V the current in-
creases again because the bias window approaches the next
resonance peak of the transmission spectrum at lower energy.
This pattern of current behavior is in agreement with previ-
ous results,9,13,26with the saturation plateau in the same volt-
age range of 1.6–3 V. No plateau appears in theI-V curve
obtained by Damleet al.16 The magnitude of the current at
the plateau is roughly the same in our work and in Refs.
9,13, but half as much as in Ref. 26 . The current measured
in recent experimental work49 shows supralinear current in-
creasesfor measured voltages up to 0.7 Vd, although the
magnitude of the current is six times less then our theoretical
simulations.

B. Contact resistance of a single Au (Pt) atom coupled to Au
(Pt) electrodes

Atomic-sized contactssASCsd have been intensively stud-
ied both experimentally and theoreticallysfor a review on
ASCs see Ref. 60d. It is known that the conductance of cer-
tain materialsssuch as alkaline or noble metalsd takes an
integer value of the quantum of conductanceG0=2e2/h
when the size of the contact becomes comparable with the
Fermi wavelength. The experimental studies show that the
conductance of a single Au atom is distributed in a narrow
range nearG0,

25,61–64while the conductance of a single Pt
atom varies in a much broader range of 1.5−2.0G0.

25,63,65

The first ab initio calculation of the contact resistance and
I-V curve of a single AusPtd atom coupled to AusPtd elec-
trodes was presented25 by theTRANSIESTA group. In this sec-
tion we apply our method to calculation of theI-V-curves of
single Au and Pt atoms and compare our results withTRAN-

SIESTA results and experiment.
The atomic structure of the system is shown in Fig. 10.

The central region of the system consists of four Ms100d-
s333d layers with atoms in ideal bulk positions, the layer
with a single M atomsthe central atomd, and four more
Ms100d-s333d layers, positioned symmetrically to the first
four M layers. Here M denotes the metal, Au or Pt. The
atom-electrode distance was chosen to be 2.9 Å , the same as
in Ref. 25 . The semi-infinite left and right M electrodes are
attached to the ends of the central region. The cell is repeated
periodically in thexy plane.

The zero bias transmission spectrum for three empty
spheres packing structures of the gold system with 83, 87,
and 95 empty spheres is presented in Fig. 11. The transmis-
sion curves are very similar for these packing structures,
thus, the convergence with respect to the number of empty
spheres is achieved. In order to better understand the equi-
librium transmission spectrum shown in Fig. 11 we present
the spd angular momentum resolved DOS projected on the
central Au atomic sphere in Fig. 12. It is easy to see the
correspondence between the peaks of the DOS for different
angular momentum projections and the peaks of the trans-
mission spectrum in Fig. 11. The main contribution to the
DOS of the central gold atom near the Fermi energy comes
from a broads-character peak. The broad peak with the same

FIG. 10. sColor onlined The computational cell used for simula-
tion of transport properties of a single AusPtd atom coupled to two
Au sPtd surfaces. The cell repeats itself in thexy plane. Left and
right semi-infinite leads are attached to the cell. The atoms between
the two vertical lines constitute the central region, while all atoms
in the figure form a supercell, periodic in three dimensions, used to
calculate the electrostatic potential.
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shape can be seen in the transmission curves in Fig. 11. It
can be concluded that the wave functions withs-like charac-
ter give most of the contribution to the zero bias transmission
near the Fermi energy, and, correspondingly, to the conduc-
tance. Our value of 0.94G0 for the zero-bias conductance of
a single gold atom coupled to Au electrodes is in good agree-
ment with theTRANSIESTA value of 1.05G0 sRef. 25d and the
experimental results.25,61–64

The transmission spectra calculated for the system at zero
bias and under an applied bias of 1.09 V are shown in Fig.
13. The curves are very similar over a wide range of energy.
Such a weak dependence of the transmission on the energy
and applied bias for the gold system results in almost ohmic
behavior of the current, shown in Fig. 14, with respect to the
applied voltage. Only small deviations from linear behavior

occur at higher voltages for the gold system. Figure 14 also
shows the current calculated from the zero-bias transmission
spectrum by usingTsk ,E,V=0d in Eq. s47d, which almost
coincides with the current obtained by self-consistent calcu-
lations with finite applied bias. This is consistent with the
transmission spectrum being weakly dependent on the ap-
plied bias. The transmission spectrum at zero bias and finite
bias shown in Fig. 13 agrees well withTRANSIESTA results.25

We now turn to the system of a single Pt atom coupled to
two Pt electrodes. The zero bias transmission spectrum for
three empty spheres packing structures of the system with
83, 91, and 107 empty spheres are shown in Fig. 15. The
transmission curves are very similar for these packing struc-

FIG. 11. sColor onlined Zero-bias transmission spectrum for a
single Au atom coupled to semi-infinite Au electrodes for different
empty spheres packing structures, with 83ssolid lined, 87 sdashed
lined, and 95sdotted lined empty spheres.

FIG. 12. sColor onlined The spd angular momentum resolved
DOS projected on the central gold atomic sphere for the single gold
atom system.

FIG. 13. sColor onlined Transmission spectrum for a single Au
atom coupled to semi-infinite Au electrodes calculated at zero bias
and at a bias of 1.09 V.

FIG. 14. sColor onlined Current as a function of applied voltage
for the gold systemssolid line with filled circlesd and platinum
systemssolid line with open squaresd. The currents for these two
systems calculated from the zero bias transmission spectrum are
also shown by dotted lines that coincide at small voltage with ap-
propriate solid lines.
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tures; thus, the convergence with respect to the number of
empty spheres is achieved. Figure 16 shows thespdangular
momentum resolved DOS projected on the central Pt atomic
sphere. Unlike gold, platinum has an opend shell, so there is
significantd character contribution to the DOS of the central
Pt atom near the Fermi energy. It is easy to see the corre-
spondence between thed-character peak at −0.3 eV, broader
than thes-character peak at +1.7 eV of the momentum re-
solved DOS in Fig. 16 and the peaks of the transmission
spectrum in Fig. 15. Thus, wave functions with boths andd
characters contribute to the zero bias transmission near the
Fermi energy with somewhat larger contributions of the
d-character wave functions. Our value of 1.76G0 for zero-
bias conductance of a single Pt atom coupled to Pt electrodes
is in good agreement with theTRANSIESTA value of 1.73G0
sRef. 25d and the experimental results.25,63,65

The transmission spectrum calculated for the system un-
der zero bias and under an applied bias of 0.88 V are shown
in Fig. 17. These curves significantly deviate at energies less
then 0.5 eV. The strong dependence of the transmission on
the energy and applied bias for the platinum system results in
a much stronger deviation of theI-V curve, shown in Fig. 14,
from linear behavior as compared to theI-V curve for the
gold system. The peak of the transmission function at
−0.3 eV shifts to lower energies with applied bias and its
value decreases. This results in a reduction of the current
compared to the current calculated from the zero-bias trans-
mission spectrum shown by a dotted line in Eq.s47d. Our
results agree with experiential and theoretical results pre-
sented in Ref. 25.

The induced potentials for the gold and platinum systems
with applied bias of 0.68 V are shown in Fig. 18. As can be
seen, the induced potentials for the gold and platinum sys-
tems are very similar. Most of the potential drop occurs be-
tween surface layers of the electrodes, shown in the figure by
dotted lines. Between these lines the voltage drop is almost
linear. Because of the small size of the vacuum region the
four AusPtd layers to the left and to the right of the central
atom are not enough to completely screen the potential.
Some small voltage drop at the end of the supercell can still
be seen in Fig. 18. In order to quantify the importance of this
effect, we performed calculations with five AusPtd layers to
the left and right of the central AusPtd atom. The effect of the
increased size of the central region on the conductance val-
ues was within our numerical accuracy of 0.01G0.

V. CONCLUSION

This paper described anab initio method and its imple-
mentation for the calculation of the electronic structure and
transport properties of a nanoscale system coupled to elec-
trodes with applied bias voltage. The method is based on a
nonequilibrium Green’s function approach using an all-

FIG. 15. sColor onlined Zero-bias transmission spectrum for a
single Pt atom coupled to semi-infinite Pt electrodes for different
empty spheres packing structures, with 83ssolid lined, 91 sdashed
lined, and 107sdotted lined empty spheres.

FIG. 16. sColor onlined The spd angular momentum resolved
DOS projected on the central platinum atomic sphere for the single
platinum atom system.

FIG. 17. sColor onlined Transmission spectrum for a single Pt
atom coupled to semi-infinite Pt electrodes calculated at zero bias
and at a bias of 0.88 V.
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electron TB-LMTO-ASA formalism, and can be applied to a
variety of systems, as illustrated by calculations for single
molecules and single-atom contacts.

While a significant fraction of this paper is devoted to the
technique, the calculations presented for the BDT molecule
show that even simple-looking current-voltage curves can
have interesting physical origins. Indeed, for the BDT mol-
ecule connected to gold electrodes, the physical picture that
emerges iss1d electric fields are screened within the first two
gold layers;s2d the voltage drop is linear across the mol-
ecule; s3d the end sulfur atoms are strongly coupled to the
electrodes, while the central part of the molecule is weakly
coupled;s4d electron transmission occurs through wave func-
tions that are localized on the end sulfur atoms, with the
zero-bias Fermi level near and above these states; ands5d
applied bias splits the degeneracy of these states, and leads to
a nonlinear increase of the current with bias.

Finally, we note that a meaningful comparison between
experiment and theory first requires agreement between the
various experiments and between the different theoretical ap-
proaches. For single atom contacts, our results are in excel-
lent agreement with previous calculations, and seem to agree
with experiment. For BDT, at this time, neither experiments
nor theory have converged to a consensus on the behavior of
this molecule. As theoretical approaches have progressed,
various approximations have been removed, most notably in
the present work the pseudopotential approximation. As we
hope to remove the ASA by implementing a full-potential
version of the method presented here, we expect that a con-
verged theoretical answer for the behavior of molecular sys-
tems within the LDA will soon be available.
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APPENDIX A

In this Appendix we will rewrite Eq.s6d for the charge
density in terms of site-diagonal elements of lesser Green’s
functions, thus making the equation much more suitable for
numerical implementation. Let indexR0 denote a sphere
which contains vectorr , where we calculate the charge den-
sity. Let us increase, for a moment, the width of the central
region in such a way that the distance between the sphereR0
and any sphereR belonging to the left or right lead is large
enough, so the coefficientshR0,R of the LMTO tail in the Eq.
s3d vanish sin this Appendix we will omit the angular mo-
mentum indices for brevityd. In other words, we assume that
all LMTO’s used in the summations overR andR8 in Eq. s6d
have heads at atoms that belong only to the central region,
and the tails of LMTO’s with heads at atoms in the lead
regions vanish for a given sphereR0. Thus, we may apply
the formulas8d for the lesser Green’s function in the central
region to Eq.s6d, because contributions from sitesR or R8
belonging to leads vanish. Let us consider a product

o
R,R8

xRsr dGR,R8sEdHR8,Rl

= o
R8

fR0
sr R0

dGR0,R8sEdHR8,Rl

+ o
R,R8

ḟR0
sr R0

dhR0,RGR,R8sEdHR8,Rl
, sA1d

whereRl denotes a site belonging to the left or right lead.
Such products appear in the expression forxRsr dGR,R8

, in Eq.
s6d if we apply definitionss10d–s12d to the expression for the
lesser Green’s functions8d. The last term in the right hand
side of Eq.sA1d can be rewritten by using relations5d and
definition of the Green’s functions9d

o
R,R8

ḟR0
sr R0

dhR0,RGR,R8sEdHR8,Rl

= o
R,R8

ḟR0
sr R0

dHR0,RGR,R8sEdHR8,Rl

− o
R8

ḟR0
sr R0

dEn,R0
GR0,R8sEdHR8,Rl

= o
R8

ḟR0
sr R0

dEGR0,R8sEdHR8,Rl
− ḟRsr R0

dHR0,Rl

− o
R8

ḟR0
sr R0

dEn,R0
GR0,R8sEdHR8,Rl

= o
R8

ḟR0
sr R0

dsE − En,R0
dGR0,R8sEdHR8,Rl

. sA2d

In the last line of Eq.sA2d we used the fact that the Hamil-

FIG. 18. sColor onlined The induced potential in the center of
spheres as a function of the sphere’sz coordinate for the gold sys-
tem ssolid line with filled circlesd and the platinum systemssolid
line with open squaresd. In both cases the bias voltage equals 0.68
V. The induced potential is shown for all atomic and empty spheres
of the central region and for the additional 36 spheres of two left
lead layers and two right lead layers that are included in the con-
struction of the supercell for the electrostatic potential calculation.
Vertical dotted lines show the positions of the left-most and right-
most AusPtd layers of the right and left electrode, respectively.
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tonian matrix elementsHR0,Rl
are related to the coefficients

hR0,Rl
by Eq. s5d and vanish by our assumption. Thus, the

productsA1d takes the form

o
R,R8

xRsr dGR,R8sEdHR8,Rl

= o
R8

ffR0
sr R0

d + ḟR0
sr R0

dsE − En,R0
dg

3GR0,R8sEdHR8,Rl
. sA3d

Applying this formula to Eq.s6d we obtain expressions16d.
If the width of the central region is large enough, so that all
charge and potential relaxations take place in the central re-
gion, the value of the lesser Green’s function defined by Eq.
s7d does not depend on the choice of how we partitioned our
system into leads and the central region. Thus, we may use
formula s16d for the charge density even if we calculate the
site-diagonal elements of the lesser Green’s function for a
smaller central region, without the assumption of vanishing
coefficientshR0,Rl

.

APPENDIX B

In this Appendix we will rewrite expressions42d for the
transmission coefficient in terms of auxiliary Green’s func-
tions. To address this problem let us consider the following
function of energy:

T̃sEd =
1

2
TrhfQ0,HgfGsE+d − GsE−dg

3 fQN,HgfGsE+d − GsE−dgj, sB1d

where we use full matrix notation. Trh…j in Eq. sB1d means
trace over indicesBL and over index of principal layerp
which runs from −̀ to `. We will show that the right-hand
side of Eqs.s42d andsB1d coincide with each other. Opening

the commutators in Eq.sB1d the expression forT̃sEd can be
rewritten as

T̃sEd =
1

2o
m,n

o
l,1

o
c=1

N

o
c8=1

N

o
r.N

s− 1dm+ntrhHc,lGl,rszmd

3 Hr,c8Gc8,csznd + Hl,cGc,c8szmdHc8,rGr,lsznd

− Hc,lGl,c8szmdHc8,rGr,csznd

− Hl,cGc,rszmdHr,c8Gc8,lszndj. sB2d

Here indicesm,n run from 1 to 2 and complex energies are
defined asz1=E+, andz2=E−.

Using the Dyson equations

Gr,cszd = o
r8.N

o
s8=1

N

Gr,r8
R szdHr8,c8Gc8,cszd,

Gc,rszd = o
r8.N

o
s8=1

N

Gc,c8szdHc8,r8Gr8,r
R szd,

sB3d

Gr,lszd = o
r8.N

o
c8=1

N

Gr,r8
R szdHr8,c8Gc8,lszd,

Gl,rszd = o
l8,1

o
c8=1

N

Gl,l8
L szdHl8,c8Gc8,rszd,

Dyson Eqs.s22d for Gl,sszd and Gs,lszd, the definitionss11d
and s12d of self-energiesoc,c8

L and oc,c8
R , and cyclic invari-

ance of the trace, Eq.sB2d can be recast as

T̃sEd =
1

2o
m,n

Sc1=1
N Sc2=1

N Sc3=1
N Sc4=1

N s− 1dm+n

3trhfSc1,c2

L szmd − Sc1,c2

L szndgGc2,c3
szmd

3 fSc3,sc4

R szmd − Sc3,c4

R szndgGc4,c1
szndj. sB4d

Only two terms, one withm=1, n=2, and another withm
=2, n=1, do not vanish in Eq.sB4d. These two terms are
actually equal to one another. The last statement follows
from the fact that the trace of four matrices can be expressed
in terms of transposed matrices as

trhABCDj = trhDTCTBTATj = trhATDTCTBTj,

and that Hamiltonians4d is a symmetric matrixHT=H, so all
matricesG, GL, GR, oL, andoR are also symmetric. Apply-
ing the definition of theGL/R matricess10d to expression
sB4d one can see that the right hand sides of Eqs.sB4d and

s42d in fact coincide, proving the equalityT̃sEd=TsE,Vd.
EquationsB1d can be rewritten by using the expression

s26d for the commutator

T̃sEd =
1

2
TrhfQ0,SagfMsE+d − MsE−dg

3 fQN,SagfMsE+d − MsE−dgj, sB5d

where

Mszd = f1 + sa − gdSag−1ÎDsz− Hd−1ÎDf1 + Sasa − gdg−1.

sB6d

Using the explicit forms25d of the Hamiltonian, the matrix
Mszd can be transformed as
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Mszd = f1 + sa − gdSag−1hsz− CdD−1

+ Safsa − gdsz− CdD−1 − 1gj−1

= hsz− CdfD + sg − adsz− Cdg−1 − Saj−1

+ f1 + sa − gdSag−1sa − gd

= gaszd + f1 + sa − gdSag−1sa − gd. sB7d

The last term in the last line in Eq.sB7d is z independent and
cancels in Eq.sB5d. Thus, Eq.sB5d takes the form

T̃sEd =
1

2
TrhfQ0,SagfgasE+d − gasE−dg

3 fQN,SagfgasE+d − gasE−dgj. sB8d

Algebraically, this expression looks exactly the same as Eq.
sB1d with Paszd−Sa taking the place ofz−H. Similarly, the
equivalent to Eq.s42d is Eq.s43d, where we used the equality

T̃sEd=TsE,Vd.
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