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The paper presents the study on the flexural wave propagation in a single-walled carbon nanotube through
the use of the continuum mechanics and the molecular dynamics simulation based on the Terroff-Brenner
potential. The study focuses on the wave dispersion caused not only by the rotary inertia and the shear
deformation in the model of a traditional Timoshenko beam, but also by the nonlocal elasticity characterizing
the microstructure of carbon nanotube in a wide frequency range up to THz. For this purpose, the paper starts
with the dynamic equation of a generalized Timoshenko beam made of the nonlocal elastic material, and then
gives the dispersion relations of the flexural wave in the nonlocal elastic Timoshenko beam, the traditional
Timoshenko beam and the Euler beam, respectively. Afterwards, it presents the molecular dynamics simula-
tions for the flexural wave propagation in an armchairs5,5d and an armchairs10,10d single-walled carbon
nanotubes for a wide range of wave numbers. The simulation results show that the Euler beam holds for
describing the dispersion of flexural waves in the two single-walled carbon nanotubes only when the wave
number is small. The Timoshenko beam provides a better prediction for the dispersion of flexural waves in the
two single-walled carbon nanotubes when the wave number becomes a little bit large. Only the nonlocal elastic
Timoshenko beam is able to predict the decrease of phase velocity when the wave number is so large that the
microstructure of carbon nanotubes has a significant influence on the flexural wave dispersion.

DOI: 10.1103/PhysRevB.71.195412 PACS numberssd: 81.07.De, 62.25.1g, 62.30.1d

I. INTRODUCTION

Interest in carbon nanotubes has kept growing since their
discovery by Iijima.1 Recent studies have indicated that car-
bon nanotubes exhibit superior mechanical and electronic
properties over any known materials and hold substantial
promise for, among others, new super-strong composite ma-
terials. For instance, carbon nanotubes possess exceptionally
high elastic modulus2–6 and sustain large elastic strain and
failure strain.7–10The mechanics of carbon nanotubes, hence,
has drawn considerable attention. Numerous studies have
concentrated on the static mechanical behavior, such as
buckling, of carbon nanotubes by using the models of elastic
beams and shells, and even those of nonlocal elastic beams
and shells.11,12 Meanwhile, several research teams have
implemented the model of elastic beams to study the dy-
namic problems, such as the vibration13–15 and the wave
propagation,16–18of carbon nanotubes. For example, Yoonet
al. studied the flexural wave propagation in a multi-walled
carbon nanotube based on the model of Timoshenko beam
with the rotary inertia and the shear deformation taken into
account.18 To the best knowledge of the authors, however,
neither experiments nor numerical simulations have been
available for the validation of beam models in studying the
flexural wave propagation in any carbon nanotube from the
viewpoint of continuum mechanics. Furthermore, little is
known about the effect of the microstructure, if any, on the
flexural wave propagation in a carbon nanotube.

The primary objective of this study is to check the validity
of the beam model in studying the flexural waves, simulated
by the molecular dynamics, in a single-walled carbon nano-
tube. In the preliminary stage of this study, the molecular
dynamics simulation showed that the microstructure of a car-
bon nanotube had a significant influence on the dispersion of
flexural waves of high frequency such that no traditional

beam models, neither the Euler beam nor the Timoshenko
beam, could predict the decrease in the phase velocity. Thus,
there is a need to study the dispersion of flexural waves in
single-walled carbon nanotubes based on the model of non-
local continuum mechanics so as to take the effect of the
microstructure of single-walled carbon nanotubes on the
wave dispersion into consideration.

For this purpose, the dynamic equation is established for a
nonlocal elastic Timoshenko beam, which takes not only the
rotary inertia and the shear deformation, but also the second-
order gradient of strain which characterizes the microstruc-
ture of carbon nanotubes, into account in Sec. II. In Sec. III,
the dispersion relations of flexural waves are derived for the
nonlocal elastic Timoshenko beam, the traditional Timosh-
enko beam, and the Euler beam. Afterwards, the model of
molecular dynamics is outlined in Sec. IV for the single-
walled carbon nanotubes. In Sec. V, a comparison is made
between the theoretical results of beam models and those
simulated by the molecular dynamics for the propagation of
flexural waves in two single-walled carbon nanotubes.
Finally, some concluding remarks are made in Sec. VI.

II. MODEL OF A NONLOCAL ELASTIC TIMOSHENKO
BEAM

This section starts with the dynamic equation of a nonlo-
cal elastic Timoshenko beam of infinite length and uniform
cross section placed along directionx in the frame of coor-
dinatessx,y,zd, with wsx,td being the displacement of sec-
tion x of the beam in directiony at the momentt.

In order to describe the effect of the microstructure of
carbon nanotubes on their mechanical properties, it is as-
sumed that the beam of concern is made of the nonlocal
elastic material, where the stress state at a given reference
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point depends not only on the strain of this point, but also on
the higher-order gradient of strain so as to take the influence
of the long range forces of all other atoms into account. The
simplest constitutive law to characterize the nonlocal elastic
material in the one-dimensional case reads

sx = ES«x + r2]2«x

]x2 D , s1d

whereE represents Young’s modulus and«x the axial strain.
As studied in Askeset al.19 ssee Appendixd, r is a material
parameter to reflect the influence of the microstructure on the
stress in the nonlocal elastic material and yields

r =
d

Î12
, s2d

whered, referred to as the interparticle distance, is the axial
distance between two rings of particles in the material. For
the armchair single-walled carbon nanotube,d is just the
axial distance between two rings of carbon atoms.

To establish the dynamic equation of the beam, it is nec-
essary to determine the bending momentM, which reads

M =E
A

ysxdA, s3d

whereA represents the cross section area of the beam,sx the
axial stress, andy the distance from the centerline of the
cross section. It is well known from the theory of beams that
the axial strain yields

«x =
y

r8
, s4d

wherer8 is the radius of curvature of beam. Letw denote the
slope of the deflection curve when the shearing force is ne-
glected ands denote the coordinate along the deflection
curve of the beam. Then the assumption upon the small de-
flection of beam gives

1

r8
=

]w

]x

]x

]s
<

]w

]x
. s5d

Substituting Eqs.s4d and s5d into Eqs.s1d and s3d gives the
following relation between bending momentM and the cur-
vature and its second derivative when the shearing force is
neglected:

M = EIS ]w

]x
+ r2]3w

]x3D , s6d

where I =ey2dA represents the moment of inertia for the
cross section.

To determine the shear force on the beam, letg be the
angle of shear at the neutral axial in the same cross section.
Then, it is easy to see the total slope

]w

]x
= w − g. s7d

For the torsional problem of one dimension, the constitutive
law of the nonlocal elastic material reads

t = GSg+r 2]2g

]x2D , s8d

wheret is the shear stress andG is the shear modulus. Then,
the shear forceQ on the cross section becomes

Q = bAGFSw −
]w

]x
D + r2S ]2w

]x2 −
]3w

]x3 DG , s9d

whereb is the form factor of shear depending on the shape
of the cross section, andb=0.5 holds for the circular tube of
the thin wall.20

Now, it is straightforward to write out the dynamic equa-
tion for the beam element of lengthdx subject to bendingM
and shear forceQ as follows:

rA
]2w

]t2
dx+

]Q

]x
dx= 0,

rI
]2w

]t2
dx+ Qdx−

]M

]x
dx= 0. s10d

Substituting Eqs.s6d ands9d into Eq. s10d yields the follow-
ing coupled dynamic equation for the deflection and the slop
of nonlocal elastic Timoshenko beam

r
]2w

]t2
+ bGFS ]w

]x
−

]2w

]x2 D + r2S ]3w

]x3 −
]4w

]x4 DG = 0,

rI
]2w

]t2
+ bAGFSw −

]w

]x
D + r2S ]2w

]x2 −
]3w

]x3 DG
− EIS ]2w

]x2 + r2]4w

]x4D = 0. s11d

III. FLEXURAL WAVE DISPERSION IN DIFFERENT
BEAM MODELS

To study the flexural wave propagation in an infinitely
long beam, let the dynamic deflection and slope be given by

wsx,td = ŵeiksx−ctd, wsx,td = ŵeiksx−ctd, s12d

where i;Î−1, ŵ represents the amplitude of deflection of
the beam, andŵ represents the amplitude of the slope of the
beam due to bending deformation alone. In addition,c is the
phase velocity of wave, andk is the wave number related to
the wavelengthl via lk=2p. Substituting Eq.s12d into Eq.
s11d yields

s− ibAGk+ ibAGr2k3dŵ

+ s− rIk2c2 + bAG− bAGr2k2 + EIk2 − EIr2k4dŵ = 0,

s− rk2c2 + bGk2 − bGr2k4dŵ + sibGk− ibGr2k3dŵ = 0.

s13d

From the fact that there exists at least one nonzero solution
sŵ,ŵd of Eq. s13d, one arrives at
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r2I

bG
k2c4 − FrA + rIS1 +

E

bG
Dk2Gs1 − r2k2dc2

+ EIk2s1 − r2k2d2 = 0. s14d

Solving Eq. s14d for the phase velocityc gives two
branches of wave dispersion relation,

c =Î− b1 ± Îb1
2 − 4a1c1

2a1
, s15d

where a1=r2Ik2/bG, b1=frA+rIs1+E/bGdk2gsr2k2−1d,
andc1=EIk2s1−r2k2d2. Here, the lower branch represents the
dispersion relation of the flexural wave, and the upper branch
determines the dispersion relation of the transverse shearing
out of interest.

If r =0, Eq.s11d leads to

rA
]2wsx,td

]t2
+ EI

]4wsx,td
]x4 − rIS1 +

E

bG
D ]4wsx,td

]x2]t2

+
r2I

bG

]4wsx,td
]t4

= 0. s16d

This is the dynamic equation of a traditional Timoshenko
beam.21 In this case, the relation of wave dispersion takes the
form of Eq. s15d, but with a1=r2Ik2/bG, b1=−frA+rIs1
+E/bGdk2g, andc1=EIk2.

If neither the rotary inertial nor the shear deformation is
taken into account, Eq.s11d leads to the dynamic equation of
a nonlocal elastic Euler beam as follows:

rA
]2wsx,td

]t2
+ EIF ]4wsx,td

]x4 + r2]6wsx,td
]x6 G = 0. s17d

The condition of nonzero solutionŵ of Eq. s17d gives the
dispersion relation

c = kÎEI

rA
s1 − r2k2d. s18d

In this case,r =0 results in the dispersion relation in the
traditional Euler beam

c = kÎEI

rA
. s19d

IV. MOLECULAR DYNAMICS MODEL FOR CARBON
NANOTUBES

In order to check the applicability of the above dispersion
relations given by different beam models to the single-walled
carbon nanotubes, this section presents the model of molecu-
lar dynamics simulations for two single-walled carbon nano-
tubes. They both are 29.5 nm long, but one is an armchair
s5,5d carbon nanotube and the other is an armchairs10,10d
carbon nanotube, respectively.

In the corresponding molecular dynamics models, the in-
teratomic interactions are described by the Tersoff-Brenner
potential,22 which has been proved applicable to the descrip-
tion of mechanical properties of single-walled carbon nano-

tubes. The structure of the Tersoff-Brenner potential is as
follows:

Vsr ijd ; o
i

o
js.id

fVRsr ijd − B̄ijVAsr ijdg, s20d

wherer ij is the distance from atomi to atom j , andVRsr ijd
andVAsr ijd are the repulsive and attractive terms given by

VRsr ijd ; f ijsr ijd
Dij

Sij − 1
expf− Î2Sijbi jsr − r0dg, s21ad

VAsr ijd ; f ijsr ijd
SijDij

Sij − 1
expf− Î2/Sijbi jsr − r0dg. s21bd

HereSij =1.29,Dij =6.325 eV,bi j =15 nm−1, r0=0.1315 nm,
f ij , Dij , Sij , bi j are scalars, andf ijsr ijd is a switch function
used to confine the pair potential in a neighborhood with
radius ofr2 as follows,

f ijsr ijd ; 5
1, r ij , r1,

1

2
F1 + cosSpsr ij − r1d

r2 − r1
DG , r1 ø r ij ø r2,

0, r ij . r2,
6
s21cd

wherer1=1.7 Å andr2=2.0 Å. In Eq.s20d, B̄ij reads

B̄ij ; 1
2sbij + bjid, s21dd

bij ; S1 + o
kÞi,j

Gsu jikdf iksr ikdD−d
,

bji ; S1 + o
kÞi,j

Gsui jkdf jksr jkdD−d
, s21ed

Gsui jkd ; a0S1 +
c0

2

d0
2 −

c0
2

d0
2 + s1 + cosui jkd2D , s21fd

where ui jk is the angle between bondsi- j and i-k,
d=0.80469,a0=0.011 304,c0=19, andd0=2.5. In addition,
the CuC bond length in the model is 0.142 nm.

V. FLEXURAL WAVE PROPAGATION IN SINGLE-
WALLED CARBON NANOTUBES

To predict the flexural wave dispersion from the theoreti-
cal results in Sec. III, it is necessary to know Young’s modu-
lus E and the shear modulusG, or Poisson’s ration. The
previous studies based on the Tersoff-Brenner potential gave
a great variety of Young’s moduli of single-walled carbon
nanotubes from the simulated tests of axial tension and com-
pression. When the thickness of the wall was chosen as
0.34 nm, for example, 1.07 TPa was reported by Yakobsonet
al.,7 0.8 TPa by Cornwell and Wille,23 and 0.44–0.50 TPa
by Halicioglu.24 Meanwhile, the Young’s modulus deter-
mined by Zhanget al.25 on the basis of the nanoscale con-
tinuum mechanics was only 0.475 TPa when the first set of
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parameters in the Tersoff-Brenner potential22 was used.
Hence, it becomes necessary to compute Young’s modules
and Poisson’s ratio again from the above molecular dynam-
ics model for the single-walled carbon nanotubes under the
static loading.

For the same thickness of the wall, the Young’s modulus
that we computed by using the first set of parameters in the
Tersoff-Brenner potential22 was 0.46 TPa for the armchair
s5,5d carbon nanotube and 0.47 TPa for the armchairs10,10d
carbon nanotube from the molecular dynamics simulation for
the test of axial tension. Furthermore, the simulated test of
pure bending that we did gave the product of effective
Young’s modulusE=0.39 TPa and Poisson’s ration=0.22
for the armchairs5,5d carbon nanotube, andE=0.45 TPa and
n=0.20 for the armchairs10,10d carbon nanotube. In the use
of theoretical results in Sec. III, Young’s moduli and Pois-
son’s ratios obtained from the simulated test of pure bending
for those two carbon nanotubes were used. In addition, Eq.
s2d givesr =0.0355 nm when the axial distance between two
rings of atoms readsd=0.123 nm. For the single-walled car-
bon nanotubes, the wall thickness ish=0.34 nm and the
mass density of the carbon nanotubes isr=2237 kg m−3.

It is quite straightforward to determine the phase velocity
and the wave number from the flexural vibration, simulated
by using molecular dynamics, of two arbitrary sections of a
carbon nanotube. As an example, the end atoms denoted by
section 0 atx0=0 of the armchairs5,5d carbon nanotube was
assumed to be subject to the harmonic deflection of period
T=400 fs as shown in Fig. 1sad. The corresponding angular
frequency isv=2p /T<1.5731013 rad s−1. The harmonic
deflection was achieved by shifting the edge atoms of one
end of the nanotube while the other end was kept free. Fig-
ures 1sbd and 1scd show the flexural vibrations of section 1 at
x1=2.46 nm and section 2 atx2=4.92 nm, respectively, of

the carbon nanotube simulated by using molecular dynamics.
If the transient deflection of the first two periods is neglected,
the propagation durationDt of the wave from section 1 to
section 2 can be estimated as below

Dt <
st32 − t31d + st42 − t41d + ¯ + stn2 − tn1d

n − 2
. s22d

There follow the phase velocity and wave number

c =
x2 − x1

Dt
, k =

2p

l
=

vT

l
=

v

c
. s23d

Figures 2 and 3 illustrate the dispersion relations between
the phase velocityc and the wave numberk, and between the
phase velocityc and wavelengthl of the flexural wave in the
armchair s5,5d and s10,10d carbon nanotubes, respectively.
Here, the symbol E represents the traditional Euler beam, T
the traditional Timoshenko beam, NE the nonlocal elastic
Euler beam, NT the nonlocal elastic Timoshenko beam, and
MD the molecular dynamics simulation, respectively. In
Figs. 2 and 3, when the wave numberk was smaller than
13109 m−1, or the wavelength wasl.6.28310−9 m, the
phase velocities given by the four beam models were close to
each other, and they all could predict the result of the mo-
lecular dynamics well. The phase velocity given by the tra-
ditional Euler beam, however, was proportional to the wave
number, and greatly deviated from the result of molecular
dynamics when the wave number became larger than
13109 m−1. Almost no better than the traditional Euler
beam, the result of the nonlocal elastic Euler beam greatly
deviated from the result of molecular dynamics too when the
wave number became large. Nevertheless, the results of both
the traditional Timoshenko beam and the nonlocal elastic
Timoshenko beam remained in a reasonable coincidence
with the results of molecular dynamics in the middle range
of wavenumber or wavelength. When the wave numberk
was larger than 63109 m−1 sor the wavelength was
l,1.047310−9 md for the armchairs5,5d carbon nanotube
and 33109 m−1 sor the wavelength wasl,2.094310−9 md
for the armchairs10,10d carbon nanotube, the phase velocity
given by the molecular dynamics began to decrease, which
the traditional Timoshenko beam failed to predict. However,
the nonlocal elastic Timoshenko beam was able to predict the
decrease of phase velocity when the wave number was so
largesor the wavelength was so shortd that the microstructure
of the carbon nanotube significantly blocked the propagation
of flexural waves.

Figure 4 shows the flexural wave propagation in the arm-
chair s5,5d carbon nanotube, simulated by using the molecu-
lar dynamics model, at the moment of 3000 fs for four dif-
ferent wave periods. Obviously, the wave dispersion became
more and more remarkable with a decrease in wave period.
As illustrated in Fig. 4, the flexural wave of period
T,100 fs dispersed so rapidly that it could hardly propagate
in the carbon nanotube.

VI. CONCLUDING REMARKS

The paper presents a detailed study on the flexural wave
dispersion in single-walled carbon nanotubes on the basis of

FIG. 1. The time histories of the deflection of different sections
of the armchairs5,5d carbon nanotube, where subscriptsi and j in ti j
represent the number of the wave peak and the number of the
section, respectively.sad The sinusoidal wave of periodT=400 fs
input at section 0.sbd The deflection of section 1, 2.46 nm ahead
of section 0.scd The deflection of section 2, 4.92 nm ahead of
section 0.
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FIG. 2. The dispersion relation of the armchairs5,5d carbon nanotube.sad The phase velocity of flexural wave versus wave number.sbd
The zoom ofsad; scd The phase velocity of flexural wave versus wave length.sdd The zoom ofscd.

FIG. 3. The dispersion relation of the armchairs10,10d carbon nanotube.sad The phase velocity of flexural wave versus wave number;
sbd The zoom ofsad; scd The phase velocity of flexural wave versus wave length;sdd The zoom ofscd.
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four beam models with the help of molecular dynamics
simulations for an armchairs5,5d and an armchairs10,10d
carbon nanotubes, respectively, in a wide range of wave
numbers. The study indicates that the traditional Timoshenko
beam is able to offer a much better prediction than the tradi-
tional Euler beam and the nonlocal elastic Euler beam for the
flexural wave dispersion simulated by using the molecular
dynamics if the wave number is not very large. When the
wave number is getting very large, the microstructure of the
carbon nanotubes plays an important role in the flexural
wave dispersion and significantly decreases the phase veloc-
ity of the flexural waves of high frequency. In this case, only
the nonlocal elastic Timoshenko beam well predicts the flex-
ural wave dispersion.
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APPENDIX: CONSTITUTIVE LAW OF HIGHER-ORDER-
STRAIN-GRADIENT FOR A DISCRETE MEDIUM 19

The appendix presents the model of higher-order strain-
gradient by means of homogenization of the displacement
field of a discrete medium. As shown in Fig. 5, the discrete

medium consists of an infinite number of identical particles
of massm and identical springs of stiffnessK and lengthd. It
is easy to establish the dynamic equation for an arbitrary
particlen as follows

mün + Ks2un − un+1 − un−1d = 0, n = 1,2, . . . . sA1d

The homogenization procedure enables one to assume that
the continuous displacementu is equal to the discrete dis-
placementun at particlen. Then, the Taylor series gives the
displacement at the neighboring particles

un±1 = un ± d
]un

]xn
+

d2

2

]2un

]xn
2 ±

d3

6

]3un

]xn
3 +

d4

24

]4un

]xn
4 + ¯ .

sA2d

If the displacements of the discrete mediumun+1 andun−1 are
written in terms of the continuous displacement and are sub-
stituted into Eq.sA1d, one arrives at

FIG. 4. The propagation of waves of periods ofsad 1000 fs,sbd 400 fs, scd 130 fs, andsdd 100 fs, respectively, in an armchairs5,5d
single-walled carbon nanotube at time step of 3000 fs by the molecular dynamics simulations.

FIG. 5. The structure of the discrete medium.
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rü = ES ]2u

]x2 +
1

12
d2]4u

]x4 +
1

360
d4]6u

]x6 + ¯ D , sA3d

wherer=m/Ad is the mass density andE=Kd/A is Young’s
modulus, whereA represents the cross-section area of the
beam. It is quite interesting that all the derivatives of odd
orders can be automatically cancelled in Eq.sA3d. When the
kinematics relation«=]u/]x is used and the dynamic equa-

tion of the continuum is expressed asrü=]s /]x, Eq. sA3d
becomes the following constitutive law of the discrete
medium

s = ES« +
1

12
d2]2«

]x2 +
1

360
d4]4«

]x4 + ¯ D . sA4d

Truncating Eq.sA4d at the second-order gradient yields Eq.
s2d, wherer =d/Î12.
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