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Periodic ripples generated from the off-normal-incidence ion-beam bombardment of solid surfaces have
been observed to propagate with a dispersion in the velocity. We investigate this ripple behavior by means of
a Monte Carlo model of the erosion process, in conjuction with one of two different surface-diffusion mecha-
nisms, representative of two different classes of materials; one is a Arrhenius-type Monte Carlo method
including a termspossibly zerod that accounts for the Schwoebel effect, while the other is a thermodynamic
mechanism without the Schwoebel effect. We find that the behavior of the ripple velocity and wavelength
depends on the sputtering time scale, which is qualitatively consistent with experiments. Futhermore, we
observe a strong temperature dependance of the ripple velocity, calling for experiments at different tempera-
tures. Also, we observe that the ripple velocity vanishes ahead of the periodic ripple pattern.
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I. INTRODUCTION

There has been much scientific activity for quite some
time now on the features of surface morphology resulting
from the bombardment of a solid surface by a collimated
beam of intermediate energy ions, at normal and oblique
incidences to the solid surface.1,2 The phenomenon is an es-
sential constituent of several surface analysis, processing,
and fabrication techniques, such as ion-beam-aided deposi-
tion, surface catalysis, sputter cleaning, etching, and deposi-
tion.

Normal-incidence ion bombardment of nonmetallic sub-
strates often results in an interlocking grid of hillocks and
depressions, which has been demonstrated to be an attractive
alternative to the spontaneous growth of self-organized quan-
tum dots on semiconductor surfaces in the Stranski-
Krastanov growth mode.3 Off-normal-incidence ion bom-
bardment of such nonmetallic substrates, however, gives rise
to the formation of quasiperiodic ripples4–11with orientations
that depend on the angle of incidence of the ion beam. For
incidence angles less than a critical angleuc sRef. 12d the
wave vectors of the ripples are parallel to the projection of
the ion-beam direction on the surface plane, while for inci-
dence angles greater thanuc, the wave vectors of the ripples
are oriented perpendicular to the projection of the ion-beam
direction on the surface plane. On the other hand, ripples are
observed on metallic substrates at normal-incidence ion
bombardment, and these ripples are rotated by changing the
substrate temperature,13–15 a probable consequence of the
symmetry-breaking anisotropy in surface diffusion. The
wavelengths of the observed ripples, in all cases, is of the
order of tenths of micrometers.

However, a number of experimental studies16–19 have
demonstrated that under certain ion-bombardment condi-
tions, ripples are not formed; the surface undergoes kinetic
roughening with interesting scaling properties. All these ob-
servations point to the possibility of several phases in the
surface-topography evolution, with the phase boundaries de-
fined by the bombardment conditions, and with little or no
dependence on the material composition, surface chemistry,
defects, or chemical reactions on the surface. These features
are understood, from insightful theoretical descriptions,2,20,21

as being governed by the interplay and competition between
the dynamics of surface roughening on the one hand and
material transport during surface migration on the other. Ion
bombardment tends to roughen the surface, while surface
diffusion leads, in general, to surface relaxation.4,5 For suffi-
ciently low ion energies, the sputtering phenomenon is the
dominating mechanism.2 However, if the flux is low at such
energies, then the enhanced defect mobility can result in
domination by surface diffusion, which may cause the over-
all scaling behavior of the surface profile to be uniquely de-
termined by the nonequilibrium-biased diffusion current, in-
dependently of the microscopic origin.22

Recently surface ripples generated during the gallium-ion-
beam erosion of silicon were observed to propagate with a
ripple velocity that scaled with the ripple wavelength asv
,lk, where k.0 initially, and k=−1.5 after a crossover
wavelengthlc.100 nm.23 This velocity dispersion has been
ascribed to an indication of a continuous transition to a rising
nonlinear contribution in surface erosion.2,23 Motivated by
this experimental result, we study ripple propagation by
means of a recently introduced, discrete,s2+1d-dimensional
Monte Carlo sMCd model24 of the sputtering process, and
two different solid-on-solid models of surface diffusion; for
details see below. We focus on intermediate times, when the
transition from linear to nonlinear regimes occurs. Our re-
sults corroborate the experimental observation, but in addi-
tion we find that, at high temperatures, the ripples first come
to rest before they are completely wiped out by the increas-
ing nonlinear contributions.

The rest of the paper is organized as follows. First, we
state our simulation model, i.e., how the sputtering process
and the different diffusion mechanisms are implemented.
Then we explain how we study the movement of the ripples.
In the main section, we show our simulation results. We
finish with our conclusions and an outlook.

II. EROSION AND SURFACE MIGRATION

According to Sigmund’s sputtering theory,25 the rate at
which material is removed from a solid surface, through the
impact of energetic particles, is proportional to the power
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deposited there by the random slowing down of particles.
The average energyEsr 8d deposited at surface pointr 8
=sx8 ,y8 ,−z8d is given by the Gaussian distribution,

Esr 8d =
e

s2pd3/2sm2 expF−
sz8 + dd2

2s2 −
x8

2
+ y8

2

2m2 G , s1d

where we use the local Cartesian-coordinate system of the
ion with the origin at the point of penetration, and with thez
axis coinciding with the ion-beam direction.sz8+dd is the
distance of the surface point from final stopping point of ion
measured along the ion trajectory,Îx82+y82 is the distance
perpendicular to it,s andm are the widths of the distribution
parallel and perpendicular to the ion trajectory, respectively,
e is the total energy deposited, andd is the average depth of
the energy deposition. Sigmund’s formula is the basis forall
theoretical treatments and analysis of experimental results so
far.

A. The sputtering process

In the following,24 we simulate the sputtering process on a
surface of sizeL2 with periodic boundary conditions by start-
ing an ion at a random position in a plane parallel to the
plane of the initially flat surface and projecting it along a
straight trajectory inclined at angleu to the normal of the
average surface configuration, and at an azimuthal anglef.
The ion penetrates the solid through a depthd and releases
its energy, such that an atom at a positionr =sx,y,hd is
erodedssee Fig. 1 of Ref. 24d with a probability proportional
to Esr d. It should be noted that, consistent with the assump-
tions of the theoretical models,2,20,21 this sputtering model
assumes no evaporation, and no redeposition of eroded ma-
terial, and no preferential sputtering of surface material at the
point of penetration; the surface is defined by a single val-
ued, discrete, time-dependent height functionhsx,y,td fsolid-
on-solid sSOSd modelg. The timet is measured in terms of
the ion fluence, i.e., the number of incident ions per two-
dimensional lattice sitesx,yd. We use incidence angleu
=50°, azimuthal anglef=22.0°,d=6.0,s=3.0, andm=1.5,
as obtained by SRIM26 for 5 keV Xe+ ions on graphite, res-
caling all lengths by a factor of 2. This should give, accord-
ing to the linear theory of Bradley and Harper, a value of
uc=68°.12 We have chosene to be s2pd3/2sm2, which leads
to high-sputtering yieldsY.7.0, compared to experiments
such as that in Ref. 11, whereY=0.3, . . . ,0.5, i.e., increasing
the efficiency of the simulation. According to the Bradley-
Harper theory, the ripple wavelengthl scales asl,Y−1/2, so
that we expect patterns with correspondingly smaller length
scales in our simulations. This we have to remember when
quantitatively interpreting the result. Anyway, the general
phenomena observed in the simulation are not affected by
this choice.

Our model of the sputtering mechanism sets the time
scale of the simulation and allows comparison with experi-
ments. Additionally, also the moves of atoms mimicking sur-
face diffusion are performed, which will be described now.

B. The Hamiltonian and Arrhenius models of
surface diffusion

Surface migration is modeled as a thermally activated
nearest-neighbor hopping process, as in Refs. 27 and 28. A
Monte Carlo acceptance and/or rejection procedure is used
for this purpose. One diffusion step refers to a complete
sweep of the lattice. Two different solid-on-solid models of
surface diffusion in molecular-beam epitaxy are use, the sec-
ond one of them sensitive to the repulsion of a diffusing
particle from a down step, and preferential diffusion in the
uphill direction, which is the so-called Schwoebel effect.

The first model27 is based on a thermodynamic interpre-
tation of the diffusion process. For each step, a sitei and one
neighbor sitej are randomly selected. The trial move is an
atom hopping fromi to j , i.e., hi =hi −1 andhj =hj +1. We
calculate the surface energy before and after the hop, through
the energy of an unrestricted SOS model,

E =
J

2o
ki,jl

uhi − hju2. s2d

J is a coupling constant through which the nearest-neighbor
sites interact.hi is the height variable at sitei, and the sum-
mation is over the nearest neighbors on the two-dimensional
substrate.

The hop is allowed with the probability,

pi→f = 1/F1 + expSDEi→f

kBT
DG , s3d

whereDEi→f is the energy difference between the initial and
final states of the move,T is the substrate temperature, and
kB is the Boltzmann’s constant. Although no exact mapping
is possible, we can estimate that a temperature,kbT/J.0.2
in this model, corresponds roughly to the temperature used in
the second model below. The estimate is based on a compari-
son of the pure-diffusion mechanism without sputtering such
that it leads to comparable values of roughness. Note that
this temperature is below the roughening transition of this
model.27 This model does not prevent atoms from moving
down over step edges; hence no Schwoebel effect is present.

The second model is also based on a MC procedure and
uses a formula known from kinetic MC mechanisms. For
each step, again a sitei and a nearest-neighbor sitej are
chosen at random, but now a hopping move is performed
with a probability proportional to the hopping rate of an
Arrhenius form,

ksE,Td = k0 expS−
E

kBT
D . s4d

E=ESB+nnENN+ES is an energy barrier to hopping, consist-
ing of a Schwoebel barrier termESB, a substrate termES
=0.75 eV and a nearest-neighbor bonding of magnitude
nnENN=nn0.18 eV; wherenn is the number of in-plane near-
est neighbors of the diffusing atom.ESB is equal to some
constants0.15 eV in this case. Note that we also perform
runs forESB=0 to compare with the thermodynamic model;
see belowd, if the numbers of next-nearest neighbors in the
plane beneath the hopping atom, beforesnnnbd and after
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snnnad the hop, obey 4=nnnb.nnna and zero otherwise. Our
temperature is measured in units of eVkB

−1 in this model,
whereT.0.02 eVkB

−1 corresponds to room temperature.k0
=2 kBT/h is the vibrational frequency of a surface adatom,
i.e., a hopping-attempt rate,h being Planck’s constant. The
hopping-attempt rate is very high, with a corresponding low
hopping probability resulting from Eq.s4d, slowing down the
simulation. Thus we incorporate the factor exps−ES/kBTd
into the rescaled attempt rate such that the hopping rate reads

ksE,Td = k1 expS−
DE

kBT
D , s5d

wherek1=k0 exps−ES/kBTd is a much lower hopping-attempt
rate, DE=nnENN+ESB. This physical attempt rate, in com-
parison with the ion current density used in experiments,
determines the ratio between the number of sputtering steps
and the number of surface-diffusion steps made in the simu-
lation. In Sec. III, we state the values we used for our simu-
lations. A discussion of parameter optimization and a rescal-
ing of the temperature with the parameters is given in Ref.
29. Note finally that for atoms on top of planes that are far
from down edges, i.e.,DE=0, each hop is accepted, indepen-
dently of the temperature.

III. RIPPLE KINEMATICS

In experiments we typically have N=1
31015 atoms/cm2 on the surface. Since the typical experi-
mental ion current density is of the order ofF=7.5
31014 ions/cm2 s,23 this implies a flux of F=F /N
.0.75 ion/atom s. From the values given above, we get
hopping-attempt ratesk1 of around 20031/s for room tem-
perature, hence 200 sweeps of the diffusion mechanism cor-
respond to 0.75 ions per surface atom. Thus, we initiate a
diffusion step everyFL2/k1=0.0037L2 erosion steps;L is
the system size.

Initially, for times less than about 1.4 ions/lattice site, the
surface is rough24 and then the formation of ripples starts. In
this paper we focus on the motion and time development of
these ripples. In Fig. 1 the time development of a sample
surface topology is shown for the first diffusion model. Ini-
tially ripples are formed. They propagate slowly and, due to

the increasing influence of nonlinear effectssnote the scales
at the rightd, disappear at longer times. The long-time behav-
ior, where the ripples have disappeared, has already been
studied in Ref. 24.

In order to monitor the ripple propagation on the com-
puter, we assign the crest points of the ripples to clusters, and
then monitor the motion of these clusters. A cluster of crest
points is defined as the set of surface points with height
hsx,y,tdùhc and nearest-neighbor distancel ø lc, wherehc

and lc are the cutoff surface height and distance between the
neighboring cluster points, respectively. We have chosen our
cutoff height to be a function of the average height of the
configurationkhl, and the height differencehd between the
maxima and minima of the surface; i.e,hc=khl+phd, where
p is a fixed percentage. In this way clusters with about the
same proportionate sizes can be followed from the beginning
of ripple formation until the complete disappearance of the
ripples. Furthermore, we have usedlc=2. Different, uncon-
nected ripples should, in general, generate different clusters.
We also require that the numberN of elements in a cluster be
large enough to allow for statistical analysis; here we have
chosenNù10 elements.

The propagation of the ripples is studied by calculating
the time rate of change of the position of the center of mass
of a cluster,

ẋCM =
oi

miẋi

oi
mi

, s6d

where the summation is over all the elements of the cluster.
We have assumed a homogeneous system composed of unit-
mass particles, such that the center of mass of a cluster is
xCM=N−1oixi. The ripple wavelength is given byl=2p /h,
with h being the average expectation value of the Gaussian
fitted to the peak of the structure factorSskd= uhskdu2, where
hskd is the Fourier transform of the height topographyhsr ,td,
given by

hskd =
1

Ld8/2o
r

fhsr ,td − khlgeikr . s7d

d8 is the substrate dimension, i.e., hered8=2. Figure 2 shows
two profiles of the surface for system size 1283128 at time

FIG. 1. Surface profiles at a substrate tem-
perature of 0.2 JkB

−1 and at different times. Start-
ing from top to bottom and left to right,t=0.5,
1.5, 4.0, 9.0, 14.0, and 20.0 ions/atom. The ion-
beam direction, indicated by the bar, is perpen-
dicular to the ripple orientation. The scales show
the surface height measured from the lowest
height.
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t=3 ions/atom; in the second profile, we print the clusters on
top of their corresponding ripples. As seen in the figure of
the clusters, the application of periodic boundary conditions
neccessitates the need to first unfold the toroidal clusters be-
fore calculating the position of their centers of mass. As time
increases, the local surface slopes¹h increase, and since the
nonlinear effects depend on the square of¹h they will domi-
nate by scaling down the surface-relaxation mechanisms.1

These nonlinear effects are responsible for the disapearance
of ripples sFig. 1d at long times and for the transition of the
surface topography from a periodic ripple pattern to a rough
topography with self-affined scaling.2,16 We thus expect fluc-
tuations in the positions of the centers of mass due to disap-
pearing ripples; the fluctuations are averaged out by using
systems of size 5123512, with a large number of clusters
such that the ripple velocity at any time is an average of the
velocities of all the ripples at the time.

IV. RESULTS AND DISCUSSION

The results are obtained, as already mentioned, for square
lattices of size 5123512, with periodic boundary conditions
and as an average of fifty different realizations.

For the case of the Arrhenius diffusion mechanism,sin-
cluding the Schwoebel barriersd one can choose a tempera-
ture corresponding to the physical temperature present in the
experimental system. A naive guess is to use room tempera-
turekBT=0.02 eV, at which the experiments usually are car-
ried through. The resulting structures are shown in Fig. 3, for
intermediate as well as after long sputtering times. We can-

not observe clean ripples. The reason is that this kind of
diffusion mechanism is too slow at room temperature to ef-
fectively counteract the strong roughening due to our model
of sputtering, which possesses a particularly high-sputtering
yield. The hops are almost always prevented if an atom has
in-plane neighbors, so the mechanism is not very effective on
a rough surface. Since surface relaxation is essential for the
formation of ripples,20 it needslocally higher temperatures
than room temperatures to produce clean ripples in our
model. This happens indeed in experiments, since most of
the kinetic energy, carried by the incoming ion, is converted
into lattice vibrations; hence the surface is locally strongly
heated. Here, we do not know the spatiotemporal distribution
of the local temperature. Either one would have to perform
molecular dynamicssMDd simulations or include heat con-
duction in the model, both making the treatment of large
systems over long time scales infeasible. Instead, we choose
a higher but constant effective temperatureT, which is a
good first approximation.

Now, we want to estimate this effective temperature. The
most basic approach is to describe the energy carried by the
ions as a constant inflow of energy at the surface, fix the
temperature far away from the surface to room temperature,
and solve the stationary heat-conduction equation to calcu-
late the temperature at the surface.30 The resulting tempera-
ture depends strongly on the ion energy, the ion current den-
sity, and the thermal conductivity of the material. For
experimentally reported parameters, temperature rises up to
1500 K s0.155 eVkB

−1d are found.30 This shows that high ef-
ficient temperatures, even in the stationary state, may be
achieved. However, in the experiments of Habenichtet al.23

only small average ion current densities were used, which
resulted in a temperature rise at the surface of only a few K.

This does not mean that one can use a temperature close
to room temperature as an effective temperature. The reason
is that right after impact, the surface is strongly heated close
to the melting temperature and then quickly cooled again,
i.e., a thermal spikeoccurs.31 Furthermore, the surface is
sputtered using a focused ion beamsof diameter 30 nmd,
which is moved relatively slowly over the surface, and which
exhibits a large spot current of 15mA/cm2. Hence, under the
ion beam, for several short time intervals, surface diffusion is
greatly enhanced. Marks calculated32 the spatiotemporal de-
velopment of the temperature after ion impact by solving the
dynamic-heat-conduction equation, resulting in a tempera-

ture profileT̃sr ,td as a function of timet and distancer from

the point of impact. The initial distributionT̃sr ,0d is given

by a step function withT̃sr ,0d being the melting temperature
of the material forr ø r0 and being the room temperature
elsewhere. The initial radiusr0 is determined such that the
thermal energy inside this semisphere equals the energy car-
ried by the ion. Marks found that the surface is heated
strongly right after the impact and is cooled down to tem-
peratures close to room temperature within few ps. Qualita-
tively and quantitatively similar profiles have been observed
in MD simulations33 as well. We apply Marks’s equation,
using the parameters for ion energy and ion current density
in the spot as given above to determine an effective tempera-
ture swith r0=15.6 Å in our cased. The basic idea is that in a

FIG. 2. sColor onlined Surface profile for time 3 ions/atom
sthermodynamic-diffusion model,T=0.2 J/kB, L=128d. The second
profile contains the clusters formed from the first profile, as de-
scribed in the text.

FIG. 3. Sample surface topology for a small systemsL=128d,
for the Arrhenius MC diffusion mechanism at a surface temperature
equal to room temperature, aftert=100 ions/atom. No clear ripples
can be observed. Similar results were observed for almost all times,
except the very early ones.
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time intervalDt, the number of hops governed by the tem-

peratureT̃s0,td at the impact point should be the same as the
number under the effective temperatureT,

E
0

Dt

k0 expS−
DE

kBT̃s0,td
Ddt = Dtk0 expS−

DE

kBT
D . s8d

We have neglected here the temperature dependence ofk0.
When including it, we find that the resulting effective tem-
perature changes only slightly. We chooseDt as the average
time between two ions arriving in a circle with areapr0

2

under the ion-beam spot, resulting inDt=1.43105 ps. For
the energy barrier, we chooseDE=ESB+3ENN+ES, which
corresponds to atoms along the edges of the islands and/or
steps. Using these parameters, we find an effective surface
temperature ofT=1200 K, i.e., which is considerably higher
than room temperature. In this calculation it is assumed that
only the energy carried by the ions hitting the “target area”
pr0

2 contribute to the heating of the surface inside the area. If
one were to take into account that the ions hitting the neigh-
borhood of the target area also contribute to the heating in-
side the area, then even higher effective temperatures can be
expected.

The exact effective temperature depends on many param-
eters, such as ion energy, ion current density, heat conduc-
tion, surface roughness, etc. We are here interested only in
universal effects, not in modeling a specific experimental
setup. For this reason, we use the above result only as a
guideline and study several temperatures of this order of
magnitude and additional ones above it. Hence, for the fur-
ther analysis of ripple movement, we consider high effective
temperatures for the Arrhenius MC model, such that the sur-
face diffusion is indeed able to act as an effective smoothing
mechanismssee Fig. 4d. At such higher temperatures we ob-
serve some universal features for both diffusion mechanisms,
as presented now. Figure 5 is the plot of the ripple wave-
lengthscircle symbolsd versus time, measured in units of the
number of ions per atom; its inset is a plot of the projection
of the ripple velocity along the ion-beam direction versus
time, both at the estimated effective temperature ofkBT
=0.1 eV, corresponding to the experimental conditions from
Ref. 23.

A plot of wavelength versus time in Fig. 5 reveals that for
short timesl, t0.32, which is between the resultsl, t0.5 of
Habenichtet al.23 andl, t0.26 of Frostet al.35 and Rusponi
et al.15 But we observe a power-law behavior only in the
initial stages of ripple formation, the wavelength becoming
constant in time at a later stage.

The velocity shows a power-law behavior over a larger
time interval, resulting inv, t−0.7, as obtained from the inset
of Fig. 5. This is in excellent agreement with the experimen-
tal resultv, t−0.75 of Habenichtet al.23. A difference is that
for smaller times a constant velocity was observed in the
experiments, while we do not see any clean ripples for
smaller times than the power-law regime. Anyway, combin-
ing both scaling results givesv,l−2.19, in good agreement
with the exponent −2 of the continuum theory.2

Now we turn to higher effective substrate temperatures,
corresponding, e.g., to higher ion currents and/or materials
with lower heat-conductivity. Figures 6 and 7 are plots of the
ripple wavelengthscircle symbolsd as a function of time, at
respective temperatureskBT=0.2 J andkBT=0.2 eV, using
the first and second models of the surface diffusion, respec-
tively. In both models, the ripples disappear after a while,
i.e., the ripple wavelength diverges. Considering the lifetime
of the ripples from first appearance to annihilation, the wave-
length increases exponentially with time asl,expsrtd, r
=0.029 sFig. 6d, in the first model, while it increases with

FIG. 4. Surface profiles at a substrate tem-
perature of 0.1 eV/kB with the second diffusion
model. Starting from top to bottom and left to
right, t=0.5, 1.5, 4.0, 9.0, 14.0, and 20.0 ions/
atom. In both cases depicted here and in Fig. 1,
ripples propagate along a direction opposite to
that of the ion beam.

FIG. 5. Ripple wavelengthl measured in lattice units, as a
fuction of time t. The inset shows the time dependence of the
ripple-propagation velocityv smeasured in lattice units per ion per
atomd. Both results are for the kinetic-diffusion mechanism, at a
substrate temperature ofkBT=0.1 eV.
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time according to the inverse lawlstd,1/sc1−c2td with c1

=0.083 andc2=0.0036 sFig. 7d in the second model. To
investigate the origin of the difference, we also perform
simulations with the Arrhenius model, but with the
Schwoebel term set to zero. In this case the result is very
similar to the result in Fig. 6 of the thermodynamic model
swhich has no Schwoebel term hered, and we obtain the be-
havior l,exps0.036td. On the other hand, when we set the
energy in the Schwoebel term to twice its value,ESB
=0.3 eV, the result is very similar toESB=0.15 eV. This
shows that the Schwoebel barrier plays an important role in
the pattern formation process. Note that these fits are purely
heuristic. We are not aware of any theory of the time depen-
dence of ripple wavelength and velocity; only a calculation
of the dispersion relationvsld has been performed within
linear theory.2 Furthermore, there exists an analytic study of
the temporal development of step bunches during epitaxial
growth.22,34

The insets of Figs. 6 and 7 are plots of the ripple velocity
sline with square symbolsd as a function of time. Irrespective
of which surface-diffusion mechanism is employed, the ve-
locity is at first almost independent of time, and then it dis-

perses after a transition timetr. This initial plateau is similar
to the plateau observed in the experiments, but the drop in
velocity is very abrupt, and no clear power law is visible
then. Moreover, the ripples finally come to rest before com-
pletely disappearing, as seen in the smaller inset of Fig. 6.
We find, however, that at the lower temperature in the kinetic
model, the ripples do not stop moving until their disappear-
ance. Figure 8 shows the dependence of the ripple velocity
on the wavelength forkBT=0.2 J; their order of magnitude
relationship is about the same as in the experiment. We see in
Fig. 9 that the trend in velocity variation is the same at high
temperatures, but the magnitude increases with temperature,
as one would expect from the temperature dependence of the
surface diffusion. But we only observed a power-law scaling
at temperatures belowkBT<0.18 eV. This indicates that the
presence of power-law scaling of ripple wavelength and ve-

FIG. 6. Ripple wavelengthl measured in lattice units, as a
fuction of time t. The inset shows the time dependence of the
ripple-propagation velocityv smeasured in lattice units per ion per
atomd. Both results are for the thermodynamic-diffusion mechanism
at a substrate temperature of 0.2 JkB

−1.

FIG. 7. Same plot as in Fig. 6, but for the Arrhenius diffusion
mechanism for a substrate temperature of 0.2 eV/kB. In both fig-
ures, the line with circle symbols represents the wavelength, while
the line with square symbols represents the velocity.

FIG. 8. Ripple velocity as a function of ripple wavelength, for
the thermodyanmic-diffusion mechanism.

FIG. 9. Temperature dependence of the ripple velocitysupper
graphd and ripple wavelengthslower graphd for the thermodynamic-
diffusion mechanism. The temperature is in units of JkB

−1.
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locity, and the corresponding exponents, depends on the time
scale of observationsFig. 5d, as well as on the effective tem-
perature.

It seems that the increase in magnitude of the velocity,
when measured at the same timest, trd but a different tem-
peratures, does not continue indefinitely in our model. In the
upper graph of Fig. 9 there is very little difference in the
magnitudes of the velocity at temperatures 2.0 and 5.0 JkB

−1,
even though the temperature difference is very high. This
saturation behavior is also displayed in the ripple wavelength
at higher temperatures, as seen in the lower graph of Fig. 9.
In principle, one can still fit an exponential law to the data,
except that the decay constantr in the exponential becomes
very small. sIt has the respective values of 0.029, 0.018,
0.0031, and 0.003 from the lowest to the highest tempera-
tures.d So for very high effective temperatures we could
equally well fit a power law. Hence, there may be some
“critical substrate temperature,” above which the wavelength
remains nearly constant in time, and the velocity, after some
time tr, drops instantaneously to zero. Nevertheless, the tem-
perature where such a “transition” would take place is prob-
ably unphysically highssee belowd, so that the material used
in the experiment would start to evaporate before reaching
this point. But other materials, in combination with high ion
currents, might display such a behavior. So far, we are only
aware of one set of experiments.23 Hence, it would be very
interesting to see whether some temperature dependence of
the dynamical features, including the disappearance of the
coarsening, can be seen in experiments at higher effective
temperatures corresponding to high ion currents and/or
higher lab temperatures.

Our results for the second diffusion model also indicate
that in lstd<1/sc1−c2td, c2 approaches zero with increasing
temperature. Here, where we can measure the temperature in
real units, it is clear that the “transition” to almost noncoars-
ening ripples takes place at unrealistically high temperatures
such as 2–5 eV/kB, where the material starts to evaporate.
Moreover, we notice in Fig. 9 that the transition time from
linear the regime to the onset of nonlinearities decreases with
increasing temperature.

To summarize, ripple propagation depends on the effec-
tive substrate temperature as well as the diffusion mecha-
nism. Around temperatures realized experimentally thus far,
ripples propagate, from their first appearance, with decreas-
ing velocity until their disappearance without full cessation
of motion. At high effective temperatures, however, immedi-
ately after ripple formation, the ripples move with constant
velocity for some time, after which they begin to decelerate
sinsets of Figs. 6 and 7d and after some time, depending on
the diffusion model, the ripples stop moving, but keep dis-
appearing gradually. At the same time the ripple structure is
gradually being washed out, and in the final stage the ripples
are completely wiped out. The ripple wavelength is always
increasing in time at high temperatures, while at low effec-
tive temperatures it initially increases with time and later
becomes constant.

V. CONCLUSION AND OUTLOOK

We have studied the propagation of ripples by means of a
discretes2+1d-dimensional model of the sputtering process,

combined with one of two different solid-on-solid models of
surface diffusion: an Arrhenius MC mechanism with Ehrlich-
Schwoebel barriers and a thermodynamic mechanism with-
out a Schwoebel term. We obtained the formation and propa-
gation of the ripples with both diffusion mechanisms used in
turn. Furthermore, we obtained the same trend in the behav-
ior of ripple velocity and wavelength, as observed experi-
mentally and predicted theoretically, but, in addition to the
experimental results, we found a drastic change in the ripple
propagation at temperatures well above the so-far experi-
mentally realized effective temperature; for instance we
found deviations from power-law behavior into exponential
or inverse-law behavior, and in addition, the ripples first stop
moving before vanishing completely. We found that, at very
high effective temperatures, the behavior of the ripple veloc-
ity is charaterized by two regions, separated at the transition
time. In the first region it was constant, and in the second
region it decreased rapidly to zero. Between the two regions
a power-law dependence could be observed for a small time
interval. Whereas, around the temperatures realized experi-
mentally thus far, the velocity-time relationship obeyed a
power law. Furthermore, at high effective temperatures, the
wavelength increased exponentially with time in the
thermodynamic-diffusion modelsand in the Arrhenius diffu-
sion model without a Schwoebel termd, and it obeyed an
inverse law for the Arrhenius model including the Schwoebel
barrier. In addition, we found further strong dependencies on
the effective substrate temperature; as the temperature in-
creased the magnitude of the velocity also increased. The
transition time between constant and decreasing velocity was
also found to decrease with increasing temperature. Our re-
sults indicate an approach towards a saturation behavior of
the velocity or wavelength with an increasing effective sub-
strate temperature, where the wavelength is expected to be-
come time independent. However, this may happen at an
unphysically high temperature. Anyway, an experimental
study of the dependence of the dynamical features of ripple
formation and effacement on the physical conditions seems
very promising.

One open problem of our model at high incidence angles
se.g,u.75°d, is that it uses the Sigmund formula for mod-
eling the sputtering process. In a recent simulation36 using a
binary-collision approximation, we observed that close to the
penetration point of the ion, many fewer atoms were sput-
tered than predicted by the Sigmund formulas1d; in fact the
distribution showed a minimum there. When incorporating
this effect in the Bradley-Harper linear theory20 of sputtering,
e.g., one observes36 that the sputter yield, i.e., the number of
removed atoms per ion, exhibits a minimum for grazing in-
cidence, as in the experiments, in contrast to the orginial
linear theory.20 Hence, it may be promising to apply a differ-
ent formula describing the sputtering, which takes this effect
into account.

Furthermore, the role of the interplay between the
surface-diffusion process and the sputtering process is still
not fully understood. So far, we know that including a pure
T=0 relaxation in our sputtering model does not24 lead to a
disappearance of ripples for long times. Next, we know from
this study, that one approach including the calibrated
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Schwoebel barriers does not yield ripples at room tempera-
ture for the sputtering yieldY<7. There are several different
models27,28,37–42for surface diffusion that could be combined
in a construction-kit manner. Here, an extensive study over
different combinations of parameters is necessary.

Finally, it would be of interest to include crystal aniso-
tropy into the surface diffusion. This may give results, in
agreement with experimental studies of metallic substrates,
which may be useful in understanding the anomalies of such
surfaces.
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