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Flexural wave propagation in single-walled carbon nanotubes
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The paper presents the study on the flexural wave propagation in a single-walled carbon nanotube through
the use of the continuum mechanics and the molecular dynamics simulation based on the Terroff-Brenner
potential. The study focuses on the wave dispersion caused not only by the rotary inertia and the shear
deformation in the model of a traditional Timoshenko beam, but also by the nonlocal elasticity characterizing
the microstructure of carbon nanotube in a wide frequency range up to THz. For this purpose, the paper starts
with the dynamic equation of a generalized Timoshenko beam made of the nonlocal elastic material, and then
gives the dispersion relations of the flexural wave in the nonlocal elastic Timoshenko beam, the traditional
Timoshenko beam and the Euler beam, respectively. Afterwards, it presents the molecular dynamics simula-
tions for the flexural wave propagation in an armch@&j5 and an armchaif10,10 single-walled carbon
nanotubes for a wide range of wave numbers. The simulation results show that the Euler beam holds for
describing the dispersion of flexural waves in the two single-walled carbon nanotubes only when the wave
number is small. The Timoshenko beam provides a better prediction for the dispersion of flexural waves in the
two single-walled carbon nanotubes when the wave number becomes a little bit large. Only the nonlocal elastic
Timoshenko beam is able to predict the decrease of phase velocity when the wave number is so large that the
microstructure of carbon nanotubes has a significant influence on the flexural wave dispersion.
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I. INTRODUCTION beam models, neither the Euler beam nor the Timoshenko

Interest in carbon nanotubes has kept growing since the®am, could predict the decrease in the phase velocity. Thus,
discovery by lijimal Recent studies have indicated that car-there is a need to study the dispersion of flexural waves in
bon nanotubes exhibit superior mechanical and electronigingle-walled carbon nanotubes based on the model of non-
properties over any known materials and hold substantidPcal continuum mechanics so as to take the effect of the
promise for, among others, new super-strong composite manicrostructure of single-walled carbon nanotubes on the
terials. For instance, carbon nanotubes possess exceptionafiave dispersion into consideration.
high elastic moduli’s® and sustain large elastic strain and  For this purpose, the dynamic equation is established for a
failure strain’~1°The mechanics of carbon nanotubes, hencenonlocal elastic Timoshenko beam, which takes not only the
has drawn considerable attention. Numerous studies havetary inertia and the shear deformation, but also the second-
concentrated on the static mechanical behavior, such ayder gradient of strain which characterizes the microstruc-
buckling, of carbon nanotubes by using the models of elastiture of carbon nanotubes, into account in Sec. Il. In Sec. Il
beams and shells, and even those of nonlocal elastic bearti¥®e dispersion relations of flexural waves are derived for the
and shelld!12 Meanwhile, several research teams havenonlocal elastic Timoshenko beam, the traditional Timosh-
implemented the model of elastic beams to study the dyenko beam, and the Euler beam. Afterwards, the model of
namic problems, such as the vibrafidri® and the wave molecular dynamics is outlined in Sec. IV for the single-
propagatiort®-18of carbon nanotubes. For example, Yoein  walled carbon nanotubes. In Sec. V, a comparison is made
al. studied the flexural wave propagation in a multi-walled between the theoretical results of beam models and those
carbon nanotube based on the model of Timoshenko beagimulated by the molecular dynamics for the propagation of
with the rotary inertia and the shear deformation taken intdlexural waves in two single-walled carbon nanotubes.
account® To the best knowledge of the authors, however,Finally, some concluding remarks are made in Sec. VI.
neither experiments nor numerical simulations have been
available for the validation of beam models in studying the; \opEL OF A NONLOCAL ELASTIC TIMOSHENKO
flexural wave propagation in any carbon nanotube from the BEAM
viewpoint of continuum mechanics. Furthermore, little is
known about the effect of the microstructure, if any, on the This section starts with the dynamic equation of a nonlo-
flexural wave propagation in a carbon nanotube. cal elastic Timoshenko beam of infinite length and uniform

The primary objective of this study is to check the validity cross section placed along directigrin the frame of coor-
of the beam model in studying the flexural waves, simulatedlinates(x,y,z), with w(x,t) being the displacement of sec-
by the molecular dynamics, in a single-walled carbon nanotion x of the beam in directioly at the moment.
tube. In the preliminary stage of this study, the molecular In order to describe the effect of the microstructure of
dynamics simulation showed that the microstructure of a carearbon nanotubes on their mechanical properties, it is as-
bon nanotube had a significant influence on the dispersion gfumed that the beam of concern is made of the nonlocal
flexural waves of high frequency such that no traditionalelastic material, where the stress state at a given reference
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point depends not only on the strain of this point, but also on )
the higher-order gradient of strain so as to take the influence T= G(?’”
of the long range forces of all other atoms into account. The

simplest constitutive law to characterize the nonlocal elastiavherer is the shear stress af@lis the shear modulus. Then,

(8)

material in the one-dimensional case reads the shear forc&) on the cross section becomes
Pe W Po  Fw
— 29 ©x _ 2 ¢
oeelenrrt ) v aincf (o575 TE)] o

whereE represents Young's modulus andthe axial strain. \here g is the form factor of shear depending on the shape
As studied in Askest al'® (see Appendix r is a material  of the cross section, angi=0.5 holds for the circular tube of
parameter to reflect the influence of the microstructure on thehe thin wall2°
stress in the nonlocal elastic material and yields Now, it is straightforward to write out the dynamic equa-
d tion for the beam element of lengthx subject to bending/
r=-—, (2 and shear forc® as follows:
V12
. . . . . Pw . aQ
whered, referred to as the interparticle distance, is the axial pA—5dx+ —dx=0,
distance between two rings of particles in the material. For a ox
the armchair single-walled carbon nanotuldejs just the
axial distance between two rings of carbon atoms. P oM
To establish the dynamic equation of the beam, it is nec- p'FdXJ’ Qadx- de: 0. (10)
essary to determine the bending momBhtwhich reads
Substituting Eqs(6) and(9) into Eqg. (10) yields the follow-
M = f yor, dA, (3) ing coupled dynqmic_ equation for the deflection and the slop
A of nonlocal elastic Timoshenko beam

axial stress, ang the distance from the centerline of the P?’f x ol e ot
cross section. It is well known from the theory of beams that
the axial strain yields

whereA represents the cross section area of the begrihe Pw BG|:<{9QD (92W) 2( P ﬁ“w)] 0
- _ + =0,

pI%+ﬁAG[(¢—&—N> +r2<ﬁ—&3—v:>}

y 2
£x="7, (4) X X X
p
. . _Ei[ 22427 2 (11)
wherep’ is the radius of curvature of beam. Letdenote the 2 PV e

slope of the deflection curve when the shearing force is ne-
glected ands denote the coordinate along the deflection
curve of the beam. Then the assumption upon the small de- ||| FLEXURAL WAVE DISPERSION IN DIFFERENT

flection of beam gives BEAM MODELS
lz‘?_‘Pa_X ~ ‘7_‘P_ (5) To study the flexural wave propagation in an infinitely
p' XIS X long beam, let the dynamic deflection and slope be given by
Substituting Egs(4) and(5) into Egs.(1) and (3) gives the w(x,t) = Wweked  o(x t) = pelkey (12)

following relation between bending momeit and the cur- .
vature and its second derivative when the shearing force iwhere i=\-1, W represents the amplitude of deflection of

neglected: the beam, an@ represents the amplitude of the slope of the
A beam due to bending deformation alone. In additois, the
M = E|<‘9_‘P + rz_‘P>, (6)  Phase velocity of wave, aridis the wave number related to
IX 'S the wavelengti\ via Nk=27. Substituting Eq(12) into Eq.

where | =y?dA represents the moment of inertia for the (1) yields

Cross section. : . 21,3\
; - iBAGKk+ iBAGrk’)w
To determine the shear force on the beam,die the -ip B )
angle of shear at the neutral axial in the same cross section.  + (- plk?c? + BAG - BAGI?k? + EIk? - EIr’k%» =0,
Then, it is easy to see the total slope
W (- pkc? + BGIZ — BGrakHW + (i BGk - iBGrok) ¢ =0.
—=p-. 7
o =Y ( ) (13)
For the torsional problem of one dimension, the constitutivemrom the fact that there exists at least one nonzero solution
law of the nonlocal elastic material reads (W, @) of Eg. (13), one arrives at
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2| E tubes. The structure of the Tersoff-Brenner potential is as
Z_szc4_ pA+p| 1+E_G k2 (1_r2k2)C2 fo”ows p
+EIKY(L-r%)?=0. (14 V) = 2 X [Valry) = By Va(ryl, (20)
Solving Eq. (14) for the phase velocityc gives two . . e _ _
branches of wave dispersion relation, wherer;; is the distance from atornto atomj, andVg(rj;)
andV,(rj;) are the repulsive and attractive terms given by
c= \/_ bl + \“”bi - 4a1C1 (15) D
28 , Vr(rij) = fij(rij)s__Jl_leXF[_ \’TSj,Bij(f -r9)l, (213
where a,=p2lk2/ BG, b,=[pA+pl(L+E/BG)K2](r2k2-1), J
andc,; =EIk?(1-r?k?). Here, the lower branch represents the S D; .
dispersion relation of the flexural wave, and the upper branch Valrij) = fij(rij)gjjji exf - v2/§;B;j(r —rg)]. (21b)
determines the dispersion relation of the transverse shearing !
out of interest. Here §;=1.29,D;;=6.325 eV, ;=15 nnt, ry=0.1315 nm,
If r=0, Eq.(11) leads to fij, Dyj, Sj, B are scalars, and;(rj;) is a switch function
5 used to confine the pair potential in a neighborhood with
pAﬁ Wb + E|34W(X't) -l (1 )a“w(x .0) radius ofr, as follows,
t? ax BG/ oxeat?
ri <rq,
P w(x,t) o 16 . ij<T
,BG At fij(rj) = [ 5<7T ——= . )] ri<rj=ry
—I1
This is the dynamic equation of a traditional Timoshenko ro>r
bean?! In this case, the relation of wave dispersion takes the 2
form of Eq. (15), but with a,=p2k?/8G, b,=—[pA+pl(1 (219

+E/BG)K?], andc,=EIK?.

If neither the rotary inertial nor the shear deformation is
taken into account, Eq11) leads to the dynamic equation of =1 +by), (21d)
a nonlocal elastic Euler beam as follows: 23 T

Pt [ WY | WY

wherer;=1.7 A andr2=2.0 A. In Eq.(20), Eij reads

O (r) )
pA Py PV (7x6 ( ; (ejlk) |k(r|k))

The condition of nonzero solutiow of Eq. (17) gives the -5
dispersion relation ( ; (9ijk)fjk(fjk)) : (21¢

El
=k —(1-r%2). (18 2 2
TN ) G(euuzao(u@— = ) (219

dj  di+(1+costy)?

]:o. (17)

In this case,r=0 results in the dispersion relation in the

traditional Euler beam where & is the angle between bondsj and i-k,
6=0.80469,a,=0.011 304,c,=19, anddy=2.5. In addition,
c=k E_ (19) the C—C bond length in the model is 0.142 nm.
pA
V. FLEXURAL WAVE PROPAGATION IN SINGLE-
IV. MOLECULAR DYNAMICS MODEL FOR CARBON WALLED CARBON NANOTUBES
NANOTUBES

To predict the flexural wave dispersion from the theoreti-

In order to check the applicability of the above dispersioncal results in Sec. lll, it is necessary to know Young’s modu-
relations given by different beam models to the single-walledus E and the shear moduluS, or Poisson’s ratiov. The
carbon nanotubes, this section presents the model of molecprevious studies based on the Tersoff-Brenner potential gave
lar dynamics simulations for two single-walled carbon nano-a great variety of Young’s moduli of single-walled carbon
tubes. They both are 29.5 nm long, but one is an armchainanotubes from the simulated tests of axial tension and com-
(5,5 carbon nanotube and the other is an armchiix,10 pression. When the thickness of the wall was chosen as
carbon nanotube, respectively. 0.34 nm, for example, 1.07 TPa was reported by Yakoleton

In the corresponding molecular dynamics models, the inal.,” 0.8 TPa by Cornwell and Will&3 and 0.44—0.50 TPa
teratomic interactions are described by the Tersoff-Brenneby Halicioglu?* Meanwhile, the Young’s modulus deter-
potential?2 which has been proved applicable to the descripmined by Zhanget al?® on the basis of the nanoscale con-
tion of mechanical properties of single-walled carbon nanotinuum mechanics was only 0.475 TPa when the first set of
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et bty et t, the carbon nanotube simulated by using molecular dynamics.
= 0.001f 0 N i i i iods i
= If the transient deflection of the first two periods is neglected,
‘E’ 0.000F the propagation duratioAt of the wave from section 1 to
2 o001k section 2 can be estimated as below
& @ | Sectontf )| (tao—ts) + (ta2— tay) (tnp = toy)
- + —_— 4+ e 4+ —
a te G b, ot ot At~ ez ta) * (lap~ by 2=t o)
@ 0.001 n-2
[
g 0000 There follow the phase velocity and wave number
8 -0.001
= 000 L (b) | —— Section1(x,=2.46nm) Xo = X1 27 ol o
- 3 c=——, k=—=—=—. (23
0.001 2 t, o t, At A AN C
0.000k Figures 2 and 3 illustrate the dispersion relations between
I the phase velocitg and the wave numbds, and between the
-0.001f , ; :
L (c) . | — Section2(x,=4.92nm) | phase velocity and wavelengti of the flexural wave in the
0 ' 1000 2000 3000 armchair (5,5 and (10,10 carbon nanot_u_bes, respectively.
Time (fs) Here, the symbol E represents the traditional Euler beam, T

the traditional Timoshenko beam, NE the nonlocal elastic

FIG. 1. The time histories of the deflection of different sectionsEuler beam, NT the nonlocal elastic Timoshenko beam, and
of the armchaik5,5 carbon nanotube, where subscripéndj in t;; MD the molecular dynamics simulation, respectively. In
represent the number of the wave peak and the number of thEigs. 2 and 3, when the wave numbemwas smaller than
section, respectivelyt@ The sinusoidal wave of perio@i=400 fs 1x10° m™L, or the wavelength was >6.28%X 109 m, the
input at section 0(b) The deflection of section 1, 2.46 nm ahead phase velocities given by the four beam models were close to
of section 0.(c) The deflection of section 2, 4.92 nm ahead of each other, and they all could predict the result of the mo-
section 0. lecular dynamics well. The phase velocity given by the tra-
ditional Euler beam, however, was proportional to the wave

arameters in the Tersoff-Brenner potertfialvas used. ;
b b mber, and greatly deviated from the result of molecular

Hence, it becomes necessary to compute Young’s modul X h i ber b | h
and Poisson’s ratio again from the above molecular dynam2Ynamics when ine wave number became larger than

_1 e
ics model for the single-walled carbon nanotubes under th%>< 10° m™. Almost no better than the traditional Euler
static loading. eam, the result of the nonlocal elastic Euler beam greatly

For the same thickness of the wall, the Young's moduludeviated from the result of molecular dynamics too when the

that we computed by using the first set of parameters in th&/ave nu_rr_1ber be_came large. Nevertheless, the results of b(_)th
Tersoff-Brenner potenti& was 0.46 TPa for the armchair the traditional Timoshenko beam and the nonlocal elastic
(5,5 carbon nanotube and 0.47 TPa for the armcHedr10 Timoshenko beam remained in a reasonable coincidence
carbon nanotube from the molecular dynamics simulation folVith the results of molecular dynamics in the middle range

the test of axial tension. Furthermore, the simulated test off Wavenumber or Wave'eﬂgth- When the wave number
was larger than &10°m™ (or the wavelength was

pure bending that we did gave the product of effective 9 i
Young's modulusE=0.39 TPa and Poisson's ratie=0.22 \<1.047X 10" m) for the armchair(S,5) carbon nanotube

-1 9
for the armchaif5,5) carbon nanotube, are=0.45 TPaand and 3X 10° m™ (or the wavelength was <2.094x10°° m) -
1=0.20 for the armchaif10,10 carbon nanotube. In the use for the armchair(10,10 carbon nanotube, the phase velocity

of theoretical results in Sec. lll, Young's moduli and Pois- diven bY_the mglecular dynamics b_egan to de_crease, which
son’s ratios obtained from the simulated test of pure bendind® traditional Timoshenko beam failed to predict. However,
for those two carbon nanotubes were used. In addition, E4"€ nonlocal elastic Tlmos_henko beam was able to predict the
(2) givesr=0.0355 nm when the axial distance between twol€Créase of phase velocity when the wave number was so
rings of atoms readd=0.123 nm. For the single-walled car- large(or the wavelength was so shptthat the microstructure
bon nanotubes. the wall thickness tis0.34 nm and the ©f the carbon nanotube significantly blocked the propagation
mass density of the carbon nanotubep#2237 kg m?3. of flexural waves. o

It is quite straightforward to determine the phase velocity F19ure 4 shows the flexural wave propagation in the arm-
and the wave number from the flexural vibration, simulatedCar (5,9 carbon nanotube, simulated by using the molecu-
by using molecular dynamics, of two arbitrary sections of /& dynamics model, at the moment of 3000 fs for four dif-
carbon nanotube. As an example, the end atoms denoted ent wave periods. Obwously, the wave dlspersmn becqme
section 0 ak,=0 of the armchaif5,5) carbon nanotube was ore and more remgrkable with a decrease in wave p_erlod.
assumed to be subject to the harmonic deflection of perio®S illustrated in Fig. 4, the flexural wave of period
T=400 fs as shown in Fig.(). The corresponding angular T< 100 fs dispersed so rapidly that it could hardly propagate
frequency isw=2m/T~1.57x 1013 rad §1. The harmonic N the carbon nanotube.
deflection was achieved by shifting the edge atoms of one
end of the nanotube while the other end was kept free. Fig-
ures 1b) and Xc) show the flexural vibrations of section 1 at  The paper presents a detailed study on the flexural wave
X;=2.46 nm and section 2 at,=4.92 nm, respectively, of dispersion in single-walled carbon nanotubes on the basis of

VI. CONCLUDING REMARKS
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FIG. 4. The propagation of waves of periods(af 1000 fs,(b) 400 fs, (c) 130 fs, and(d) 100 fs, respectively, in an armchd,5)
single-walled carbon nanotube at time step of 3000 fs by the molecular dynamics simulations.

four beam models with the help of molecular dynamicsmedium consists of an infinite number of identical particles
simulations for an armchai{5,5 and an armchaif10,10 of massm and identical springs of stiffneséand lengthd. It
carbon nanotubes, respectively, in a wide range of wavés easy to establish the dynamic equation for an arbitrary
numbers. The study indicates that the traditional Timoshenkparticlen as follows

beam is able to offer a much better prediction than the tradi-

tional Euler beam and the nonlocal elastic Euler beam for the

flexural wave dispersion simulated by using the molecular M, + K(2Uy = Upy1—Up-) =0, n=1,2,.... (Al)
dynamics if the wave number is not very large. When the

wave number is getting very Igrge, the microgtructure of theI'he homogenization procedure enables one to assume that
carbon nanotubes plays an important role in the flexural 9 P

wave dispersion and significantly decreases the phase velo@-e continuous d|splacemeut|s equal to the cﬁscrgte dis-
placement, at particlen. Then, the Taylor series gives the

ity of the flexural waves of high frequency. In this case, onlyd_ | h iahbori il
the nonlocal elastic Timoshenko beam well predicts the flex- Isplacement at the neighboring particles

ural wave dispersion.

o, d?éPu, d*fu, d*du,
unﬂ:unidg+5 zig 3+£ yis
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APPENDIX: CONSTITUTIVE LAW OF HIGHER-ORDER- el K " K 'ﬁl
STRAIN-GRADIENT FOR A DISCRETE MEDIUM 19 117 4 1 /‘ e H M / /L< N ‘/
// L// L(\in/ /\—L / / / //' // L(\m/ /)7// i / j’f /)—L/ i
The appendix presents the model of higher-order strain- ! d ! ;, !
gradient by means of homogenization of the displacement
field of a discrete medium. As shown in Fig. 5, the discrete FIG. 5. The structure of the discrete medium.

195412-6



FLEXURAL WAVE PROPAGATION IN SINGLE-WALLED... PHYSICAL REVIEW B 71, 195412(2005

&2 2&“u 1, tion of the continuum is expressed pig=do/dx, Eq. (A3)
pU=E|—3 X2 d P ﬁ)d ox st ) becomes the following constitutive law of the discrete
medium
wherep=m/Ad is the mass density arfe=Kd/A is Young’s 1 .Ps (948
. 22 % 47 <
modulus, whereA represents the cross-section area of the o=Ele+ 1—2d pv 360d PVl (A4)

beam. It is quite interesting that all the derivatives of odd
orders can be automatically cancelled in B&3). When the  Truncating Eq (A4) at the second-order gradient yields Eq.
kinematics relatiore=du/dx is used and the dynamic equa- (2), wherer= d/y12.
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