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A generalized Ashkin-Teller model is considered that includes both biquadratic and opposite in sign bilinear
interactions between two Ising subsystems,s ands, along horizontal and vertical bonds on the Bethe lattice
with the coordination number 4sinteractions of this kind are typical of adsorbed lattice systems characterized
by dipolelike intermolecular forces and a strong azimuthal angular dependence of the C4-symmetrical adsorp-
tion potentiald. The exact solutions found in the framework of this model:sid determine the second-order phase
transitions between paraphase I withksl=ksl=kssl=0 and two ordered phases, phase II withksl=kslÞ0,
ksslÞ0, and phase III withksslÞ0 at ksl=ksl=0 and sii d specify the conditions for the conversion of
second-order to first-order transitions. With regard to these solutions, the phase diagrams are constructed for
K1, K2, K4, whereKi =Ji /kBT, J1 is the interaction constant betweens-s and s-s spin subsystems,J2 is the
constant of bilinear fluctuations-s interactions,J4 is the constant of biquadratics-s interactions,kB is the
Boltzmann constant, andT is the absolute temperature. First-order transitions are detected numerically by
comparing the free energies of the phases concerned. It is shown that phase II is gradually replaced by phases
I and III with rising J2 and vanishes at all ifJ2=J1.
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I. INTRODUCTION

Among planar lattice models involved in statistical phys-
ics, those admitting exact solutions1 are of most significance
in the treatment of phase transitions in various realistic sys-
tems, e.g., two-dimensional antiferromagnets,2 artificial two-
dimensional lattices of ferromagnetic nanoparticles,3 ad-
sorbed molecular monolayers,4,5 etc. The models implying
four states of a particle at a lattice site are exemplified by the
widely employed Ashkin-Teller model6 and the spin-3/2
Ising model. These two are, in essence, equivalentsaccurate
to the number of included interactions between spins 3/2 and
the restrictions imposed on the corresponding interaction
constantsd, which makes the results obtained for either model
valid for both of them.7,8

To describe orientational phase transitions in the
systems with essentially anisotropic multipole Coulomb in-
teractions, a more detailed study on anisotropic models was
necessary. Thus, the phase transition on a square lattice of
dipoles with four possible orientations along the square di-
agonals was simulated by a dipole short-range model
reducible to the exactly soluble anisotropic Ising model.9 A
more complicated situation emerges if long molecular axes
can have four orientations along the square lattice axes,
since in this case the Ising subsystemsss andsd are involved
in opposite in sign bilinear interactions along the horizontal
and vertical lattice bonds, so-called fluctuation interactions.
These interactions can result in a new type of orientational
ordering, viz., a preferential direction of long molecular
axes in the absence of spontaneous polarization.10

Phase transitions in the model with fluctuation interactions
on a square lattice and on the Bethe lattice with the
coordination number 4 were analyzed previously.11 A gener-
alized Ashkin-Teller model was introduced12 in which the
anisotropic bilinear interactions along with isotropic biqua-
dratic interactions were included. This model is equivalent to

the most general formulation of the anisotropic spin-3/2
model and admits, at a certain value of the fluctuation inter-
action parameter, an exact analytical solution for a square
lattice.12

Like the conventional Ashkin-Teller model, its general-
ized analog admits no exact analytical solution throughout
the variation range of the spin interaction parameters. As
the self-consistent field approximation does not suffice to
describe the fluctuation interactions, it is appropriate to in-
voke the corresponding model on the Bethe lattice. Accord-
ing to the known approach of Baxter,1 the solutions obtained
for this lattice can be regarded as exact ones; moreover, they
provide a qualitatively correct description of phase
transitions.13 Here we present an exact analytical solution of
the generalized Ashkin-Teller model which determines
second-order phase transitions on the Bethe lattice with the
coordination number 4 and specifies the conditions for the
conversion of second-order to first-order transitions. Starting
from the analytical solution as well as a numerical descrip-
tion of first-order transitions, a relevant phase-transition dia-
gram is constructed.

II. GENERAL PROPERTIES OF THE MODEL

The Hamiltonian of the generalized Ashkin-Teller model
with fluctuation interactions on a square lattice appears as
follows:12

H = o
mn

f− J1ssmnsm+1,n + smnsm+1,n + smnsm,n+1 + smnsm,n+1d

− J2ssmnsm+1,n + smnsm+1,n − smnsm,n+1 − smnsm,n+1d

− J4ssmnsmnsm+1,nsm+1,n + smnsmnsm,n+1sm,n+1dg. s1d

At 0øJ2øJ1, the ground state energies and the correspond-
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ing spin distributions over the sites of a square lattice are
specified by the relations

H0 = HNs− 4J1 − 2J4d, smn= smn= 1, J4 . − J1;

2NJ4, smnsmn= s− 1dm+n, J4 , − J1.
J

s2d

These states are degenerate in the interaction constantJ2.
Note that the degeneracy occurs at an arbitraryJ1 to J2 ratio.
For instance, at 0øJ1øJ2 the parametersJ1 and J2 inter-
change, so that the degeneracy inJ1 results. If the interaction
constantsJ1 andJ2 have arbitrary signs, then the one with a
larger absolute magnitude competes with −J4sJ4,0d in gov-
erning the ground state structure, whereas the other repre-
sents the degeneracy parameter. It is clear that the spin vari-
ables can be redesignated so that each of the resulting phase
regions is describable by Hamiltonians1d with the substitu-
tion J1↔J2 or/and sign reversal forJ1 and J2. Hence the
statistical properties of all the phase regions are the same and
one can restrict consideration to the region 0øJ2øJ1 with-
out loss of generality.

Some features of the phase diagram in terms of the vari-
ablesKi =Ji /kBT, i =1,2,4skB is the Boltzmann constant and
T is the absolute temperatured, are easily revealed from a
number of limiting cases. AtK2=0, Hamiltonians1d corre-
sponds to the Ashkin-Teller model with the well-known
phase diagram.1 At K4=0, the problem is reduced to the thor-
oughly studied case11 of two interacting Ising sublattices
with fluctuation interactions. As in the Ashkin-Teller model,
the satisfied inequalities 0øK2øK1! uK4u imply that the
system can be treated in terms of Ising solutions. Thus, the
second-order phase transition from the disordered state
ksl=ksl=kssl=0 sphase Id to a phase with the nonzero av-
erage values ofkssl at kssl=ksl=0 sphase IIId takes place if
K4= ±KIsing, whereKIsing=s1/2dlns1+Î2d for a square lattice
andKIsing=s1/2dln 2 for the Bethe lattice with the coordina-
tion number 4. Interesting limiting peculiarities found at
K4@1 for the transition from phase III to phase IIswith
ksl=ksl.0d follow from Hamiltonian s1d which at
smn=smn is reduced to the Hamiltonian of the Ising system
with the different interaction constants along horizontal and
vertical bonds:

H = o
mn

f− 2sJ1 + J2dsmnsm+1,n − 2sJ1 − J2dsmnsm,n+1− 2J4g.

s3d

The phase transition temperature is therefore given by
the following respective equations for a square lattice and
for the Bethe lattice: sinh 4sK1+K2dsinh 4sK1−K2d=1 and
expf−4sK1+K2dg+expf−4sK1−K2dg=1. At J2→J1, this tem-
perature approaches zero by the logarithmic law which for
the Bethe lattice assumes the form

TII-III <
8J1

lnfTII-III /4sJ1 − J2dg
, J2 → J1. s4d

The special case ofJ2=J1 enables an exact analytical so-
lution to be obtained, since the system turns quasi-one-
dimensional and the partition function for either of the lat-
tices considered is representable as11,12

Z = 2Nscosh 4K1dN/2ZIsingsK̃d, K̃ = K̃1 + K4,
s5d

K̃1 = 1
4 lnscosh 4K1d.

Here ZIsingsK̃d designates the partition function for
a two-dimensional Ising system with the effective
Hamiltonian

Heff = − J̃o
mn

stmntm+1,n + tmntm,n+1d, J̃ = TK̃, s6d

in which tmn=smnsmn and the temperature-dependent inter-

action constantJ̃ describes the thermodynamically averaged

interaction of two neighborings spins. At J̃.0, the transi-
tion from phase I to phase III characterized by ferromagnetic

ordering sktl.0d is specified by the equationK̃=KIsing,
which for the Bethe lattice with the coordination number 4
transforms to

cosh 4K1 = 4 exps− 4K4d. s7d

At J̃,0, phase III suggests antiferromagnetic ordering

sktmnl~ s−1dm+nd, so thatK̃=−KIsing and

cosh 4K1 = s1/4dexps− 4K4d. s8d

III. SOLUTION FOR THE BETHE LATTICE

The partition function corresponding to Hamiltonians1d
on a Cayley tree with the coordination number 4 can be
written as follows:

ZsNd = o
i=1

4

xi
2sNdyi

2sNd, s9d

where the valuesxisNd andyisNd are determined for the so-
called central node of the treeswhich is surrounded byN
shells and lies farthest from the tree leaves whereN=0d by
the system of recurrent equations

xisNd = o
j=1

4

Li j
sxdxjsN − 1dyj

2sN − 1d,

s10d

yisNd = o
j=1

4

Li j
sydyjsN − 1dxj

2sN − 1d.

Here, the indicesi, j =1,2,3,4 label the following values
assumed by the pairs of spin variabless and s: +1, +1;
−1,−1; +1,−1;−1, +1. The 434 matrices Lsxd and Lsyd

have the block structure:
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Lsxd = SA C

C B
D, Lsyd = SB C

C A
D ,

A = S e2sK1+K2d+K4 e−2sK1+K2d+K4

e−2sK1+K2d+K4 e2sK1+K2d+K4
D , s11d

B = S e2sK1−K2d+K4 e−2sK1−K2d+K4

e−2sK1−K2d+K4 e2sK1−K2d+K4
D, C = Se−K4 e−K4

e−K4 e−K4
D ,

where Ki =Ji /T sT is the absolute temperature in energy
unitsd. The quantitiesxisnd and yisnd determine the average
values of spin variables in each lattice siten:

ksln = Z−1sndo
i=1

4

sixi
2sndyi

2snd, ksln = Z−1sndo
i=1

4

sixi
2sndyi

2snd,

s12d

kssln = Z−1sndo
i=1

4

sisixi
2sndyi

2snd.

A general formula was previously derived for the free
energy of an arbitrary spin system on the Bethe lattice cor-
responding to an anisotropic Cayley tree with the coordina-
tion numberq at N→`.11 Applying this result to the system
with q=4, we arrive at the following expression for the free
energy of the Bethe lattice per lattice site:

fBethe= T ln ZsNd. s13d

Note that the above definition has a reversed sign as com-
pared to the conventional formula relating the free energy to
the partition function. The two relations are not, however, in
conflict because the latter, if adapted to the Bethe lattice,
includes the factors2−qd /2 equal to −1 atq=4. The Bethe
lattice differs from the corresponding Cayley tree in that its
sites are all equivalently accurate to the ordering type, ferro-
magnetic or antiferromagnetic. In the former case, the quan-
tities xi andyi are independent ofN and obey the system of
equationss10d. This implies that recurrent equationss10d de-
termine, in the limitN→`, a stable pointxi, yi which de-
fines, in turn, the free energys13d. In the latter case, it is
sufficient to distinguish between the nodesN andN−1 and to
assume the nodesN andN−2 equivalent. Hence for the sys-
tem of eight equationss10d in 16 unknowns,xisNd, yisNd and
xisN−1d, yisN−1d should be supplemented by another eight
equations of the same form, only withN−1 replaced forN
and xisN−2d=xisNd, yisN−2d=yisNd. The two above-
mentioned cases will be considered separately.

A. Ferromagnetic ordering „K1+K4.0…

It is appropriate to involve the eigenvalues of the matrices
Lsxd andLsyd,

l1 = a1, l2 = b1, l3,4= 1
2fa2 + b2 7 cg,

s14d
c = Îsa2 − b2d2 + 16 exps− 2K4d,

which are expressible in terms of the eigenvalues of the ma-
tricesA andB:

a1 = 2 expsK4dsinh 2sK1 + K2d,

a2 = 2 expsK4dcosh 2sK1 + K2d,
s15d

b1 = 2 expsK4dsinh 2sK1 − K2d,

b2 = 2 expsK4dcosh 2sK1 − K2d.

The eigenvectors of the matricesLsxd andLsyd are represent-
able in a block form:

Ssxd = SS1 S3

S2 S4
D, Ssyd = SS2 S4

S1 S3
D ,

S1 = S 2−1/2 0

− 2−1/2 0
D, S2 = S0 2−1/2

0 − 2−1/2D , s16d

S3,4= S±„c expsK4dg3,4…
−1/2

„c expsK4dg4,3…
−1/2

±„c expsK4dg3,4…
−1/2

„c expsK4dg4,3…
−1/2D ,

where

g3,4=
expK4

4
fc ± sa2 − b2dg, g3g4 = 1. s17d

For the case of ferromagnetic ordering, the quantitiesxi and
yi in the limit N→` are independent ofN and satisfy the
system of equationss10d, which, in view of relations
s14d–s17d, can be written as

o
i=1

4

s1 − lkyi
2dSik

sxdxi = 0,

s18d

o
i=1

4

s1 − lkxi
2dSik

sydyi = 0, k = 1,2,3,4.

Introducing the following ratios for the variablesxi andyi,

ji j =
xi

xj
, hi j =

yi

yj
, s19d

we obtain the explicit form of Eqs.s18d:

x1
2 =

1 − h12

l2sj21
2 − h12d

=
1 − h34

l1sj43
2 − h34dj31

2

=
1 + h34 − g3s1 + h12dh24

l3fsj43
2 + h34dj31

2 − g3sj21
2 + h12dh24g

=
1 + h34 + g4s1 + h12dh24

l4fsj43
2 + h34dj31

2 + g4sj21
2 + h12dh24g

,

s20d

y4
2 =

1 − j43

l2sh34
2 − j43d

=
1 − j21

l1sh12
2 − j21dh24

2

=
1 + j21 − g3s1 + j43dj31

l3fsh12
2 + j21dh24

2 − g3sh34
2 + j43dj31g

=
1 + j21 + g4s1 + j43dj31

l4fsh12
2 + j21dh24

2 + g4sh34
2 + j43dj31g

.
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In terms of variabless19d, the average values of spin vari-
abless12d at each lattice site appear as

ksl =
sh12

2 − j21
2 dh24

2 + sh34
2 − j43

2 dj31
2

sh12
2 + j21

2 dh24
2 + sh34

2 + j43
2 dj31

2 ,

ksl =
sh12

2 − j21
2 dh24

2 − sh34
2 − j43

2 dj31
2

sh12
2 + j21

2 dh24
2 + sh34

2 + j43
2 dj31

2 , s21d

kssl =
sh12

2 + j21
2 dh24

2 − sh34
2 + j43

2 dj31
2

sh12
2 + j21

2 dh24
2 + sh34

2 + j43
2 dj31

2 .

Note that the symmetry of the problem leads to the equal-
ity ksl= ± ksl. One can deem, without loss of generality, that
ksl=ksl and restrict the consideration to the range of values
ksl=kslù0. Then it follows from s21d that h34=j43. The
condition ksl=ksl=0 is met with the proviso that the equal-
ity h12=j21 holds. Since each fraction in Eq.s20d should be
positive, the equalityh34=j43 implies that h34=j43=1,
whereas the quantitiesh12 and j21 enter into the chain of
inequalities 0,j21ø1øh12. At j21=h12=1 we have
ksl=ksl=0. Thus, the initial system of eight equationss18d
in eight unknownsxi, yi si =1,2,3,4d is reduced to the sys-
tem of four equations in the following unknowns:

r1 = j21, r2 = h12, z1 =
2a2

1 + r1
j31, z2 =

a2

2
s1 + r2dh24.

s22d

Algebraic manipulation of Eqs.s20d results in the convenient
representation of the four equations:

4 exps− 2K4dz1,2fr + 2 exps− K4dsn1n2 − 1dsz1,2− n1n2z1,2
2 dg2

− n2,1fz1,2− 2 exps− K4dgfr − 2 exps− K4dz1,2gsr

− n1,2z1,2
2 d2 = 0, s23d

m1 ;
s1 + r2dsr1

2 − r2d
s1 − r2dsr1

2 + r2d
=

l3l4

a2l2

z2

z2 − 2 exps− K4d
,

s24d

m2 ;
s1 + r1dsr2

2 − r1d
s1 − r1dsr2

2 + r1d
=

l3l4

l1

a2

r − 2z1 exps− K4d
,

with 2 exps−K4døz1,2ø r expsK4d /2 and the notation

r ; a2b2, n1 ;
s1 + r1d2s1 + r2d

4sr1
2 + r2d

, n2 ;
4sr2

2 + r1d
s1 + r2d2s1 + r1d

.

s25d

First we consider solutions withr1=r2=1 that correspond
to the caseksl=ksl=0. For them, we haven1=n2=1 and
Eqs.s23d simplified as follows:

sr − z1,2
2 d2f2sz1,2

2 + rdexps− K4d − rz1,2g = 0. s26d

At r ø16 exps−2K4d, the only possible solution is

z1 = z2 = r1/2. s27d

By virtue of equality h24=j31, this solution describes the
state withkssl=0 fsee Eqs.s21dg. At r .16 exps−2K4d, an-
other solution withz2.z1 arises:

z2,1=
expsK4d

4
r1/2hr1/2 ± fr − 16 exps− 2K4dg1/2j. s28d

It suggests the state withkssl.0:

kssl =
r1/2fr − 16 exps− 2K4dg1/2

r − 8 exps− 2K4d
. s29d

The states withkssl=0 andkssl.0 at ksl=ksl=0 will be
referred to as phases I and IIIsphase II will identify the state
with ksl=ksl.0d. The continuous second-order phase
transitions I–III are characterized by the equation
r =16 exps−2K4d, which is equivalent to the following:

coshs4K1d + coshs4K2d = 8 exps− 4K4d. s30d

At K2=K1 Eq. s30d transforms tos7d and atK4@K1, K2 the
I–III transition is approximately describable by the Ising
model on the Bethe lattice with the transition temperature
TI–III <2J4/ ln 2.1 In the vicinity of the transition I–III within
phase III, the quantitykssl tends to zero with the critical
exponent 1/2fsee formulas29dg, which is consistent with the
temperature dependence of the order parameter in the mean-
field theory.

We now turn to the analysis of the solutions with
r1,1,r2 corresponding to the caseksl=ksl.0 sphase IId.
Inferring that the transitions I–IIfat r ø16 exps−2K4dg and
III–II fat r .16 exps−2K4dg are of the second order, the vari-
ablesr1 and r2 should continuously approach unity in the
vicinity of these transitions within phase II. To derive equa-
tions relevant to the second-order phase transitions I–II or
III–II, it is therefore necessary to consider the system of
equationss23d and s24d in the limit r1, r2→1. In so doing,
the variablesr1 and r2 are conveniently expressed in terms
of m1 andm2 using Eqs.s24d:

r1,2=
2sm1,2+ 1d2sm2,1

2 + 1d − sm1,2− 1d2sm2,1+ 1d2 7 ÎD

2sm1,2+ 1d2sm2,1
2 − 1d

,

s31d
D = s− 1 +m1 + m2 + 3m1m2ds1 + 3m1 − m2 + m1m2ds1 − m1

+ 3m2 + m1m2ds3 + m1 + m2 − m1m2d.

The limit of interest,r1,r2→1, corresponds to the region

t ; 3 + m1 + m2 − m1m2 ù 0, m1 ù 1, m2 ù 1. s32d

Indeed, att→0 we obtain, accurate to the terms of the order
t,

r1 < 1 − p« + 1
2p2«2, r2 < 1 + « + 1

2«2, « ! 1, s33d

with the notation
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« ;
Î2t

m1 + 1
, p ;

1

2
sm1 − 1d. s34d

Substituting power seriess33d into expressionss25d, we ar-
rive, with the same accuracy, to the following relations:

n1 < 1 − 1
4psp + 2d«2, n2 < 1 + 1

4s1 + 2pd«2. s35d

The system of equationss23d can now be solved approxi-
mately with respect to the variablesz1 and z2; substituting
the solutions found into relationss24d affords the values of
the variablesm1 and m2. The latter enable, with definitions
s32d and s34d, a closed equation in the small parameter« to
be written. In a zeroth-order approximation in«, the system
of equationss23d has two solutionss27d ands28d, depending
on the parameterr. Hence it is appropriate to separately con-
sider the intervalsr ø16 exps−2K4d and r .16 exps−2K4d
corresponding to the phase transitions I–II and III–II.

At r ø16 exps−2K4d we are led to

z1,2 < r1/2 −
1

2

r1/2 − 2 exps− K4d
4 − r1/2 expsK4d

h2n2,18 − fr1/2 expsK4d

− 2gn1,28 j«2,

m1,2 < f1,2S1 ±
2 exps− K4dsn18 + n28d − r1/2n2,18

r1/2f4 − r1/2 expsK4dg
«2D ,

s36d

f1 ;
r1/2fr1/2 + 2 exps− K4dg

l2a2
,

f2 ;
a2fr1/2 + 2 exps− K4dg

r1/2l1
, n1,28 = S ]n1,2

]«2 D
«=0

.

The solution of the equation in« can be represented as fol-
lows:

«2 =
2

sf1 + 1d2s1 − kd
t, s37d

k =
r1/2fs1 + 2pdf2 + psp + 2df1 + 3s1 + 4p + p2dg + 2s1 − p2dsf1 − f2dexps− K4d

2r1/2f4 − r1/2 expsK4dgsf1 + 1d2 . s38d

The quantitiest and p are determined by relationss32d and
s34d, with the valuesf1 and f2 from Eq. s36d substituted for
m1 and m2. From solutions37d it follows that the second-
order transition I–II occurs at

t = 3 + f1 + f2 − f1f2 = 0, s39d

if the coefficientk falls within the range from 0 to 1. For
instance,k=1 at J4=0 when J2/J1=0.5633,T/J1=2.4725,
and the second-order transitions I–II take place on the inter-
val 0øJ2/J1ø0.5633, in accordance with previous results.11

Substitution ofr1, r2 from Eq. s33d andz1, z2 from Eq. s36d
sin the form of power series in«d into relationss21d pro-
vides, with regard to notation used in Eq.s22d,

ksl =
1

2
s1 + pd«, kssl =

1 + 4p + p2

4f4 − r1/2expsK4dg
«2. s40d

From relationss32d, s37d, ands39d it follows that the param-
etert is proportional to the temperature differenceTc−T fT is
the temperature within phase II;Tc is the temperature of the
phase transition I–II satisfying Eq.s39dg, and the parameter«
is proportional tot1/2. As a result, the quantityksl in phase II
in the vicinity of the I–II phase boundary approaches zero
with the critical exponent 1/2, in accordance with the tem-
perature dependence of the order parameter in the mean-field
approximation. For the quantitykssl, the corresponding criti-
cal exponent is equal to 1. AtJ2=J4=0 we have, in the limit
t→0, p=1, r1/2=5/2, TI–II =2J1/ ln 2, and kssl=ksl2=«2

= t /2, where t=16s1−2zd, z;exps−2K1d. This result con-
forms to the Ising model on the Bethe lattice,1 which implies
the following temperature dependence for the averages of the
statistically independent spinss ands in the ordered phase:
ksl=s1−4z2d1/2/ s1−2z2d.

We now turn to the analysis of the second-order transi-
tions II–III occurring at r .16 exps−2K4d. Relations s36d
need to be rewritten accordingly:

z1,2= z1,2
sIII dS1 + 4

rn2,18 − 8sn18 + n28dexps− 2K4d
rf16 −r exps2K4dg

«2D ,

m1,2= f1,2S1 7 2fz1
sIII d − 2 exps− K4dg

3
rn1,28 − 8sn18 + n28dexps− 2K4d

rf16 −r exps2K4dg
«2D ,

s41d

f1 ;
fr − 4 exps− 2K4dgz1

sIII d

2l2a2 exps− K4d
,

f2 ;
a2fr − 4 exps− 2K4dg
2l1z2

sIII d exps− K4d
, n1,28 = S ]n1,2

]«2 D
«=0

,

where z2,1
sIII d correspond to the values specified by Eq.s28d

for phase III. Equations37d retains the same form, with
the value f1 defined as in Eq.s41d and the parameterk
expressed as
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k =
z1

sIII d − 2 exps− K4d
rsf1 + 1d2 expsK4d

rfs1 + 2pdf1 + psp + 2df2 + 3s1 + 4p + p2dg − 8s1 − p2dsf1 − f2dexps− 2K4d
r − 16 exps− 2K4d

. s42d

The second-order transition II–III is realized subject to
the same conditions39d if the value of the coefficientk
falls within the range from 0 to 1. The valuek=1 atJ4=0 is
now found at the point with the coordinatesJ2/J1=0.9683,
T/J1=1.7300, and the above-mentioned transition occurs on
the interval 0.9683øJ2/J1ø1. Note that the numerical val-
ues first obtained in Ref. 11sJ2/J1=0.9590,T/J1=1.7663d
are refined here via the correction of formulass42d ands43d.

At r .16 exps−2K4d, relations40d transforms to

ksl =
1 + p

1 + sz1
sIII d/z2

sIII dd2«, s43d

s43d

kssl − ksslIII =
8s1 + 4p + p2d

fr exps2K4d − 8gfr exps2K4d − 16g
«2,

whereksslIII is determined by expressions29d for phase III.
These order parameters have the same values of critical in-
dices as in phase II atr ø16 exps−2K4d.

As the parameterJ2/J1 approaches unity, the phase tran-
sition temperature goes to zero. AtJ2/J1→1, Eq. s39d is
simplified:

4sK1 − K2d < exps− 8K1df2 exps− 8K4d + 1g s44d

or

TII-III <
8J1

lnfgTII-III /sJ1 − J2dg
, g =

2 exps− 8K4d + 1

4
,

s45d
J2 → J1.

Equations45d has the same form as the asymptotic equation
in transition temperature in the two-dimensional Ising model
for a square lattice with interactions along either horizontal
or vertical bonds tending to zero. Such interactions are simu-
lated in Eq.s45d by the quantityJ1−J2. The difference be-
tween the two equations is confined to the coefficient values
and results from the existence of two sublattices and the
specificity of the model involved as well as from the fact that
the fluctuation interactions are included to a different degree
on the Bethe lattice and on a square lattice. In the limit
K4→`, Eq. s45d is reduced to Eq.s4d considered in Sec. II.

B. Antiferromagnetic ordering „K1+K4,0…

At K1+K4,0, the conventional Ashkin-Teller model is
known to admit only two phases, phase I and antiferromag-
netic phase III. The same is true for the generalized model.
The condition for the absence of phase II appears as

ksln = ksln = 0 sn = N,N − 1d. s46d

This expression permits us to simplify the system of 16
equations in the unknownsxisNd, yisNd and xisN−1d,
yisN−1d, which was obtained from the initial system of eight
equationss10d as indicated at the beginning of Sec. III. With
Eqs.s12d, the following relations are derived for ratioss19d
of the above unknowns:

j12snd = h12snd = j34snd = h34snd = 1 sn = N,N − 1d.

s47d

Then the system of equationss10d can be rewritten in terms
of the variables specified by Eqs.s19d:

j13sNd =
aj13sN − 1dh13

2 sN − 1d + 1

j13sN − 1dh13
2 sN − 1d + b

,

s48d

h13sNd =
bj13

2 sN − 1dh13sN − 1d + 1

j13
2 sN − 1dh13sN − 1d + a

,

where

a = exps2K4dcosh 2sK1 + K2d,
s49d

b = exps2K4dcosh 2sK1 − K2d.

In addition to Eqs.s48d, one needs to solve another two
equations of the same form, only withN−1 replaced forN,
using the identity of the variables at the sitesN andN−2. Of
importance are the solutions which imply the nullifiedsphase
Id or opposite in signsphase IIId average products of the
spinss ands at neighboring lattice sites, so that

ksslN = − ksslN−1. s50d

Such a restriction corresponds to the antiferromagnetic
ground states2d at K1+K4,0. Then the following equality is
valid:

j13sNdh13sNdj13sN − 1dh13sN − 1d = 1. s51d

At 4abù1, it admits a single solution:

j13sNd = j13sN − 1d =Îa

b
, h13sNd = h13sN − 1d =Îb

a
,

s52d

which describes the state withkssl=0 sphase Id. At
4ab,1, an additional solution results:
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j13
± sNd =

1

h13
7 sNd

= j13
7 sN − 1d =

1

h13
± sN − 1d

=
1 ± Î1 − 4ab

2b
,

s53d

which refers to the state withksslÞ0 sphase IIId. Here the
choice of signs dictates the signs of the average values given
by Eq. s50d. Inferring the average product of the spinss and
s to be positive at the central site, we arrive at

ksslN =
Î1 − 4ab

1 − 2ab
, 4abø 1. s54d

The second-order phase transition I–III is characterized by
the equation 4ab=1 which is equivalent to the following
one:

coshs4K1d + coshs4K2d = s1/2dexps− 4K4d. s55d

At K2=K1 Eq. s55d is reduced to Eq.s8d, whereas at
K4@K1, K2 the transition I–III is roughly described by
the Ising model on the Bethe lattice, with the temperature
TI–III <−2J4/ ln 2.1 In the vicinity of the transition I–III
within phase III, the quantityksslN approaches zero with the
critical exponent 1/2fsee formulas54dg, thus conforming to
the temperature dependence of the order parameter in the
mean-field theory.

IV. PHASE DIAGRAM

Equationss30d, s39d, and s55d derived for the second-
order transitions between phases I, II, and III correspond to
certain surfaces in a three-dimensional space of the param-
etersK1, K2, andK4. The conventional Ashkin-Teller model
manipulates only two parameters,K1 and K4, and accord-
ingly suggests a planar phase diagram. First we introduce a
phase diagram for the generalized Ashkin-Teller model in the
same coordinates,K1 and K4, and show a family of the
curves corresponding to variousK2/K1 ratios ssee Fig. 1d.
The dashed curves representing the first-order transitions I–II
were calculated by solving the system of equationss10d nu-
merically and equating the free energiess13d of the phases
concerned. At the points wherek=1, these lines have com-
mon tangents with those referring to the second-order phase
transitionsfsee Eqs.s38d and s42dg. This result is in agree-
ment with the properties of critical points between the lines
of first- and second-order phase transitions in terms of the
Landau theory.14

An alternative representation of the phase diagram in the
coordinates K1 and K2 ssee Fig. 2d was employed
previously10,11 in the analysis of the properties of pure fluc-
tuation interactions, atK4=0. The family of curves with the
variedK4/K1 ratio demonstrates the effect caused by biqua-
dratic interactions of the Ashkin-Teller model, if added to a
system with pure fluctuation interactions.

The diagram regions with small values ofK1 andK4 cor-
respond to high temperatures and paraphase I. As the ratio
K2/K1 rises, phase II and antiferromagnetic phase III are
replaced by phase I. At the same time, both phase I and
phase II give way to ferromagnetic phase III. In the limit
K4→`, phase II is forced out to infinity and, atK2=K1, it
vanishes at all.

V. DISCUSSION AND CONCLUSIONS

Hamiltonians1d of the generalized Ashkin-Teller model is
introduced to account for orientational phase transitions in a
lattice system of adsorbed molecules with quasinormal
orientations.15 The parameters of the model were estimated
previously10,11 for the 231 monolayer of CO molecules ad-
sorbed on the NaCls100d surface: J2<0.6J1, J4<−0.2J1,
J1<0.8 meV. The Monte Carlo simulation performed with
these parameter values provides the phase transition tem-
perature within the experimentally observed temperature
range 17.5–21.5 K.16 Thus, the phase diagram of the gener-
alized Ashkin-Teller model is helpful in the study of orien-
tational behavior of adsorbates. It also affords a better under-
standing of phase transitions in the systems with fluctuation
interactions. However, a three-parameter phase diagram on a

FIG. 1. The phase diagram in the coordinatesK1 andK4 for the
generalized Ashkin-Teller model on the Bethe lattice with the coor-
dination number 4. TheK2/K1 ratios are indicated near the curves.
Solid and dashed lines respectively represent second-order and first-
order transitions. Solid lines without markers separate phases I and
II. Dashed lines separate phases I and II before crossing at the triple
point swhere three phases coexistd and become the boundaries be-
tween phases II and III after going through that point. Solid lines
with squares separate phases II and III. Solid lines with empty
triangles separate phases I and III. Solid lines with filled triangles
separate phase I and antiferromagnetic phase III.

FIG. 2. The phase diagram in the coordinatesK1 andK2/K1 for
the generalized Ashkin-Teller model on the Bethe lattice with the
coordination number 4. TheK4/K1 ratios are indicated near the
curves. All designations are the same as in Fig. 1.
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square lattice can be constructed only by the Monte Carlo
numerical simulation, a laborious and time-consuming pro-
cedure. Here we report an analytical solution of the problem
which is an exact one for the Bethe lattice with the coordi-
nation number 4 and also gives a qualitatively correct de-
scription of phase transitions on a square lattice.

The main result of this work is the construction of the
phase diagrams depicted in Figs. 1 and 2. It is seen that the
region occupied by phase II is replaced by phases I and III,
as the constantJ2 increases, and phase II vanishes com-
pletely atJ2=J1. This inference conforms with the previous
results gained for a square lattice.12 The generalized Ashkin-
Teller model provides a more penetrating insight into the
behavior of a system with strong fluctuation interactions,
when J2→J1. At K4@1, the transition from phase III to
phase II is a counterpart of the Ising-model transition in a
system with different interaction constants along horizontal
and vertical bonds. The interaction constants are simulated in
our approach by the sum and the difference of the parameters
J1 andJ2. It is therefore evident that in the limitJ2→J1, one
of the Ising-model interaction constants tends to zero; hence
the temperature of the transition II–III falls by the logarith-
mic law—see Eq.s4d. If the parameterK4 assumes an arbi-

trary positive value, there will be a change only in the insig-
nificant factorg in the argument of the logarithmic function,
as seen from Eq.s45d.

Generally, bilinear fluctuation interactions introduced into
the Ashkin-Teller model resemble, to some extent, biqua-
dratic interactions inherent in this approach. In addition to
paraphase I sksl=ksl=kssl=0d and ordered phase II
sksl ,ksl ,ksslÞ0d, a new phase IIIsksslÞ0 at ksl=ksl=0d
emerges. Besides, the transitions I–II in a certain range of the
interaction constant values represent first-order transitions. A
basic distinctive feature of the fluctuation interactions is that
their enhancement leads one of the spin subsystems becom-
ing quasi-one-dimensional and causes the replacement of
phase II by other phases.
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