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Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal
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Based on theory of nonlocal elasticity, a nonlocal double-elastic beam model is developed for the free
transverse vibrations of double-walled carbon nanotubes. The effect of small length scale is incorporated in the
formulation. With this nonlocal double-elastic beam model, explicit expressions are derived for natural fre-
guencies and associated amplitude ratios of the inner to the outer tubes for the case of simply supported
double-walled carbon nanotubes. The effect of small length scale on the properties of vibrations is discussed.
It is demonstrated that the natural frequencies and the associated amplitude ratios of the inner to the outer tubes
are dependent upon the small length scale. The effect of small length scale is related to the vibrational mode
and the aspect ratio.
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[. INTRODUCTION classic continuum approach to smaller length scales by in-
corporating information regarding the behavior of material
Among nanostructured materials, the carbon nanotubesicrostructure. It is accomplished quite easily by the use of
discovered in 1991Ref. 1) have received tremendous atten- the theory of nonlocal continuum mechanics.
tion from various branches of science. By the use of varieties While the classica(local) continuum mechanics assumes
of experimental, theoretical, and computer simulation apthat the stress state at a given point is dependent uniquely on
proaches, extensive research studies of the properties of cdhe strain state at that same point, the nonlocal continuum
bon nanotubes have been carried ©il.Carbon nanotubes mechanics regards the stress state at a given point as a func-
are cylindrical macromolecules composed of carbon atoms ition of the strain states of all points in the body. Thus, the
a periodic hexagonal arrangement. As they are found to haviaeory of nonlocal continuum mechanics contains informa-
remarkable mechanical, physical, and chemical propertiegion about the long-range forces between atoms, and the in-
carbon nanotubes hold exciting promise as structural eleternal length scale is introduced into the constitutive equa-
ments in nanoscale devices or reinforcing element in supetions simply as a material parameter. It has been applied to a
strong nanocomposité$?!? wide variety of fields such as lattice dispersion of elastic
As a thorough understanding of the mechanical responsesaves, fracture mechanics, dislocation mechanics, wave
of individual carbon nanotubes is of great importance forpropagation in composites, and surface tension in fluids,
their potential applications,14 the study of vibrational be- among others. Recently, Peddiesemnal > pointed out that
havior of carbon nanotubes is of practical interest. For thenanoscale devices would exhibit nonlocal effects and the
sake of the difficulties in experimental characterization ofnonlocal continuum mechanics could potentially play a use-
nanotubes and time consuming and computationally experful role in analysis related to nanotechnology applications.
sive for atomistic simulations, elastic continuum modelsOn the basis of the theory of nonlocal continuum mechanics,
have been widely used to study the vibrational behavior oSudak® presented a multiple-elastic column model to study
carbon nanotubeé$~?° In these continuum models, the column buckling of multiwalled carbon nanotubes which
single-elastic beam modéi® assumes that all originally demonstrated that small scale effects contribute significantly
concentric tubes of a multiwalled carbon nanotube remairio the mechanical behavior of multiwalled carbon nanotubes.
coaxial during vibration while the multiple-elastic beam Zhanget al?* put forward a nonlocal multiple-elastic shell
model®2° considers the intertube radial displacements ofmodel for the axially compressed buckling of multiwalled
multiwalled carbon nonotubes which give rise to compli-carbon nanotubes and discussed the effect of small length
cated intertube resonant frequencies and noncoaxial vibracale on the axial buckling strain.
tional modes. Though the classic continuum models are rel- In this paper, based on the theory of nonlocal elasticity, a
evant to some extent, the length scales associated witthouble-elastic beam model is developed for the free trans-
nanotechnology are often sufficiently small to call the appli-verse vibrations of double-walled carbon nanotubes, which
cability of classical continuum models into question. Theconsiders the effect of small length scale in the formulation.
main reason is that at small length scales the material micrd=xplicit expressions are derived for natural frequencies and
structure(such as lattice spacing between individual atpms associated amplitude ratios of the inner to the outer tubes for
becomes increasingly important and its effect can no longethe case of simply supported double-walled carbon nano-
be ignored’! This has raised a major challenge to the classidubes, and the influences of small length scale on them are
continuum mechanics. It is a possible solution to extend thénvestigated.
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II. NONLOCAL CONTINUUM BEAM MODEL B. Nonlocal double-elastic beam model

A. Brief introduction of the Erigen nonlocal elasticity model The treatment of beam flexure which is developed here is
on the basis of the Bernoulli-Euler theory. This theory is
based upon the assumption that plane cross sections of a

o . beam remain plane during flexure and that the radius of cur-
Edelert® on nonlocal elasticity. In the Eringen nonlocal elas- P g

fcit del?” the st tate at ; it th vature of a bent beam is large compared with the beam’s
ity model;” the stress state at a reference pann the depth. Using the Bernoulli-Euler beam theory, the general

@quation for transverse vibrations of an elastic beam under

at x but also on the strain states at all other points of the,._. . :
R ; . " distributed transverse pressure is expresség-
body. This is in accordance with atomic theory of lattice P P By

dynamics and experimental observations on phonon disper- Sw W
sion. The most general form of the constitutive equation for p(x) = Ely + PAF, 5
nonlocal elasticity involves an integral over the entire region
of interest. This integral contains a kernel function whichwherex is the axial coordinate, is time, p(x) is the distrib-
describes the relative influences of strains at various locagted transverse pressure per unit axial lerigtbasured posi-
tions on the stress at a given location. In the limit when thajve in the direction of the deflectionw is the deflection of
effects of strains at points other thanare neglected, the the beam) andA are the moment of inertia and the area of
nonlocal theory of 8|astiCity reverts to the CIaSﬂocal) the cross section of the beam, aBdand p are Young's
theory. modulus and the mass density. Thi$,denotes the bending
For homogeneous and isotropic elastic solids, the lineastiffness of the beam, ansh represents the mass density per
theory of nonlocal elasticity is given by the set of equationsynit axial length.
. Another assumption behind the Bernoulli-Euler beam
okt p(fi—i)=0, () model is that the beam consists of fibers parallel toxthgis,
each in a state of uniaxial tension or compression. Adopting

The theory of nonlocal continuum mechanics was for-
mally initiated by the papers of Erig€hand Eringen and

the theory of nonlocal elasticity, the classic Hooke’s law for
o(X) = f a(x,x") 7g(x")dV(x"), (2)  auniaxial stress state is replaced®%?
\%
(92
o~ (e@)* 7 =Ee, (6)
Tid(X") = Nemu(X') g + 2ue(X’), (3 X

where o is the axial stressg is the axial straing, is a
o Llou(x") au(x') constant appropriate to each material, anés an internal
en(x’) = 2\ o + ) (4)  characteristic lengtte.g., length of G—C bond, lattice spac-

! K ing, granular distange In addition, it should be noted that
whereay, p, f;, andu, are, respectively, the nonlocal stress the value ofey needs to be determined for each material.
tensor, mass density, body force density, and the displace- When the beam is vibrating transversely, the equation of
ment vector at a reference pointn the body.n(x’) denotes ~Motion perpendicular to theaxis is obtained in the forff**
the macroscopidcclassical stress tensor at any poirt in S Pw
the body, and(x’) is the strain tensor. The two parameters —=-p+tpA—7, (7)

N\ and u are Lamé constants. The kernel functieftx,x’) is 28 at

the attenuation function which incorporates into the constiy,hereSis the shear force, and the moment equilibrium con-
tutive equations the nonlocal effects. The volume integral inyition gives

Eq. (2) is over the regiorV occupied by the body. In addi-

tion, it is seen that the only difference between EHd$-(4) M

and the corresponding equations of classical elasticity is in S= X (8)
the constitutive equation®) which replaces Hooke'’s la8)

by Eq. (2). whereM is the bending moment which can be obtaine@by

While the constitutive equation of classical elasticity is an
algebraic relationship between the stress and strain tensors,
that of nonlocal elasticity involves spatial integrals which M= J yodA, ©)
represent weighted averages of the contributions of the strain A

tensors of all points in the body to the stress tensor at thgherey is the transverse coordinate measured positive in the

given point. Though it is difficult mathematically to get the gjrection of deflection. In addition, for small deflections we
solution of nonlocal elasticity problems due to the involvedhgye?

spatial integrals in the constitutive equations, these integral

constitutive equations can be converted to equivalent differ- Pw

ential constitutive equations under certain conditions. This &=" e (10)
provides a great deal of simplicity and convenience for the

application of the theory of nonlocal elasticity. Combination of Eqs(6), (9), and(10) results in
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&M Pw Fw. Al
M —(eoa)zyz—Ely- (1) = c(Wy —wy) =E|2ﬁ +pA2p7t_22_(e°a)2
Iy &
It follows from Egs.(7), (8), and(11) that X pAzW + c%(wz—wl) .
dwPw 2( ow &2p> (15b)
p=El e +pA o2 - (&) pAﬁXZé?tz - e (12)

With the effect of small length scale included, these two

differential equations describe the free transverse vibrations

which is the general equation for transverse vibrations of alls Jouble-walled carbon nanotubes. and they are coupled

elastic beam under distributed transverse pressure on the bt%'gether by the van der Walls interaction. When the effect of

sis of nonlocal glasncny. Itis noted tha_t when the small scaleSmall length scale is ignored, Eq453 and(15b) reduce to
parameten vanishes, the above equation reduces to the cla

. - . %ﬁe classic (local) result for double-walled carbon
sical Bernoulli-Euler expressiofb). ( )

0
It is known that double-walled carbon nanotubes are dis-n anotubest

tinguished from traditional elastic beams by their hollow

two-layer structure and associated intertube van der Waals IIl. SOLUTION OF THE PROBLEM

forces. Equatior(12) can be used to each of the inner and

outer tubes of the double-walled carbon nanotubes. Assum- Let us consider a double-walled nanotube of length

ing that the inner and outer tubes have the same thicknessuppose that its ends are simply supported, the boundary

and effective material constants, we have conditions are given by

Fwy Wy W, Ppro w;(0,t) Pwy(L, 1)

P12= E'l? + P’N? - (ep@)? pAl&xzatz T2 ) w;(0,t) = N =wy(L,t)=———=0, (163
(133

Pw,(0,t Pwo(L,t

’ w,(0,t) = # =wy(L,t) = # =0. (16b
_ 2 W, 2 Fw,  Ppr X X
TPR=EL T R - (e03) PR a2t ol

The homogeneous partial differential equatiohSg and
(13b) (15b) with the governing boundary conditiond6a and
(16b) can be solved by the Bernoulli-Fourier method assum-
where subscripts 1 and 2 are used to denote the quantiti#dd the solutions in the form
associated with the inner and the outer tubes, respectively,

and p;, denotes the van der Waals pressure per unit axial *
length exerted on the inner tube by the outer tube. Wi (X,0) = 2 Xy(X) Tia(1), (173
For small-deflection linear vibration, the van der Waals n=1
pressure at any point between two tubes should be a linear
function of the jump in deflection at that point. Thus, the -
interaction pressure per unit axial length is giver3y Wo(X,1) = 2 X (X) Ton(t), (17b
n=1
P12=C(W = Wy), (14)

whereT,,(t) andT,,(t) are the unknown time functions, and
wherec is the intertube interaction coefficient per unit length X,(x) is the known mode shape function for simply sup-

between two tubes, which can be estimateéf8y ported single beam, which is expressed as

_ 3202Ryerg/ent _ nmw

=T o1af (d=0.142 nm, Xn(x) = sin(kx), k,= I n=12,3,....
whereR; is the radius of the inner tube. Substitution of Eqs(179 and (17b) into Egs. (159 and

Introduction of Eq.(14) into Egs.(138 and(13b) yields (15b) produces
Iy Pwy 5 * P
—w) = 21 oW1 _ T
c(wy —wy) =Bl —7" + pA— 5" — (&) > [ pA(1 + eéazkﬁ)Tzln +(El K} + ¢ + c&a®k®) Ty,
n=1

A, P
X| pA— 5 c—zW—wy) |, (153

e’ -c(1 +e%a2kﬁ>T2n]xn=o,
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S 2252 4 MG ST
> | pA(L +€§akd) —" + (ELKS + ¢ + cefakd) T, 1+ e2ze THitHa> A,
n=1 €0 Ky
Thus the characteristic equatié®l) has two different, real,
- c(1 +e5a%k3) Ty, | X, = 0. and positive roots
It follows from the above that w2 = 1 % +Hy+H,
2| 1+ega’ks
‘92T1”+( B H, T HiTpm=0, (188 F-F 2
a2 \1+edad@ Y o AT -\/<—1_ 2 +H —H)+4HH , (22
eaky 1+l 1~ M3 Ha |, (229
PTon F2
+ _— =
o2 ( + 2l +H;y | Ty —HT=0, (18b 2 - 1 Fi+Fy FH, 4 H,
1+ega’ky
h
e +\/i+H 1) 4 aHH
F_Ellk‘n‘ oo C 1+aad T Hz |,
1— ) 1= .
PAL PAL (22b)
4 where w,, is the lower natural frequency, and,, is the
5= Elzkn H., = ¢ higher natural frequency. For each of the natural frequencies,

pA, 2” pA;’ the associated amplitude ratio of vibrational modes of the

The solutions of Eqs(183 and(18b) can be expressed by inner to the outer tubes is given by

. . — Cln Hl(l + egazkﬁ)
Tin(t) =Cin€n', Toa(t) =Cppe’, i=\-1, (19 Bi=2 =
1n( ) 1n 2n( ) 2n \ (19 n Cop Fo+ (Hl_ wﬁ)(l +ega2kﬁ)
wherew,, denotes the natural frequency of the double-walled Fy+ (Hy— 0?)(1 +e§a2k2)
carbon nanotube, an@;,, and C,, represent the amplitude = : 72 L (23
coefficients of the inner and outer tubes, respectively. Sub- Hy(1 +eZa’)
stituting Eq.(19) into Eqgs.(188 and(18b), we obtain Introducing Eqs(22a and (22b) into Eq. (23), respectively,
we obtain
F, 5
—22 + H ~ Wy Cln - HlCZn = Oa (208) 1 F F
+ega’ky B, = SRS ST
" 2H2 1+e0a2k2
F2 2 _ E.-F 2
<1+e0a2k2 ‘*’n)CZn HC1n=0. (20D " \/(ﬁ%;kz”“ Hz) +4H.H, |, (248
n
Nontrivial solutions for the constants;, and C,, can be
obtained only when the determinant of the coefficients in _ 1) F-FR
Egs. (209 and(20b) vanishes. In this manner we have Bon = 2H,| 1 +e§a2kﬁ +Hy—H;
Fi+F FiF Fi-F 2
4 1 2 2 1" 2 1 2
| ———=5+H,+ +——" - —_— -
“n (1 +e5akl Ha H2> “n" 1 +e5a?k?)? \/( 1 +ea’k? tH H2> * 4H1H2} '
F 1Hp+FoHp (21) (24b)
1 +e0a2k2 It can be observed that the amplitude rdip dependent on

which is the fr n haracteristi tion. It is f dthe lower natural frequencw,, is always positive, which
ch 1S Ine Irequency characteristic equatio S T0UNGjicates that the inner and outer tubes execute synchronous
that the discriminant of this biquadratic algebraic equation Si/|brat|ons while the amplitude ratiB,, dependent on the

positive higher frequencyw,, is always negative, which indicates
F. —F 2 that the inner and outer tubes execute asynchronous vibra-
:(1—2222+H1—H2> +4H,H,>0 tions.
1 +ejak;

and the relationships in the following are also satisfied:
IV. DISCUSSION

Fleg 5+ F1H22F22|:1 >0, When the effect of small length scale is ignored, Egs.
(1+egaky®  1+egak; (223, (22b), and(23) reduce to the classicébcal) resultd®
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1.005

L/d,

FIG. 1. Effects of small length scale on the lower natural fre-
guency w,, for various aspect ratiok/d, and vibrational mode
numbersn.

“’ﬁl:%[Ml"'Mz‘\”(Ml‘Mz)2+4H1H2], (253
@l = 3[M1+ My + (Mg - Mp)? + 4H,H,],  (25b)
M., — 2
anz—w”, (26)
H,
where
M;=F;+H; My=F,+H,.

Substituting Eqs(25a and(25h) into Eq. (26), respectively,
we have

1
Bm:2H [My—M; + V(M = My)?+4H,H,], (273
2
1 s 2
B = [Mz= M= (My=Mp)*+4HH,]. (27b)

2H,

To examine the influence of the small length scale on

PHYSICAL REVIEW B 71, 195404(2005

12 14 18 20
L/d

2
FIG. 2. Effects of small length scale on the higher natural fre-
qguency wy, for various aspect ratiok/d, and vibrational mode
numbersn.

dynamics(MD) or molecular mechanic€viM ) simulations.
Due to the lack of experimental data, this study uses the
result from MM simulatiod* for the critical axial buckling
strain of a single-walled carbon nanotube to predict the value
of parameter,. By MM simulation, Sears and Baffastud-

ied a short single-walled carbon nanotube with length
=1.618 nm and radiu®=0.5937 nm under axial compres-
sion. It was found that the tube began to buckle locally at the
critical strain of 0.098 with the axial half wave numbmeg

=2 and the circumferential wave numbey=2 while the
axis remained straight. Based on the Donnell shell theory, the
classical(local) result for the critical buckling strain of this
tube is about 0.133 withm;=2 and m,=2. (It should be
mentioned that Sears and Ba&frayave the wrong value
0.147for the critical strain.Then the value of the ratio of the
theoretical local result to that obtained by MM simulation is
about 1.36. On the other hand, it is known that the ratio of
the local result to nonlocal result for the axial buckling strain
of single-walled carbon nanotubes can be express&d as

x=1+ne5a® (29)

vibrations of double-walled nanotubes, let us compare the

local and nonlocal results. It follows that the ratios of the

nonlocal results to the corresponding local results are, re-

spectively, given by

(0ndne = a(@p)ies  (@p)ne = ey (@) e,

(BnI)NL::BI(BnI)LCa (BnII)NL:BII(BnII)LCv

with
n=mim?/L% + mj/R2,

Let the ratioy=1.36, from Eq(28) the value of parametey,
can be obtained. Through calculation, we figa=0.82.

We suppose that the Young’'s modulds 1 TPa with the
effective thickness of single-walled carbon nanotubes taken

where the subscripts NL and LC refer to nonlocal and localto be 0.35 nm, and the mass dengity2.3 g/cni.% In ad-
respectively. dition, the value of parametex is chosen to be 0.142 nm,

In the investigation of the effect of small length scale, it iswhich is the length of a &-C bond. Since the value of
of great importance to determine the value of paramgtas  parameterey is determined, for a simply supported double-
its magnitude has a noticeable influence on the effect ofalled carbon nanotube with the inner diamedgr 0.7 nm
small length scalé324Although the value of this parameter and the outer diameted,=1.4 nm3® the effects of small
for carbon nanotubes is not available at present, it may bkength scale represented by the ratios of the nonlocal results
estimated by fitting theoretical results obtained on the basito the corresponding local results are shown in Figs. 1-4,
of nonlocal elasticity to those from experiments, molecularrespectively. It is observed from Figs. 1-4 that the effects of
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o
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10 12 14 16 18 20
Ld
2
FIG. 3. Effects of small length scale on the amplitude r&jp FIG. 4. Effects of small length scale on the amplitude r&ig
dependent on the lower natural frequency for various aspect ratiogependent on the higher natural frequency for various aspect ratios
L/d, and vibrational mode numbers L/d, and vibrational mode numbers

small length scale are dependent on the aspectlratipand  that the classidlocal) double-elastic beam mod€Icould
vibrational mode numben. With the same aspect ratio, the overestimate the two natural frequenciggs and wy,; and the
effects of small length scale on the lower natural frequencyamplitude ratioB,, but could underestimate the amplitude
oy, the higher natural frequency,,;, and the associated ratio By,.
amplitude ratiosB,,, and B,,; of vibrational modes of the

inner to the outer tubes get larger with the increase of the
vibrational mode numben. It is mainly because when the Based on the Bernoulli-Euler beam theory and nonlocal
tube length remains constant, the wavelength in axial direcelasticity, the general equation for transverse vibrations of an
tion diminishes with increasing the numberwhich makes elastic beam under distributed transverse pressure is formu-
the effects of small length scale more significant. With thelated. Following this general equation, a nonlocal double-
same vibrational mode number, the effects of small lengtlelastic beam model is developed for the free transverse vi-
scale onwy,, wy, By, andBy,, decrease with the increase of brations of double-walled carbon nanotubes, which takes the
the aspect ratic./d,. For example, whem=10 the relative effect of small length scale into account. For the case of
error between the nonlocal and local results for the lowesimply supported double-walled carbon nanotubes, the natu-
natural frequencw,, is about 3.3% with_/d,=10 and about ral frequencies and the associated amplitude ratios of the
0.8% with L/d,=20, which also holds true for the higher inner to the outer tubes are determined.

natural frequencyw,,. On the other hand, when=10 the As the magnitude of the parametgyis essential for the
relative error between the nonlocal and local results for theffect of small length scale, its value is predicted by match-
amplitude ratioB,, is close to 6.4% with./d,=10 and 1.7% ing the nonlocal theoretical results with those obtained by
with L/d,=20 while 6.8% withL/d,=10 and 1.7% with MM simulations for the carbon nanotubes. Based on this
L/d,=20 for the amplitude rati®,,. The main reason is that value, the effect of small length scale on the properties of
when the numben remains constant, the wavelength be-vibrations is discussed. It is demonstrated that the natural
comes larger as the tube length increases due to the incrérequencies and the associated amplitude ratios of the inner
ment of the aspect ratio, which causes the diminishment ofo the outer tubes are dependent on the small length scale.
the effects of small length scale. Consequently, it suggestEhe effect of small length scale is related to the vibrational
that at large aspect ratigsay L/d,= 20) the classidlocal) = mode and the aspect ratio. With the vibrational mode increas-
double-elastic beam model may be directly applied to studyng and the aspect ratio becoming smaller, the small length
the properties of transverse vibration of a double-walled carscale has a more significant influence on the natural frequen-
bon nanotube with very small relative errors. Moreover, it iscies and the associated amplitude ratios of the inner to the
seen from Figs. 1-4 that the nonlocal solutions of the twoouter tubes. Moreover, we can conclude that the clagsic
natural frequencies, and w,, and the amplitude rati®,, cal) double-elastic beam model could overestimate the two
are smaller than the corresponding cladéical) solutions  natural frequencies and the amplitude ratio dependent upon
whereas the nonlocal solution of the amplitude rajp is  the lower natural frequency but could underestimate the am-
larger than the local result. As a consequence, it is concludeglitude ratio dependent upon the higher natural frequency.

V. CONCLUSIONS
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