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We present amb initio method for calculation of the electronic structure and electronic transport of nanos-
cale systems coupled to electrodes with applied voltage bias. The method is based on the local density
approximation of density functional theory and implemented in the framework of the tight-binding linear
muffin-tin orbital approach in its atomic sphere approximation. A fully atomistic description of the electrodes
and the nanosystem is used, and the self-consistent charge and electrostatic potential for the system under
applied bias is calculated using the nonequilibrium Green'’s fun¢tNiEEGF) approach. General expressions
for the lesser Green'’s function and transmission coefficient obtained within NEGF theory are rewritten using
auxiliary Green’s functions that are defined by the inverse of the short-ranged structural constants. This
reformulation of the theory with auxiliary Green’s functions allows the use of very effective and well-
developed tight-binding techniques. The method is applied to three systems: a single benzene di-thiol molecule
coupled to(111) gold electrodes, a single gold atom coupled 160 gold electrodes, and a single platinum
atom coupled t@100) platinum electrodes.
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I. INTRODUCTION al.t”18 (implemented in the simulation packagecDCAL)
and by Brandbygest all® (implemented in the simulation

Recent experimental developments have made it possiblgackage TRANSIESTA). All three of these methods use a
to fabricate electronic devices where the active part is a molpseudopotential approximation for the core electrons and the
ecule, a nanotube, or a similar structure of nanometer-scalecal density approximation(LDA) for the exchange-
dimension. These developments have given rise to growingorrelation potential. These three approaches have been ap-
interest in theoretical methods that can calculate the eleglied to calculations of electronic structure and transport
tronic structure and transport properties of nanoscale deviceproperties of different nanosysterifs2®
By nature, first-principles quantum-mechanical approaches An entirely different first-principles approach based on
are necessary for such calculations because quantum effetckee tight-binding linear muffin-tin  orbital method
dominate the transport properties of these nanoscale systent$B-LMTO)3? has been proposed by Kudrnovsiyal 3 and
The first-principles electronic structure methods available toTurek et al3? for description ofequilibrium transport prop-
day are highly developed and sophisticated but are impleerties of a nanoscale system connected to two electrodes.
mented mostly to describe systems that(@jen equilibrium  Starting with the Kubo-Greenwood formulation of equilib-
and (2) either periodic or have a finite number of atoms. rium transport theory, they derived an expression for the con-
However, nanoscale systems connected to bulk electrodeiictance in the framework of the TB-LMTO method in its
should be described by methods that can treat nonperiodatomic sphere approximatic®SA). The LMTO method is
and infinite sizeopensystems. Additionally, in the presence an all-electron method which does not use the pseudopoten-
of finite voltage bias applied across the electrodes, the sydial approximation. The advantage of an all-electron method
tem is out of equilibrium. The required theoretical methodsover the pseudopotential method, beyond the fact that the
should properly describe this nonequilibrium situation. latter one is an approximation to the former, is that the prob-

The firstab initio nonequilibrium calculations for an open lem of constructing the potentials fonagneticsystems can
system were performed by using a jellium approximation forbe solved straightforwardly in an all-electron calculation,
the electrode$? Other approaches have used a first-while for pseudopotential methods this problem constitutes a
principles Hamiltonian for the nanostructure and semiempirreal challenge if traditional norm-conserving or ultrasoft
ical approximations to describe the electrodes for an equilibpseudopotentials are us&dThe equilibrium TB-LMTO-
rium system® or a system with applied bias voltag@.Still ~ ASA transport theory of Kudrnovskgt al. has been applied
other approaches employed first-principles treatment of bothecently, mainly to magnetic systems, to study magnetotrans-
a nanosystem and electrodes for a system in equilidfidhn  port in metallic multilayers}!-34 resistivity of bulk random
or a system at finite applied bias described by nonselfalloys3? resonant tunneling magnetoresistafitend spin-
consistent electrostatic potenttdt!> Three methods that al- dependent tunneling in metal/vacuum/metal syst&ms.
low first-principles treatment of both a nanosystem and elec- The aim of this paper is to formulate a theory based on the
trodes in the nonequilibrium situation have been proposedB-LMTO-ASA method that can be used for self-consistent
recently by Damleet all® (implemented on the basis of calculations of the electronic structure and transport proper-
GAUSSIAN98 quantum chemistry software by Taylor et  ties of an open system in thnequilibriumsituation. This
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theory can be applied to calculate current-voltage curves for dr (1) = dr(NYL(F),
a nanoscale system connected to two electrodes. Beyond 1)
this, such a theory may be considered as a first step to for- ¢RL(V) _ ¢R|(f)YL(f)y

mulate a more accurate full-potential versigrithout atomic
spheres approximatigrof a TB-LMTO method for an open

where the radial amplitud r) is a regular solution of the
system out of equilibrium. plitudee, (1) 9

radial Schrédinger equatigir scalar Dirac equatigrinside

The starting point of our implementation is a principal . L : .

layers TB-LMTO-ASA codé’ that exploits equilibrium the sphere at a linearization enerByg;, and ¢r(r) is the

, : . . first energy derivative ofpg(r). In the ASA, the potential
Green'’s functions techniques. This code has been tested f%rnterin the Schrédinaer eauation is assumed to be spheri-
several systeni® 37 and results are in good agreement with I g g gh ?‘ h " P ¢
full-potential equilibrium LMTO calculationg The advan- ca y_symmetnc N €ach sphere. The potential is a sum o
i f the tiaht-binding f lati fth. LMTO-ASA contributions from nuclei, Hartree, and LDA exchange-
age o 0 € tight-binding formuiation ot the e correlation potentials. The function (f) in Eq. (1) are real
method? is that effectively only a few nearest neighbor at-

int £ with h other. th K cal spherical harmonic§,=r/r, andL={I,m} is an orbital mo-
oms Interact with each ofher, thus making numerical CompUp,antym index. We will ignore the spin index throughout this
tations very efficient.

S ) paper for the sake of brevity, although it can be trivially
The organization of the paper is as follows. In Sec. Il Weyocongtrycted: All matrix quantities(i.e. Hamiltonian,
derive the expressions for electron density and current basggeen’s functionsare diagonal in the spin index. The radial

on the nonequilibrium Green’s function formulation of TB- gmplitudes satisfy standard normalization and orthogonality
LMTO-ASA method. Section Il describes numerical proce- rg|ation$0:39

dures of the implementation. In Sec. IV we apply our method

to calculate the electronic structure and current-voltage curve SR SR .

for three systems: a single benzene di-thiol molecule coupled J ¢2R,(r)r2dr =1, f dri(Ndr(Nr2ddr=0, (2
to semi-infinite gold electrodes, a single gold atom coupled 0 0

to semi-infinite gold electrodes, and a single platinum atom i
coupled to semi-infinite platinum electrodes. We compare reWWheresg denotes the radius of thieth sphere. In the ASA,
sults presented in Sec. IV with othab initio calculations the interstitial part of the orbital is omitted and the functions

and existing experimental results. Conclusions are presentetri() and ¢g(r) are set to zero outside theth sphere.
in Sec. V. Using the notationrg=r—R an orthonormal basis of
LMTO’s {xg.(r)} reads

Il. THEORY OF NONEQUILIBRIUM ELECTRON Xru() = i (rR) + > o (FrONRIL RS (3)
TRANSPORT IN THE TB-LMTO-ASA FRAMEWORK RIL'

A. System description and introduction to the TB-LMTO-ASA

method wherehg: g is a real symmetric matrix defined in a stan-

dard way??4°The first term on the right-hand side of H8)

The system is defined by an infinite set of atomic posi-represents the head of the LMTO's and the second term rep-
resents the tail.

tions {R}. We p.a.rtiFio.n the system in pri_nci.pal layers as .fOI' The second-order TB-LMTO-ASA Hamiltonian in the or-
lows: the semi-infinite left lead ha}s principal layer 'nd'c_esthonormal basis given by E¢3) reads®4°
p=0,-1,-2,..,-o0, the central region of the system has in-
dicesp=1,...,N, and the semi-infinite right lead has indices
p=N+1,N+2,...,+o. The width of each layer is chosen in
such a way that only adjacent layers interact with each other. X{STL+(a=PST rLrVAriL,  (4)
The total size of the central regiofor the numberN of '

principal layer$ is chosen so that all charge and potentialwhere the real constan®g,, Ag,, and yg_ are standard

Lelaxatlr?ns take dplacte '?. tlhelcent{al tLeglgn”fmdllead _rl_?]g'ore‘f?otential parameters. The superscriptdenotes a LMTO
al\t/e Cf arge an lpq enlla;' close Ob € qf. c\j/abue_s. | d? r ‘epresentation defined by a set of screening constag|ts
SUTLS 01 numerical simuiatons can be Veriiiec by inciuding ndS}, g/, is & real symmetric matrix of screened structural

more layers from the lead regions in the central region an : . S
by increasing the width of individual layers. The left and constants in ther representation. The Hamiltonian in He)

right leads may in general be of different atomic composi—is invariant with respect to the LMTO representation, so with
tions, and are assumed to be in thermal equilibrium Withsuitable choice ok, the screened structural constant matrix

chemical potentialg., and ., respectively. The difference can typically be reduced to the second-nearest neighbors for

between chemical potentials; — =€V defines the voltage clo§e-packed 'aF“Cé’g- ibcanbe showf?v_“o that the Hamil-

biasV applied to the leads, wheeeis the electron charge. tonian in Eq.(4) is related to the coefficientsz . g, 0f EQ.
The basic blocks of the linear muffin-tin orbit#lg® (3 by a simple diagonal shift

(LMTO’s) are functions defined inside each atorf\i¢igner-

Seit? sphere centered at sie, namely, Hrir =EyriSRLR L T hRURILY - (5

- [
Hrir't = CridrL rrLr + VARL

195422-2



AB INITIO TIGHT-BINDING LMTO METHOD FOR... PHYSICAL REVIEW B 71, 195422(2005

B. Charge density of a no;s;giléi‘tégum system in LMTO-ASA §/C7I€(E) [ é:/c?(EJr) 25/07,2“5 )] (10)
R
Within the NEGF approach the electron density distribu-Where the so-called self-energy te“ﬁéc/ and 2, repre-
tion can be obtained by sent the interaction with the left and right leads, and are
defined as
p(r) = l—E > | dExeu(N)Gr rr E)xri (). S00(@D=2 X Ho Gl (@H o, (11)
TRL R'L’ ' ' I<1l|r<1 ’
(6) R R
- 35.@2=2 2 He Gl (@H o (12
The lesser Green’s function is defined‘as r>N /=N

. Here the Green’s function of the Igftight) lead is defined as
G;L R,L,(E):Igfd(t_t')eiE(t—t/)/h<C;,L,(t’)CRL(t)>, the inverse_ of_thg Hamilt(_)nian in Ed4) with all matrix
' elements with indices outside the Iéfight) lead set to zero

(7
> (@8 ~H)G) (2 = dy (13)
wherecTRL(t’) andcg, (t) are Heisenberg’s operators for cre- I'<1
ation and annihilation of an electron in thg, state.
For sitesR and R’ within the central region, the lesser > (28, 1 —Hy p )G (2) =6, . (14)
Green’s function is given 4y PeN E
Note thatG(z), G*(2), G*(z), and hencé=(z) are invariant
CBL vp(B) =i 2 2 { BLep.L(Ey) with respect to the LMTO representation because the Hamil-
=1 0,71 B tonian is invariant.
X [f, (E)r~ (E) If both indicesR andR’ of the lesser Green’s function in
€1B1L1.6,B5L Eq. (6) belong to the lef(right) lead, then the equilibrium
+ fR(E)Fcllel CszLz( B)] formula for the lesser Green’s function can be apgfied
X GCZBZLZVC’B’L’(E_)}' (8) G;L’R’L’(E) = f(E)[GRL,R’L’(E—) - GRL,R’L’(E+)]! (15)
wheref(E)=f,(E) for the left lead and(E)=f%(E) for the

The Fermi-Dirac distributions for the left and right leads
f.(E) andf(E) are defined with chemical potentials: and
M, respectively. In Eq(8) we decompose the index of the
site R in the combinatiorR={p, B}, wherep is a principal
layer index and is the index of an atom in principal layer .
p. Here and below we assume the following convention for  p(r) =- |_E dE[¢rL(rr) + ¢rL(TRI(E~E,Rr))]
the indices of principal layers: indices denotedtcas ,c” are T

indices corresponding to the central region and run from 1 to < :

N, indices denFc)Jted dgl’ 1" are indices gorresponding to the X Gripe (B)ldru(TR) + dru(TR)(E =By ri)],
left lead and run from = to O, indices denoted asr’,r” are (16)

indices corresponding to the right lead and run fidm1 to ) . )
+o, and indices denoted a5 p’,p’ are indices correspond- Where the indexR labels a sphere which contains the vector

ing to the entire system and run frome+4o +«. Summation '~ In the ASA, the charge-density distribution inside each
is implied over repeating indiceB;L; andB,L, in Eq. (8).  SPhere is assumed to be spherically symmetric, thus the
In what follows we will omit indicesBL and assume that all angle averaged expression for the radial charge distribution
corresponding quantities are matrices in these indizedrix ~ inside theRth sphere takes the form

representation EnergiesE, and E_ have infinitesimally 1

small complex partsE,=E+i0, so G(E,) and G(E.) are pR(r)E—fdpr(r)

well-known retarded and advanced Green's functions. The Am

right lead.
In Appendix A we show that Eq6) can be rewritten in
terms of diagonal elements of the lesser Green’s function

Green’s functionG, ,(z) of complex energy is defined as
the inverse of the Hamiltonian of E¢4) of the entire system =- |—E f dEGRL r(E)
+oo ) 2
2 (Zép’p' _ Hp,p’)Gp"p”(Z) - 5p,p”- (9) X[¢R|(r) + ¢R|(r)(E EV,RI)] . (17)
p'=- In equilibrium, whenf ;(E) =f;(E)=f(E), the lesser Green’s
function takes the standard for(h5) and the expression for
Matricesl“é/g,z(E) in Eq. (8) read the charge densit{l7) reduces to
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Green’s functions with mixed indice§, . and G, can be
pr(r) = - —2 JdEf(E NIM{Ggy rL(E4)} expressed in terms of surface Green’s function and Green's
function of the central region by using the Dyson equations

X[¢ri(0) + dri(NE-E, ). (18)
_ c
One can see that expressiti8) is a linearized approxima- G2d= 2 2 G (DH G (D),
tion to the exact charge-density formula for a system in equi- I'<ic’=1
librium " (22)
1 G (2= > > Gee(@He /G ().
PREM =752 f dE(E)Im{Gry (B} i (EiT), e
L

(19 Applylng Eqg. (22) to Eq. (21) and using the definition of

one can find
obtained by the multiple scattering method of Korringa, Cl’cz

Kohn and Rostoke(KKR).*° Here ¢ (E;r) is the solution

of the radial Schrédinger equation inside sphierat energy > 2 chp(EJr)[QO,H]pyp,Gp,yc/(E_)

E. To minimize the error introduced by the linearization, P==% p’=—c

E,r in our approach is chosen in the center of gravity of N N

<
Gg_ rL(E) for each spher® and angular momentuiin =i> > G, cl(E+)T (E)Gcz,c’(E—)- (23)
c=1cy=1

> | dEGR r(E)E-E,r)=0. (200 Using the matrixQN instead ofQ° yields an analogous equal-
m=-|

ity for the right lead. Thus, the expressi@) for the lesser
Green'’s function can be rewritten in the form

o0

Goo(BE)= 2 2 GeuEN{f(E)QOH]

p=— p':—oc

C. Tight-binding formulation of LMTO-ASA

Expressions(8)—(14) and (17) completely define the
charge density of the system under nonequilibrium condi- \
tions, but they are not suitable for practical applications. —fR(BE[QH]}p Gy o (E-). (24)
Structural constants in the maximally screened representa-
tions are shortranged, but the Hamiltonian in E4).is sig-
nificantly longer ranged, so it is computationally very de-
manding to construct the Hamiltonian from known structural H=C+ VASL +(a-9)ST A, (25)
constants, to solve directly for the Green’s functions, and to
determlneFCC, (E) for all principal layers in the central re- The commutator of)' with the Hamiltonian takes the form
gion. In order to take advantage of the short-ranged struc- __; - _ | L IrA : -1
tural constants, one needs to rewrite the expression for thel @ H1= VA[L+S'(a- P {Q S +(@- NSTHA,
lesser Green’s functio(8) in terms of so-called auxiliary (26)

's functi hich f ight-bindi » .
Green’s functior® which can be found by tight-binding where we used the fact thex A, 7, a, andQ are diagonal

techniques the same way as it is done in equilibrium.
In order to address this problem let us introduce step matmhztrécrzsexvg?urr?cst?oeg (tZF))BI[‘Z'nﬂ'fesorisg‘gntggtgﬂmmon of

tricesQ® andQV, which are diagonal in all indicgsBL with

In the full matrix notation, where we omit all indices in-
cluding the principal layer index, the Hamiltonian reads

diagonal elements given tfygp—l forp>0, andQ0 =0 for _ -1 /A
p=<0, and, analogously',}pp-l for p>N, and Q'Q =0 for [1+(a=»ST] _\AG(Z) _
p<N. The matrixQ' (i=0 or N) can be mterpreted as an =[(z-C)NA(L + (- ) — VAS*] !
operator of the number of electrons that populate principal o Pl
layers withp>i. It is easy to see that =0"@[A+ (v~ @)(z=- O WA @7
Hereg“(2) is the so-called auxiliary Green'’s function defined
> > G p(E+)[Q°,H]pp/Gp/ o(ED) as the inverse of the short-ranged mafikz) - S*
p=— p’:—oo 400
N 2 (P28~ S5,y . (28)
p.p’ (2) = 8y
=2 X [GeelEHe Gy o (E) s e
<1 ¢=1
‘ The potential functiorP“(z) is diagonal ovempBL indices,
- Gc,l(E+)Hl,c”Gc”,c’(E—)]v (21) and is defined as
where[Q,H]=QH-HQ denotes the commutator of two ma- PY(2) = (2= O)[A + (y— a)(z= O)T™. (29)

trices. We assume here that the matrix elements of the
Hamiltonian between the left and right leads vanish. TheSimilarly to equality(27) one may obtain
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G(2) V'Z[l +Sa-y)] = \/K[A +(y-a)(z-C)] g%2). D. Transmission coefficient and current in TB-LMTO-ASA
(30) The current density can be obtained as
Utilizing equalities(27) and (30) the lesser Green’s function _ ——<Q°(t)> (39)
(24) can be rewritten as T Adt
Gzc,(E) ={u“E,)g%E,)(f-(E)[Q° S whereA is the cross-sectional area of the system in a plane
_ N o o perpendicular to the direction of the current a@ is an
fRE)NQT.SD(E)u (Elee,  (31) operator of the total number of electrons in principal layers
where the diagonal matrix*(z) is defined by p=>0
%(2) = VA[A + (y- &)(z- O)]L. 32
W@ =VAA+ (= a)(z-C)) (32 =S S Qapmilo V0 0. (39
It can be shown that expressid81) does not have a p=—= B

singularity at A+(y—a)(z—C)=0. Algebraically, Eq.(31)

’ , Eq. (38) can be rewritten as
looks exactly the same as E@4) with P*(z)—S” taking the

place ofz—H. Similarly, the equivalent of Eq8) is = ii<[60 I:I]>
< -« @ a a N hA '
G o (BE) = ud(B)XT(BE)g 1 (ENTT 1(E)gy o/ (E-)
+ fRE)ENEITRNE)G o (E) g (E). =2 dEpgoztr{Hl :Gpi(E) ~Hp G,(B)}, (40)

(339 where tf...} means trace over indic&i., and the factor of 2
In the maximally screened LMTO representation the strucis for spin degeneracy. If the Hamiltonian is not spin degen-
tural constantsS* connect only adjacent IayerS“ Y =0 for  erate the trace in Eq40) is also taken over spins. It can be
|p—p’|>1; hence thd™® matrix that appears in E433) has showrf? that expressio40) can be transformed to the Meir-
only two nonzero components; ; andI'y  defined as Wingreen form®

¢ (E) =S} g5 o(Ex) — 95 6(ED IS 1, | =
(34) hA

TNn(E) =i N+1[gN+1 nea(Es) = gN+1 GO 1Y whereT(E,V) is the transmission coefficient for the system
Here the surface auxiliary Green’s function of the fgfght)  with finite bias voltage/ applied to the electrodes, and given
lead is defined as the inverse of tR&(z)—S* matrix which ~ by*?
has all matrix elements with indices outside the lgight)

lead set to zero T(E,V) = E E 2 E tr{I'g, ¢ (E)Ge, c,(E+)

P26, - S, Cfﬁ,,( )= &, (35) c1=1cy=1lcg=1¢y=1
|§1[ F@a =S92 =9 X Fg%(E)G%Cl(E_)}_ (42)

dET(E, V)[f.(E) - fr(E)], (41)

We show explicitly the dependence of the transmission coef-
2 (P23, - Sfr ]gr D=0 (36 ficient T(E,V[)) on gpplied Soltage/ in order to stress that it
reN should be calculated for the nonequilibrium system whose

Equations(33) and (34) that define the lesser Green’s charge density and electrostatic potentials are found self-
function in terms of auxiliary Green’s function and surface consistently by using the theory described above.

auxiliary Green’s functions form the central part of this In Appendix B we derive an expression for the transmis-

work. The matrixP%(z)—S” is tridiagonal in the principal sion(42) in terms of the auxiliary Green’s functions obtained

layer indices. This allows the use of well inthe maximally screened LMTO representation

developed’37:40.42-4%nd very efficient tight-binding LMTO e o « w

approaches to calculate the auxiliary Green’s funogion(2) TEV) =il (B)gr n(EITINEIGL (B} (43)

in the center reglon and surface auxiliary Green’s functiondNote that the transmissiof#3) is invariant with respect to

ek O(Z) a”dgN+1 v+1(2). The charge density can be calculatedthe LMTO representation by constructidisee definition

then by using Eq(17). (42)]. In the linear response regime, when the applied volt-
One may verify that in equilibriunif .(E)=f5(E)=f(E)]  @ge is small, the conductance takes the form
Eg. (33 takes the standard fofth | 2e?
C=—=—T(EgV=0 44
G<(E) = - 2if (E)Im[G(E,)]. (37) v ha EF ), (44)

Importantly, formula(37) remains true even in the nonequi- where Er is the Fermi energy of the entire system in equi-
librium situation for energiesE such that the equality librium. Expression$43) and(44) for conductance coincide
f.(E)=fx(E) is satisfied. with that obtained by Kudrnovskgt al3! and Tureket al3?
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within the Kubo-Greenwood framework for equilibrium sys- bulk geometry. From these calculations the surface auxiliary
tems. Note, that our derivation of the expression for theGreen’s functiong(35) and (36) and I'* matrices(34) are
transmission coefficien®3) obtained within the NEGF for- determined using a very effective decimation technitjue.
malism does not exploit the approximation of piecewise con-
stant coordinate that was used in Ref. 32.

The equations for the lesser Green’s functi8f) and the
transmission coefficien®3) can be directly used for calcu- In order to calculate the radial charge density distribution
lations of the ASA charge-density distributi¢h7) and cur-  in Eq. (46) one needs to calculate three energy moments of
rent density(41) for systems with a finite number of atoms in the lesser Green’s function
each principal layer. In the case when the system has two- )
dimensional translational invariance in tlkg plane (plane n __! < _ n
perpendicular to the principal layers growth direction, the RL™ NH% jdEGR"'RL(k'E)(E Eor)s (49)
axis) these formulas may be easily modified. Let us assume
one and the same two-dimensional translational symmetry i¥heren=0,1,2. Theenergy integration in Eq48) is di-
each principal layer. Then the Hamiltonian can be transvided into integrations along two separate contours: from an

A. Energy integration

formed to thek representation energyEg below the bottom of the valence bandig (equi-
_ librium contouy, and fromu, to ur (Nonequilibrium con-
HpsLperr(K) =2 HpBL,p'(B’+TH)L’e|kTH- (45  toun

Ti 2 br
Herek is a two-dimensional vector in they plane from the Mg, =-1m EE f dzGgri(k,2)(z-E, )"
corresponding surface Brillouin zo®BZ), and the index of 'k - Eg
site R is rewritten in the formR=(p,B,T,), wherep is the i (R e
principal layer indexB denotes the atom in the finite-sized N dEG: ki (K,E)E-E,R)". (49)
unit cell corresponding to the-th principal layer, and' | is a 1 g
two-dimensional translation vector such th&=B+T,.  Here we used Eq37) and the fact that at zero temperature

Analogously, the structural constants can be transformed .(E) andf,(E) are simple step function§”<(E) is a part

the k representation. Consequently, the physical Green'ss G=(E) in Eq. (33) proportional tof (E). Expression49)
functions defined by Eqg9), (13), and(14), and the auxil- s y4jig for any sign of the applied potential. The first inte-
iary Green's functions defined by Eq&8), (35), and (36) grand on the right-hand side of E¢49) is an analytical
will have momentum indek. Thus, the expressiofi7) for  ;nction in the upper half plane of complex energyTo
ASA charge density and expressit#l) for current density  yqid sharp features of the Green’s function on the real axis,

should be transformed to the integration is performed along the complex contour

pr(r) = - |iiz > | dE z=(u, +Eg)/2 +[cosO+i(1-g)sinb](u, - Eg)/2,
87N, ¢ T (50)

GFfL’RL(k,E)[qu(r) + ¢pri(r)(E - E,,YR,)]2 (46)  where#d runs from - to 0. We found that the values of the
moments(49) are not very sensitive to the eccentricity pa-
rametere of the contour. Typicas in our calculations ranged

2e from 0.3 to 0.5. Also we checked that the values of the mo-

I = EAE deT(k.E.V)[fa(E) -fz(E)], (47  ments do not depend on the choice of the enégyps long
k as it is below the bottom of the valence band, where the

where expressions foB5, r, (k,E) and T(k,E,V) take the |€sser Green's functio®g, r.(k,E) vanishes for alR, L,
same form as in Eq€33) and (43) with the only difference  @ndk. The integral is evaluated by Gaussian quadrature with
that the structural constants and the auxiliary Green’s funclO to 20 points along the contour. In most cases, 14 points is

tions will have momentum indek. N, in Eq. (46) is the ~€nough for accurate evaluation of the integral. _
number ofk points in SBZ. The second integrand on the right-hand side of (B§) is

not an analytical function and has to be evaluated along the
real axis. Two broadening parameters are used for evaluation
of GR=. The first parametef is an imaginary part of energy
The starting point of our implementation is a principal E.=E+ié used to find the surface auxiliary Green's func-
layers TB-LMTO-ASA cod@’ that describes systems with tions (35) and (36). The second parameté is the imagi-
two-dimensional translational symmetry in equilibrium at nary part of energ¥,=E=+id, used to find auxiliary Green’s
zero temperature. We present here a zero temperatire  functions of the central regiog” (28). The second broaden-
equilibrium version of the code that assumes one and théng parameterd, has to be set very smallypically &,
same two-dimensional translational symmetry in each prin=10"1° Ry) because broadening gf should be determined
cipal layer. Before starting the self-consistent calculation oty the complex part of the surface self-energy matricgs
the charge density in the central region, separate equilibriurand I’y and not by the complex part of the energy. In fact,
self-consistent calculations for the leads are performed in & the contribution of 6, to the broadening of§* becomes

and

IIl. NUMERICAL PROCEDURE
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comparable with the contribution fromi® factors, then for- atom potentialg.Then, potential parameters for these atoms
mula (8) for the lesser Green’s function is not longer valid. are calculated® Using these potential parameters as well as
The 8, parameter is kept finite to avoid a false singularity atstructural constants in the maximally screened LMTO repre-
A+(y=-a)(z-C)=0. The value of the parametet deter- sentation, the auxiliary Green'’s function and the lesser physi-
mines how many energy points are needed to evaluate theal Green’s function are calculated. ThEpg, is updated. It
energy integral along the nonequilibrium contour. This inte-is chosen as a center of gravity of tRé projected density of
gral is calculated using a trapezoidal method. In some casesates(DOS), from the condition
the integrand has very sharp features, so care should be taken |
with respect to the broadening paramefeand the number 1 _

. At > Mg, =0. (52)
of energy points used along the nonequilibrium contour. o
Finally, the energy moments and the radial density distribu-
B. Electrostatic potential tions are found. This completes the iteration. The described

The total potential is a sum of the LDA exchange- |t§alrat|0n.cy.cle |s_repeated.untll input and output charge den-
sities coincide with prescribed accuracy.

correlation potential and electrostatic potential. The later in- We checked how much the values of the electrostatic po-
cludes the Hartree potential and nuclei potentials. The ele “ntials and charaes in the “bulk” princinal lavess 0 and P
trostatic potential and charge distribution are determine 9 P P e

self-consistently using an iteration scheme. A supercell is s =N+1 calculated using the above procedure for multilayer
up that includes the central region with lay@ys1,...,N, geometry differ from the corresponding values obtained by

two layers from the left leagh=-1,0, and two layers from separate equilibrium bulk calculations for infinitely repeated

the right leadp=N+1,N+2. The atoms in the leads are as- leads(the bqlk values were used for Iayepsil andp>Nin
glctual multilayer calculations If the difference was not

region have charges determined in the previous iteration. Th%mall the size of the central region was increased. Addition-

supercell is assumed to repeat itself in the plane (two ?élg, ;’\(':? tghti(;kggeth; t%(;mégggcri ci):)r:he final results with
translation vectopsand in the third direction(third transla- P gion.
tion vectop, in such a way that atoms in principal layer —1 C. Test system

from the left lead become adjacent to atoms in principal | der to test th thod ‘ lculati ;
layer N+2 from the right lead. In the case of leads of the, h order 1o test the method we perform calculations for a

same material the best choice of the third translation vector(:a!DaCItor system of two goldl1]) surfz_ices with a vacuum
is when the coordinates of the atoms in principal layer —pregion between them. The central region of the system con-

after translation coincide with coordinates of the atoms inSIStS of four layers of gold atoms, three layers of empty

principal layerN+ 3. The electrostatic potential in the center spheres, and then again four layers of gold atoms. An empty

of the Bth sphere belonging to the supercell is determined b)§phere is a sphere Wh'c.h do_es not contain nuclear chgrgg _and
three-dimensional Ewald summation of Coulomb Comribu_represents vacuum regions in the ASA method. Semi-infinite

tions from all spheres of the infinitely repeated supercell. Thé’Old right and left leads are assumed to be attached to the

i . : central region of the system. Positions and radii of all
Ewald summation produces a periodic potenWal.r=Vs,  gpheres correspond to bulk gold and the plane corre-
where T is a translation vector of the supercell. A linear

o2 o ) sponds to the goll11) surface. In the numerical implemen-
contribution is added to the potential in order to satisfy thejaion each principal layer consists of a single gold atomic
condition of potential dropy at the boundaries of the super- gnpere or an empty sphere. The self-consistent charge density
cell. Thus, the electrostatic potential in the center ofBie 54 potential were calculated for this system in two different
sphere reads ways. First, we applied ounonequilibrium approach de-
- 7 scribed above to the system with=1.36 V applied biag0.1
Vg =Vg +VL— +C, (51)  Ry). Then we applied the well-tested originaguilibrium
z TB-LMTO-ASA method to the same system with a linear
wherelL, is thez component of the third translation vector of external potential that contains a 1.36 V discontinuity in the
the supercell. The constant sh@tis determined at the last center of the vacuum region
stage of the iteration, when the charges are calculated, from {V(— ZL,+0.5), z>0
the condition of charge neutrality of the central regieach Verl(2) = zo . (53)
principal layer in the lead regions is charge neutral alrgady V(-7L,-059, z<0

The spherically symmetric electrostatic potential inside therpe results for induced potential in the center of the spheres
Bth sphere is obtained from the radial charge distribution ingnd induced charge on the spheres calculated by these two
this sphere by the solution of the radial Poisson’s equation,ethods are shown in Fig. 1 for the central region with two
At the next step of the iteration the Schr('jdir_\ger equationyqditional principal layers from each le&tb spheres total

is solved to find the radial amplitudesy(r) and ¢g,(r) for  Since the vacuum region is thick, there is essentially no cur-
atoms in the central regiortThus, in the LMTO approach, rent flowing through the system. Hence, the two methods
the basis functiong3) are updated on each iteration in ac- produce essentially identical results. It is seen from the figure
cordance with the potential. This is different from other tech-that the potential is very effectively screened by the first gold
nigues that use fixed basis functions, optimized for the fremtoms adjacent to the vacuum region.
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' FIG. 2. (Color online The computational cell used for simula-
0006 [~ [ T 1] tion of transport properties of the BDT molecule coupled to two
3 A gold (111) surfaces. The cell repeats itself in tkgplane. Left and
0.004 |- o ; 8 right semi-infinite gold leads are attached to the cell. The atoms
0.002 - . between the two vertical lines constitute the central region, while all
% 0.000 é—D—Q—D o O\Q—D—D—é atoms in the figure form a supercell, per?odic in three dimensions,
0.002 | ~a i / ] used to calculate the electrostatic potential.
0.004 ; i the current at finite bias, while Tomfohr and Sankegnd
0006 | D’[? 1 Everset al! calculated the zero bias transmission. Impor-
: [ SR S SN O U B tantly, all of these approaches employed the pseudopotential
-30 -20 -10 0 10 20 30 approximation to treat core electrons. Our approach differs
z(a) from these calculations in that all electrons are treated, which

allows, for example, a simple treatment of magnetic
FIG. 1. ((_:olor onling The difference between the electrostatic systemsi2 A further distinction is that the ASA-LMTO basis
potentialAV in the center of the spherémp paneland chargedQ  fynctions are constructed differently from the LCAO or
on the spheregbottom panel for the “capacitor” with applied bias  Gayssian basis; for example, in the LMTO approach the ba-
V=-1.36 V and with zero bias as a function of the spheret®-  iq fynctions are updated at each iteration following the
ordinate(in units of Bohr radiusap) calculated by the NEGF ap- .pan46 in the potential, while in other approaches they are
proach(circles and by the equilibrium approadsquarek For the fixed and optimized for the description of free atoms. An-
sake of comparison the potential of the equilibrium calculation isother distinction is that our LMTO basis functions are long
shown shifted by ¥/2 for z>0 and by -V/2 for z<0. The circles ranged, while LCAO and Gaussian functions are localized
are connected by solid lines and squares are connected by dashe":wIn this section we applv our method to calculate the eIe(.:-
lines. Vertical dotted lines show the positions of the left-most and . pply e
right-most gold layers of the capacitor surfaces. tronic structure and transport characteristics of the BDT mol-
ecule coupled to two Al11) surfaces. Recently, several the-

IV. APPLICATIONS oretical studies have shoWwt*>1-%4that the conductance of
o the benzene di-thiol molecule strongly depends on the geom-
A. Benzene di-thiol molecule coupled to gold electrodes etry how the molecule is positioned with respect to the gold

The problem of understanding the contact resistance of electrodes. Moreover, the precise geometry of the system is
single molecule coupled to metallic electrodes has attractetiot known in the experiment. Thus, we may only quantita-
great interest in recent years. A common way to attach &ively compare the results of different theoretical approaches
molecule to electrodes is by using thiol endgroups that easilpbtained for the same geometry. The geometry of the system
bind to gold surfaces. A benzene di-thi@DT) molecule that we study is shown in Fig. 2. The central region of the
attached to gold111) surfaces, one of the simplest systemssystem consists of three ALlL1)-(3X3) layers, the layer
of this type, has been studied experimenfdt§? and  with the BDT molecule, and then three more (AL)-
theoretically?—59:11.13.16,20.26,50-5¥ here is no general agree- (3 3) layers, positioned symmetrically to the first three Au
ment among theoretical groups or among experimentdlayers. The semi-infinite left and right gold electrodes are
groups about the value of the small bias conductance for thiattached to the ends of the central region. The cell is assumed
system. Theoretical and experimental results for conductande repeat itself periodically in they plane. Atomic positions
of the system differ by more then two orders of magnitude were determined as follows. First, we find the Au-S distance
with theoretical results ranging from 0.1 to 35, and ex- by positioning a single S atom over the @d1) surface at a
perimental results ranging from 0.003 to u8. The large threefold site and then relax the positions of the atoms by
spread in experimental results can be explained by the diffiusing thevasp molecular dynamics prografwith LDA
culty in controlling the exact geometry of the system. Theexchange-correlation potential. Then we placed the BDT
theoretical results differ because different approximations arenolecule between the gold surfaces with the calculated Au-S
employed for the calculation. Di Ventret al>! employed a  distance and relaxed the structure again with fixed dimen-
jellium approximation for the electrodes, while other sions of the unit cell. In this procedure we obtained a Au-S
groups$—>° used semi-empirical approaches to describe thelistance of 2.42 A and a S-C distance of 1.74 A, in agree-
electrodes. In Refs. 11,13,16,26 the electrodes were treatedent with the values obtained in Ref. 26. We checked that
on the same footing as the molecule. Damleal1® and the  our results do not change significantly if we choose relaxed
TRANSIESTA group® used the NEGF formalism to calculate Au positions or ideal bulk positions of Au, thus confirming
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the result of therRANSIESTA group?® Also we checked that 12
variation of the atomic positions of the gold atoms or atoms>
of the benzene di-thiol molecule within 0.03 A range do not <3 1o
affect our results significantly.
In our calculations we neglected the electron-phonon cou-5
pling effects and changes of the atomic positions due to thegy
current-induced forces. It has been shown recéhthat the
current-induced forces do not substantially affect the value of— 6
the current for biases as high as 5 V. The electron-phonor<
coupling effects were also estimated to be srivadi; least for
biases up to 0.1 V. Also we checked the effect of increasing
the cell size. We performed calculations for a(Ald)-(4
X 4) system and found that increasing thg cell size from
(83X 3) to (4X4) has only minor effects on the equilibrium 0 . ] . 1 - i ,
DOS and transmission spectrum. -4 2 0 2 4
The other source of error in our approach is the use of the E-EF (eV)
local density approximation to describe a many-body system.
It is well known that LDA suffers from many deficiencies, in ~ FIG. 3. (Color onling The density of states projected on the
particular its underestimate of band gaps in semiconductor8DT molecule atomic spheres obtained by the LMTO-ASA method
and insulators. The error in the determination of the moleculésolid ling) for an equilibrium system in the multilayer geometry
energy levels may affect the position of the resonant peaks iand by full potential supercell calculatiorgotted ling.
the DOS and transmission function and hence the magnitude
of the current. The natural way to go beyond LDA is to  The general shape of the molecule-projected DOS in Fig.
perform calculations within the so-called GW approximation3, the position of the maximum of the broad peak at about
of the many-body theory. It has been shown recently that the1.3 eV as well as the 5.2 eV difference in positions of the
GW approximation can accurately predict electronic structwo sharp peaks at —2.1 and +3.1 eV agree well with results
ture and band gaps even for strongly correlated systéms.obtained by therRANSIESTA group?® although the positions
Unfortunately, the GW calculations are very time consumingof the last two peaks are shifted to lower energies by about
and cannot be performed, at least for now, with the large).3 eV compared to our results. Also, our DOS does not
number of atoms required for the present calculations. show the fine structure between peaks at -2.1 and -1.3 eV
The atomic sphere approximation assumes that all spadbat can be found in th&RANSIESTA results. The DOS pro-
is filled by (overlapping spheres and that the volume of the jected on the BDT molecule found in Ref. 3 differs some-
interstitial region vanishes. In order to fill the vacuum spacewhat with our results and with the results presented in Ref.
between Au electrodes with spheres, we used the Stuttga?6 . Note that the authors of Ref. 3 used a system setup of a
LMTO-ASA program®® This program fills space by empty single BDT molecule on the surface of gold electrodes with a
spheres using the following criteria: The sum of the volumefinite number of atoms in they plane, while our calculation
of all spheres should be equal to the volume of all space, thand Ref. 26 use a system setup of a self-assembled mono-
average overlap between the spheres should be minimal, afalyer with (3 3) periodicity in thexy plane. Also, the au-
the radii of all spheres should be chosen in such a way thahors of Ref. 26 used only onk=0 point in the SBZ to
the spheres overlap in the region close to the local maximumeduce the computational effoff$while we use an X n grid
of the electrostatic potential. The choice of the empty spherem the SBZ, wheren is the number ok points along each
packing structure is not unique. This is the main drawback ofranslation vector of SBZ. Our results are well converged for
ASA when applied to systems that contain large vacuum ren=10, giving 36 irreduciblék points in the SBZ. We found
gions. On the other hand, for a large enough number ofhat the use of just onke=0 point in SBZ is not sufficient to
closely packed empty spheres the results only weakly depermbtain accurate DOS and transmission function, although,
on the empty spheres packing structure. In our case we uséxbcause of the large size of the unit cell in g plane, the
139 empty spheres to fill the vacuum space in the centralependence on the number lofpoints is weak and results
region in addition to 54 Au atomic spheres and 12 BDTbegin to converge already for—~5.
atomic spheres. In order to verify that this number of empty It is interesting to see how the DOS changes if a finite
spheres is sufficient for an accurate description of the eledsias is applied to the leads. Figure 4 shows the DOS pro-
tronic structure of the system we performed full potentialjected on the left and right sulfur atomic spheres for four
calculationg® for a supercell with three-dimensional period- different applied voltages. The figure shows that the sulfur
icity containing the BDT molecule and from four to five peaks in the DOS move symmetrically, relative to the aver-
Au(11D-(3x 3) layers. The results for the density of statesage chemical potentidk +u,)/2, essentially following the
projected on the BDT molecule atomic spheres obtained bieft and right Fermi levels. Indeed, the difference between
full-potential supercell calculations and by LMTO-ASA cal- the positions of the peaks for the left and right sulfur DOS
culations for an equilibrium system in the multilayer geom-corresponds to the value of the applied bias multiplied
etry are shown in Fig 3. It is seen from the figure that theseoughly by a factor of 0.85. It can be concluded that the
two methods produce similar results for the DOS, confirmingenergy levels of the Kohn-Sham wave functions that are spa-
the appropriateness of the empty sphere packing structure tially concentrated inside a sulfur atomic sphere, essentially

ate
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FIG. 6. (Color onling DOS projected on the 1, inner atoms
0.0_4 ‘2 (‘) 2‘ . of the BDT molecule for four different bias voltages.

E-(u +ug)2 (eV) carbon spheres and four hydrogen spheres. The DOS of the
inner GH, atoms is almost unaffected by applied bias. The
FIG. 4. (Color onling DOS projected on the leftop paneland  small changes in DOS around the peak at —2.1 e\efght
right (bottom panel sulfur atomic sphere for four different bias atomic spheres in Fig. 6 are about the same order of magni-
voltages. tude as those for theingle right-most or left-most carbon
sphere in Fig. 5. Thus, the applied bias affects mostly the
follow the chemical potential of the gold electrode adjacemstates_vylth wave functions concentrated in the sulfur spheres
to that sulfur atom. by shifting the energy levels of these states close to the
The DOS projected on the left-most and right-most carChemical potential of_the nearest e_Ieptrode. Analyzing Figs.
bon atomic spheres are shown in Fig. 5. One can see that tfig®: We can clearly identify the origin of the peaks in the
outer carbon DOS changes only weakly with applied biasZero-bias molecule-projected DOS shown in Fig. 3. The
The small changes in DOS around the peak at -2.1 eV cort-’ma(_j peak at —1.3 eV corresponds to the !(ohn-Sham wave
respond to the contribution of long-ranged wave functiondunctions that are mostly concentrated inside sulfur atomic
that respond to the change in the chemical potentials of thePheres and have small weight inside other atomic spheres of

leads. Figure 6 shows the DOS projected on the four innef® BDT molecule. The three narrow peaks at -3.8, -2.1, and
3.1 eV correspond to the wave functions distributed over the

. ‘ . . inner ring of six carbon and four hydrogen atomic spheres
10 —V=0.0eV with smaller weight inside the sulfur spheres.

' - —=-V=1.1eV The induced potentiadV, defined as the difference be-
tween the electrostatic potential in the center of a sphere for
the system with an applied bias of 2.72 V and that for the
system with zero bias, is shown in Fig. 7 as a function of the
z coordinate of the sphere’s center. The induced potential is
basically a smooth function of the coordinaewith an al-
most linear behavior in the molecule region. Two small kinks
atz=+5.87 a4 correspond to the sulfur spheres. These kinks

' ' in the potential can be explained by the fact that the induced
1.0 |- —V=0.0eV . charge on a sulfur sphere is more then two times larger then
-—-=-V=1.1eV induced charges on neighboring spheres.
1 It can be seen from Fig. 7 that the induced potential is
well screened beyond the second Au layer +13.28a),
thus supporting our choice for the central region. We also
confirmed that results do not change significantly if a larger
number of Au layers are included in the central region. The
difference between the values of the electrostatic potential
near the left and right sulfur spheres is about equal to the
E-(u +1R)/2 (eV) applied bias multiplied by a factor of 0.85. This explains the
value of the shift of the sulfur DOS in Fig 4. The very small
FIG. 5. (Color onlin@ DOS projected on the left-mogtop ~ dependence on the applied bias of the DOS projected on the
pane) and right-mostbottom panélcarbon atomic sphere for four carbon and hydrogen atontsee Figs. 5 and)6can be ex-
different bias voltages. plained by the fact that the wave functions of the inner ring

Leftmost carbon DOS

Rightmost carbon DOS
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FIG. 7. The Induced potential at the sphere centers as a functior
of the sphere’s coordinate for the system of BDT molecules at- =
tached to twa(111) gold electrodes with an applied bias of 2.72 V.  §
The induced potential for 241 spheres is shown, including 139 §
empty spheres, 12 BDT spheres, 54 Au spheres in the central re E
gion, and an additional 36 Au spheres in the two left lead layers and &
two right lead layers that are included in the construction of the
supercell for electrostatic potential calculation. The atomic spheres
that have the same values of theoordinate and induced potential
value are shown in the figure as a single point. Vertical dotted Iines’?:
show the positions of the left-most and right-most gold layers of the
right and left electrode, respectively. !

T(E V=3

of the BDT molecule are distributed over the whole ring and
have symmetry with respect to inversion of theoordinate.
Treating the induced potential, antisymmetric with respect to
inversion of thez coordinate, as a small perturbation, the
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correction to the energy level of such wave functions in first-

FIG. 9. Transmission coefficient calculated by the NEGF ap-

order perturbation theory vanishes. This symmetry argumeryroach for four different bias voltages. The bias window is shown
does not apply to thdegenerateequilibrium states concen- with the vertical dotted lines.
trated mostly inside the left and right sulfur atomic spheres

and whose energy levels follow the induced potential. 155 |
The current as a function of applied bias is shown in Fig.0ds coincide only for small bias; for voltage larger then 2 V

8. For comparison we also show the current calculated b
using the zero-bias transmission functibik,E,V=0) in Eq.
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(47). It is seen that the currents obtained by these two meth-

ey significantly deviate. Thus, the nonequilibrium effects

ecome essential for transport properties of the system for
biases larger then 2 V. In order to better understand the de-
pendence of the current on applied bias we present in Fig. 9
the transmission spectrum calculated by the NEGF approach
for four different bias voltages. The bias window, corre-
sponding tour and u,, is shown in the figure by vertical
dotted lines. At zero bias the peaks in the transmission func-
tion correspond to the peaks of the D@®e Fig. 3 except
that the narrow DOS peak at -2.1 eV is not present in the
zero-bias transmission. This may be explained by the fact
that the very narrow peak of the DOS at -2.1 eV corre-
sponds to a localized molecule state which has weak cou-
pling to the gold leads. The broad sulfur peak 1.3 eV below
the Fermi energy determines the value of the zero-bias con-
ductance.

The zero-bias transmission spectrum presented in the top

panel in Fig. 9 is in rough agreement with the transmission
spectrum obtained by Xuet al,® and Xue and Ratnérpy

FIG. 8. Current as a function of bias. Solid line with dots rep- Everset al,* and byTRANS|E$TA_26 In particular, all four _
resents current obtained by the NEGF approach. Dashed line reprgaethods show that the transmission peak closest to the Fermi

sents current calculated from zero-bias transmission coeffigert

text for detail$.

energy is located about 1.3 eV below the Fermi energy. This
result is in disagreement with results of Di Vengaal,>!

195422-11



FALEEV et al. PHYSICAL REVIEW B 71, 195422(2005

who found that the Fermi energy is closer to the LUMO
transmission peak. a
The zero-bias conductance is proportional to the transmis- |
sion coefficient at the Fermi energy, as given by @4). We {
obtain a value for the zero-bias conductance of &) Di [
Ventraet al5! found a conductance of @S. Xu et al. found ek
a conductance of 2.8S2 and later corrected it to 4,8S° -
Evers et al* obtain the value of 1S, Tomfohr and
Sankey? found the value of 7uS, and Damleet al® found
the value of 6uS. The TRANSIESTA group obtained a con- FIG. 10. (Color online The computational cell used for simula-
ductance value of 32S. Such a large conductance arisestion of transport properties of a single ABt) atom coupled to two
because the transmission peak at —1.3 eV obtained in Ref. 281 (P9 surfaces. The cell repeats itself in thg plane. Left and
is twice as broad as the zero-bias transmission peak shown fight semi-infinite leads are attached to the cell. The atoms between
Fig. 9. the two vertical lines constitute the central region, while all atoms
The experimental value of the zero-bias conductance walg the figure form a supgrcell, pe'riodic in three dimensions, used to
measured as 0.008S in earlier work by Reect al4” [n  calculate the electrostatic potential.
more recent experimentd,this value was measured to be
more then two orders of magnitude larger, namely, Q.85
This large difference in experimental results may be ex-
plained by the fact that the exact geometry of the system Atomic-sized contactéASCS9 have been intensively stud-
cannot be controlled when measurements of the conductanged both experimentally and theoreticalifor a review on
are made. ASCs see Ref. 601t is known that the conductance of cer-
It is interesting to see how the transmission spectrum caltain materials(such as alkaline or noble metaltakes an
culated by the NEGF approach changes with bias. The peakteger value of the quantum of conductanGg=2e’/h
in the zero-bias transmission at —1.3 eV splits into two peaksvhen the size of the contact becomes comparable with the
that move away from each other as the bias increases, iRermi wavelength. The experimental studies show that the
accordance with splitting of the left and right sulfur projectedconductance of a single Au atom is distributed in a narrow
DOS (see Fig. 4 The maximum of the “right sulfur” trans- range neaiGy,2>¢-54while the conductance of a single Pt
mission peak that moves to higher energy decreases withtom varies in a much broader range of 1.5-&.8°6365
bias. It can be explained by the fact that for finite bias theThe firstab initio calculation of the contact resistance and
energy of an electron propagating from right to left cannot bd-V curve of a single AUPY) atom coupled to AUPY) elec-
simultaneously a resonant energy of both left and right sulfutrodes was present&dy the TRANSIESTA group. In this sec-
projected DOS as it happens at zero bias. The maximum dfon we apply our method to calculation of th&/-curves of
the “left sulfur” transmission peak that moves to lower ener-single Au and Pt atoms and compare our results WithN-
gies decreases for applied bias less thelnV but after this  SIESTA results and experiment.
it begins to increase because it becomes resonant with the The atomic structure of the system is shown in Fig. 10.
energy levels of the inner ring of the BDT molecule. The The central region of the system consists of fouf1PD)-
peak of the transmission spectrum at 3 eV is not change@® X 3) layers with atoms in ideal bulk positions, the layer
much with applied bias, in accordance with the behavior ofwith a single M atom(the central atory and four more
the inner ring projected DO&ee Fig. 6. M(100-(3x 3) layers, positioned symmetrically to the first
We can now explain the behavior of the current as funcfour M layers. Here M denotes the metal, Au or Pt. The
tion of applied bias shown in Fig. 8. At fir6¥ <1.4 V), the  atom-electrode distance was chosen to Bef2, the same as
current increases supralinearly, as the width of the Fermiin Ref. 25 . The semi-infinite left and right M electrodes are
level window increases and the left Fermi level rides up theattached to the ends of the central region. The cell is repeated
peak of the right sulfur. Current saturatitat ~1.6 V) arises  periodically in thexy plane.
as the maximum of the right sulfur transmission peak reaches The zero bias transmission spectrum for three empty
the left Fermi level. Around a bias of 3 V the current in- spheres packing structures of the gold system with 83, 87,
creases again because the bias window approaches the nexid 95 empty spheres is presented in Fig. 11. The transmis-
resonance peak of the transmission spectrum at lower energsion curves are very similar for these packing structures,
This pattern of current behavior is in agreement with previ-thus, the convergence with respect to the number of empty
ous result$;*32éwith the saturation plateau in the same volt- spheres is achieved. In order to better understand the equi-
age range of 1.6-3 V. No plateau appears inlthécurve librium transmission spectrum shown in Fig. 11 we present
obtained by Damleet al® The magnitude of the current at the spd angular momentum resolved DOS projected on the
the plateau is roughly the same in our work and in Refscentral Au atomic sphere in Fig. 12. It is easy to see the
9,13, but half as much as in Ref. 26 . The current measuredorrespondence between the peaks of the DOS for different
in recent experimental wofk shows supralinear current in- angular momentum projections and the peaks of the trans-
crease(for measured voltages up to 0.7),Valthough the mission spectrum in Fig. 11. The main contribution to the
magnitude of the current is six times less then our theoreticaDOS of the central gold atom near the Fermi energy comes
simulations. from a broads-character peak. The broad peak with the same

b}
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D
5
=D

A
-

3

O

B. Contact resistance of a single Au (Pt) atom coupled to Au
(Pt) electrodes
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FIG. 11. (Color onling Zero-bias transmission spectrum for a  F|G. 13. (Color online Transmission spectrum for a single Au

single Au atom coupled to semi-infinite Au electrodes for differentatom coupled to semi-infinite Au electrodes calculated at zero bias
empty spheres packing structures, with (88lid line), 87 (dashed  and at a bias of 1.09 V.

line), and 95(dotted ling empty spheres.

occur at higher voltages for the gold system. Figure 14 also

shape can be seen in the transmission curves in Fig. 11. §,,/s the current calculated from the zero-bias transmission
can be concluded that the wave functions vgitlike charac- spectrum by using(k,E,V=0) in Eq. (47), which almost

"Loincides with the current obtained by self-consistent calcu-
Gations with finite applied bias. This is consistent with the
transmission spectrum being weakly dependent on the ap-
e[3Iied bias. The transmission spectrum at zero bias and finite
bias shown in Fig. 13 agrees well witiRANSIESTA results?®

We now turn to the system of a single Pt atom coupled to
0 Pt electrodes. The zero bias transmission spectrum for

near the Fermi energy, and, correspondingly, to the condu
tance. Our value of 0.93, for the zero-bias conductance of

ment with theTRANSIESTA value of 1.0%5, (Ref. 25 and the
experimental result&:61-64

The transmission spectra calculated for the system at zerg,
bias and under an appheq p|as of 1.09 V are shown in I:'gthree empty spheres packing structures of the system with
13. The curves are very similar over aW|_de range of energyss 91 and 107 empty spheres are shown in Fig. 15. The
Such a vyeak 'dependence of the transmlsspn on the Ener P nsmission curves are very similar for these packing struc-
and applied bias for the gold system results in almost ohmic

behavior of the current, shown in Fig. 14, with respect to the

applied voltage. Only small deviations from linear behavior o

5 — T T 100 |- I

. . 50 | -
S 4r L s . é
© ! =
3 ¥ “==pl 1 E oof .
g3t S d 1 3
0 o 50 | -
o) e : %0
a
3 2 - L -
< o
= ol | 100 |- . ) .
g ;o ‘
q) ’
© 1r CoN . 5o bt 1L
R -1 0 1
K . 1 Voltage (V)
0 Amm...
-6 -4 -2 0 2 4 6 FIG. 14. (Color onling Current as a function of applied voltage
E-EE (eV) for the gold system(solid line with filled circle$ and platinum

system(solid line with open squargsThe currents for these two
FIG. 12. (Color online The spd angular momentum resolved systems calculated from the zero bias transmission spectrum are
DOS projected on the central gold atomic sphere for the single golélso shown by dotted lines that coincide at small voltage with ap-
atom system. propriate solid lines.
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—— T(E,V=0eV)
h — — - T(E,V=0.886V) |

Transmission
Transmission

E-Ef (V) E-(u +1R)/2 (€V)

FIG. 15. (Color onling Zero-bias transmission spectrum for a  FIG. 17. (Color onling Transmission spectrum for a single Pt
single Pt atom coupled to semi-infinite Pt electrodes for differentatom coupled to semi-infinite Pt electrodes calculated at zero bias
empty spheres packing structures, with 88lid line), 91 (dashed  and at a bias of 0.88 V.
line), and 107(dotted ling empty spheres.

tures; thus, the convergence with respect to the number of The transmission spectrum calculated for the system un-
empty spheres is achieved. Figure 16 showssihangular der zero bias and under an applied bias of 0.88 V are shown
momentum resolved DOS projected on the central Pt atomit Fig. 17. These curves significantly deviate at energies less
sphere. Unlike gold, platinum has an opkshell, so there is  then 0.5 eV. The strong dependence of the transmission on
significantd character contribution to the DOS of the central the energy and applied bias for the platinum system results in
Pt atom near the Fermi energy. It is easy to see the corre much stronger deviation of ttev curve, shown in Fig. 14,
spondence between tidecharacter peak at —0.3 eV, broader from linear behavior as compared to th&/ curve for the
than thes-character peak at +1.7 eV of the momentum re-gold system. The peak of the transmission function at
solved DOS in Fig. 16 and the peaks of the transmissiorr0-3 €V shifts to lower energies with applied bias and its
spectrum in Fig. 15. Thus, wave functions with bstandd ~ Value decreases. This results in a reduction of the current
characters contribute to the zero bias transmission near tf@mpared to the current calculated from the zero-bias trans-
Fermi energy with somewhat larger contributions of themission spectrum shown by a dotted line in &47). Our
d-character wave functions. Our value of 1Ggfor zero-  results agree with experiential and theoretical results pre-
bias conductance of a single Pt atom coupled to Pt electrod&gnted in Ref. 25.

is in good agreement with tHERANSIESTA value of 1.78, The induced potentials for the gold and platinum systems
(Ref. 29 and the experimental resuft%3.65 with applied bias of 0.68 V are shown in Fig. 18. As can be

seen, the induced potentials for the gold and platinum sys-
LI L B tems are very similar. Most of the potential drop occurs be-
_ tween surface layers of the electrodes, shown in the figure by
dotted lines. Between these lines the voltage drop is almost
s T linear. Because of the small size of the vacuum region the
——=-p . four Au(Pt) layers to the left and to the right of the central
atom are not enough to completely screen the potential.
Some small voltage drop at the end of the supercell can still
1 be seen in Fig. 18. In order to quantify the importance of this
effect, we performed calculations with five fRt) layers to
the left and right of the central ARf) atom. The effect of the
increased size of the central region on the conductance val-
ues was within our numerical accuracy of 03)1

5 —— 1

N
T

-~
-~

Central Pt DOS (states/eV)

V. CONCLUSION

E-EF (eV) This paper described amb initio method and its imple-
mentation for the calculation of the electronic structure and
FIG. 16. (Color onling The spd angular momentum resolved transport properties of a nanoscale system coupled to elec-
DOS projected on the central platinum atomic sphere for the singlérodes with applied bias voltage. The method is based on a
platinum atom system. nonequilibrium Green’s function approach using an all-
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APPENDIX A

AV (eV)

In this Appendix we will rewrite Eq(6) for the charge
density in terms of site-diagonal elements of lesser Green'’s
functions, thus making the equation much more suitable for
numerical implementation. Let indeR, denote a sphere
which contains vector, where we calculate the charge den-
sity. Let us increase, for a moment, the width of the central
region in such a way that the distance between the spgkhgre
and any spher®& belonging to the left or right lead is large
enough, so the coefficienhsgo,R of the LMTO tail in the Eq.

(3) vanish (in this Appendix we will omit the angular mo-
mentum indices for breviby In other words, we assume that
all LMTO's used in the summations ovBrandR’ in Eq. (6)

-20 -10 0

z (ag)

10

FIG. 18. (Color online The induced potential in the center of
spheres as a function of the spherasoordinate for the gold sys-
tem (solid line with filled circles and the platinum systertsolid

line with open squarésin both cases the bias voltage equals 0.68
V. The induced potential is shown for all atomic and empty sphere

of the central region and for the additional 36 spheres of two left
lead layers and two right lead layers that are included in the con-

struction of the supercell for the electrostatic potential calculation
Vertical dotted lines show the positions of the left-most and right-

S

have heads at atoms that belong only to the central region,
and the tails of LMTQO’s with heads at atoms in the lead
egions vanish for a given sphekRg. Thus, we may apply
the formula(8) for the lesser Green'’s function in the central

region to Eq.(6), because contributions from sitesor R’

T

belonging to leads vanish. Let us consider a product

> Xr(NGrr (E)Hr g
RR'

=2 ¢r,(rR)Gr,r'(E)Hr' R
y

most AUP?) layers of the right and left electrode, respectively.

electron TB-LMTO-ASA formalism, and can be applied to a
variety of systems, as illustrated by calculations for single
molecules and single-atom contacts.

While a significant fraction of this paper is devoted to the
technique, the calculations presented for the BDT molecule
show that even simple-looking current-voltage curves can
have interesting physical origins. Indeed, for the BDT mol-
ecule connected to gold electrodes, the physical picture thathere R, denotes a site belonging to the left or right lead.
emerges i¢1) electric fields are screened within the first two Such products appear in the expressionxfp@(n)G§ = in Eq.
gold layers;(2) the voltage drop is linear across the mol- () if we apply definition10)—(12) to the expression for the
ecule;(3) the end sulfur atoms are strongly coupled to thejesser Green's functiof8). The last term in the right hand

electrodes, while the central part of the molecule is weaklysjge of Eq.(A1) can be rewritten by using relatio®) and
coupled;(4) electron transmission occurs through wave func-gefinition of the Green’s functiof)

tions that are localized on the end sulfur atoms, with the _
zero-bias Fermi level near and above these states;(@nd > br,(TR)NR,RGR R (E)HR R
applied bias splits the degeneracy of these states, and leads to g’
a nonlinear increase of the current with bias. :
Finally, we note that a meaningful comparison between = 2 ¢r,(rr)Hr,ROrRR/(E)HR R
experiment and theory first requires agreement between the RR’
-2 #Ry(TRy)EWRCRy R (E)HR R
RI

+ 2 dry(TR )R RGrR/(E)HR1 R, (AL)

R,R’

various experiments and between the different theoretical ap-
proaches. For single atom contacts, our results are in excel-
lent agreement with previous calculations, and seem to agree
with experiment. For BDT, at this time, neither experiments
nor theory have converged to a consensus on the behavior of
this molecule. As theoretical approaches have progressed,
various approximations have been removed, most notably in
the present work the pseudopotential approximation. As we
hope to remove the ASA by implementing a full-potential
version of the method presented here, we expect that a con-
verged theoretical answer for the behavior of molecular sys-
tems within the LDA will soon be available. In the last line of Eq(A2) we used the fact that the Hamil-

=2 ¢RO(VRO)EGRO,R'(E)HR',R| - ¢R(VRO)HRO,R,
R’
-2 ¢R0(fRO)EV,ROGRO,R'(E)HR',Rl
RV

=2 ¢r,(TR)(E~E,r)Gr,r/(E)Hr' g (A2)
R/
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tonian matrix eIementisiRoRI are related to the coefficients

hr,r, DY EQ. (5) and vanish by our assumption. Thus, the G2= 2> E Grr,(Z)Hr 'Ger (2),
product(Al) takes the form r'>Ns'=1
Grr/(E)Hg
F%’ XR(r) RR ( ) RUR, cr Z) E 2 Gcc (Z)Hc’ r'G ( )
' r'>Ns'=1
=2 [dry(TR) + dr,(TR)(E~E,R))] . (B3)
R!
G (2= > > G~ (2Hy oG (2),
XGRO,R’(E)HR’,R|- (A3) rl e rr r’,c’c’ |
Applying this formula to Eq(6) we obtain expressiofiL6). N
If the width of the central region is large enough, so that all G,2=2> > Gfl,(z)Hl, Gy ((2),
charge and potential relaxations take place in the central re- ' '<ic'=1 ' '

gion, the value of the lesser Green'’s function defined by Eq.

(7) does not depend on the choice of how we partitioned oUpyson Egs.(22) for G s(Z) andG |(Z) the definitions(11)

system into leads and the central region. Thus, we may USEnd (12) of self- energleSE  and=%, and cyclic invari-
formula (16) for the charge density even if we calculate the c.C
ance of the trace, EqB2) can be recast as

site-diagonal elements of the lesser Green’s function for
smaller central region, without the assumption of vanishing

coefficientsh . v
RoR| T(E) = EECl_ cpml c3-12(:4—( HH*

Xt{[Sg ¢ (2,) =3¢ o (2)1Gc,c,(2,)
X2 6o, (2) =3¢ o (2)]Gc,,(2)}. (B

APPENDIX B
In this Appendix we will rewrite expressiof2) for the Ko
transmission coefficient in terms of auxiliary Green’s func-
tions. To address this problem let us consider the followingd@nly two terms, one withu=1, »=2, and another withu
function of energy: =2, v=1, do not vanish in Eq(B4). These two terms are
actually equal to one another. The last statement follows
from the fact that the trace of four matrices can be expressed
~ 1 in terms of transposed matrices as
T(E) = ETr{[QO,H][G(EJ -G(E))]

— TATRTAT — TNTATRT
« [OHI[G(E,) - G(E)]), (B1) t{ABCD} = tr{D'C'B'A"} = tr{AT]D'C'BT},
and that Hamiltoniari4) is a symmetric matrid"=H, so all
where we use full matrix notation. Tr..} in Eq.(B1) means matricesG, G*, G?, =, and=" are also symmetric. Apply-
trace over indiceBL and over index of principal layep  ing the definition of thel'’“® matrices(10) to expression
which runs from <o to . We will show that the right-hand (B4) one can see that the right hand sides of EB4) and
side of Eqs(42) and(B1) coincide with each other. Opening (42) in fact coincide, proving the equalif(E)=T(E,V).
the commutators in EqB1) the expression fof (E) can be Equation(B1) can be rewritten by using the expression
rewritten as (26) for the commutator

- 1
T(E) = ETF{[QO,S“][M(EQ -M(E))]

N N
TE=-333 3 3 (- )-1iH, Gz,

ittt R X [QVSIME) -ME)T,  (BS)
X Hr,c'Gc’,c(Zv) + HI,ch,c’(Z,u)Hc’,rGr,I(ZV)
where
Hc,IGI,c’(Z,u)Hc’,rGr,c(Zv)
- HI,ch,r(Z,u)Hr,c’Gc’,I(Zv)}- (B2) M2 =[1+(a- ‘y)S“]_l\s“Z(z— H)_l\s"Z[l +S(a- y)]_l,
(B6)
Here indicesu,v run from 1 to 2 and complex energies are
defined ag;=E,, andz,=E._. Using the explicit form(25) of the Hamiltonian, the matrix
Using the Dyson equations M(z) can be transformed as
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M(2) =[1+(a- ST H(z-C)A™
+S(a-y)(z-C)A -1}
={(z-O)[A + (y- &)(z- C) 1 - 591 x [QY,S"[g“(E,) - g*(E))]}. (B8)
+[1+(a=9STHa-y)

T(E) = TP, S"g"(Ey) - g7(E )]

Algebraically, this expression looks exactly the same as Eq.

=g“@ +[1+(a= ST Ha-). (B7)  (B1) with P%(2)-S" taking the place og—-H. Similarly, the

The last term in the last line in E¢B7) is zindependent and €quivalent to Eq(42) is Eq.(43), where we used the equality

cancels in Eq(B5). Thus, Eq.(B5) takes the form T(E)=T(E,V).
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