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Generalized Ashkin-Teller model on the Bethe lattice
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A generalized Ashkin-Teller model is considered that includes both biquadratic and opposite in sign bilinear
interactions between two Ising subsystemsands, along horizontal and vertical bonds on the Bethe lattice
with the coordination number dnteractions of this kind are typical of adsorbed lattice systems characterized
by dipolelike intermolecular forces and a strong azimuthal angular dependence of sgen@etrical adsorp-
tion potential. The exact solutions found in the framework of this modigldetermine the second-order phase
transitions between paraphase | wiil)=(s)=(os)=0 and two ordered phases, phase Il with=(s)+0,
(os)# 0, and phase Il with{as)#0 at (o)=(s)=0 and (ii) specify the conditions for the conversion of
second-order to first-order transitions. With regard to these solutions, the phase diagrams are constructed for
Ky, Ko, K4, WhereK;=J;/kgT, J; is the interaction constant betweeno and s-s spin subsystemsl, is the
constant of bilinear fluctuation-s interactions,J, is the constant of biquadratie-s interactions kg is the
Boltzmann constant, and is the absolute temperature. First-order transitions are detected numerically by
comparing the free energies of the phases concerned. It is shown that phase Il is gradually replaced by phases
I and Il with rising J, and vanishes at all i§,=J;.
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I. INTRODUCTION the most general formulation of the anisotropic spin-3/2
Among planar lattice models involved in statistical phyS-mOdeI and admits, at a certain value of the fluctuation inter-

ics, those admitting exact solutidrare of most significance action parameter, an exact analytical solution for a square

in the treatment of phase transitions in various realistic sysla'[t'ce-l 2

tems, e.g., two-dimensional antiferromagrtesstificial two- Like the conventional Ashkin-Teller model, its general-

dimensional lattices of ferromagnetic nanoparticlesg- ized analog admits no exact analytical solution throughout

sorbed molecular monolayet$,etc. The models implying the variation range of the spin interaction parameters. As

four states of a particle at a lattice site are exemplified by théhe self-consistent field approximation does not suffice to

widely employed Ashkin-Teller modeland the spin-3/2 describe the fluctuation interactions, it is appropriate to in-

Ising model. These two are, in essence, equivalanturate voke the corresponding model on the Bethe lattice. Accord-

to the number of included interactions between spins 3/2 aniig to the known approach of Baxtethe solutions obtained

the restrictions imposed on the corresponding interactioffor this lattice can be regarded as exact ones; moreover, they

constanty which makes the results obtained for either modelprovide a qualitatively correct description of phase

valid for both of then.® transitionst® Here we present an exact analytical solution of
To describe orientational phase transitions in thethe generalized Ashkin-Teller model which determines

systems with essentially anisotropic multipole Coulomb in-second-order phase transitions on the Bethe lattice with the

teractions, a more detailed study on anisotropic models wagoordination number 4 and specifies the conditions for the

necessary. Thus, the phase transition on a square lattice epnversion of second-order to first-order transitions. Starting

dipoles with four possible orientations along the square difrom the analytical solution as well as a numerical descrip-

agonals was simulated by a dipole short-range modeiion of first-order transitions, a relevant phase-transition dia-

reducible to the exactly soluble anisotropic Ising mctal. gram is constructed.

more complicated situation emerges if long molecular axes

can h.ave_four orientat.ions along the square _Iattice axes, Il. GENERAL PROPERTIES OF THE MODEL

since in this case the Ising subsystemands) are involved

in opposite in sign bilinear interactions along the horizontal The Hamiltonian of the generalized Ashkin-Teller model

and vertical lattice bonds, so-called fluctuation interactionswith fluctuation interactions on a square lattice appears as

These interactions can result in a new type of orientationafollows:*?

ordering, viz., a preferential direction of long molecular

axes in the absence of spontaneous pqlarizéﬂpn. H=>[- (O Tme1n + SmrSmein + TmrOmns1 + SmrSmns1)

Phase transitions in the model with fluctuation interactions mn

on a square lattice and on the Bethe lattice with the 3 + _ _

coordination number 4 were analyzed previod$i gener- 2TmrSme10 + Smn0imein = Tmemnes ~ SmnTimne)

alized Ashkin-Teller model was introduc&din which the = J4(TrmrSmnTme 1S+ 1.0 + TmrSmnOmn+1Smn+1)]- 1

anisotropic bilinear interactions along with isotropic biqua-

dratic interactions were included. This model is equivalent toAt 0=<J,=J,, the ground state energies and the correspond-
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ing spin distributions over the sites of a square lattice are The special case af,=J; enables an exact analytical so-

specified by the relations lution to be obtained, since the system turns quasi-one-
dimensional and the partition function for either of the lat-
CING43,-23), opEsm=l, 3> -y tices considered is representablé'd$
OT2NY, Tpne= (D™, J< -3y

z=2N(cosh Ky)V?Z,gq(K), K=Ky +Ky,

(2 (5)
v 1
These states are degenerate in the interaction condjant K1= 7 In(cosh &y).
Note that the degeneracy occurs at an arbitdary J, ratio.
For instance, at & J;=<J, the parameters; and J, inter-
change, so that the degeneracyljmesults. If the interaction
constants); andJ, have arbitrary signs, then the one with a
larger absolute magnitude competes with(3,<0) in gov- ~ -~ ~
erning the ground state structure, whereas the other repre- Herr= =32 (TmnTmein * TmnTmpes), I =TK, (6)
sents the degeneracy parameter. It is clear that the spin vari- mn
ables can be redesignated so that each of the resulting phase,, i _ ) P
regions is describable by Hamiltonigh) with the substitu- %ﬁ WhICh Tmn= TmrSmn gnd the temperature de_pendent inter
tion J,—J, or/and sign reversal fod, and J,. Hence the action constany describes the thermodyr~1am|cally averaged
statistical properties of all the phase regions are the same afigferaction of two neighboring spins. AtJ>0, the transi-
one can restrict consideration to the regios &, <J; with- tion from phase | to phase Il characterized by fgrromagnetic
out loss of generality. ordering ((1)>0) is specified by the equatiol=Kigjng,

Some features of the phase diagram in terms of the varivhich for the Bethe lattice with the coordination number 4
ablesK;=J,/kgT, 1=1,2,4(kg is the Boltzmann constant and transforms to
T is the absolute temperatyyeare easily revealed from a
number of limiting cases. AK,=0, Hamiltonian(1) corre- cosh K; =4 exp— 4K,). (7)
sponds to the Ashkin-Teller model with the well-known
phase diagrarhAt K,=0, the problem is reduced to the thor- Aot J<0, phase Ill suggests antiferromagnetic ordering
oughly studied cagé of two interacting Ising sublattices (7)o (=1)™"), 50 thatk = —K g and
with fluctuation interactions. As in the Ashkin-Teller model, ** '™ ' Ising
the satisfied inequalities ©K,<K;<|K,| imply that the
system can be treated in terms of Ising solutions. Thus, the
second-order phase transition from the disordered state
(o)y=(s)=(0s)=0 (phase ) to a phase with the nonzero av-
erage values ofos) at(os)=(s)=0 (phase Il) takes place if
K4= %K sing, WhereK sng=(1/2)In(1+2) for a square lattice The partition function corresponding to Hamiltoni&h
andKsng=(1/2)In 2 for the Bethe lattice with the coordina- on a Cayley tree with the coordination number 4 can be
tion number 4. Interesting limiting peculiarities found at Written as follows:
K,>1 for the transition from phase Ill to phase (With

Here leing(k) designates the partition function for
two-dimensional Ising system with the effective
Hamiltonian

cosh K, = (1/4)exp- 4K,). (8)

IIl. SOLUTION FOR THE BETHE LATTICE

4
(o)=(s)>0) follow from Hamiltonian (1) which at B 5 5
Snn=0mn IS reduced to the Hamiltonian of the Ising system Z(N) = zxi (N7 (N), )
with the different interaction constants along horizontal and
vertical bonds: where the values;(N) andy;(N) are determined for the so-
called central node of the tregvhich is surrounded by
H=[- 2031+ 3)0rmOmen = 2031 = Io) TrrTmne1— 234l shells and lies farthest from the tree leaves whéred) by
mn ' ' the system of recurrent equations
(3 4
. _ _ X(N) = 2 A (N= 1)y (N - 1),
The phase transition temperature is therefore given by j=1
the following respective equations for a square lattice and (10)
for the Bethe lattice: sinh(&;+K,)sinh 4K;-K,)=1 and 4
exg—4(K;+K,)]+exd -4(K,-K,)]=1. At J,— J, this tem- yi(N) = 2 AP (N = DxA(N - 1).
=1

perature approaches zero by the logarithmic law which for

the Bethe lattice assumes the form o .
Here, the indices, j=1,2,3,4label the following values

assumed by the pairs of spin variablesand s: +1,+1;
T o 8J, 33 @ ~1.-1i+1,-1;-1,+1 The %4 matrices A®¥ and AY
SN[ T L 43, - 3] T2 have the block structure:
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A= (A c) o (B c) a; = 2 expK,)sinh 2K, +K,),
C B/’ C A/’
a, = 2 exgK,)cosh ZK; +K,),
e2(K1+K2)+K4 e—2(K1+K2)+K4 (15)
A= e 2K KKy G2(KHKpI Ky | (1) b; = 2 exdKy)sinh 2K, - Ky),

e b2 = 2 eXF(K4)COSh ZK]_ - K2)

Ka @K

C= (e—K4 e—K4)’ The eigenvectors of the matricds® and AY are represent-
able in a block form:

where K;=J;/T (T is the absolute temperature in energy

units). The quantitiesx(n) andy;(n) determine the average g = (Sl S3> Y = <SZ S4>,

Q2(K1=K+Ky  or2(Ky=K)+Ky
B= 2K KKy (KKK |1

values of spin variables in each lattice site S S S S
-1 : 20 1.2 -1 . 2/ 002 2712 o 0 212
()n=Z7MM 2 ox¢ (Y (), (=27 (M) 2 X (MyF(n), s={ " ., o] S= Wl (1
i=1 i=1 -2 0 0 -2
4 (12 + -1/2 -1/2
(o5 = 7K )E 220 S _(—(C exp(Ks) ¥3,4) (cexp(Ky)yad) )
aS)H=2"(n agisx (n)y;(n). A -1/2 -1/2 )1
n i t(cexpKy)ys (cexpKa)ys,9)
A general formula was previously derived for the freeWhere
energy of an arbitrary spin system on the Bethe lattice cor- _expK, :
responding to an anisotropic Cayley tree with the coordina- Y34~ [c+(a-br)], vsva=1. (17

tion numberg at N— .1 Applying this result to the system . _ N
with q=4, we arrive at the following expression for the free For the case of ferromagnetic ordering, the quantitjeznd

energy of the Bethe lattice per lattice site: yi in the limit N—< are independent ol and satisfy the

system of equationg10), which, in view of relations
fethe= T IN Z(N). (13) (1417, can be written as

Note that the above definition has a reversed sign as com- 4

pared to the conventional formula relating the free energy to > —)\kyiz)Sfj)xi =0,

the partition function. The two relations are not, however, in i=1

conflict because the latter, if adapted to the Bethe lattice, (18

includes the factof2-q)/2 equal to -1 agj=4. The Bethe 4

lattice differs from the corresponding Cayley tree in that its E 1-2DSYyi=0, k=1,2,3,4.

sites are all equivalently accurate to the ordering type, ferro- =1

magnetic or antiferromagnetic. In the former case, the quanntroducing the following ratios for the variablesandyj;,
tities x; andy, are independent dfl and obey the system of

equationg10). This implies that recurrent equatio(i0) de- &= X m = Yi (19)
termine, in the limitN—, a stable poini;, y; which de- oxt Ty
fines, in turn, the free energfl3). In the latter case, it is

Xi Yj
sufficient to distinguish between the nodéandN-1 and to we obtain the explicit form of Eqg18):

assume the noddés andN-2 equivalent. Hence for the sys- 2= 1-n, 1-1m34

tem of eight equation€l0) in 16 unknownsx;(N), yi(N) and 17\ (& - TN (2 2
x(N=1), y;(N-1) should be supplemented by another eight A7 M M~ 1l
equations of the same form, only witli—1 replaced folN _ 1+ 735~ y3(1+ 710 124

and x(N-2)=x(N), yi(N-2)=yi(N). The two above- Nl (&3 + 730851~ ¥3(E1 + 112) 724]

mentioned cases will be considered separately. 14 mas+ 741+ mi) 7y
34" V4 12) 124

= 2 2 2 ’
A. Ferromagnetic ordering (K,+K,>0) Nl (E33+ 1730 €51+ ¥a( €51+ 112) 124

It is appropriate to involve the eigenvalues of the matrices 1-¢ 1-¢ (20
A and AW, V2= 43 _ 21

N No( 73— €3 Y Mo— 21 Mos
1+&— (1 +&)én

N=ag, Ny=Dby, Ng4= %[az +b, + c],

(14 =
c=1(a, - by)2+ 16 exi- 2Ky), Nl (2 + &0 50— va(Maa+ €49 Ead]
which are expressible in terms of the eigenvalues of the ma- = 21 & +274(1 - 5423)531 ,
trices A and B: Nl (7% €20 o4+ Va( 54+ £43) 31
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In terms of variableg19), the average values of spin vari- L=6=r2
ables(12) at each lattice site appear as

By virtue of equality 7,4=¢£34, this solution describes the
state with(os)=0 [see Eqs(21)]. At r > 16 exg—2K,), an-

other solution withZ,> ¢, arises:

(27)

- (75~ &) Moat (oa= £
(Mot ) 1hat (aa+ &9 651

(o

fon= ZPRD i1z 16 exgi- 2k ) 1V3. (29)

@< (122~ &) Moa~ (154~ E49E5 4

(Foo+ E)1oa+ (s + E39E51

(21)

It suggests the state wittors) > 0:
(05) = (7722"' ggl) 7/24_ (77§4+ 553)%1
(7i2+ &) Moat (M3a+ E19)E5

Note that the symmetry of the problem leads to the equal-

ity (o)=+(s). One can deem, without loss of generality, thatThe states with(cs)=0 and(os)>0 at (a)=(s)=0 will be
(o)=(s) and restrict the consideration to the range of valueseferred to as phases | and (fihase Il will identify the state

rY2r - 16 exg— 2K,) ]2
r — 8 exg—2K,)

(os) = (29)

(o)=(s)=0. Then it follows from(21) that 7s,=&,5. The

condition(o)=(s)=0 is met with the proviso that the equal- transitions

ity m1,=&,1 holds. Since each fraction in ER0) should be
positive, the equality 73,=§&,3 implies that n3,=£&3=1,
whereas the quantitieg;, and &, enter into the chain of
inequalities G<&=<1<mp. At &1=mp=1 we have
(o)=(s)=0. Thus, the initial system of eight equatiofis)

in eight unknownsx;, y; (i=1,2,3,4 is reduced to the sys-

tem of four equations in the following unknowns:

2a, a,
p1=&1 P2=ma L= & L=~ (1+p)na.
1+p; 2

(22)

Algebraic manipulation of Eq$20) results in the convenient

representation of the four equations:

4 exp— 2Ky &y A1 + 2 exp— Kg)(vywp = 1) &y o= mwals )1
= vl l12— 2 expd— KyI[r - 2 exp— Ky) 4y ol(r

— 005 )?=0, (23)
= (1+py)(pT— p2) _ A3\ 9
Y —p)(Pi+p) Ay f—2exd-Ky)'
(24
_(a+ pl)(p§ —p1) _ N3y )
M2 =

(1-p1)(p5+ py) SN r-24 exp-Ky)'

with 2 exp(—Ky) < {5 o<1 exp(K,)/2 and the notation

4(p3+ py)
(1+p)*(L+py)
(25
First we consider solutions withy =p,=1 that correspond

to the case(o)=(s)=0. For them, we have,=v,=1 and
Egs. (23) simplified as follows:

(1+p)A(1+py)

r =ashb,,
2 4pi+ py)

V= Vo =

(r = & )H2(8 ,+ 1)exp(— Ky) — 1 5] = 0.

At r <16 exg—2K,), the only possible solution is

(26)

with (o)=(s)>0). The continuous second-order phase
I-Ill are characterized by the equation
r=16 exg—2K,), which is equivalent to the following:
cosh4K,) + cosh4K,) = 8 exd— 4K,). (30)
At K,=K; Eqg. (30) transforms ta7) and atK,>Kj, K, the
I-IIl transition is approximately describable by the Ising
model on the Bethe lattice with the transition temperature
Ti_m = 2J,4/In 2.} In the vicinity of the transition I-I1l within
phase lll, the quantitfos) tends to zero with the critical
exponent 1/2see formulg29)], which is consistent with the
temperature dependence of the order parameter in the mean-
field theory.

We now turn to the analysis of the solutions with
p1<1<p, corresponding to the cage)=(s)>0 (phase IJ.
Inferring that the transitions |-Ifat r <16 exd—2K,)] and
-1l [atr>16 exg—2K,)] are of the second order, the vari-
ablesp; and p, should continuously approach unity in the
vicinity of these transitions within phase Il. To derive equa-
tions relevant to the second-order phase transitions I-Il or
llI-Il, it is therefore necessary to consider the system of
equationg(23) and (24) in the limit p;, p,— 1. In so doing,
the variablesp; and p, are conveniently expressed in terms
of u, and u, using Eqs.(24):

o= 22t D51+ 1) = (5= D2+ 177 D
L2 2(py + 1)2(,“«3,1_ 1)

(3D
D=(=1+p+ po+ 3uaup) (1 +3ug = po+ papo)(1 = pg

+ 3+ ) (3 + pg + po = pHaptn) .

The limit of interest,p;,p,— 1, corresponds to the region

t=3+u+po—mup =0, w=1, wy=1. (32

Indeed, at— O we obtain, accurate to the terms of the order
ty
pp=~1l-pe+ %pzez, pp=1l+e+ %32, e<1, (33

with the notation
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\E
e=

- , 34
mptl (39

1
p= E(Ml_l)-

Substituting power serie@3) into expression$25), we ar-
rive, with the same accuracy, to the following relations:
n=1-3p(p+2s’ v=1+3(1+2p)s" (35
The system of equation@3) can now be solved approxi-
mately with respect to the variablés and {,; substituting
the solutions found into relation®4) affords the values of
the variablesu; and u,. The latter enable, with definitions
(32) and(34), a closed equation in the small parametdo

be written. In a zeroth-order approximationdnthe system
of equationq23) has two solution$27) and(28), depending

PHYSICAL REVIEW B 71, 195411(2005

e 1r2-2 exp-Ky)

R R = T
- 2]y} }e?,
M127~ T1o L2 124 -2 exp(K,)] '

(36)
rYqr2+ 2 expg- Ky)]

o3y

fy

¢ a[r?+ 2 expg=Ky,)] , (51/1,2)
= . V= .
2 r1/2)\1 1,22 Je2 0

The solution of the equation ia can be represented as fol-

on the parametar. Hence it is appropriate to separately con-|qgys:

sider the intervals <16 exg—-2K,) and r >16 exg—2K,)
corresponding to the phase transitions |-l and IlI-lI.
At r=<16 exg—-2K,) we are led to

Y1+ 2p)f,+ p(p + 2)f; + 3(L+4p+ p?)] + 2(1 - pA)(F; = fexp(= Ky)
K= .

2

2 ——— ¢
(f,+D%(1-x) "

(37

2ri4 -2 exp(K)](f1 + 1)2

The quantities and p are determined by relatior82) and

(34), with the valuesf; andf, from Eg. (36) substituted for
mq and u,. From solution(37) it follows that the second-
order transition |-l occurs at

t=3+f; +f,-f,f,=0, (39

if the coefficientx falls within the range from 0 to 1. For
instance,x=1 at J,=0 whenJ,/J;=0.5633,T/J;=2.4725,

and the second-order transitions |-l take place on the inter-

val 0= J,/J;=<0.5633, in accordance with previous restits.
Substitution ofp4, p, from Eq. (33) and {4, ¢, from Eq.(36)
(in the form of power series im) into relations(21) pro-
vides, with regard to notation used in EQ2),

1+4p+p? 5
a4 -r"2expKy]” (40)

()= 50 +pe, (9=

From relationg32), (37), and(39) it follows that the param-
etert is proportional to the temperature difference-T [T is
the temperature within phase I is the temperature of the
phase transition |-l satisfying E¢39)], and the parameter
is proportional ta2. As a result, the quantit§er) in phase II

in the vicinity of the I-Il phase boundary approaches zero fa
with the critical exponent 1/2, in accordance with the tem-

(38)

=t/2, wheret=16(1-2z), z=exp(-2K;). This result con-
forms to the Ising model on the Bethe latticeshich implies
the following temperature dependence for the averages of the
statistically independent spinsands in the ordered phase:
(=(1-42"2(1-22).

We now turn to the analysis of the second-order transi-
tions -l occurring atr>16 exd—2K,). Relations(36)
need to be rewritten accordingly:

rvh,— 8(v) + vh)exp— 2K4)82>
r[16 —r exp(2K,)] ’

o= (14

fin 2= f1,2(1 F 2[4 - 2 exp- Ky)]

rv) ,— 8(v} + vh)exp- 2K,) 2)
r[16 —r exp(2K,)] '
(41)
[r - 4 exp- 2K,)]¢\"

2\ 8, exp(— K,)

y, _ ( (91/1’2)
1,27 2 ’
de e=0

fy

a,[r — 4 exg— 2K,)]
208" exp=K,)

perature dependence of the order parameter in the mean-figjghere gg“l) correspond to the values specified by E28)

approximation. For the quantitys), the corresponding criti-
cal exponent is equal to 1. Ab=J,=0 we have, in the limit
t—0, p=1, r2=5/2, T,_,=23,/In 2, and {os)=(0)?=¢?

for phase Ill. Equation(37) retains the same form, with
the valuef; defined as in Eq(41) and the parametek
expressed as
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" -2 exp— Ky r[(1+ 2p)fy + p(p + 2)f, + 3(L + 4p + p?)] - 8(1 - p)(f, — f)exp(— 2K,)
- r(fy+1)2 exp(Ky) r—16 exg— 2K,) '

(42)

The second-order transition II-lll is realized subject to () =(),=0 (N=N,N-1). (46)

the same condition(39) if the value of the coefficientc

falls within the range from 0 to 1. The value=1 atJ,=0is  This expression permits us to simplify the system of 16
now found at the point with the coordinatds/J;=0.9683, equations in the unknowns;(N), yi(N) and x(N-1),
T/J,=1.7300, and the above-mentioned transition occurs ofy;(N-1), which was obtained from the initial system of eight
the interval 0.968%:J,/J;<1. Note that the numerical val- equationg10) as indicated at the beginning of Sec. Ill. With
ues first obtained in Ref. 11J,/J;,=0.95907/J,=1.7663 Egs.(12), the following relations are derived for rati¢%9)
are refined here via the correction of formu(d®) and(43). of the above unknowns:

At r>16 exg—2K,), relation(40) transforms to
&12(N) = mra(n) = &34(N) = m34(N) =1 (N=N,N-1).

1+p
(o) = T2 (A Ae (§('”)/§(“|>)28’ (43 (47
Lo (43) Then the system of equatiois0) can be rewritten in terms
8(1 +4p+p? of the variables specified by Egd.9):
(o) = (as) = &2, )
[r exp(2K,) = 8][r exp(2K,) - 16] a&(N-1)724(N-1)+1
. . . §13(N) = > )
where(os),, is determined by expressid@9) for phase IlI. &sN=-1)7s(N-1) +b
These order parameters have the same values of critical in- 5 (48)
dices as in phase Il at< 16 exg—2K,). (N) = b&s(N-1Dmpa(N-1)+ 1
_ _As the parameted,/J; approaches unity, the phase tran- ns\N = fis(N -Dp(N-1)+a’
sition temperature goes to zero. A4/J,— 1, Eq. (39 is
simplified: where
4Ky —Ky) = exp(—8K)[2 exd—8K,) +1] (44 a=exp2K,)cosh ZK; +K5),
(49
or b = eXF(ZK“)COSh ZKl - K2) .
= 8J, - 2exp— 8Ky +1 In addition to Eqgs.(48), one needs to solve another two
T Iy T /G- 3T 4 ’ equations of the same form, only witi-1 replaced fom,
(45) using the identity of the variables at the sitéendN-2. Of
Jp, — J;. importance are the solutions which imply the nullifigdhase

I) or opposite in sign(phase Il) average products of the
Equation(45) has the same form as the asymptotic equatiorspinss and o at neighboring lattice sites, so that
in transition temperature in the two-dimensional Ising model
for a square lattice with interactions along either horizontal (o)== (TS)N-1- (50)
or vertical bonds tending to zero. Such interactions are simu- o ) _
lated in Eq.(45) by the quantityJ;-J,. The difference be- Such a restriction corresponds to the e_mtlferrom_agpenc
tween the two equations is confined to the coefficient value§round stat¢2) atK; +K,<0. Then the following equality is
and results from the existence of two sublattices and th¥alid:
specificity of the model involved as well as from the fact that
the fluctuation interactions are included to a different degree &13dN) 713(N) 15N = 1) ms(N - 1) = 1. (5D
on the Bethe lattice and on a square lattice. In the IimitAt dab=1,

. . . it admit ingl lution:
K,— o, Eq. (45) is reduced to Eq4) considered in Sec. Il. It admits a single soution

_ _Ja _ _|b
B. Antiferromagnetic ordering (K;+K,< 0) §13(N) = &5(N-1) = b’ ma(N) = m3(N-1) = 3

At K;+K,;<0, the conventional Ashkin-Teller model is (52)
known to admit only two phases, phase | and antiferromag-
netic phase Ill. The same is true for the generalized modelwhich describes the state witlos)=0 (phase ). At
The condition for the absence of phase Il appears as 4ab< 1, an additional solution results:
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£ = 1 CEN-1) = 1 1x\V1-4ab
P (N maN=1) 2o 7

(53)

which refers to the state witfos) # 0 (phase 1l). Here the
choice of signs dictates the signs of the average values giverK1
by Eq.(50). Inferring the average product of the spmand

o to be positive at the central site, we arrive at

1080

V1-4ab
oSN=—T———, 4dab=1. 54
(oS)n 1—2b (54) | | |
N ) . -0.8 -0.6 0.4 -0.2
The second-order phase transition I-lll is characterized by K,
the equation db=1 which is equivalent to the following
one: FIG. 1. The phase diagram in the coordinatgsandK, for the
cosh4K,) + cosh4K,) = (1/2)exp(— 4K,). (55) generalized Ashkin-Teller model on the Bethe lattice with the coor-

dination number 4. Th&,/K; ratios are indicated near the curves.
At K,=K; Eg. (55 is reduced to Eq.(8), whereas at Solid and dashed lines respectively represent second-order and first-
K,>K;, K, the transition I-Ill is roughly described by order transitions. Solid lines without markers separate phases | and
the Ising model on the Bethe lattice, with the temperaturél- Dashed lines separate phases | and Il before crossing at the triple
Tom=-23,/In21 In the vicinity of the transition I-lll  Point (where three phases coe))(i_aind become the bqundarigs pe-
within phase I1l, the quantityos)y approaches zero with the tV\(een phases Il and IIl after going through thgt pplnt. Splld lines
critical exponent 1/Zsee formula54)], thus conforming to with squares separate phases Il and Ill. Solid lines with empty

the temnerature dependence of the order parameter in ﬂRréangles separate phases | and Ill. Solid lines with filled triangles
mean-fiepld theory P P separate phase | and antiferromagnetic phase lIl.

IV. PHASE DIAGRAM

Equations(30), (39), and (55) derived for the second- Hamiltonian(1) of the generalized Ashkin-Teller model is
order transitions between phases |, Il, and Il correspond tintroduced to account for orientational phase transitions in a
certain surfaces in a three-dimensional space of the paranttice system of adsorbed molecules with quasinormal
etersKy, K, andK,. The conventional Ashkin-Teller model orientationst® The parameters of the model were estimated
manipulates only two parameter§; and K;, and accord-  previously?! for the 2x 1 monolayer of CO molecules ad-
ingly suggests a planar phase diagram. First we introduce sorbed on the NaCl00) surface:J,~0.6J;, J,~-0.2];,
phase diagram for the generalized Ashkin-Teller model in theJ; =0.8 meV. The Monte Carlo simulation performed with

V. DISCUSSION AND CONCLUSIONS

same coordinate; and K,, and show a family of the
curves corresponding to variol&,/K; ratios (see Fig. L

these parameter values provides the phase transition tem-
perature within the experimentally observed temperature

The dashed curves representing the first-order transitions I-tange 17.5-21.5 R® Thus, the phase diagram of the gener-

were calculated by solving the system of equatiti® nu-

alized Ashkin-Teller model is helpful in the study of orien-

merically and equating the free energid8) of the phases tational behavior of adsorbates. It also affords a better under-
concerned. At the points where=1, these lines have com- standing of phase transitions in the systems with fluctuation

mon tangents with those referring to the second-order phadateractions. However, a three-parameter phase diagram on a
transitions[see Eqs(38) and (42)]. This result is in agree-

ment with the properties of critical points between the lines 1
of first- and second-order phase transitions in terms of the

Landau theory? 08|
An alternative representation of the phase diagram in the

coordinates K; and K, (see Fig. 2 was employed 06|

previously®!in the analysis of the properties of pure fluc- «,

tuation interactions, a,=0. The family of curves with the 04l
variedK,/K; ratio demonstrates the effect caused by biqua-
dratic interactions of the Ashkin-Teller model, if added to a ¢
system with pure fluctuation interactions.

The diagram regions with small values kf andK, cor- 0
respond to high temperatures and paraphase I. As the rati
K,/K; rises, phase Il and antiferromagnetic phase Ill are
replaced by phase I. At the same time, both phase | and FIG. 2. The phase diagram in the coordinatgsandK,/K; for
phase Il give way to ferromagnetic phase Ill. In the limit the generalized Ashkin-Teller model on the Bethe lattice with the

KoKy

K,—o, phase Il is forced out to infinity and, &,=K,, it
vanishes at all.

coordination number 4. Th&,/K; ratios are indicated near the
curves. All designations are the same as in Fig. 1.
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square lattice can be constructed only by the Monte Carldrary positive value, there will be a change only in the insig-
numerical simulation, a laborious and time-consuming pro-ificant factory in the argument of the logarithmic function,
cedure. Here we report an analytical solution of the problenas seen from Eq45).
which is an exact one for the Bethe lattice with the coordi-  Generally, bilinear fluctuation interactions introduced into
nation number 4 and also gives a qualitatively correct dethe Ashkin-Teller model resemble, to some extent, biqua-
scription of phase transitions on a square lattice. dratic interactions inherent in this approach. In addition to
The main result of this work is the construction of the haraphase 1((0)=(s)=(0s)=0) and ordered phase II
phase diagrams depicted in Figs. 1 and 2. It is seen that trt?o),(s),(as)séO), a new phase I1[{os)#0 at{c)=(s)=0)

region occupied by phase Il is replaced by phases | and Il . - Y ;
as the constand; increases, and phase Il vanishes com- EARE PO, TR A0S BRE L 8  e A
pletely atJ,=J;. This inference conforms with the previous P )

results gained for a square lattiteThe generalized Ashkin- :)haesi:%ﬁﬁggig‘ﬁ;ﬁﬁg;%ggﬁ: :)Ifutcr;[gastlcm 'srﬁgga(;tt'ggss'iégg;_
Teller model provides a more penetrating insight into the P y

behavior of a system with strong fluctuation interactions,Ing quasi-one-dimensional and causes the replacement of
when J,— J;. At K,>1, the transition from phase Il to phase Il by other phases.

phase Il is a counterpart of the Ising-model transition in a
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