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Based on theory of nonlocal elasticity, a nonlocal double-elastic beam model is developed for the free
transverse vibrations of double-walled carbon nanotubes. The effect of small length scale is incorporated in the
formulation. With this nonlocal double-elastic beam model, explicit expressions are derived for natural fre-
quencies and associated amplitude ratios of the inner to the outer tubes for the case of simply supported
double-walled carbon nanotubes. The effect of small length scale on the properties of vibrations is discussed.
It is demonstrated that the natural frequencies and the associated amplitude ratios of the inner to the outer tubes
are dependent upon the small length scale. The effect of small length scale is related to the vibrational mode
and the aspect ratio.
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I. INTRODUCTION

Among nanostructured materials, the carbon nanotubes
discovered in 1991sRef. 1d have received tremendous atten-
tion from various branches of science. By the use of varieties
of experimental, theoretical, and computer simulation ap-
proaches, extensive research studies of the properties of car-
bon nanotubes have been carried out.2–10 Carbon nanotubes
are cylindrical macromolecules composed of carbon atoms in
a periodic hexagonal arrangement. As they are found to have
remarkable mechanical, physical, and chemical properties,
carbon nanotubes hold exciting promise as structural ele-
ments in nanoscale devices or reinforcing element in super-
strong nanocomposites.11,12

As a thorough understanding of the mechanical responses
of individual carbon nanotubes is of great importance for
their potential applications,13,14 the study of vibrational be-
havior of carbon nanotubes is of practical interest. For the
sake of the difficulties in experimental characterization of
nanotubes and time consuming and computationally expen-
sive for atomistic simulations, elastic continuum models
have been widely used to study the vibrational behavior of
carbon nanotubes.15–20 In these continuum models, the
single-elastic beam model15,16 assumes that all originally
concentric tubes of a multiwalled carbon nanotube remain
coaxial during vibration while the multiple-elastic beam
model19,20 considers the intertube radial displacements of
multiwalled carbon nonotubes which give rise to compli-
cated intertube resonant frequencies and noncoaxial vibra-
tional modes. Though the classic continuum models are rel-
evant to some extent, the length scales associated with
nanotechnology are often sufficiently small to call the appli-
cability of classical continuum models into question. The
main reason is that at small length scales the material micro-
structuressuch as lattice spacing between individual atomsd
becomes increasingly important and its effect can no longer
be ignored.21 This has raised a major challenge to the classic
continuum mechanics. It is a possible solution to extend the

classic continuum approach to smaller length scales by in-
corporating information regarding the behavior of material
microstructure. It is accomplished quite easily by the use of
the theory of nonlocal continuum mechanics.

While the classicalslocald continuum mechanics assumes
that the stress state at a given point is dependent uniquely on
the strain state at that same point, the nonlocal continuum
mechanics regards the stress state at a given point as a func-
tion of the strain states of all points in the body. Thus, the
theory of nonlocal continuum mechanics contains informa-
tion about the long-range forces between atoms, and the in-
ternal length scale is introduced into the constitutive equa-
tions simply as a material parameter. It has been applied to a
wide variety of fields such as lattice dispersion of elastic
waves, fracture mechanics, dislocation mechanics, wave
propagation in composites, and surface tension in fluids,
among others. Recently, Peddiesonet al.22 pointed out that
nanoscale devices would exhibit nonlocal effects and the
nonlocal continuum mechanics could potentially play a use-
ful role in analysis related to nanotechnology applications.
On the basis of the theory of nonlocal continuum mechanics,
Sudak23 presented a multiple-elastic column model to study
column buckling of multiwalled carbon nanotubes which
demonstrated that small scale effects contribute significantly
to the mechanical behavior of multiwalled carbon nanotubes.
Zhanget al.24 put forward a nonlocal multiple-elastic shell
model for the axially compressed buckling of multiwalled
carbon nanotubes and discussed the effect of small length
scale on the axial buckling strain.

In this paper, based on the theory of nonlocal elasticity, a
double-elastic beam model is developed for the free trans-
verse vibrations of double-walled carbon nanotubes, which
considers the effect of small length scale in the formulation.
Explicit expressions are derived for natural frequencies and
associated amplitude ratios of the inner to the outer tubes for
the case of simply supported double-walled carbon nano-
tubes, and the influences of small length scale on them are
investigated.
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II. NONLOCAL CONTINUUM BEAM MODEL

A. Brief introduction of the Erigen nonlocal elasticity model

The theory of nonlocal continuum mechanics was for-
mally initiated by the papers of Erigen25 and Eringen and
Edelen26 on nonlocal elasticity. In the Eringen nonlocal elas-
ticity model,27 the stress state at a reference pointx in the
body is regarded to be dependent not only on the strain state
at x but also on the strain states at all other points of the
body. This is in accordance with atomic theory of lattice
dynamics and experimental observations on phonon disper-
sion. The most general form of the constitutive equation for
nonlocal elasticity involves an integral over the entire region
of interest. This integral contains a kernel function which
describes the relative influences of strains at various loca-
tions on the stress at a given location. In the limit when the
effects of strains at points other thanx are neglected, the
nonlocal theory of elasticity reverts to the classicslocald
theory.

For homogeneous and isotropic elastic solids, the linear
theory of nonlocal elasticity is given by the set of equations

skl,k + rsf l − üld = 0, s1d

sklsxd =E
V

asx,x8dtklsx8ddVsx8d, s2d

tklsx8d = l«mmsx8ddkl + 2m«klsx8d, s3d

«klsx8d =
1

2
S ]uksx8d

]xl8
+

]ulsx8d
]xk8

D , s4d

whereskl, r, f l, andul are, respectively, the nonlocal stress
tensor, mass density, body force density, and the displace-
ment vector at a reference pointx in the body.tklsx8d denotes
the macroscopicsclassicald stress tensor at any pointx8 in
the body, and«klsx8d is the strain tensor. The two parameters
l andm are Lamé constants. The kernel functionasx ,x8d is
the attenuation function which incorporates into the consti-
tutive equations the nonlocal effects. The volume integral in
Eq. s2d is over the regionV occupied by the body. In addi-
tion, it is seen that the only difference between Eqs.s1d–s4d
and the corresponding equations of classical elasticity is in
the constitutive equationss2d which replaces Hooke’s laws3d
by Eq. s2d.

While the constitutive equation of classical elasticity is an
algebraic relationship between the stress and strain tensors,
that of nonlocal elasticity involves spatial integrals which
represent weighted averages of the contributions of the strain
tensors of all points in the body to the stress tensor at the
given point. Though it is difficult mathematically to get the
solution of nonlocal elasticity problems due to the involved
spatial integrals in the constitutive equations, these integral
constitutive equations can be converted to equivalent differ-
ential constitutive equations under certain conditions. This
provides a great deal of simplicity and convenience for the
application of the theory of nonlocal elasticity.

B. Nonlocal double-elastic beam model

The treatment of beam flexure which is developed here is
on the basis of the Bernoulli-Euler theory. This theory is
based upon the assumption that plane cross sections of a
beam remain plane during flexure and that the radius of cur-
vature of a bent beam is large compared with the beam’s
depth. Using the Bernoulli-Euler beam theory, the general
equation for transverse vibrations of an elastic beam under
distributed transverse pressure is expressed by28–30

psxd = EI
]4w

]x4 + rA
]2w

]t2
, s5d

wherex is the axial coordinate,t is time, psxd is the distrib-
uted transverse pressure per unit axial lengthsmeasured posi-
tive in the direction of the deflectiond, w is the deflection of
the beam,I andA are the moment of inertia and the area of
the cross section of the beam, andE and r are Young’s
modulus and the mass density. Thus,EI denotes the bending
stiffness of the beam, andrA represents the mass density per
unit axial length.

Another assumption behind the Bernoulli-Euler beam
model is that the beam consists of fibers parallel to thex axis,
each in a state of uniaxial tension or compression. Adopting
the theory of nonlocal elasticity, the classic Hooke’s law for
a uniaxial stress state is replaced by22,23

s − se0ad2]2s

]x2 = E«, s6d

where s is the axial stress,« is the axial strain,e0 is a
constant appropriate to each material, anda is an internal
characteristic lengthse.g., length of CuC bond, lattice spac-
ing, granular distanced. In addition, it should be noted that
the value ofe0 needs to be determined for each material.

When the beam is vibrating transversely, the equation of
motion perpendicular to thex axis is obtained in the form29,31

]S

]x
= − p + rA

]2w

]t2
, s7d

whereS is the shear force, and the moment equilibrium con-
dition gives

S=
]M

]x
, s8d

whereM is the bending moment which can be obtained by32

M =E
A

ysdA, s9d

wherey is the transverse coordinate measured positive in the
direction of deflection. In addition, for small deflections we
have32

« = − y
]2w

]x2 . s10d

Combination of Eqs.s6d, s9d, ands10d results in
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M − se0ad2]2M

]x2 = − EI
]2w

]x2 . s11d

It follows from Eqs.s7d, s8d, ands11d that

p = EI
]4w

]x4 + rA
]2w

]t2
− se0ad2SrA

]4w

]x2]t2
−

]2p

]x2D s12d

which is the general equation for transverse vibrations of an
elastic beam under distributed transverse pressure on the ba-
sis of nonlocal elasticity. It is noted that when the small scale
parametera vanishes, the above equation reduces to the clas-
sical Bernoulli-Euler expressions5d.

It is known that double-walled carbon nanotubes are dis-
tinguished from traditional elastic beams by their hollow
two-layer structure and associated intertube van der Waals
forces. Equations12d can be used to each of the inner and
outer tubes of the double-walled carbon nanotubes. Assum-
ing that the inner and outer tubes have the same thickness
and effective material constants, we have

p12 = EI1
]4w1

]x4 + rA1
]2w1

]t2
− se0ad2SrA1

]4w1

]x2]t2
−

]2p12

]x2 D ,

s13ad

− p12 = EI2
]4w2

]x4 + rA2
]2w2

]t2
− se0ad2SrA2

]4w2

]x2]t2
+

]2p12

]x2 D ,

s13bd

where subscripts 1 and 2 are used to denote the quantities
associated with the inner and the outer tubes, respectively,
and p12 denotes the van der Waals pressure per unit axial
length exerted on the inner tube by the outer tube.

For small-deflection linear vibration, the van der Waals
pressure at any point between two tubes should be a linear
function of the jump in deflection at that point. Thus, the
interaction pressure per unit axial length is given by23,33

p12 = csw2 − w1d, s14d

wherec is the intertube interaction coefficient per unit length
between two tubes, which can be estimated by23,30

c =
320s2R1derg/cm2

0.16d2 sd = 0.142 nmd,

whereR1 is the radius of the inner tube.
Introduction of Eq.s14d into Eqs.s13ad and s13bd yields

csw2 − w1d = EI1
]4w1

]x4 + rA1
]2w1

]t2
− se0ad2

3FrA1
]4w1

]x2]t2
− c

]2

]x2sw2 − w1dG , s15ad

− csw2 − w1d = EI2
]4w2

]x4 + rA2
]2w2

]t2
− se0ad2

3FrA2
]4w1

]x2]t2
+ c

]2

]x2sw2 − w1dG .

s15bd

With the effect of small length scale included, these two
differential equations describe the free transverse vibrations
of double-walled carbon nanotubes, and they are coupled
together by the van der Walls interaction. When the effect of
small length scale is ignored, Eqs.s15ad ands15bd reduce to
the classic slocald result for double-walled carbon
nanotubes.30

III. SOLUTION OF THE PROBLEM

Let us consider a double-walled nanotube of lengthL.
Suppose that its ends are simply supported, the boundary
conditions are given by

w1s0,td =
]2w1s0,td

]x2 = w1sL,td =
]2w1sL,td

]x2 = 0, s16ad

w2s0,td =
]2w2s0,td

]x2 = w2sL,td =
]2w2sL,td

]x2 = 0. s16bd

The homogeneous partial differential equationss15ad and
s15bd with the governing boundary conditionss16ad and
s16bd can be solved by the Bernoulli-Fourier method assum-
ing the solutions in the form

w1sx,td = o
n=1

`

XnsxdT1nstd, s17ad

w2sx,td = o
n=1

`

XnsxdT2nstd, s17bd

whereT1nstd andT2nstd are the unknown time functions, and
Xnsxd is the known mode shape function for simply sup-
ported single beam, which is expressed as

Xnsxd = sinsknxd, kn =
np

L
, n = 1,2,3, . . . .

Substitution of Eqs.s17ad and s17bd into Eqs. s15ad and
s15bd produces

o
n=1

` FrA1s1 + e0
2a2kn

2d
]2T1n

]t2
+ sEI1kn

4 + c + ce0
2a2kn

2dT1n

− cs1 + e0
2a2kn

2dT2nGXn = 0,
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o
n=1

` FrA2s1 + e0
2a2kn

2d
]2T2n

]t2
+ sEI2kn

4 + c + ce0
2a2kn

2dT2n

− cs1 + e0
2a2kn

2dT1nGXn = 0.

It follows from the above that

]2T1n

]t2
+ S F1

1 + e0
2a2kn

2 + H1DT1n − H1T2n = 0, s18ad

]2T2n

]t2
+ S F2

1 + e0
2a2kn

2 + H2DT2n − H2T1n = 0, s18bd

where

F1 =
EI1kn

4

rA1
, H1 =

c

rA1
,

F2 =
EI2kn

4

rA2
, H2 =

c

rA2
.

The solutions of Eqs.s18ad and s18bd can be expressed by

T1nstd = C1ne
ivnt, T2nstd = C2ne

ivnt, i = Î− 1, s19d

wherevn denotes the natural frequency of the double-walled
carbon nanotube, andC1n and C2n represent the amplitude
coefficients of the inner and outer tubes, respectively. Sub-
stituting Eq.s19d into Eqs.s18ad and s18bd, we obtain

S F1

1 + e0
2a2kn

2 + H1 − vn
2DC1n − H1C2n = 0, s20ad

S F2

1 + e0
2a2kn

2 + H2 − vn
2DC2n − H2C1n = 0. s20bd

Nontrivial solutions for the constantsC1n and C2n can be
obtained only when the determinant of the coefficients in
Eqs.s20ad and s20bd vanishes. In this manner we have

vn
4 − S F1 + F2

1 + e0
2a2kn

2 + H1 + H2Dvn
2 +

F1F2

s1 + e0
2a2kn

2d2

+
F1H2 + F2H1

1 + e0
2a2kn

2 = 0 s21d

which is the frequency characteristic equation. It is found
that the discriminant of this biquadratic algebraic equation is
positive

D = S F1 − F2

1 + e0
2a2kn

2 + H1 − H2D2

+ 4H1H2 . 0

and the relationships in the following are also satisfied:

F1F2

s1 + e0
2a2kn

2d2 +
F1H2 + F2H1

1 + e0
2a2kn

2 . 0,

F1 + F2

1 + e0
2a2kn

2 + H1 + H2 . ÎD.

Thus the characteristic equations21d has two different, real,
and positive roots

vnI
2 =

1

2
F F1 + F2

1 + e0
2a2kn

2 + H1 + H2

−ÎS F1 − F2

1 + e0
2a2kn

2 + H1 − H2D2

+ 4H1H2G , s22ad

vnII
2 =

1

2
F F1 + F2

1 + e0
2a2kn

2 + H1 + H2

+ÎS F1 − F2

1 + e0
2a2kn

2 + H1 − H2D2

+ 4H1H2G ,

s22bd

where vnI is the lower natural frequency, andvnII is the
higher natural frequency. For each of the natural frequencies,
the associated amplitude ratio of vibrational modes of the
inner to the outer tubes is given by

Bn =
C1n

C2n
=

H1s1 + e0
2a2kn

2d
F1 + sH1 − vn

2ds1 + e0
2a2kn

2d

=
F2 + sH2 − vn

2ds1 + e0
2a2kn

2d
H2s1 + e0

2a2kn
2d

. s23d

Introducing Eqs.s22ad and s22bd into Eq. s23d, respectively,
we obtain

BnI =
1

2H2
F F2 − F1

1 + e0
2a2kn

2 + H2 − H1

+ÎS F1 − F2

1 + e0
2a2kn

2 + H1 − H2D2

+ 4H1H2G , s24ad

BnII =
1

2H2
F F2 − F1

1 + e0
2a2kn

2 + H2 − H1

−ÎS F1 − F2

1 + e0
2a2kn

2 + H1 − H2D2

+ 4H1H2G .

s24bd

It can be observed that the amplitude ratioBnI dependent on
the lower natural frequencyvnI is always positive, which
indicates that the inner and outer tubes execute synchronous
vibrations, while the amplitude ratioBnII dependent on the
higher frequencyvnII is always negative, which indicates
that the inner and outer tubes execute asynchronous vibra-
tions.

IV. DISCUSSION

When the effect of small length scale is ignored, Eqs.
s22ad, s22bd, ands23d reduce to the classicalslocald results19
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vnI
2 = 1

2fM1 + M2 − ÎsM1 − M2d2 + 4H1H2g, s25ad

vnII
2 = 1

2fM1 + M2 + ÎsM1 − M2d2 + 4H1H2g, s25bd

Bn =
M2 − vn

2

H2
, s26d

where

M1 = F1 + H1, M2 = F2 + H2.

Substituting Eqs.s25ad ands25bd into Eq. s26d, respectively,
we have

BnI =
1

2H2
fM2 − M1 + ÎsM1 − M2d2 + 4H1H2g, s27ad

BnII =
1

2H2
fM2 − M1 − ÎsM1 − M2d2 + 4H1H2g. s27bd

To examine the influence of the small length scale on
vibrations of double-walled nanotubes, let us compare the
local and nonlocal results. It follows that the ratios of the
nonlocal results to the corresponding local results are, re-
spectively, given by

svnIdNL = aIsvnIIdLC, svnIIdNL = aIIsvnIIdLC,

sBnIdNL = bIsBnIdLC, sBnIIdNL = bIIsBnIIdLC,

where the subscripts NL and LC refer to nonlocal and local,
respectively.

In the investigation of the effect of small length scale, it is
of great importance to determine the value of parametere0 as
its magnitude has a noticeable influence on the effect of
small length scale.23,24Although the value of this parameter
for carbon nanotubes is not available at present, it may be
estimated by fitting theoretical results obtained on the basis
of nonlocal elasticity to those from experiments, molecular

dynamicssMDd or molecular mechanicssMM d simulations.
Due to the lack of experimental data, this study uses the
result from MM simulation34 for the critical axial buckling
strain of a single-walled carbon nanotube to predict the value
of parametere0. By MM simulation, Sears and Batra34 stud-
ied a short single-walled carbon nanotube with lengthL
=1.618 nm and radiusR=0.5937 nm under axial compres-
sion. It was found that the tube began to buckle locally at the
critical strain of 0.098 with the axial half wave numberm1
=2 and the circumferential wave numberm2=2 while the
axis remained straight. Based on the Donnell shell theory, the
classicalslocald result for the critical buckling strain of this
tube is about 0.133 withm1=2 and m2=2. sIt should be
mentioned that Sears and Batra34 gave the wrong value
0.147for the critical strain.d Then the value of the ratio of the
theoretical local result to that obtained by MM simulation is
about 1.36. On the other hand, it is known that the ratio of
the local result to nonlocal result for the axial buckling strain
of single-walled carbon nanotubes can be expressed as24

x = 1 +he0
2a2 s28d

with

h = m1
2p2/L2 + m2

2/R2.

Let the ratiox=1.36, from Eq.s28d the value of parametere0
can be obtained. Through calculation, we finde0<0.82.

We suppose that the Young’s modulusE=1 TPa with the
effective thickness of single-walled carbon nanotubes taken
to be 0.35 nm, and the mass densityr=2.3 g/cm3.35 In ad-
dition, the value of parametera is chosen to be 0.142 nm,
which is the length of a CuC bond. Since the value of
parametere0 is determined, for a simply supported double-
walled carbon nanotube with the inner diameterd1=0.7 nm
and the outer diameterd2=1.4 nm,36 the effects of small
length scale represented by the ratios of the nonlocal results
to the corresponding local results are shown in Figs. 1–4,
respectively. It is observed from Figs. 1–4 that the effects of

FIG. 1. Effects of small length scale on the lower natural fre-
quency vnI for various aspect ratiosL /d2 and vibrational mode
numbersn.

FIG. 2. Effects of small length scale on the higher natural fre-
quencyvnII for various aspect ratiosL /d2 and vibrational mode
numbersn.
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small length scale are dependent on the aspect ratioL /d2 and
vibrational mode numbern. With the same aspect ratio, the
effects of small length scale on the lower natural frequency
vnI, the higher natural frequencyvnII, and the associated
amplitude ratiosBnI and BnII of vibrational modes of the
inner to the outer tubes get larger with the increase of the
vibrational mode numbern. It is mainly because when the
tube length remains constant, the wavelength in axial direc-
tion diminishes with increasing the numbern, which makes
the effects of small length scale more significant. With the
same vibrational mode number, the effects of small length
scale onvnI, vnII, BnI, andBnII decrease with the increase of
the aspect ratioL /d2. For example, whenn=10 the relative
error between the nonlocal and local results for the lower
natural frequencyvnI is about 3.3% withL /d2=10 and about
0.8% with L /d2=20, which also holds true for the higher
natural frequencyvnII. On the other hand, whenn=10 the
relative error between the nonlocal and local results for the
amplitude ratioBnI is close to 6.4% withL /d2=10 and 1.7%
with L /d2=20 while 6.8% withL /d2=10 and 1.7% with
L /d2=20 for the amplitude ratioBnII. The main reason is that
when the numbern remains constant, the wavelength be-
comes larger as the tube length increases due to the incre-
ment of the aspect ratio, which causes the diminishment of
the effects of small length scale. Consequently, it suggests
that at large aspect ratiosssayL /d2ù20d the classicslocald
double-elastic beam model may be directly applied to study
the properties of transverse vibration of a double-walled car-
bon nanotube with very small relative errors. Moreover, it is
seen from Figs. 1–4 that the nonlocal solutions of the two
natural frequenciesvnI and vnII and the amplitude ratioBnI
are smaller than the corresponding classicslocald solutions
whereas the nonlocal solution of the amplitude ratioBnII is
larger than the local result. As a consequence, it is concluded

that the classicslocald double-elastic beam model30 could
overestimate the two natural frequenciesvnI andvnII and the
amplitude ratioBnI but could underestimate the amplitude
ratio BnII.

V. CONCLUSIONS

Based on the Bernoulli-Euler beam theory and nonlocal
elasticity, the general equation for transverse vibrations of an
elastic beam under distributed transverse pressure is formu-
lated. Following this general equation, a nonlocal double-
elastic beam model is developed for the free transverse vi-
brations of double-walled carbon nanotubes, which takes the
effect of small length scale into account. For the case of
simply supported double-walled carbon nanotubes, the natu-
ral frequencies and the associated amplitude ratios of the
inner to the outer tubes are determined.

As the magnitude of the parametere0 is essential for the
effect of small length scale, its value is predicted by match-
ing the nonlocal theoretical results with those obtained by
MM simulations for the carbon nanotubes. Based on this
value, the effect of small length scale on the properties of
vibrations is discussed. It is demonstrated that the natural
frequencies and the associated amplitude ratios of the inner
to the outer tubes are dependent on the small length scale.
The effect of small length scale is related to the vibrational
mode and the aspect ratio. With the vibrational mode increas-
ing and the aspect ratio becoming smaller, the small length
scale has a more significant influence on the natural frequen-
cies and the associated amplitude ratios of the inner to the
outer tubes. Moreover, we can conclude that the classicslo-
cald double-elastic beam model could overestimate the two
natural frequencies and the amplitude ratio dependent upon
the lower natural frequency but could underestimate the am-
plitude ratio dependent upon the higher natural frequency.

FIG. 4. Effects of small length scale on the amplitude ratioBnII

dependent on the higher natural frequency for various aspect ratios
L /d2 and vibrational mode numbersn.

FIG. 3. Effects of small length scale on the amplitude ratioBnI

dependent on the lower natural frequency for various aspect ratios
L /d2 and vibrational mode numbersn.
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