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Rate equations for Coulomb blockade with ferromagnetic leads
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We present a density-matrix rate-equation approach to sequential tunneling through a metal particle weakly
coupled to ferromagnetic leads. The density-matrix description is able to deal with correlations between
degenerate many-electron states that the standard rate equation formalism in terms of occupation probabilities
cannot describe. Our formalism is valid for an arbitrary number of electrons on the dot, for an arbitrary angle
between the polarization directions of the leads, and with or without spin-orbit scattering on the metal particle.
Interestingly, we find that the density-matrix description may be necessary even for metal particles with
unpolarized leads if three or more single-electron levels contribute to the transport current and electron-
electron interactions in the metal particle are described by the “universal interaction Hamiltonian.”
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I. INTRODUCTION sion of the spin on the déf. The use of density matrices

Spin-p0|arized electron tunne”ng is essential to Spinjnstead of OCCUpation prObabi”tieS in the rate equa.tion for-
based electroniésand nanoscale magnetics based on thénalism allows for the inclusion of correlations between dif-
spin-transfer effect3 Whereas tunneling through a single ferent quantum staté$3” Since the temperature is much
tunnel barrier, either between two ferromagnets or between arger than the escape rate to the leads, only correlations
ferromagnet and a normal metal, has been studied since tietween states with the same energy need to be taken into
mid-1970s? the study of spin-polarized transport through account.
mesoscopic double tunneling junctions is more recent. Density-matrix rate equations were first used to describe
Double mesoscopic junctions are of interest because of thgansport through a metal particler a quantum dot or a
small capacitance of the central region in between the tunsingle moleculgwith spin-polarized tunnel contacts in a re-
neling junctions, which allows electrons to be transporteccent paper by Kénig and Martinék(see also Ref. 30These
one by oné. Experiments have been reported both for nor-authors used the Keldysh formalism to derive the density-
mal metal leads with a ferromagnetic island between thematrix rate equations for a dot in which only one level con-
junction$’ and for a normal island with spin-polarized tributes to transport. Our purpose in the present work is to
junctions®-1°A large number of theoretical works has dealt formulate a density-matrix rate equation for quantum dots in
with these case¥$:30 which many electronic levels contribute to transport and to

In this work, we consider the case of a normal metalsimplify the derivation of Ref. 30. The extension to many
island with ferromagnetic leads. If the temperature is mucHevels is relevant for the analysis of experimental data, since
larger than the tunneling rates onto or off the island, electrothe majority of experiments feature high bias voltages at
tunneling is sequential. In that case, quantum mechanicalhich more than one electronic level contributes to the
correlations between electrons in different states are lost besurrent®®
cause of thermal smearing, and a simple description in terms A remarkable result of our study is that a formulation in
of rate equations applies. Depending on whether the tenterms of density-matrix rate equations is not only needed for
perature is small or large compared to the level spacing ispin-polarized leads with noncollinear polarization direc-
the island, these rate equations describe the probability thons, but that it may also be necessary for unpolarized leads
find a certain number of electrons on the isinéf or the  or for spin-polarized leads with collinear polarization direc-
occupation of the electronic states in the isldhéf tions if the metal island has a large dimensionless conduc-

Whereas the rate-equation approach was applied straightanceg. These relatively large metal particles or quantum
forwardly to ferromagnetic leads with collinear dots have degenerate or almost-degenerate many-electron
polarizationg%28 the application to leads with noncollinear levels. Correlations between the degenerate states persist
polarizations requires a formulation in terms of the densityduring the time an electron occupies the quantum dot and
matrices of degenerate levels, not the occupations ofieed to be accounted for using a description in terms of a
stateg2®30 (If spin degeneracy on the normal metal island isdensity matrix. The origin of the degeneracy is that in large-
lifted, e.g., by a magnetic field, scalar rate equations remaig metal grains or quantum dots electronic interactions are
valid despite polarized leadsThere are two reasons for this described by the “universal interaction Hamiltoni&f With
additional complication: First, with noncollinear polariza- this interaction, many-electron levels with three or more sin-
tions, no common quantization direction exists, and one cangly occupied single-electron levels are degenerate if their
not avoid a formulation of the problem in which electrons spin is not maximal. For example, there are four degenerate
tunnel into superpositions of states with different spinstates with three singly occupied levels and total spin
projectionst® Second, coupling to the ferromagnetic leadsS=1/2. Arate equation in terms of scalar occupation prob-
slightly lifts the spin degeneracy and leads to a slow precesabilities only*® will fail to describe correlations between
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processes cause a precession of the spin if the level is singly
i occupied. The net tunneling rate to and from leadepends
left lead / meta right lead

on the direction of the polarization in that lead, which we
describe by means of the spinars, (m,) pointing parallel
\|A_/ (antiparalle) to the polarization direction of lead, the tun-

v neling ratel”,, for electrons with spim,,, and the distribution
L function f,, in lead . In order to describe both the virtual

and real tunneling processes, we combine thelFatand the
spinorsm, andm, into the spinor tunneling amplitudes,

v Ya=TaM, Y,=Tgm,, ()

FIG. 1. Metal particle attached to two ferromagnetic leads. ~ With 727a=%7azra and YZVCFO-
Virtual tunneling processes can be described by the effec-

. ANne
these degenerate states. A detailed description of this cad¥e Hamiltoniar

will be given in Sec. Il C. 3
Hy= 7P f dé2) (1-26,(8)
II. MATRIX RATE-EQUATION FORMALISM “

YaYh Yl
We consider a metal particle—or a quantum dot or a X ale 4 ale , (3)
single molecule—that is attached to a number of ferromag- g1-€~ ¢ &1 ¢

netic leads via tunneling contacts with a conductance muclyhere P denotes the Cauchy principal value. Note that if
smaller than the conductance quantefth. A schematic £,—&,=£1— &0, ONE hasH, proportional to the unit matrix in

drawing of a metal particle with two leads is shown in Fig. 1-spin space and thugH;, p;]=0: virtual excitations do not

In our formulation of the problem, we assume that all leads. ;e 4 spin precession without interactistighe time evo-
are fully polarized; a partially polarized lead is simply rep- | tion of the scalar, and p, and the 2<2 matrix p; is
resented by two fully polarized leads with different densitieSyagcribed by the equatiis®

of states and different tunneling rates. We assume that the

temperaturel is much larger than the tunneling rates to and dpo _ : : + 3 B +

from the leads. This is the regime for which rate equations ¢t ~ za: (1 -fale1=20) YaP1Va 20:4 fole1=£0) ¥aPoVar
have been shown to be a valid description of metal particles

without spin-polarized leads. (4)

A. Single doubly degenerate level e = g(lel —Hypy) + 2, f (61— €0) Vapoﬁ’l
In order to make the connection to previous wotk&>0 «

we first develop the formalism for the case of nonlinear 1 . N
transport through a single level. Our approach is closely con- - EE (1= le1= e[ VaVaP1 ¥ P1Ya Vel
nected to the works by Nazardvand Gurvitz3” who used «

rate equations to describe high-bias transport through a se- +> 1 —f(en- 81))7Qp5;

guence of tunnel barriers. For a metal particle in which only « “

one level is relevant for transport, we need to consider occu- 1

pation of the level by zero, one, or two electrons, at energies == o= e)[Vavipr + PLYaY, (5)
€g, €1, ande,, respectively. The precise value of these ener- 27

gies depends on the charging energy and exchange interac-

tion of the metal particle, the voltages on nearby gates, etc. dp,

, M2 _ —t = —t
For occupation by zero or two electrons, the many-electron — = 2 fule2= ) Vi1 Y= 2 (L= fu(e2= £0) VP2 Ven
level is nondegenerate, and we can use scg@gend p, to “« “«

describe the probability to find the particle in a state with (6)

ZEro or two electrons, respectively. If the IeveI. IS occqpled bywhereas the current through each of the tunnel contacts is
one electron only, one needs to usea22density matrixo,

,35
to fully describe the state of the particle. The conservation of alculated ¥

probability implies o= fole1 = 20) YoPoYa = (1 = fole1— £0) Vip17Ye
pot+trpptp,=1. (1) + (62— 80)Vop1Ya— (L=~ fulea— €1)VoP2Ve (7)
Without tunneling to and from the reservoirs, p;, and For f,=0 or f,=1, Eqgs.(4)—(7) follow from considering

p, are time independent. The time dependencpypp,, and  the escape of electrons or holes from the metal particle into a
p, then arises from tunneling of electrons onto or off thevacuum36:3"42The factorsf,, and(1-f,), which also appear
metal particle: real tunneling processes shift the number o the scalar rate equatiof$3® are inserted to reflect the
electrons on the metal particle, whereas virtual tunnelingnodification of tunneling rates by the electron distribution in
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the leads. This simple way of accounting for the presence of 5p,

i N _
electrons in the leads is no longer valid when correlations . ~ %(Pka‘ Hyow) + > [fa(sk‘Sk')%;k,kfpk’?’a;k',k
between the electrons in the leads and in the metal particle ak’

. - 43,44 -
are formed, such as is the case in the Kondo effeg: (L~ Tolerw = 80) Yoo Vo )

We remark that, since Eq$4)—(7) are meant to describe

transport at the lowest order i, only, the energy shift 1 _ . _ +
implied by the HamiltoniarH; need not be included in the B Ezk [Faler = €0 Vaese Yagkr ik ¥ PV artele Ve 1)
argument of the distribution functiofi,. For that reason, “
Eqs.(4)—(7) describe both.the case of low bias and high bigs, +(1—f (e - sk,))('y;k'k, Yook Pk pk'y:l;k’k,'y;;k,’k)],
in contrast to the formalism of Refs. 37 and 42, which is
appropriate for high bias only. Also note that EGH—(6) are ©)
consistent with probability conservation, E@.), and that
they reduce to the standard rate equafibfsonce the po- l,=e> [flex— skr)’y;k’k,pkr Yokt
larizations in the leads are collinear. kK’

—(L-fu (e - sk))'}’;;k,krpk"y;;klyk]- (10

B. General formalism )
Here the summation ovéd’ extends over all many-electron

For the general description, we consider a normal-metagtates different fronk. One easily verifies that E¢9) con-
particle with many-electron levels,, each of which has de- serves the total probabilit}, tr p,=1.
generacyj,. The many-electron states are labelggm), )
wherem=1, ... j,.. The number of electrons in statem) is C. Unpolarized leads
denoted byN,. Real and virtual transitions between many-  The density-matrix rate equatiot®) and(10) do notnec-
electron states are possible because of the tunneling of elegssarily reduce to the standard scalar rate equations of Refs.
trons between the metal particle and the source and draig4 and 35 when all leads are unpolarized or when the leads
reservoirs. As before, we assume that this tunneling rate isave collinear spin polarizations. The reason for this, at first,
small in comparison to the spacing between electronic levelsurprising fact is that overlaps between different many-body
and temperature. In that case, we may describe the state efates are not accurately described by scalar transition prob-
the dot by a set of density matricggfor each many-electron apilities if there are degeneracies. With degeneracies, nonor-
level, and we can neglect correlations between states witthogonal coherent superpositions of many-electron states are
different energy. involved in the transport process.

The tunneling Hamiltonian describing the coupling of the  Although level repulsion rules out degeneracies in the
metal particle to lead is determined by thg, X j» matrix  single-particle states in a generic metal grain or quantum dot,
vt «kk Containing the matrix elements between the many<for large metal grains or quantum dotsea) degeneracies
electron multipletsk, -) and|k’, -) with N,.=N,,+1. In order ~may occur in the many-electron spectrum. The origin of the
to make contact with the rate equations derived above, wgegeneracy is that electron-electron interactions in metal par-
define thej,xj, matrix of transition amphtudeSy K ticles or quantum dots with large dimensionless conductance

=(2mv, %) Y%* wherew, is the density of states of lead g are described by the “universal interaction Hamiltoni&h,”
aikk'”
a. We define ¥, ,,=0 if Ng#Ng+1. One may write Hee= EcN? +JS, (11)

Voo = (T VAW, o, wherew,, ,, is dimensionless anfl,  yhereN is the total number of electrons on the metal par-
is the tunneling rate through contaetif the metal island is tic|e EC is the Charging energ)s is the total Spin and is
replaced by an electron reservoir. For point contacts, théhe exchange interaction strength. According to @d), the
magnitude ofw’. «kk 1S set by the value of a wavefunction at energy of a many-electron state depends on the occupation of
the location of the contaét. If the degeneracy of the multi- the single-electron states and the total spionly. This gives
plets |k, -) and |k’ ) arises from angular momentum, the rise to degeneracies in many-electron states with three or
matrix structure ofw’”. k! is set by the Clebsch-Gordon co- more singly occupied single-electron levels. For example, in
efficients. With this notation, virtual excitations lead to the @ metal grain with single-electron levels labeled 1, 2, and 3,

effective HamiltoniarH, for the multiplet|k, -), the two states,
5 |+)= \r(ez m/3011C¢20¢3|0> _277'/30110?201‘3|0>
He= P f dé> (1-2f,(8)
ak’ +clicl,el5l0), (123
+ - - +
| Jeskae Tkt | Yehke Yk (8 o 2mifagt of of TR
ex—ew—& espu—g—§& =)= ” C11012°13|0> +&73¢]1¢[,C[4/0)
+ cuclchO)), (12b)

Then the appropriate generalization of the rate equations
(4)—(6) and the current formulé?) is both have three singly occupied single-electron levels with
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“universal interaction Hamiltonian,” they are degenerate. (14)
Since both states have the same valu&pthe degeneracy pos P

is not broken by a magnetic field. However, in principle, it Transitions from the statg4.3) to the doublef(12) occur at
may be lifted by nonuniversal residual interactions that areatesl’;, j=1,2,3. Witing down the time evolution of that

not included in the “universal interaction Hamiltonia®{,but results from those transitions, we find

total spin S=1/2 andS,=-1/2. Hence, according to the <p++ p+_)

such residual interactions are wealgi 1, and they can be Pril3 —2mi/3

neglected if the level splitting that they cause is smaller than dp - &p ( 1. ) + F_Zp ( 1' € )

the level broadening due to escape through the tunnel con- dt ~ 3 \e?m? 1 32\ g

tacts. The degeneracy may also be lifted in metal particles r 11

with spin-orbit scattering if the spin-orbit rate 7, is com- + —3p3< ) + , (15)
parable to the mean spacingy between single-electron 3 11

levels?®47 where the remaining terms describe processes that do not

We now illustrate how this degeneracy necessitates thgepend on thep;, j=1,2,3.Clearly, there is no basis that
use of a matrix rate equation using the example of a metaloy|g diagonalize all three matrices in E€L5) simulta-
particle with three spin-degenerate single-electron levels. Fjeqysly for an arbitrary choice of ti. This proves that it is
the ease of argument, a magnetic field is applied along thgnperative to use the full matrix structure fprin order to

negativez axis. We consider transitions from the three two- 5roperly deal with correlations between the state.
electron states witls=1, S,=-1,

lll. APPLICATION TO SPIN-POLARIZED TRANSPORT
1) = c[,¢]4/0), (133
We now apply the formalism of the previous section to
12) = c],c]40), (13h  ftransport through metal particles with ferromagnetic con-
tacts. We first consider the simpler case of a metal particle in
_ ot which only one energy level participates in transport, and
[3) = cl1cl2l0), (139 then consider the case of multiple levels.
to the degenerate three-electron st&ley. As the state$13)

are nondegenerate, they are described by means of the prob- A. Single doubly occupied level

ability p; of finding the system in staf), j=1,2,3. On the The linear-response conductanGeof a metal particle
other hand, the statdd2) are degenerate and we need tocoupled to two fully polarized ferromagnetic leads, labdled
describe their occupation by ax2 density matrixp, andR, is easily calculated from Eq$4)—(7),
|
43T T'r sirf(6/2) 1
G=Gycod(6/2)| 1 - : (16)
° [8° + (1~ f(s1 = £0) + f(eo— 81)°](T + I'r)°
where @ is the angle between the polarizations of the ferromag@&{ss the linear conductance f&— 0,
Gz & I\ Tr(1 —f(ep— 87)f(e1~ 80) (1~ f(e1 — 80) + fe2~ &) 17
°TAT (T +TRI(1 +f(e1 = £9) = Flep~ £1)) ’
[
and D = FR(l + PL)(l - PR) + FL(l - PL)(l + PR)
dé (1 - 2f(&) (e + £ — 261) + 40 TgP PR sin?(6/2)/(' +T'g),
a=P | = . (18)
2m (e1—eg=§)(e2— 81— &)

— a2 2 _ -
_For partially polarized leads with polarizatid®,= (T, E=a%(1+P)(1+Pr)(I' +T'pa”+ (1 -f(eg—gg) + f(ey

-T)/(T,+T,), wherel', is the tunneling rate for electrons ~ &)’ TL(1+P) +TR(1 +P)T ™.

with spinm,, one finds _
pIn My For symmetric contactd,, =I'r and P  =Pg, Egs.(16) and

2G, (19 were previously obtained in Refs. 29 and 30. Without
=[P =FP) + R = the spin-precession teritthe first term on the rhs o .
G DF(l PO +T'r(1-Pg) he spin-p i tihe fi he rhs of Eq
(5)), we recover the linear conductance calculated by Usaj
N PZPAl I'gsir? 6 (19 and Barangel® after the correction of a technical mistake
I (1+Pg)+Ix(1+P)-DE]’ in Ref. 16.

As pointed out by Konig and Martinek, the role of the
whereG, is given by Eq.(17) above, and we abbreviated  spin-precession term is to reduce the angular dependence of
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the conductance. Our general resl§) and(19) show how to describe the occupation of the foG=1/2 states with
this reduction depends on the symmetry of the contacts: thevo 2X 2 density matricep(S,=1/2) andp(S,=-1/2) as in
reduction is strongest for symmetric contadeg=1I")), Eq. (14).

whereas it vanishes in the generic case of very asymmetric To illustrate the use of the matrix rate equations in this
contactqI'gr<I")). In the latter case, the spin precession axiscase, we write down the full transition vectors for the tran-
is aligned with m;; the precession aroundy does not sition between theés=1 triplet states and the two doublets

change the angular dependence of the conductance. (20) and(21). We denote thé&s=1 triplet state by|S,), with
S,=-1,0,1. Inrelation to the two energy levels already oc-
B. Case of up to three electrons on the dot cupied in the triplet state, we consider adding an electron in

For a metal particle in which more than one level contrib-a single-electron level with higher, lower, or intermediate
utes to transport we calculated the differential conductancenergy and denote the different vectors by superschipts
G=4l/4V numerically as a function of the bias voltaye andm, respectively. Choosing the orientation of the leads as

The numerical calculation was done for a metal particle inthe spin quantization axis, the nonzero transition vectors for
which five single-electron levels, with a total of two or three addition of an electron with spin up from lead as they
electrons, contributed to the current. The lead polarizationgppear in the rate equatioii9) are -(l“h)lfzw+ h
were chosen parallel or antiparallel, with polarizationsy’'=(I" )¥2w*!, and y"™=(I'MY2w*"m, Wlth
P =Pgr=P. With a maximum of three singly occupied lev-

els, the largest possible spin on the dot was 3/2. The posi- +ho —1fe 2qu/3

X ; Wi112) 0y il3 (229

tions of the single-electron energy levels were taken from the e

center of a matrix drawn from the Gaussian orthogonal en-

semble of random matrix theory, and the temperaiureas +h 11

set at one percent of the mean spacingetween the single- W19, -1 = ,3 1 (22b)

electron levels, to ensure that all features in the current-

voltage characteristic could be resolved in the numerical cal-

culation. Electron-electron interactions were described using wit _ 1(1) (220

Eq. (12). In the numerical calculations, we $8¢=25A, and 1240 = V6

J=-0.32A. (Values of the exchange constahéare tabulated

in Ref. 47 for most normal meta)sThe tunneling rate$’, Yl 1 [e 273

andI'r were chosens0.1kgT and equal for all levels, as is W12, -1 = _§< e?m3 ) (220

appropriate for metal particles with wide tunnel barriers. The v

source-drain voltag¥ was applied to the right lead and was 23

assumed to change the effective chemical potential in the Fmo

- Wi112) Joy ( 277|/3) (22¢

right lead only. '6

The use of leads with collinear polarizations in the nu-

merical calculations eliminates most of the necessity of using o g2mi3

density-matrix rate equations, except for the degenerate W19, -1 = 3<e 2m/3) (22f)

S=1/2 states with three singly occupied levels. These states

are fourfold degenerate. We denote them The transition vectors for adding a spin-down electron fol-
1 1 _ _ low straightforwardly from the above. The amplitudes for
=+ )= =@ D +e2™ B D+ |111), removing electrons are obtained from the above by hermitian
2 V3 conjugation. Although these were not considered in the nu-

(203 merical calculations, we mention that the overlap matrices
for noncollinear lead polarizations can be obtained from
Egs. (22) by combining the transition vectors intox43

e2MRI T )+ TR +[LTT)), matrix amplitudes for the full transition from the spin-1 trip-

let to the three-electron spi%‘nquadruplet, followed by mul-

(20b) tiplication with appropriate representations of rotation matri-
ces. In this particular case, the transition matrix amplitude
would have to be multiplied with a four-dimensional repre-

7
\/
Il
=
uﬂl =

|
N

— 1 i3 —2mil3

' >= _§ @11y +e LT+, sentation from the left and a three-dimensional representa-

tion from the right. The relevant rotation matrices are listed
(218 in the Appendix.

1 We now turn to the results of our numerical calculations.

- _ -27il3 mil3 One expects that antiparallel lead polarizations cause spin

‘ 2’ > AT + AT + L), accumulation on the metal island. This can indeed be ob-

(21b) served in our solution of the rate equations, as shown in Fig.

2, where we plot the probability of finding spB=3/2 (as

However, only the twofold degeneracy inside the pairsopposed taS=1/2) on the metal particle for different lead

with S,=1/2 andS,=-1/2 is relevant, and it is sufficient polarizationsP. For antiparallel lead polarizations, the prob-
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1.0
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o 061
1
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0.2}
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— 1<)
oMl
| 0.1
2
A,
0.05} V/A
FIG. 3. An excerpt from the spectrum of several conductance
X peaks for antiparallel and parallel lead orientations as a function of
0% source-drain voltag¥ (in units of the mean level spaciny) and of

V/A lead polarizationP=P =Pg. For ease of presentation, the case of
parallel polarization is plotted againgegativepolarization. The
FIG. 2. The probability of finding total spin 3/2 on the dot excerpt shown here does not include the dominant low-energy peak.
for antiparallel (top panel and parallel lead polarizations
(bottom panel featuring polarizations P=P =Py IV. INFLUENCE OF SPIN-ORBIT SCATTERING

=0.95,0.85,0.75,0.65,0.5%0p to bottom, with I'g/I" =0.2. The role of spin-orbit scattering inside the metal particle

is best illustrated by considering the case of transport

ability to find S=3/2 increases with increasing polarization, through one doublyKramerg degenerate levelSpin-orbit

whereas it is virtually independent of polarization for parallel ' . ' . . '
lead polarizations. parallel 11 anti-parallel |
In Figs. 3 and 4 we address the dependence of peaks of Tg/Ty =02 Cp/FpL =02

the differential conductance on the lead polarizationThe 1 ]
figure describes both parallel lead polarizatignssitive P in
the figure and antiparallel lead polarizatiorisegativeP in
the figurg. Some peaks evolve nonmonotonously, whereas -0.05
others rise or fall monotonously in magnitude. Of particular 0.4 : . : . . . .

interest are those conductance peaks that evolve from posi- .| parallel ] anti-parallel |

tive to negative values. Negative conductance peaks at volt- 4 Tr/Fr =1 P/l =1
£ 02

ageV arise if, upon reaching that voltage, a many-body state 5 111 ]
that is poorly connected to other states is made accessible.s 0.1} 1H 1
(This type of behavior is not limited to ferromagnetic leads. 0 N e ]

Not only does there seem to be a tendency toward negative -0.05

G/Gmax

| S——

differential conductance upon going from antiparallel to par- V/A v/a
allel leads but also when making the transition from
I'r<I'| to @ more symmetric couplinBr~1I';, as shown in FIG. 4. Normalized differential conductance as a function of

Fig. 4. In general, conductance peak spectra for a differenfource-drain voltage/ for parallel (left panels and antiparallel
polarization orientation can therefore look very different in (right panel$ lead polarization$=P, =Pg=0.9. The vertical scale
terms of both position and magnitude of the most dominantas been normalized to the magnituBg,,, of the largest(first)
peaks, even if recorded for the same sample. conductance peak.
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scattering in the reservoirs instead of in the metal islandions: Casdlii) applies to normal metal particles with ferro-
was considered in Ref. 48With spin-orbit scattering, the magnetic leads that are polarized in noncollinear directions
two eigenfunctions of the level are spinor wavefunctions.so that tunneling occurs into coherent superpositions of
Once the spin quantization axes are fixed at a reference poistates on the dot. The additional degeneracies required for
in the metal particle, the two spinor wavefunctions define acase (iii) arise in the many-electron spectrum of generic
spatially dependent spin quantization axis in the metal parmetal particles with or without spin-polarized leads if the
ticle. The spinoram, and m, that define directions parallel “universal interaction Hamiltonian” describes the electron-
and antiparallel to the polarization direction in leadare  electron interactions on the metal particle. Such degeneracies
defined with respect to the quantization axis at the contaatan be lifted by nonuniversal interaction corrections if the
with lead a. Hence, the presence of spin orbit scattering inresulting energy splitting is larger than the level broadening
the normal metal particle alters the spinor structure of thedue to escape to the leads. These corrections scalegas 1/
transition amplitudesy,, but it does not change the general whereg is the dimensionless conductance of the metal par-
structure of the rate equations. The same conclusions holitle, and as a consequence, the larger the size of the normal-
for the general case. metal island, the more important the use of matrix rate equa-
The above considerations imply that, for a metal particletions becomes.
coupled to ferromagnetic source and drain reservoirs via two
point contacts and with only aingle level contributing to ACKNOWLEDGMENTS
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complicated since different levels and different channels ex-

perience different rotations of the spin reference frame. In APPENDIX: ROTATION MATRICES

particular, with strong spin-orbit scatterin@spin transport ] ] ] ] ]

through different channels or through different levels will ~ This appendix contains the rotation matrices for transfor-
involve completely different rotation angles, so that the ef-mation from the basis aligned with the quantization axis to a
fective degree of spin polarization in the junction is greatlyPasis forming a relative anglé with the original quantiza-
reduced. In the limit of a large number of channels andiion axis. We restrict ourselves to the case of up to_ three
strong spin-orbit scattering, the rate equations in fact reducglectrons on the dot, so that we only need representations up

to the unpolarized case. to dimensionality four.(The four-dimensional representa-
tions correspond to the quadruplets of total sp#3/2 and
V. CONCLUSION S=1/2 in thecase of three singly occupied single-electron

We have extended the rate-equation formalism to the caslgvels) Also, we only consider polarizations in the plane,

. . So that any superposition of single spins can be expressed in

of a normal island(metal nanoparticle, quantum dot, or terms of real coefficients
single moleculg attached to spin-polarized contacts with '
noncollinear polarization directions. Our formalism provides
a transparent description of the sequential tunneling process
in this system, and is suitable for applications to both linear In the standard basis of spin-up and spin-down,
and nonlinear transport. _ _

Whether one has to employ matrix rate equations or the LO=ID. ©.=[. (AD)
simpler scalar rate equations is determined by the symmehe rotation matrix is
tries and energy degeneracies of the metal island and the )
leads. We distinguish the following caség:leads and island R, = ( cog6) sin(6) ) (A2)
have the same symmetries and degeneragi¢some sym- 27\ - sin(6) cog6) /"
metries present on the island are broken in the leads(igjnd
leads and island feature the same symmetries but there are
additional degeneracies on the dot. Caseorresponds, e.g., 2. Three dimensions: spin-1 triplet
to a normal-metal island with unpolarized leads and spin- | the basis created by successively applying the spin-
degenerate energy levels on the dot, or to a normal-metgbyering operatos. to |11),
metal island with spin-polarized leads with collinear polar-

1. Two dimensions: spin-1/2 doublet

ization directions. In that case, the standard rate equations of (1,0,0 =11),

Refs. 34 and 35 are applicable if there are no further degen-

eracies on the island. Ca$g also describes spin-polarized 0,1,0 = (|11)+ m»/\@, (A3)
leads with noncollinear polarization directions if spin degen-

eracy on the island is lifted by a magnetic field, be it an 0,00 =11,

applied field or the stray field of the ferromagnetic leads. In
contrast, the other two situations require matrix rate equathe rotation matrix reads as
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cos(6) V2 cog 0)sin(6) Siné(6)
Ry=| - V2 cod)sin(6) cog(6)~sirf(6) 2 cogo)sin(o) |. (Ad)
Siré(6) -2 cog H)sin(6) cog(6)

3. Four dimensions: spin-3/2 quadruplet

The maximum spin-3/2 states feature electrons in three singly occupied single-electron levels. In the basis obtained by
successively applying the spin-lowering operaforto |1771),

(1,0,0,0=111), (0,1,0,0=(TTD+[111)+[LTTIN3,

(0,0,1,0=(1L1)+[LT1)+[LLTHA3, (0,0,0,0=]111), (A5)
we obtain the following rotation matrix:

cos(0) V3 coZ(6)sin(6) V3 cog §)sir?(6) sin()
~ V3 co(6)sin(6) coS(6) - 2 cogH)sirt(h) - sirf() + 2 co2(H)sin(6) 3 cog H)sir?(6)
V3 cog)sird(6)  sin(6) — 2 coZ(H)sin() coS(6) — 2 cogO)sind(0) '3 co2(6)sin(6)
~ sirf(6) \3 cog 0)sir’(6) -3 cog(0)sin(6) cos()

(A6)

Ry 30=

4. Four dimensions: spin-1/2 quadruplet

For the four-fold degenerate many-electron state with total Spib/2 andthree singly occupied single-electron levels, we
write the rotation matrix in the basis

(1,0,0,0 = (eZWi/3|TTl> + e_ZWi/SHlT) + |HT>)/\§.
(0,1,0,0 = (@29[111) + @91 11) +[LTTIN3,

(0,0,1,0 = (@711 1) +&2™LTL) +[LITING,

(0,0,0,0 = (€237 |} + €31 |) +| | LT)3. (A7)
The first two vectors hav8,=1/2, theother two haveS,=-1/2. In this basis, the rotation matrix then reads as
1 _
0 cog 6) -5 sin(9)e?™/3 0
1 ; —2mi/3
cogq6) 0 0 =3 sin(@)e <™
R4 ,12= ' : (A8)
5 sin(9)e2™"3 0 0 cog6)
1 —2mi/3
0 Esm(a)e & cog6) 0
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