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In a L system with two nearly degenerate ground states and one excited state in an atom or quantum dot,
spontaneous radiative decay can lead to a range of phenomena, including electron-photon entanglement,
spontaneously generated coherence, and two-pathway decay. We show that a treatment of the radiative decay
as a quantum evolution of a single physical system composed of a three-level electron subsystem and photons
leads to a range of consequences depending on the electron-photon interaction and the measurement. Different
treatments of the emitted photon channel the electron-photon system into a variety of final states. The theory
is not restricted to the three-level system.
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I. INTRODUCTION

The electromagnetic vacuum is commonly considered as
a reservoir which causes decoherence and decay of a quan-
tum mechanical system coupled to it. An alternative view
holds that the two subpartss“quantum system” and “bath”d
are constituents of a single closed quantum mechanical
whole, which is governed by unitary evolution until a pro-
jection smeasurementd is performed. Different projections
may give rise to a variety of phenomena which on the sur-
face appear unrelated. Spontaneous emission is a quantum
phenomenon which has been treated in both ways. Its effects
are of interest from the views of both fundamental physics
and applications.

The radiative decay of a three-level system is attractive
for its simplicity and yet richness in physical phenomena. A
variety of effects follow from the spontaneous decay. Those
which involve semiclassical light and ensemble of atoms in-
clude the electromagnetically induced transparency1 and las-
ing without inversion.2 By definition, aL system has two
nearly degenerate ground states which are dipole coupled to
one excited state for optical transitions. We shall, for con-
ciseness, refer to the states as electronic states in an atom or
quantum dot. The decoherence and decay effects for a single
L system are relevant to quantum computating and informa-
tion processing, for example, in many implementation
schemes,3–7 which can be more practical than the direct ex-
citation of the two-level system.

A L system initially in the excited state will eventually
decay by the emission of a photon. This process may result
in the entanglement of theL system with the emitted photon.
Recently, entanglement between the hyperfine levels of a
trapped ion and the polarization of a photon spontaneously
emitted from the ion was demonstrated experimentally.8

In quantum optics of the atom, coupling to the modes of
the electromagnetic vacuum can contribute to coherence be-
tween atomic states, and such terms have been implicit in the
textbook treatment of spontaneous radiative decay9 or indeed
explicit in research papers.10 In the early 1990s, it was
pointed out that in aL system the spontaneous decay of the
highest state to the two lower ones may result in a coherent
superposition of the two lower states.11 The conditions for

this spontaneously generated coherencesSGCd as presented
in Ref. 11 are that the dipole matrix elements of the two
transitions are nonorthogonal and that the difference between
the two frequencies is small compared to the radiative line-
width of the excited state.

The final example is the so-called two-pathway decay in
which a L system—as opposed to aV system—cannot ex-
hibit quantum beats because the information on which the
decay path of the system is in principle available by detec-
tion of the atom, and therefore no beats are expectedsp. 19
of Ref. 12d.

All of the phenomena listed above, when viewed sepa-
rately, appear unrelated, if not down-right contradictory. In
fact, they stem from the same process, namely the radiative
spontaneous decay of aL system. The primary purpose of
this paper is to show how they naturally emerge from the
same time-evolved composite state of the whole systemsL
subsystem and the electromagnetic modesd. From this treat-
ment, follow the conditions for each effect in terms of the
electron-photon coupling and in terms of different ways of
projecting the photon state by measurement. We also show
how a change of symmetry of the system—by the introduc-
tion of a perturbation—may determine whether or not a SGC
will occur.

The second goal of this work is to analyze these effects in
the solid state, where the two lower levels of theL system
are the spin states of an electron confined in a semiconductor
quantum dot. For this system, SGC has been given a theo-
retical analysis and experimental demonstration,13 and we
further propose here an experiment for the demonstration of
spin-photon polarization entanglement. In our treatment, we
distinguish between a single system and an ensemble for the
various phenomena; in this context, we make a comparative
study of the solid-state and the atomic system.

This paper is organized as follows In Sec. II, we present
the time evolution of the decay process which leads to the
conditions for the occurrence of each of the listed phenom-
ena. In Sec. III, we deduce a set of conditions on the sym-
metry of the system for SGC. Sections IV and V illustrate
these conditions by specific examples from atomic and solid-
state systems, respectively. We also present the theory of the

PHYSICAL REVIEW B 71, 195327s2005d

1098-0121/2005/71s19d/195327s11d/$23.00 ©2005 The American Physical Society195327-1



pump-probe experiment and derive the probe signal, which is
altered by the SGC termsSec. VId.

II. SPONTANEOUS EMISSION AS QUANTUM
EVOLUTION

Consider a singleL system in a photon bath with modes
ukl, wherek=sk ,sd ,k being the wave vector ands the state
with the polarization vector«s. In the dipole and rotating-
wave approximation, the Hamiltonian for the whole system
is given by

H = o
k

vkbk
†bk + o

i=1

3

eiuilki u + o
k;i=1,2

gikbk
†uilk3u

+ o
k;i=1,2

gik
* bku3lki u, s1d

where bk destroys a photon of energy or frequency
vk s"=1d and uil is the electronic state with energy or fre-
quencyei. The coupling between the photon and the electron
is gik~«s ·di, wheredi is the dipole matrix element for the
transition 3↔ i. The L system is taken to be att=0 in the
excited levelu3l swhich can be prepared by a short pulsed,
and the photon bath is in the vacuum state, i.e., the whole
system is in a product state. Fort.0, the composite wave
packet can be written as

ucstdl ; c3stdu3luvacl + o
k

c1kstdu1lukl + o
k

c2kstdu2lukl,

s2d

where uvacl is the photon vacuum state. Evolution of this
state is governed by the Schrödinger equation.

By the Weisskopf–Wigner theory14 of spontaneous
emission,12 the coefficientc3 is obtained by one iteration of
the other coefficients:

]tc3 = − ie3c3 − o
k

ug1ku2E
0

t

e−ise1+vkdst−t8dc3st8ddt8,

− o
k

ug2ku2E
0

t

e−ise2+vkdst−t8dc3st8ddt8. s3d

Since the electron–photon coupling is much weaker than the
transition energy in theL system, the integrals in the equa-
tion above can be evaluated in the Markovian approximation,
resulting in:

]tc3 < − ie3c3 −
G31

2
c3 −

G32

2
c3, s4d

where

G3i = 2o
k

ug2ku2E
0

t

e−isei+vkdst−t8ddt8. s5d

Thus, the solution is

c3 < e−sie3+G/2dt, s6d

whereG;G31+G32 is the radiative linewidth of the excited
state. Furthermore,c1k andc2k are given by

c1k < −
g1k

e3 − e1 − vk − i
G

2

fe−ise1+vkdt − e−ie3t−G
2

tg ,

c2k < −
g2k

e3 − e2 − vk − i
G

2

fe−ise2+vkdt − e−ie3t−G
2

tg .

In order to study the system in the 2Ã2 subspace of the
lower states, we take the limitt@G−1. After the spontaneous
emission process, the final state is a electron–photon wave-
packetok;i=1,2cikuilukl, with the coefficients

c1k < −
g1k

e3 − e1 − vk − i
G

2

e−ise1+vkdt, s7d

c2k < −
g2k

e3 − e2 − vk − i
G

2

e−ise2+vkdt. s8d

The state of a photon is specified by its propagation direction
n, polarizationss«s'nd , and frequencyv. So, we can for-
mulate the total wave packet as

o
n,s

fg1se−ie1tu1lun,s, f1stdl + g2se−ie2tu2lun,s, f2stdlg , s9d

where we have taken the coupling constants to be frequency-
independent. In Eq.s9d f jstd is the pulse shape of the photon.
From Eqs.s7d and s8d, we see that the photon wave packet
has a finite bandwidth; this point, which was first studied by
Weisskopf and Wigner in their classic treatment of spontane-
ous emission,14 is reflected in the structure off jstd. These
functions have a central frequency equal toe3−e j and a
bandwidth equal toG. As a consequence of the finite band-
width, for a given propagation direction and polarization, the
basis stateshun ,s , f jlj are not orthogonal, the overlap
between them being

kn,s, f lun,s, f jl =
iG

iG + el j
, s10d

whereel j =el −e j.
We should emphasize that the wave packet formed in Eq.

s9d does not rely on the Markovian approximation. In a full
quantum kinetic description of the photon emission process,
the wave packet of the whole system would still have the
same form, the central frequency and bandwidth of the
pulses would be close to those found using the Markovian
approximation, but the specific profile off jstd would be dif-
ferent from those given by Eqs.s7d and s8d.

The various phenomenaselectron and photon polarization
entanglement, SGC, and two-pathway decayd can all be de-
rived from the wave packet of Eq.s9d.

If the spontaneously emitted photon is not detected at all,
we have to average over the ensemble of photons of all pos-
sible propagation directions to obtain the electronic state.
This is the usual textbook treatment of spontaneous emis-
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sion. However, if detection of an emitted photon leads to a
knowledge that its direction of propagation isn0, then the
sunnormalizedd electron-photon wave packet should be pro-
jected along that direction:

o
s

fg1se−ie1tu1lun0,s, f1stdl + g2se−ie2tu2lun0,s, f2stdlg .

s11d

When the two transitions are very close in frequency, i.e.,
h;ue1−e2u /G!1, the overlap of the two photon wave pack-
ets deviates from unity byOshd. After tracing out the enve-
lopes of the photon by use of any complete basisse.g.,
monochromatic statesd, the state of the electron and photon
polarization is, with the propagation directionn0 understood,

uYl = ÎNo
s

fg1su1lusl + g2su2luslg + Oshd, s12d

whereN is a normalization constant, given by

N−1 = o
j=1,2

o
s=a,b

ugjsu2. s13d

The orderh error recorded here is meant to indicate the
magnitude of themixed-stateerror which, if neglected, re-
sults in a pure state. From this pure state, we can find explic-
itly the necessary conditions for entanglement or SGC. How-
ever, the approximation of neglectingh is unnecessary for
computing a measure of entanglement of the resultant mixed
state.15

A. Entanglement

A measure of entanglement of the bipartite stateuYl in
Eq. s12d is given by the von Neumann entropy of the reduced
density matrix of the state16 for either the subsystemE of the
two low-lying electronic states or the subsystemP of the
photon polarization states. Taking the partial trace of the po-
larization states of the density matrixuYlkYu of the pure state
leads to the 232 reduced density matrix for the electronic
states,

rE = No
i j

uilFo
s

gisgjs
* Gk j u. s14d

Diagonalization of this partial density matrix leads to two
eigenvalues,

p± =
1

2
±Î1

4
− D2, s15d

whereD2 is the determinant of the reduced density matrix
rE, or

D = Nug1ag2b − g1bg2au, s16d

for the two electronic state and two polarizations,a ,b, nor-
mal to the propagation directionn0. The entropy of entangle-
ment is given by the entropy,

S= − p+log2p+ − p−log2p−. s17d

As D ranges from 0 to 1/2, the entropy ranges from 0 to 1
giving a continuous measure of entanglement as the stateuYl

goes from no entanglement to maximum entanglement. To
find the axisn0 along which the entanglement is maximum,
we have to maximizeD as a function of the orientation. For
a particular system, this axis can be found in terms of the
dipole matrix elements of the two transitions. However, not
all systems can have maximally entangled states. We will
apply this to specific examples in the following section.

B. SGC

From the reduced density matrix, we can also find the
conditions for SGC. Maximum SGC occurs when the re-
duced density matrix is a pure state. In terms of the electron-
photon coupling constants, the condition is the vanishing of
the discriminantD in Eq. s16d. This means that when the
SGC effect is maximized, there exists a particular transfor-
mation which takes the basis of the electronic stateshu1l , u2lj
to a basishuBl , uDlj which has the property thatuBl is always
the final state of theL system immediately after the sponta-
neous emission process, anduDl is a state disconnected from
the excited state by dipolar coupling, i.e., a dark state. This
point will be further explored in Sec. III. The extreme values
of D=0 and 1/2 make it clear that maximum SGC means no
entanglement, and conversely that maximal entanglement
leads to no SGC. However, partial entanglement can coexist
with the potentiality of some SGC for values ofD between
the two extremes.

Our theory can be easily extended to systems with more
than two ground states. For example, in a system whose
ground states are the four states from two electron spins, the
SGC may lead to the coherence and entanglement between
the two spins, which is the mechanism of a series of propos-
als of using vacuum fluctuation to establish entanglement
between qubits17,18.

C. Two-pathway decay

So far, we have investigated the consequences when the
two transitions are close in frequencysh!1d. When this is
not the case, the tracing out of the wave packet will generally
produce a mixed state in electron spins and photon polariza-
tions. In the limit of largeh, i.e., ue2−e1u@G, the overlap
between the two photon wave functions,kf1std u f2stdl.0,
and the reduced density matrix for the spin and photon po-
larization would be mixed. In this case, there is neither spin-
polarization entanglement nor SGC, but instead the time de-
velopment can be described as a two-pathway decay process:
The excited state can relax to two different states by the
emission of photons with distinct frequencies. Forh between
these two limits, the state in Eq.s11d may lead to an en-
tanglement between the pulse shapes of the photon and the
two lower electronic levels on measuring the photon polar-
ization. Furthermore, from the entangled state in Eq.s11d,
SGC or polarization entanglement may still be recovered
sprovided of course that the necessary conditions on theg’s
are satisfiedd if the quantum information carried by the fre-
quency of the photon is erased19. This can be done by chop-
ping part of the photon pulse, and thus subjecting its fre-
quency to smored uncertainty. In a time-selective
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measurement, only photons emitted at a specific time period,
say fromt0 to t0+dt, are selected. So the projection operator
associated with this measurement isp0= udst− t0dlkdst− t0du,
which represents ad photon pulse passing the detector at
t= t0. The projected state after this measurement

o
s

fg1sf1st0du1l + g2sf2st0du2lgun0sl s18d

is a pure state of the electron and photon polarization, so that
entanglement or SGC is restored. By writing the projector in
the frequency domain

P̃0 =E dvE dv8eisv−v8dt0uv8lkvu, s19d

we see that it can be understood as a broadband detector with
definite phase for each frequency channel; thus, it can erase
the frequencyswhich pathd information while retaining the
phase correlation. We note that a usual broadband detector
without phase correlation is not sufficient to restore the pure-
ness of the state. It is also interesting that SGC and entangle-
ment can be controlled by choosing a different detection time
t0, as seen from Eq.s18d.

III. SYMMETRY CONSIDERATIONS FOR SGC

In this section, we investigate the symmetry relations be-
tween the different parts of the Hamiltonian necessary for
SGC terms to appear. Our treatment is not restricted toL
systems, but can be extended to a system with more than two
lower levels.

Consider a quantum mechanical system with one higher-
energy leveluel and a set of lower-lying states, described by
a HamiltonianH°. Taking into account only dipole-type in-
teractions, denote byJz the polarization operator used in the
selection rules. Thez axis is defined by the excited state via

Jzuel = Meuel.

Note thatJz can be eitherJz, where J=L +S is the total
angular momentum operator andS is the spin, orLz, as de-
termined by the condition

fJz,H ° g = 0.

That is to say that there is an axial symmetry in the system
associated withJz. Among the lower lying states, the ones of
interest are the ones appearing in the final entangled stateuYl
of the whole system. We will refer to these states as “bright”,
because they are orthogonal to the familiar dark states from
quantum optics. There are at most three such states,hB jj,
within a given degenerate manifold, corresponding to the
three different possible projections of the dipole matrix ele-

ments along thez axis, soj =1,0, 1̄. In general, not all sys-
tems will have all three bright states. This concept that the
final state involves only a small number of statessthree in
our cased, gives a physical understanding of the electron-
photon entangled state.20

In order to have SGC, i.e., one or more terms of the type
ṙ jk=Gree, with j Þk and j ,kÞe, there has to be a perturba-

tion HB that breaks the symmetry associated withJz; in par-
ticular, the following conditions have to be satisfied:

1. fHB,JzgÞ0;
2. HBuel~ uel;
3. ue12u&G.

In general, we expect SGC between two eigenstates of the
HamiltonianH=H° +HB which have nonzero overlap with
the same bright state. The role of the first condition is to
make SGC nontrivial; without this condition, it would al-
ways be possible to rotate to a different basis and formally
acquire an SGC-like term in the equationsse.g., by rotating
to the x basis in the zero-magnetic field case in the heavy-
hole trion system discussed belowd. The second condition
ensures that the excited state will not mix under the action of
HB; relaxing this condition gives rise to the Hanle effect,9,12

in which an ensemble of atoms in a magnetic field is illumi-
nated with anx-polarized pulse and the reradiated light may
be polarized alongy. This effect is another example where
coherence plays an important role; it has recently been ob-
served in doped GaAs quantum wells, in the heavy-hole trion
system with confinement in one dimension.21 We shall dis-
cuss the quantum dot case below. As shown in Sec. II, when
the radiative linewidth of the excited state is smaller than the
energy differences of the lower states the SGC effect will be
averaged out. The third condition provides the valid regime
for the occurrence of this phenomenon.

The perturbationHB can be realized by a static electric or
magnetic field, by the spin-orbit coupling, hyperfine cou-
pling, etc. Note the different origins ofHB in different sys-
tems and that it may or may not be possible to controlHB.
Examples of various systems follow, exhibiting the above
conditions and demonstrating the different origins ofHB.

IV. EXAMPLES FROM ATOMIC PHYSICS

A. SGC in atoms

Consider an atom with HamiltonianH°; excluding rela-
tivistic corrections, it can be diagonalized in the
uN,L ,S,ML ,MSl basis. Consider as the system of interest the
subspace ofH° formed by uN,1 ,1 ,1,1l= uel and the lower-
energy statesuN−1,L ,S,ML ,MSl. The various quantum
numbers are, of course, restricted by selection rules, and
Jz=Lz . Here, we will list only the three bright states:

uB1l = uN − 1,2,1,2,1l,

uB0l = uN − 1,2,1,1,1l,

uB1̄l = auN − 1,2,1,0,1l + buN − 1,0,1,0,1l.

where the coefficientsa andb can be determined in the fol-
lowing way. In the originaluNJMJLSl basis, the matrix ele-
ments for the transitionsuN−1,2,1,0,1l↔ uN,1 ,1 ,1,1l and
uN−1,0,1,0,1l↔ uN,1 ,1 ,1,1l are given by the Wigner–
Eckart theorem. By rotating to thehuBl , uDlj basis, and re-
quiring the transitionuDl↔ uN,1 ,1 ,1,1l to be forbidden, we
find a and b. Inclusion of the spin-orbit interaction, which
plays the role ofHB, i.e.,HB=aL ·S, conditionsid is satisfied,
the eigenstates ofHB being uNJMJLSl. Conditionsii d is also
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satisfied, becauseuel, as the state of maximumML and MS,
does not mix under the spin-orbit coupling. In the new basis,
SGC is expected to occur between states with the same value
of MJ, which can also be verified by direct calculation. In
this example, the linewidth ofuel is much smaller than the
spin-orbit coupling strengtha. Typical values in atoms are
Ge,1 m eV anda,1 meV, which means that SGC will not
be observed in such a system.

B. Entanglement and SGC of atomic hyperfine states

In this example, theL system is formed by the hyperfine
states of a single trapped Cd ion in the presence of a
magnetic field along thez axis. In theuFMFl basis, the ex-
cited state isu21l and the two lower levels areu11l and u10l.
The two lower levels have the same principle quantum num-
ber N. The entanglement between the polarization of the
photon and the atom has been demonstrated experimentally.8

To illustrate the methods developed in Sec. II, we will make
use of the fact that the two lower levels are states of definite
angular momentum and its projection to thez axis. Then, by
the Wigner–Eckart theorem we know that the dipole moment
of the transitionu21l→ u10l has a nonzero component only
alonge+=x+ iy whereas that ofu21l→ u11l has only a com-
ponent alongz. The wave packet of the system is then given
by

uYl =
− Î2sinquqlu11l + e−iwcosquqlu10l − ie−iwuwlu10l

Î2 + sin2q
,

s20d

whereq andw are the spherical coordinates measured from
z andx axis, respectively, anduql anduwl are the polarization
basis states, which are linearly polarized parallel and normal
to the plane formed by thez axis and the propagation direc-
tion, respectively. Then, from Eq.s20d, we read off theg’s:

g1q ~ − Î2sinq, s21d

g1w = 0, s22d

g2q ~ e−iwcosq, s23d

g2w ~ ie−iw, s24d

whereu11l;u1l andu10l;u2l. The measure of entanglement
by D is

D =
Î2sinq

Î2 + sin2q
. s25d

The maximum possible entanglement occurs atq=p /2, i.e.,
whenever the photon propagates perpendicularly toz. The
maximum value of 0.47 is close to being maximally en-
tangled.D does not depend onw, as expected since there is
azimuthal symmetry aboutz.

In terms of SGC and symmetry, it is interesting to notice
that the role of thesexternal or internald field, HB, introduced
in Sec. III can be played by the different projectionssmea-
surementsd because the state before the measurement is an

eigenstate of the operatorJz stotal angular momentum along
zd, but not after the measurement in general. The magnetic
field along thez axis is included in the HamiltonianH°. If
the spontaneously emitted photons are measured along the
quantization axis, only the ones emitted from the transition
u21l→ u10l will be detected, since only their polarization al-
lows propagation alongz. On the other hand, a photon de-
tector placed at a finite angle fromz can play the role ofHB.
Suppose a photon is spontaneously emitted along an axisn
=sq ,wd. The density matrix of the state given by Eq.s20d is
uYlkYu. If we are only interested in the dynamics of the ion,
and the polarization of the photon is not measured, then the
photon polarization has to be traced out. Then the reduced
density matrix of the system in the atomic states is

rE =
1

2 + sin2q
F cos2q + 1 Î2e−iwcosq sinq

Î2e+iwcosq sinq 2 sin2q
G .

s26d

The off-diagonal elements express coherence between the
hyperfine states with dependence on the photon propagation
direction. We can check that forq=0 the probability of the
atom being in theu11l state is zero and there are no off-
diagonal elements, and forq=p /2 the off-diagonal elements
are also zero, which means there is no SGC, but the state has
the maximum possible entanglement. For all the intermediate
values ofq, the hyperfine states and the photon polarization
are entangled, and there is also some SGC when the photon
is traced out. Maximum SGC occurs whenD is minimized;
from Eq.s25d we see that it is zero forq=0. This is expected
anytime one of the two transitions involves a linearly polar-
ized photon, since the latter cannot propagate along the
quantization axis. So, for this orientation, the final state can
only be u10l. For intermediate angles, for instanceq=p /4,
there is both entanglement and SGC involving both lower
states, when the photon is traced out. Since SGC only occurs
for particular photon propagation directions, we could view
it as “probabilistic” SGC.

V. EXAMPLES FROM SOLID-STATE PHYSICS

A. Heavy-hole trion system in a magnetic field

In the optical control of the electron spin in a doped quan-
tum dot,4 a static magnetic field is imposed in a fixed direc-
tion at an anglec with respect to the propagation of the
circularly polarized pulse along the growth direction of the
dot, defined as thez axis. The two eigenstates of the electron
spin along the field direction and the intermediate trion
sbound state of an exciton with the excess electrond state in
the Raman process form a three-levelL system. The trion
state of interest consists of ap-like heavy hole and a pair of
electrons in the singlet state. Theg-factor in thexy plane of
the heavy hole is approximately zero in magnetic fields up to
5 T sRef. 22d, and the two electrons are in a rotationally
invariant state. This means that the trion state, although it is
spin polarized alongz, will not precess about a perpendicular
B field. Therefore, it can be described by the “good” quan-
tum numbersJ=3/2 and itsprojection alongz,MJ=3/2. The
lower levelsu1l , u2l are the eigenstates of the spin along the
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direction of theB field and havej =1/2 andmj =1/2,−1/2,
respectively.

To check if this system will have SGC, we will examine
whether the conditions of Sec. III are satisfied. We takeH° to
be the Hamiltonian of the quantum dot, withuel= utl, the
trion state described above, excited bys+light;Jz=Jz, since
the spin-orbit interaction is included inH°, and any compo-
nent of theB field alongz can also be included.HB is the
contribution to the Hamiltonian due to the magnetic field
alongx. Conditions1d is fulfilled sincegx.0, and condition
s2d is obviously satisfied. The only bright state is the electron
spin sz eigenstate,uzl;u↑ l. For later use, we also defineuz̄l
;u↓ l. Therefore, we expect SGC between statesu1l and u2l
for any anglec, and since the linewidth of the trion is large
enough compared to the Zeeman splitting, SGC should
moreover have a detectable effect. As a matter of fact, it has
already been demonstrated experimentally for this system,
and, to the best of our knowledge, it is the only direct obser-
vation of SGC.13 For this nonlinear pump-probe experiment,
the inclusion of SGC into the equations causes the amplitude
and the phase of the probe signal to depend on the Zeeman
splitting. More details on how this dependence occurs will be
presented in the following section.

Although our discussion has focused on singleL systems,
the experiment was carried out for an ensemble. In general,
for an ensemble of equivalent noninteracting atoms, an aver-
age over the differentz axes would have to be performed.
However, in this quantum-dot solid-state system, there is a
commonz axis for all the dots, since they are grown on the
same planesxyd, and they have a relatively large in-plane
cross-section as compared to their height. This is a clear
advantage of the quantum-dot ensemble over an ensemble of
atoms.

We can also analyze this system using the methods in Sec.
II. To find theg’s, we need the dipole matrix elements. These
can be found by writing

u1l = cos
c

2
u↑l + sin

c

2
u↓l, s27d

u2l = sin
c

2
u↑l − cos

c

2
u↓l. s28d

Again, we will make use of the fact thatu↑ l and utl are
angular momentum eigenstates along thez axis, with the
familiar selection rules. Only stateu↑ l has a nonzero dipole
matrix element with utl ,d+e+, so that the transitionsu1l
→ utl and u2l→ utl have dipole matrix elements equal to
d+cos2

ce+ andd+sin2
ce+ respectively. Then, for a photon emit-

ted alongn0=sq ,wd, we find the couplings:

g1q = d+eiwcosq cos
c

2
, s29d

g1w = d+ieiwcos
c

2
, s30d

g2q = d+eiwcosq sin
c

2
, s31d

g2w = d+ieiwsin
c

2
, s32d

so that the determinant is always zero, independent ofn0.
This means that the system in this configuration will never
be entangled with the polarization of the photon, which, as
we have seen, implies maximum SGC. The final state of the
L system is alwaysu↑ l, unentangled. Section VI gives an
intuitive picture of this concept by the vector representation
of sthe mean value ofd the spin.

B. Light-hole trion in Voigt configuration

The spin-photon entanglement can be also realized in a
quantum-dot system by employing the light-hole trion state.
The heavy-and light-hole excitons are split by the breaking
of the tetrahedral symmetry of the bulk III-V compound. It
might also be possible to make the light-hole states lower in
energy than the heavy holes. The magnetic field is pointing
along thex direction, so that the lower levels are the twoSx
eigenstates,u+l andu−l. The optical pulses used are such that
the light-hole trion polarized along the +x direction is ex-
cited. The excited state is a trion of a singlet pair of electrons
and a light hole which is in themj = ±1/2 component of the
j =3/2 state. The trion can thus be characterized by the state
uJMJl= u3/2, ±1/2l. We choose theMJ=1/2 state as the ex-
cited state of theL system and denote it byutll.

The transitionsutll→ u+l and utll→ u−l involve a photon
linearly polarized alongx suXl;upxldd and one with elliptical
polarizations−i uYl+2uZl;uEyzldd, respectivelyssee Fig. 1d.23

In particular, afterutll has decayed, the state of the system is
from Eq. s12d,

uYl = −
1
Î6

fuXlu− l + s2uZl − i uYldu + lg, s33d

We assume a measurement which determines the propaga-
tion direction of the photonn0=sq ,wd. Then the state be-
comes:

FIG. 1. The energy levels of theL system consisting of the two
electron spin statesslower levelsd and the light-hole trion polarized
along the +x direction. The solid line represents the laser pulse,
which propagates alongz and is linearly polarized in they direction.
The wavy lines denote the spontaneously emitted photons from the
transitionsutll→ u+l and utll→ u−l, which are elliptically polarized
in the yz plane and linearly polarized alongx, respectively.

ECONOMOUet al. PHYSICAL REVIEW B 71, 195327s2005d

195327-6



uYl =
− 1

Î2 + 3 sin2q
fcosq coswuqlu− l

− s2 sinq + i sinw cosqduqlu + l

− sinwuwlu− l − i coswuwlu + lg. s34d

Following the same procedure as in the trapped ion example,
we find that the condition for maximum entanglement isq
=0; the value ofD is then 0.5, maximal entnaglement. SGC
will only occur whenD in Eq. s16d is less than 0.5 and it will
be maximum for propagation alongx, which means that the
electron will be in the stateu+l. For all other values ofq,
there will be both entanglement and SGC between the two
energy eigenstates when the photon is traced out. The phe-
nomena following the spontaneous radiative decay of this
system are indeed very similar to the trapped ion case. In the
solid-state system, there is no need to isolate a single dot in
order to observe SGC since all dots are oriented in the same
direction.

For quantum information processing, entanglement be-
tween photon polarization and spin has to be established in a
quantum dot. So isolating and addressing a single dot is re-
quired. Experimentally, this requirement is arguably
feasible.24 The system should be initialized at stateu+l sor
u−ld and subsequently excited byy- sor x-d polarized light, so
that only stateutll gets excited. Other trion states, involving
electrons in the triplet state and/or heavy holes, have an en-
ergy separation fromutll large enough compared to the pulse
bandwidth and so they can be safely ignored. Above, we
found that the state will be maximally entangled when the
spontaneously emitted photon propagates alongz. When the
optical axis is alongz, the spontaneously emitted photon may
be distinguished from the laser photons by optical gating. As
an alternative to the optical gating, to minimize scattered
light the detector may be placed alongy, i.e., at sq ,wd
=sp /2 ,p /2d. The value ofD is then 0.2, so that the en-
tanglement will be significantly less than that along the op-
tical axis, but should be measurable. The observation of the
emitted photon and the measurement of its polarization can
be made as in Ref. 8. By use of the pump-probe technique,
the state of the spin will also be measured to show the cor-
relation with the polarization of the photon.

To overcome the probabilistic nature of the entanglement
sas projection is neededd and to improve the quantum effi-
ciency degraded by the scattering problem, cavities and
waveguides may be employed to enhance and select desired
photon emission processes.7,25

VI. PUMP-PROBE EXPERIMENT FOR SGC DETECTION
IN A QUANTUM DOT

In this section, we provide a theoretical analysis for the
pump-probe experiment which explicitly demonstrated
SGC.13 The L system is the heavy-hole trion system intro-
duced above. We present a treatment based on the idea that
SGC may be viewed as a decay to one bright state which is
a superposition of the eigenstates. The vector character of the
mean value of the spin, which also helps develop intuition
for the SGC effect, is employed and in fact it anticipates

some of the theoretical results of the pump-probe measure-
ments calculated by perturbative solution of the density ma-
trix in the remainder of this section.

A. Geometrical picture of SGC

As shown by Bloch26 and Feynmanet al.,27 an ensemble
of two-level systems can be described by a rotating vector.
This picture provides an intuitive understanding of the spin
coherence generated by the optical excitation and spontane-
ous decay of the trion states. For simplicity, we will assume
the short-pulse limit in this section.

Regardless of the presence or absence of the magnetic
field, there is freedom in the choice of the quantization di-
rection, and it is convenient in this case to choose the spin
eigenstates quantized in the growthszd direction,u↑ l andu↓ l.
The two trion statesutl andut̄l haveJ=3/2 andz-component
M = +3/2 andM =−3/2, respectively. The selection rules are
such that a photon with helicity ±1ss± circular polarizationd
excites the electronu↑ l or u↓ l to the trion statesutl or ut̄l,
respectively. We will consider as+ polarized pump, which
excites spin-up electrons to the trion stateutl, leaving the
electron spin polarized in the −z direction. Due to the selec-
tion rules, the trion state can only relax back to the spin-up
state by emitting as+ polarized photon, and after recombi-
nation, the electron remains unpolarized.

Now let us consider a strong magnetic field, applied at
c=p /2 with respect to the optical axis,B=Bex. In this so-
called Voigt configuration, the Zeeman statesu± l
;su↑ l± u↓ ld /Î2 are quantized in thex direction and are en-
ergy eigenstates with energies ±vL, respectively, while the
trion states can still be assumed quantized in thez direction
fsee Fig. 2sbdg. Note that the low-lying statesu1l , u2l in fore-
going sections are now denoted by the spin states,u+l , u−l. In
the short-pulse limit, the pulse spectrum is much broader
than the spin splitting or, equivalently, the pulse duration is
much shorter than the spin precession period, so the excita-
tion process is virtually unaffected by the magnetic field: the
s+ polarized pump excites theu↑ l electron to the trion state
utl, leaving the electrons spin polarized in the −z direction, as

FIG. 2. sad and sbd are the energy diagrams and possible
electron-trion transitions caused bys+-polarized photons with the
electron spin quantized inz andx directions, re- spectively.scd The
Raman coherence generated by the pump pulse, andsdd Schematic
depiction of interference between the Raman coherence and the
spin coherence generated by sponta- neous emission, under a mag-
netic field applied along thex direction.
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in the zero-field casefsee Fig. 2scdg. The pulse generates
coherence between the two eigenstatesu+l and u−l, which is
the conventional Raman coherence28 generated by a pulse
with a spectrum broad enough to cover both the near-
degenerate transitions. The spin precesses in the magnetic
field normal to the plane of precession with frequencyvL /p.
In other words, the state oscillates between the spin-up and
-down states. The Raman coherence can be determined by
the excitation-induced change of the population in the spin
stateu↑ l,

r↑↑
R std = −

rtt

2
f1 + coss2vLtde−g2tg , s35d

where rtt is the population of the trion state immediately
after the excitation pulse, andg2 is the damping rate of the
spin polarizationsdue to spin dephasing and inhomogeneous
broadeningd.

On the other hand, when the system is in the trion state
utl, the trion will relax by emitting as+-polarized photon,
leaving an electron spin polarized in the +z direction, i.e.,
generating coherence between the two spin eigenstates
sSGCd. The trion decay can be treated as a stochastic quan-
tum jump process with the jump rate 2G. After the quantum
jump, the evolution of the system can be described by a spin
vector rotating under the transverse magnetic field. Thus, the
spin polarization generated by the spontaneous emission dur-
ing ft8 ,t8+dt8g can be determined by

dr↑↑
SGCst,t8d =

rtte
−2Gt82Gdt8

2
f1 + coss2vLst − t8dde−g2st−t8dg .

s36d

The precessing spin vector is deformed by the accumulation
of increments through the optical decay into a spiral curve
fsee Fig. 2sddg. The accumulated spin polarization due to the
spontaneous emission is

r↑↑
SGCstd =E

0

t

dr↑↑
SGCst,t8d

=
rtt

2
RF1 − e−2Gt +

2G

2G − g2 − i2vL

3se−i2vLt−g2t − e−2GtdG . s37d

For an initially unpolarized system, the total spin polariza-
tion in the z direction after the action of the pump and the
recombination process is given by

r↑↑
s2d = fr↑↑

R + r↑↑
SGCg

= −
rtt

2
fs1 + aGde−2Gt + a0coss2vLt − fde−g2tg , s38d

where

aG ;
2Gs2G − g2d

s2G − g2d2 + 4vL
2 , s39d

a0 ;Î g2
2 + 4vL

2

s2G − g2d2 + 4vL
2 , s40d

f ; − arctan
2G − g2

2vL
− arctan

g2

2vL
. s41d

As shown in Fig. 2sdd, SGC induces a phase shift of the
spin coherence as compared to the Raman coherence. Note
also the different amplitudes of the Bloch vectors in the case
with and without SGC. We can see that if the recombination
is much faster than the spin precession under the magnetic
field, i.e., G@vL, SGC actually cancels the Raman coher-
ence. This is not surprising since such a limit simply corre-
sponds to the zero-field case. In the strong field limit where
vL @G, the spin precession will average SGC to zero, which
corresponds to the two-pathway decay discussed in Sec. II.
From Eq.s36d, it can be seen that at any specific time the
trion relaxes to stateu↑ l, so, as shown in Sec. II, a time-
selective measurement can recover the SGC from the inco-
herent two-pathway decay. Without such a projection, as the
spin coherence generated at a different time has a different
phaseshift, the time averagingfsee Eq.s37dg leads to the
vanishing of the SGC.

In a pump-probe experiment, what is measured is the dif-
ferential transmission signalsDTSd, i.e., the difference be-
tween the probe transmission with and without the pump
pulse. In the same-circular polarizationsSCPd pump-probe
configuration, the probe measures the change in the popula-
tion difference created by the pump,rtt−r↑↑

s2d. Hence, the
DTS is given by

DTSCP~ s3 + aGde−2Gtd + a0coss2vLtd − fd, s42d

where td is the delay time between the pump and probe
pulses. The DTS reveals the spin beatings and the SGC effect
manifests itself in the dependence of the beat amplitude and
phase shift on the strength of the magnetic field.

The pump-probe experiment can also be done in the op-
posite circular polarizationsOCPd configuration. The probe
measures the change of population of the spin-down state
u↓ l. The DTS in this case is proportional to −r↓↓

s2d=r↑↑
s2d+rtt,

i.e.,

DTOCP~ s1 − aGde−2Gtd − a0coss2vLtd − fd. s43d

The spin beat has the opposite sign to the SCP case.
Similar analysis shows that if either the pump or the probe

pulse is linearly polarized, there will be no spin beat in the
DTS.

B. Perturbative solution of the probe signal

The optical field of the pump and probe pulses can be
written as

Estd = se+E1+ + e−E1−dx1stde−iV1t

+ se+E2+ + e−E2−dx2st − tdde−iV2st−tdd, s44d

where the subscripts 1 and 2 denote the pump and probe
pulses, respectively, ande± are the unit vectors of thes±
polarizations. The dipole operator is
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d̂ = dse+utlk7 u ± e−ut̄lk± ud + h.c.

Thus, in the rotating wave approximation, the Hamiltonian in
the basishu−l , u+l , utl , ut̄lj can be written in matrix form as

H = 3
− vL 0 − d*E+

* std − d*E−
* std

0 vL − d*E+
* std + d*E−

* std
− dE+std − dE+std eg 0

− dE−std + dE−std 0 eg

4 ,

s45d

whereeg is the energy of the trion states, andg1,g2, and 2G
denoting the spin-flip rate, the spin-depolarizing rate, and the
trion decay rate, respectively. The explicit equations for each
element of the density matrix are

ṙt,+ = ifr,Hgt,+ − Grt,+, s46d

ṙt,− = ifr,Hgt,− − Grt,−, s47d

ṙ+,+ = ifr,Hg+,+ − g1r+,+ + Gsrtt + rt̄,t̄d, s48d

ṙ−,− = ifr,Hg−,− + g1r+,+ + Gsrtt + rt̄t̄d, s49d

ṙ+,− = ifr,Hg+,− − g2r+,− + Gcsrtt − rt̄,t̄d, s50d

ṙtt = ifr,Hgtt − 2Grtt, s51d

ṙt̄,t = ifr,Hgt̄,t − 2Grt̄,t, s52d

ṙt̄t̄ = ifr,Hgt̄t̄ − 2Grt̄t̄. s53d

The Markov–Born approximation for the system photon has
been employed. The term representing the spontaneously

generated spin coherence due to the trion recombination is
indicated by the suffixc;Gc should be equal toG. However,
we singled out the SGC term so thatGc can be artificially set
to zero for a theoretical comparison between the results with
and without the SGC effect.

In the pump-probe experiment, the DTS corresponds to
the third-order optical response. The absorption of the probe
pulse is proportional to the workW done by the probe pulse,
and the DTS is29

DT ~ − Ws3d = − 2RE Ṗs3dstd ·E2
*st − tdd

< − 2V2JE P̃s3dsv + V2d · Ẽ2
*sv + V2d

dv

2p
. s54d

The third-order optical polarization of the system can be cal-
culated directly by expanding the density matrix according to
the order of the optical perturbation

Ps3d = e+dfrt,−
s3d + rt,+

s3dg + e−dfrt̄,−
s3d − rt̄,+

s3dg , s55d

Thus, given thes+-polarized pump pulse, the third-order
polarization in the SCP and OCP cases can be respectively
calculated as29

PSCP
s3d std = e+dfrt,−

s3dstd + rt,+
s3dstdg , s56d

POCP
s3d std = e−dfrt̄,−

s3dstd − rt̄,+
s3dstdg . s57d

C. Analytical results

The density matrix can be calculated straightforwardly or-
der by order with respect to the pulse. Taking the initial state
of the system to be the equilibrium staters0d=r+

s0du+lk+u
+r−

s0du−lk−u. The result for the second-order spin coherence
due to the pump pulseE1std is:

r̃+−
s2dsvd = + X1

r−
s0d

v − 2vL + ig2
E

−`

+` x1
*sv8 − vdx1sv8d

v8 − D1 − vL + iG

dv8

2p
− X1

r+
s0d

v − 2vL + ig2
E

−`

+` x1sv8 + vdx1
*sv8d

v8 − D1 + vL − iG

dv8

2p

+ X1
iGcr±

s0d

sv − 2vL + ig2dsv + i2GdE−`

+` x1sv8 + vdx1
*sv8d

v8 − D1 ± vL − iG

dv8

2p
− X1

iGcr±
s0d

sv − 2vL + ig2dsv + i2GdE−`

+` x1
*sv8 − vdx1sv8d

v8 − D1 ± vL + iG

dv8

2p
,

s58d

where D1;eg−V1 is the detuning, andX1;udE1+u2
− udE1−u2 is the circular degree of the pulse polarization.
In the equation above, the first two terms correspond
to the Raman coherence generated by the pump
excitation28, and the last two terms represent the spontane-
ously generated coherence. Obviously, for a linearly polar-
ized pump,X1=0, no spin coherence is generated either by
excitation or by recombination, so there will be no spin beats
in DTS.

In the short-pulse limit, the spin coherence after the pump
and recombination can be approximately expressed as

r+,−
s2d std < X1ux1sD1du2S Gc

2G − g2 − 2ivL
−

1

2
De−is2vL−ig2dst−t1d.

s59d

This formula can be directly compared to the result obtained
by the intuitive picture in Sec. VI A. The physical meaning
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of the two terms in Eq.s59d is transparent: The first term is
SGC, whose amplitude and phase shift depend on the ratio of
the recombination rate to the Zeeman splitting, and the sec-
ond term is just the optically pumped Raman coherence
which in the short pulse limit is independent of the Zeeman
splitting.

Having obtained the second-order results, we can readily
derive the third-order density matrix and, in turn, the DTS
can be calculated by use of Eq.s54d. In general, the DTS can
be expressed as

DT ~ A coss2vLtd − fde−g2td + Be−2Gtd + Ce−g1td, s60d

and the spin coherence amplitudeA and phase shiftf, the
Pauli blocking amplitudeB, and the spin nonequilibrium
populationC can all be numerically calculated and, in the
short-pulse limit, can also be analytically derived as

A < ux1sD1du2ux2sD2du2X1X2Î g2
2 + 4vL

2

s2Gc − g2d2 + 4vL
2 , s61d

f < − arctanS2Gc − g2

2vL
D − arctanS g2

2vL
D , s62d

B < ux1sD1du2ux2sD2du2FI1I2 + 2I1+I2+ + 2I1−I2−

+ X1X2
2Gcs2G − g2d

s2G − g2d2 + 4vL
2G , s63d

C < 0, s64d

whereD2;eg−V2 is the detuning,I j± ;udEj±u2, I j ; I j++ I j−,
and Xj ; I j+− I j− sj =1 or 2d. Thus, the short-pulse approxi-
mation yields expressions identical to the ones obtained from
the intuitive picture in Sect. VI A. Several conclusions can
be immediately drawn from the short-pulse approximation:
s1d The SCP and OCP signals reveal beats with the same
amplitude and opposite signs;s2d no spin beat can be ob-
served when either of the pulses is linearly polarizedsX1
=0 or X2=0d; ands3d due to the SGC effect, the beat ampli-
tude increases with increasing Zeeman splitting until it satu-
rates at the value it would have in the absence of the SGC
effect; the phase shift increases from −p /2, saturating at 0.
The SGC effect is negligible when the Zeeman splitting is
large compared to the trion decay rateG because the rapid
oscillation averages the effect of SGC to zero.

D. Numerical results

In the numerical simulations, we take the pump and the
probe envelopes to be Gaussianx1std=exps−h1

2t2/2d and
x2st− tdd=exps−h2

2st− tdd2/2d, and we assume that they have
no temporal overlap, i.e., the delay timetd is much larger
than the pulse durationh j

−1 s j =1,2d, and the pulse band-
width h j is greater than the relaxation ratesg1, g2, andG. All
these assumptions are well satisfied in the experiment.13

Taken from the experiment,13 the relaxation rates used
are g1=0, g2=3 m eV, and G=Gc=12 m eV, and h1=h2
=0.5 meV.

To minimize the effect of the background noise,13 the
measured data of DTS are presented as the difference be-
tween the SCP and OCP. We follow the same practice in
presenting the theoretical results in Fig. 3. In comparison
with the results without the SGC effectsdashed lined, the full
theoretical results show the phase shift of the spin beat in the
DTS.

In Fig. 3, the amplitude and the phase shift are plotted
against the Zeeman splitting 2vL, which is proportional to
the magnetic field. The SGC effect is evident through the
field dependence of the amplitude and phase shift of the spin
beat. When the SGC effect is artificially switched offsby
settingGc=0d, the beat is independent of the magnetic field
strength as long as the pulse spectrum is much broader than
the Zeeman splitting. In the weak magnetic field limit, the
spin coherence is strongly suppressed due to the destructive
interference between the conventional Raman coherence and
SGC; the phase shift then is about −p /2. In the strong mag-
netic field limit, as SGC is averaged to zero due to the rapid
Larmor precession, the beat features approach those calcu-
lated without SGC. The theoretical predictions of the SGC
effect on the pump-probe signals are in good agreement with
the experimental results.13

FIG. 3. sad The amplitude andsbd the phase shift of the spin beat
sshown in the insertd as functions of the Zeeman splitting in units of
the trion state width,G. The filled circle and solid lines include the
SGC effect, calculated with and without the short-pulse approxima-
tion, respectively. The diamond and dotted lines are the results
without the SGC effect, calculated with and without the short-pulse
approximation, respectively.
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VII. CONCLUSIONS

In this work, we have developed a theory to unite the
different effects emerging from the spontaneous emission of
a photon from aL system. We have taken the viewpoint that
spontaneous emission is a unitary process when a sufficiently
large quantum system is defined so as to be considered
closed. Then the final state of the whole system, which is a
pure state, can be projected in different ways. These projec-
tions can be thought of as measurements on one of the con-
stituent parts and give rise to different phenomena: entangle-
ment, spontaneously generated coherence, and two-pathway
decay. We have also presented a set of conditions on the
symmetry of a system which determine if there is SGC. Ex-
amples of specific atomic and solid-state systems have been

employed to illustrate our theory. We have sketched the
theory underlying the experiment in which SGC was
observed13 and we have proposed an experiment on the same
system to exhibit the entanglement between the electron spin
and the polarization of the spontaneously emitted photon in a
quantum dot in parallel to the atom case.8
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