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We present a density-matrix rate-equation approach to sequential tunneling through a metal particle weakly
coupled to ferromagnetic leads. The density-matrix description is able to deal with correlations between
degenerate many-electron states that the standard rate equation formalism in terms of occupation probabilities
cannot describe. Our formalism is valid for an arbitrary number of electrons on the dot, for an arbitrary angle
between the polarization directions of the leads, and with or without spin-orbit scattering on the metal particle.
Interestingly, we find that the density-matrix description may be necessary even for metal particles with
unpolarized leads if three or more single-electron levels contribute to the transport current and electron-
electron interactions in the metal particle are described by the “universal interaction Hamiltonian.”
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I. INTRODUCTION

Spin-polarized electron tunneling is essential to spin-
based electronics1 and nanoscale magnetics based on the
spin-transfer effect.2,3 Whereas tunneling through a single
tunnel barrier, either between two ferromagnets or between a
ferromagnet and a normal metal, has been studied since the
mid-1970s,4 the study of spin-polarized transport through
mesoscopic double tunneling junctions is more recent.
Double mesoscopic junctions are of interest because of the
small capacitance of the central region in between the tun-
neling junctions, which allows electrons to be transported
one by one.5 Experiments have been reported both for nor-
mal metal leads with a ferromagnetic island between the
junctions6,7 and for a normal island with spin-polarized
junctions.8–10 A large number of theoretical works has dealt
with these cases.11–30

In this work, we consider the case of a normal metal
island with ferromagnetic leads. If the temperature is much
larger than the tunneling rates onto or off the island, electron
tunneling is sequential. In that case, quantum mechanical
correlations between electrons in different states are lost be-
cause of thermal smearing, and a simple description in terms
of rate equations applies. Depending on whether the tem-
perature is small or large compared to the level spacing in
the island, these rate equations describe the probability to
find a certain number of electrons on the island31–33 or the
occupation of the electronic states in the island.34,35

Whereas the rate-equation approach was applied straight-
forwardly to ferromagnetic leads with collinear
polarizations,20,28 the application to leads with noncollinear
polarizations requires a formulation in terms of the density
matrices of degenerate levels, not the occupations of
states.29,30 sIf spin degeneracy on the normal metal island is
lifted, e.g., by a magnetic field, scalar rate equations remain
valid despite polarized leads.d There are two reasons for this
additional complication: First, with noncollinear polariza-
tions, no common quantization direction exists, and one can-
not avoid a formulation of the problem in which electrons
tunnel into superpositions of states with different spin
projections.16 Second, coupling to the ferromagnetic leads
slightly lifts the spin degeneracy and leads to a slow preces-

sion of the spin on the dot.29 The use of density matrices
instead of occupation probabilities in the rate equation for-
malism allows for the inclusion of correlations between dif-
ferent quantum states.36,37 Since the temperature is much
larger than the escape rate to the leads, only correlations
between states with the same energy need to be taken into
account.

Density-matrix rate equations were first used to describe
transport through a metal particlesor a quantum dot or a
single moleculed with spin-polarized tunnel contacts in a re-
cent paper by König and Martinek29 ssee also Ref. 30d. These
authors used the Keldysh formalism to derive the density-
matrix rate equations for a dot in which only one level con-
tributes to transport. Our purpose in the present work is to
formulate a density-matrix rate equation for quantum dots in
which many electronic levels contribute to transport and to
simplify the derivation of Ref. 30. The extension to many
levels is relevant for the analysis of experimental data, since
the majority of experiments feature high bias voltages at
which more than one electronic level contributes to the
current.38

A remarkable result of our study is that a formulation in
terms of density-matrix rate equations is not only needed for
spin-polarized leads with noncollinear polarization direc-
tions, but that it may also be necessary for unpolarized leads
or for spin-polarized leads with collinear polarization direc-
tions if the metal island has a large dimensionless conduc-
tanceg. These relatively large metal particles or quantum
dots have degenerate or almost-degenerate many-electron
levels. Correlations between the degenerate states persist
during the time an electron occupies the quantum dot and
need to be accounted for using a description in terms of a
density matrix. The origin of the degeneracy is that in large-
g metal grains or quantum dots electronic interactions are
described by the “universal interaction Hamiltonian.”39 With
this interaction, many-electron levels with three or more sin-
gly occupied single-electron levels are degenerate if their
spin is not maximal. For example, there are four degenerate
states with three singly occupied levels and total spin
S=1/2. A rate equation in terms of scalar occupation prob-
abilities only40 will fail to describe correlations between

PHYSICAL REVIEW B 71, 195324s2005d

1098-0121/2005/71s19d/195324s9d/$23.00 ©2005 The American Physical Society195324-1



these degenerate states. A detailed description of this case
will be given in Sec. II C.

II. MATRIX RATE-EQUATION FORMALISM

We consider a metal particle—or a quantum dot or a
single molecule—that is attached to a number of ferromag-
netic leads via tunneling contacts with a conductance much
smaller than the conductance quantume2/h. A schematic
drawing of a metal particle with two leads is shown in Fig. 1.
In our formulation of the problem, we assume that all leads
are fully polarized; a partially polarized lead is simply rep-
resented by two fully polarized leads with different densities
of states and different tunneling rates. We assume that the
temperatureT is much larger than the tunneling rates to and
from the leads. This is the regime for which rate equations
have been shown to be a valid description of metal particles
without spin-polarized leads.

A. Single doubly degenerate level

In order to make the connection to previous works,16,29,30

we first develop the formalism for the case of nonlinear
transport through a single level. Our approach is closely con-
nected to the works by Nazarov36 and Gurvitz,37 who used
rate equations to describe high-bias transport through a se-
quence of tunnel barriers. For a metal particle in which only
one level is relevant for transport, we need to consider occu-
pation of the level by zero, one, or two electrons, at energies
«0, «1, and«2, respectively. The precise value of these ener-
gies depends on the charging energy and exchange interac-
tion of the metal particle, the voltages on nearby gates, etc.
For occupation by zero or two electrons, the many-electron
level is nondegenerate, and we can use scalarsp0 and p2 to
describe the probability to find the particle in a state with
zero or two electrons, respectively. If the level is occupied by
one electron only, one needs to use a 232 density matrixr1
to fully describe the state of the particle. The conservation of
probability implies

p0 + tr r1 + p2 = 1. s1d

Without tunneling to and from the reservoirs,p0, r1, and
p2 are time independent. The time dependence ofp0, r1, and
p2 then arises from tunneling of electrons onto or off the
metal particle: real tunneling processes shift the number of
electrons on the metal particle, whereas virtual tunneling

processes cause a precession of the spin if the level is singly
occupied. The net tunneling rate to and from leada depends
on the direction of the polarization in that lead, which we
describe by means of the spinorsma sm̄ad pointing parallel
santiparalleld to the polarization direction of leada, the tun-
neling rateGa for electrons with spinma, and the distribution
function fa in lead a. In order to describe both the virtual
and real tunneling processes, we combine the rateGa and the
spinorsma andm̄a into the spinor tunneling amplitudes,

ga = Ga
1/2ma, ḡa = Ga

1/2m̄a, s2d

with ga
†ga= ḡa

†ḡa=Ga andga
†ḡa=0.

Virtual tunneling processes can be described by the effec-
tive Hamiltonian,41

H1 =
"

4p
PE djo

a

„1 − 2fasjd…

3F gaga
†

«1 − «0 − j
+

ḡaḡa
†

«2 − «1 − j
G , s3d

where P denotes the Cauchy principal value. Note that if
«2−«1=«1−«0, one hasH1 proportional to the unit matrix in
spin space and thusfH1,r1g=0: virtual excitations do not
cause a spin precession without interactions.29 The time evo-
lution of the scalarsp0 and p2 and the 232 matrix r1 is
described by the equations29,30

dp0

dt
= o

a

„1 − fas«1 − «0d…ga
†r1ga − o

a

fas«1 − «0dga
†p0ga,

s4d

dr1

dt
=

i

"
sr1H1 − H1r1d + o

a

fas«1 − «0dgap0ga
†

−
1

2o
a

„1 − fas«1 − «0d…fgaga
†r1 + r1gaga

†g

+ o
a

„1 − fas«2 − «1d…ḡap2ḡa
†

−
1

2o
a

fas«2 − «1dfḡaḡa
†r1 + r1ḡaḡa

†g, s5d

dp2

dt
= o

a

fas«2 − «1dḡa
†r1ḡa − o

a

„1 − fas«2 − «1d…ḡa
†p2ḡa,

s6d

whereas the current through each of the tunnel contacts is
calculated as34,35

Ia = fas«1 − «0dga
†p0ga − „1 − fas«1 − «0d…ga

†r1ga

+ fas«2 − «1dḡa
†r1ḡa − „1 − fas«2 − «1d…ḡa

†p2ḡa. s7d

For fa=0 or fa=1, Eqs.s4d–s7d follow from considering
the escape of electrons or holes from the metal particle into a
vacuum.36,37,42The factorsfa ands1− fad, which also appear
in the scalar rate equations,34,35 are inserted to reflect the
modification of tunneling rates by the electron distribution in

FIG. 1. Metal particle attached to two ferromagnetic leads.
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the leads. This simple way of accounting for the presence of
electrons in the leads is no longer valid when correlations
between the electrons in the leads and in the metal particle
are formed, such as is the case in the Kondo effect.22–26,43,44

We remark that, since Eqs.s4d–s7d are meant to describe
transport at the lowest order inGa only, the energy shift
implied by the HamiltonianH1 need not be included in the
argument of the distribution functionfa. For that reason,
Eqs.s4d–s7d describe both the case of low bias and high bias,
in contrast to the formalism of Refs. 37 and 42, which is
appropriate for high bias only. Also note that Eqs.s4d–s6d are
consistent with probability conservation, Eq.s1d, and that
they reduce to the standard rate equations34,35 once the po-
larizations in the leads are collinear.

B. General formalism

For the general description, we consider a normal-metal
particle with many-electron levels«k, each of which has de-
generacy jk. The many-electron states are labeleduk,ml,
wherem=1, . . . ,jk. The number of electrons in stateuk,ml is
denoted byNk. Real and virtual transitions between many-
electron states are possible because of the tunneling of elec-
trons between the metal particle and the source and drain
reservoirs. As before, we assume that this tunneling rate is
small in comparison to the spacing between electronic levels
and temperature. In that case, we may describe the state of
the dot by a set of density matricesrk for each many-electron
level, and we can neglect correlations between states with
different energy.

The tunneling Hamiltonian describing the coupling of the
metal particle to leada is determined by thejk3 jk8 matrix
va;k,k8

± containing the matrix elements between the many-
electron multipletsuk, ·l anduk8 , ·l with Nk=Nk8±1. In order
to make contact with the rate equations derived above, we
define the jk3 jk8 matrix of transition amplitudesga;k,k8

±

=s2pna /"d1/2va;k,k8
± , wherena is the density of states of lead

a. We define ga;k,k8
± =0 if NkÞNk8±1. One may write

ga;k,k8
± =sGad1/2wa;k,k8

± , wherewa;k,k8
± is dimensionless andGa

is the tunneling rate through contacta if the metal island is
replaced by an electron reservoir. For point contacts, the
magnitude ofwa;k,k8

± is set by the value of a wavefunction at
the location of the contact.45 If the degeneracy of the multi-
plets uk, ·l and uk8 , ·l arises from angular momentum, the
matrix structure ofwa;k,k8

± is set by the Clebsch-Gordon co-
efficients. With this notation, virtual excitations lead to the
effective HamiltonianHk for the multipletuk, ·l,

Hk =
"

4p
PE djo

a,k8

„1 − 2fasjd…

3Fga;k,k8
+ ga;k8,k

−

«k − «k8 − j
+

ga;k,k8
− ga;k8,k

+

«k8 − «k − j
G . s8d

Then the appropriate generalization of the rate equations
s4d–s6d and the current formulas7d is

]rk

]t
=

i

"
srkHk − Hkrkd + o

a,k8

ffas«k − «k8dga;k,k8
+

rk8ga;k8,k
−

+ „1 − fas«k8 − «kd…ga;k,k8
−

rk8ga;k8,k
+ g

−
1

2o
a,k

ffas«k8 − «kdsga;k,k8
− ga;k8,k

+
rk + rkga;k,k8

− ga;k8,k
+ d

+ „1 − fas«k − «k8d…sga;k,k8
+ ga;k8,k

−
rk + rkga;k,k8

+ ga;k8,k
− dg,

s9d

Ia = eo
k,k8

ffas«k − «k8dga;k,k8
+

rk8ga;k8,k
−

− „1 − fas«k8 − «kd…ga;k,k8
−

rk8ga;k8,k
+ g. s10d

Here the summation overk8 extends over all many-electron
states different fromk. One easily verifies that Eq.s9d con-
serves the total probabilityok tr rk=1.

C. Unpolarized leads

The density-matrix rate equationss9d ands10d do not nec-
essarily reduce to the standard scalar rate equations of Refs.
34 and 35 when all leads are unpolarized or when the leads
have collinear spin polarizations. The reason for this, at first,
surprising fact is that overlaps between different many-body
states are not accurately described by scalar transition prob-
abilities if there are degeneracies. With degeneracies, nonor-
thogonal coherent superpositions of many-electron states are
involved in the transport process.

Although level repulsion rules out degeneracies in the
single-particle states in a generic metal grain or quantum dot,
for large metal grains or quantum dots,sneard degeneracies
may occur in the many-electron spectrum. The origin of the
degeneracy is that electron-electron interactions in metal par-
ticles or quantum dots with large dimensionless conductance
g are described by the “universal interaction Hamiltonian,”39

Hee= ECN2 + JS2, s11d

whereN is the total number of electrons on the metal par-
ticle, EC is the charging energy,S is the total spin, andJ is
the exchange interaction strength. According to Eq.s11d, the
energy of a many-electron state depends on the occupation of
the single-electron states and the total spinSonly. This gives
rise to degeneracies in many-electron states with three or
more singly occupied single-electron levels. For example, in
a metal grain with single-electron levels labeled 1, 2, and 3,
the two states,

u + l ;
1
Î3

se2pi/3c↑1
† c↓2

† c↓3
† u0l + e−2pi/3c↓1

† c↑2
† c↓3

† u0l

+ c↓1
† c↓2

† c↑3
† u0ld, s12ad

u− l ;
1
Î3

se−2pi/3c↑1
† c↓2

† c↓3
† u0l + e2pi/3c↓1

† c↑2
† c↓3

† u0l

+ c↓1
† c↓2

† c↑3
† u0ld, s12bd

both have three singly occupied single-electron levels with
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total spin S=1/2 and Sz=−1/2. Hence, according to the
“universal interaction Hamiltonian,” they are degenerate.
Since both states have the same value ofSz, the degeneracy
is not broken by a magnetic field. However, in principle, it
may be lifted by nonuniversal residual interactions that are
not included in the “universal interaction Hamiltonian,”39 but
such residual interactions are weak ifg@1, and they can be
neglected if the level splitting that they cause is smaller than
the level broadening due to escape through the tunnel con-
tacts. The degeneracy may also be lifted in metal particles
with spin-orbit scattering if the spin-orbit rate" /tso is com-
parable to the mean spacingD between single-electron
levels.46,47

We now illustrate how this degeneracy necessitates the
use of a matrix rate equation using the example of a metal
particle with three spin-degenerate single-electron levels. For
the ease of argument, a magnetic field is applied along the
negativez axis. We consider transitions from the three two-
electron states withS=1, Sz=−1,

u1l ; c↓2
† c↓3

† u0l, s13ad

u2l ; c↓1
† c↓3

† u0l, s13bd

u3l ; c↓1
† c↓2

† u0l, s13cd

to the degenerate three-electron statess12d. As the statess13d
are nondegenerate, they are described by means of the prob-
ability pj of finding the system in stateu jl, j =1,2,3. On the
other hand, the statess12d are degenerate and we need to
describe their occupation by a 232 density matrixr,

r = Sr++ r+−

r−+ r−−
D . s14d

Transitions from the statess13d to the doublets12d occur at
ratesG j, j =1,2,3. Writing down the time evolution ofr that
results from those transitions, we find

dr

dt
=

G1

3
p1S 1 e2pi/3

e−2pi/3 1
D +

G2

3
p2S 1 e−2pi/3

e2pi/3 1
D

+
G3

3
p3S1 1

1 1
D + . . . , s15d

where the remaining terms describe processes that do not
depend on thepj, j =1,2,3. Clearly, there is no basis that
would diagonalize all three matrices in Eq.s15d simulta-
neously for an arbitrary choice of thepj. This proves that it is
imperative to use the full matrix structure forr in order to
properly deal with correlations between the statess12d.

III. APPLICATION TO SPIN-POLARIZED TRANSPORT

We now apply the formalism of the previous section to
transport through metal particles with ferromagnetic con-
tacts. We first consider the simpler case of a metal particle in
which only one energy level participates in transport, and
then consider the case of multiple levels.

A. Single doubly occupied level

The linear-response conductanceG of a metal particle
coupled to two fully polarized ferromagnetic leads, labeledL
andR, is easily calculated from Eqs.s4d–s7d,

G = G0 cos2su/2dF1 −
4a2GLGR sin2su/2d

fa2 + „1 − fs«1 − «0d + fs«2 − «1d…2gsGL + GRd2G−1

, s16d

whereu is the angle between the polarizations of the ferromagnets,G0 is the linear conductance foru→0,

G0 =
e2

"T

GLGR„1 − fs«2 − «1d…fs«1 − «0d„1 − fs«1 − «0d + fs«2 − «1d…
sGL + GRd„1 + fs«1 − «0d − fs«2 − «1d…

, s17d

and

a = PE dj

2p

„1 − 2fsjd…s«2 + «0 − 2«1d
s«1 − «0 − jds«2 − «1 − jd

. s18d

For partially polarized leads with polarizationPa;sGa

−Ḡad / sGa+Ḡad, whereḠa is the tunneling rate for electrons
with spin m̄a, one finds

G =
2G0

D
FGLs1 − PLd + GRs1 − PRd

+
PL

2PR
2GLGR sin2 u

GLs1 + PRd + GRs1 + PLd − DE
G , s19d

whereG0 is given by Eq.s17d above, and we abbreviated

D = GRs1 + PLds1 − PRd + GLs1 − PLds1 + PRd

+ 4GLGRPLPR sin2su/2d/sGL + GRd,

E = a2s1 + PLds1 + PRdsGL + GRdfa2 + „1 − fs«1 − «0d + fs«2

− «1d…2g−1fGLs1 + PRd + GRs1 + PLdg−1.

For symmetric contacts,GL=GR and PL=PR, Eqs. s16d and
s19d were previously obtained in Refs. 29 and 30. Without
the spin-precession termsthe first term on the rhs of Eq.
s5dd, we recover the linear conductance calculated by Usaj
and Baranger,16 after the correction of a technical mistake
in Ref. 16.

As pointed out by König and Martinek, the role of the
spin-precession term is to reduce the angular dependence of
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the conductance. Our general resultss16d ands19d show how
this reduction depends on the symmetry of the contacts: the
reduction is strongest for symmetric contactssGR=GLd,
whereas it vanishes in the generic case of very asymmetric
contactssGR!GLd. In the latter case, the spin precession axis
is aligned with mL; the precession aroundmL does not
change the angular dependence of the conductance.

B. Case of up to three electrons on the dot

For a metal particle in which more than one level contrib-
utes to transport we calculated the differential conductance
G=]I /]V numerically as a function of the bias voltageV.

The numerical calculation was done for a metal particle in
which five single-electron levels, with a total of two or three
electrons, contributed to the current. The lead polarizations
were chosen parallel or antiparallel, with polarizations
PL=PR; P. With a maximum of three singly occupied lev-
els, the largest possible spin on the dot was 3/2. The posi-
tions of the single-electron energy levels were taken from the
center of a matrix drawn from the Gaussian orthogonal en-
semble of random matrix theory, and the temperatureT was
set at one percent of the mean spacingD between the single-
electron levels, to ensure that all features in the current-
voltage characteristic could be resolved in the numerical cal-
culation. Electron-electron interactions were described using
Eq. s11d. In the numerical calculations, we setEC=25D, and
J=−0.32D. sValues of the exchange constantJ are tabulated
in Ref. 47 for most normal metals.d The tunneling ratesGL
and GR were chosen&0.1kBT and equal for all levels, as is
appropriate for metal particles with wide tunnel barriers. The
source-drain voltageV was applied to the right lead and was
assumed to change the effective chemical potential in the
right lead only.

The use of leads with collinear polarizations in the nu-
merical calculations eliminates most of the necessity of using
density-matrix rate equations, except for the degenerate
S=1/2 states with three singly occupied levels. These states
are fourfold degenerate. We denote them

U1

2
, +L ;

1
Î3

se2pi/3u↑↑↓l + e−2pi/3u↑↓↑l + u↓↑↑ld,

s20ad

U1

2
,−L ;

1
Î3

se−2pi/3u↑↑↓l + e2pi/3u↑↓↑l + u↓↑↑ld,

s20bd

U−
1

2
, +L ;

1
Î3

se2pi/3u↑↓↓l + e−2pi/3u↓↑↓l + u↓↓↑ld,

s21ad

U−
1

2
,−L ;

1
Î3

se−2pi/3u↑↓↓l + e2pi/3u↓↑↓l + u↓↓↑ld.

s21bd

However, only the twofold degeneracy inside the pairs
with Sz=1/2 andSz=−1/2 is relevant, and it is sufficient

to describe the occupation of the fourS=1/2 states with
two 232 density matricesrsSz=1/2d andrsSz=−1/2d as in
Eq. s14d.

To illustrate the use of the matrix rate equations in this
case, we write down the full transition vectors for the tran-
sition between theS=1 triplet states and the two doublets
s20d and s21d. We denote theS=1 triplet state byuSzl, with
Sz=−1,0,1. Inrelation to the two energy levels already oc-
cupied in the triplet state, we consider adding an electron in
a single-electron level with higher, lower, or intermediate
energy and denote the different vectors by superscriptsh, l,
andm, respectively. Choosing the orientation of the leads as
the spin quantization axis, the nonzero transition vectors for
addition of an electron with spin up from leada as they
appear in the rate equations9d are ga

+,h=sGa
hd1/2w+,h,

ga
+,l =sGa

l d1/2w+,l, andga
+,m=sGa

md1/2w+,m, with

wu1/2l,u0l
+,h =

− 1
Î6

Se−2pi/3

e2pi/3 D , s22ad

wu−1/2l,u−1l
+,h =

1
Î3

S1

1
D , s22bd

wu1/2l,u0l
+,l =

− 1
Î6

S1

1
D , s22cd

wu−1/2l,u−1l
+,l =

1
Î3

Se−2pi/3

e2pi/3 D , s22dd

wu1/2l,u0l
+,m =

1
Î6

S e2pi/3

e−2pi/3D , s22ed

wu−1/2l,u−1l
+,m =

1
Î3

S e2pi/3

e−2pi/3D . s22fd

The transition vectors for adding a spin-down electron fol-
low straightforwardly from the above. The amplitudes for
removing electrons are obtained from the above by hermitian
conjugation. Although these were not considered in the nu-
merical calculations, we mention that the overlap matrices
for noncollinear lead polarizations can be obtained from
Eqs. s22d by combining the transition vectors into 433
matrix amplitudes for the full transition from the spin-1 trip-
let to the three-electron spin-1

2 quadruplet, followed by mul-
tiplication with appropriate representations of rotation matri-
ces. In this particular case, the transition matrix amplitude
would have to be multiplied with a four-dimensional repre-
sentation from the left and a three-dimensional representa-
tion from the right. The relevant rotation matrices are listed
in the Appendix.

We now turn to the results of our numerical calculations.
One expects that antiparallel lead polarizations cause spin
accumulation on the metal island. This can indeed be ob-
served in our solution of the rate equations, as shown in Fig.
2, where we plot the probability of finding spinS=3/2 sas
opposed toS=1/2d on the metal particle for different lead
polarizationsP. For antiparallel lead polarizations, the prob-
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ability to find S=3/2 increases with increasing polarization,
whereas it is virtually independent of polarization for parallel
lead polarizations.

In Figs. 3 and 4 we address the dependence of peaks of
the differential conductance on the lead polarizationP. The
figure describes both parallel lead polarizationsspositiveP in
the figured and antiparallel lead polarizationssnegativeP in
the figured. Some peaks evolve nonmonotonously, whereas
others rise or fall monotonously in magnitude. Of particular
interest are those conductance peaks that evolve from posi-
tive to negative values. Negative conductance peaks at volt-
ageV arise if, upon reaching that voltage, a many-body state
that is poorly connected to other states is made accessible.
sThis type of behavior is not limited to ferromagnetic leads.d
Not only does there seem to be a tendency toward negative
differential conductance upon going from antiparallel to par-
allel leads but also when making the transition from
GR!GL to a more symmetric couplingGR,GL, as shown in
Fig. 4. In general, conductance peak spectra for a different
polarization orientation can therefore look very different in
terms of both position and magnitude of the most dominant
peaks, even if recorded for the same sample.

IV. INFLUENCE OF SPIN-ORBIT SCATTERING

The role of spin-orbit scattering inside the metal particle
is best illustrated by considering the case of transport
through one doublysKramersd degenerate level.sSpin-orbit

FIG. 2. The probability of finding total spin 3/2 on the dot
for antiparallel stop paneld and parallel lead polarizations
sbottom paneld featuring polarizations P=PL=PR

=0.95,0.85,0.75,0.65,0.55stop to bottomd, with GR/GL=0.2.

FIG. 3. An excerpt from the spectrum of several conductance
peaks for antiparallel and parallel lead orientations as a function of
source-drain voltageV sin units of the mean level spacingnd and of
lead polarizationP=PL=PR. For ease of presentation, the case of
parallel polarization is plotted againstnegativepolarization. The
excerpt shown here does not include the dominant low-energy peak.

FIG. 4. Normalized differential conductance as a function of
source-drain voltageV for parallel sleft panelsd and antiparallel
sright panelsd lead polarizationsP=PL=PR=0.9. The vertical scale
has been normalized to the magnitudeGmax of the largestsfirstd
conductance peak.
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scattering in the reservoirs instead of in the metal island
was considered in Ref. 48.d With spin-orbit scattering, the
two eigenfunctions of the level are spinor wavefunctions.
Once the spin quantization axes are fixed at a reference point
in the metal particle, the two spinor wavefunctions define a
spatially dependent spin quantization axis in the metal par-
ticle. The spinorsma and m̄a that define directions parallel
and antiparallel to the polarization direction in leada are
defined with respect to the quantization axis at the contact
with lead a. Hence, the presence of spin orbit scattering in
the normal metal particle alters the spinor structure of the
transition amplitudesga, but it does not change the general
structure of the rate equations. The same conclusions hold
for the general case.

The above considerations imply that, for a metal particle
coupled to ferromagnetic source and drain reservoirs via two
point contacts and with only asingle level contributing to
transport, the sole effect of spin-orbit scattering is a sample-
specific shift of the angle between the polarizations in the
two leads. On the other hand, for a metal particle coupled to
source and drain leads via many-channel tunneling contacts,
or for a metal particle in which more than one level contrib-
utes to transport, the effect of spin-orbit scattering is more
complicated since different levels and different channels ex-
perience different rotations of the spin reference frame. In
particular, with strong spin-orbit scattering,sspind transport
through different channels or through different levels will
involve completely different rotation angles, so that the ef-
fective degree of spin polarization in the junction is greatly
reduced. In the limit of a large number of channels and
strong spin-orbit scattering, the rate equations in fact reduce
to the unpolarized case.

V. CONCLUSION

We have extended the rate-equation formalism to the case
of a normal islandsmetal nanoparticle, quantum dot, or
single moleculed attached to spin-polarized contacts with
noncollinear polarization directions. Our formalism provides
a transparent description of the sequential tunneling process
in this system, and is suitable for applications to both linear
and nonlinear transport.

Whether one has to employ matrix rate equations or the
simpler scalar rate equations is determined by the symme-
tries and energy degeneracies of the metal island and the
leads. We distinguish the following cases:sid leads and island
have the same symmetries and degeneracies,sii d some sym-
metries present on the island are broken in the leads, andsiii d
leads and island feature the same symmetries but there are
additional degeneracies on the dot. Casesid corresponds, e.g.,
to a normal-metal island with unpolarized leads and spin-
degenerate energy levels on the dot, or to a normal-metal
metal island with spin-polarized leads with collinear polar-
ization directions. In that case, the standard rate equations of
Refs. 34 and 35 are applicable if there are no further degen-
eracies on the island. Casesid also describes spin-polarized
leads with noncollinear polarization directions if spin degen-
eracy on the island is lifted by a magnetic field, be it an
applied field or the stray field of the ferromagnetic leads. In
contrast, the other two situations require matrix rate equa-

tions: Casesii d applies to normal metal particles with ferro-
magnetic leads that are polarized in noncollinear directions
so that tunneling occurs into coherent superpositions of
states on the dot. The additional degeneracies required for
case siii d arise in the many-electron spectrum of generic
metal particles with or without spin-polarized leads if the
“universal interaction Hamiltonian” describes the electron-
electron interactions on the metal particle. Such degeneracies
can be lifted by nonuniversal interaction corrections if the
resulting energy splitting is larger than the level broadening
due to escape to the leads. These corrections scale as 1/g,
whereg is the dimensionless conductance of the metal par-
ticle, and as a consequence, the larger the size of the normal-
metal island, the more important the use of matrix rate equa-
tions becomes.
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APPENDIX: ROTATION MATRICES

This appendix contains the rotation matrices for transfor-
mation from the basis aligned with the quantization axis to a
basis forming a relative angleu with the original quantiza-
tion axis. We restrict ourselves to the case of up to three
electrons on the dot, so that we only need representations up
to dimensionality four.sThe four-dimensional representa-
tions correspond to the quadruplets of total spinS=3/2 and
S=1/2 in thecase of three singly occupied single-electron
levels.d Also, we only consider polarizations in thexz plane,
so that any superposition of single spins can be expressed in
terms of real coefficients.

1. Two dimensions: spin-1/2 doublet

In the standard basis of spin-up and spin-down,

s1,0d ; u↑l, s0,1d ; u↓l, sA1d

the rotation matrix is

R2 = S cossud sinsud
− sinsud cossud

D . sA2d

2. Three dimensions: spin-1 triplet

In the basis created by successively applying the spin-
lowering operatorS− to u↑↑l,

s1,0,0d ; u↑↑l,

s0,1,0d ; su↑↓l + u↓↑ld/Î2, sA3d

s0,0,1d ; u↓↓l,

the rotation matrix reads as
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R3 = 1 cos2sud Î2 cossudsinsud sin2sud

− Î2 cossudsinsud cos2sud − sin2sud Î2 cossudsinsud
sin2sud − Î2 cossudsinsud cos2sud

2 . sA4d

3. Four dimensions: spin-3/2 quadruplet

The maximum spin-3/2 states feature electrons in three singly occupied single-electron levels. In the basis obtained by
successively applying the spin-lowering operatorS− to u↑↑↑l,

s1,0,0,0d ; u↑↑↑l, s0,1,0,0d ; su↑↑↓l + u↑↓↑l + u↓↑↑ld/Î3,

s0,0,1,0d ; su↑↓↓l + u↓↑↓l + u↓↓↑ld/Î3, s0,0,0,1d ; u↓↓↓l, sA5d

we obtain the following rotation matrix:

R4,3/2=1
cos3sud Î3 cos2sudsinsud Î3 cossudsin2sud sin3sud

− Î3 cos2sudsinsud cos3sud − 2 cossudsin2sud − sin3sud + 2 cos2sudsinsud Î3 cossudsin2sud
Î3 cossudsin2sud sin3sud − 2 cos2sudsinsud cos3sud − 2 cossudsin2sud Î3 cos2sudsinsud

− sin3sud Î3 cossudsin2sud − Î3 cos2sudsinsud cos3sud
2 . sA6d

4. Four dimensions: spin-1/2 quadruplet

For the four-fold degenerate many-electron state with total spinS=1/2 andthree singly occupied single-electron levels, we
write the rotation matrix in the basis

s1,0,0,0d ; se2pi/3u↑↑↓l + e−2pi/3u↑↓↑l + u↓↑↑ld/Î3,

s0,1,0,0d ; se−2pi/3u↑↑↓l + e2pi/3u↑↓↑l + u↓↑↑ld/Î3,

s0,0,1,0d ; se2pi/3u↑↓↓l + e−2pi/3u↓↑↓l + u↓↓↑ld/Î3,

s0,0,0,1d ; se−2pi/3u↑↓↓l + e2pi/3u↓↑↓l + u↓↓↑ld/Î3. sA7d

The first two vectors haveSz=1/2, theother two haveSz=−1/2. In this basis, the rotation matrix then reads as

R4,1/2=1
0 cossud −

1

2
sinsude2pi/3 0

cossud 0 0 −
1

2
sinsude−2pi/3

1

2
sinsude2pi/3 0 0 cossud

0
1

2
sinsude−2pi/3 cossud 0

2 . sA8d
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