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Excitonic wave packet dynamics in semiconductor photonic-crystal structures
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Significant aspects of the light—-matter interaction can be strongly modified in suitably designed systems
consisting of semiconductor nanostructures and dielectric photonic crystals. To analyze such effects, a micro-
scopic theory is presented, which is capable of describing the optoelectronic properties of such hybrid systems
via a self-consistent solution of the dynamics of the optical field and the photoexcitations of the material. The
theory is applied to investigate the local excitonic resonances, which arise as a consequence of the modified
Coulomb interaction in the vicinity of a structured dielectric medium. The excitation of a coherent superposi-
tion of the spatially inhomogeneous optical transitions induces an intricate wave packet dynamics. In the
presence of dephasing and relaxation processes, the coherent oscillations are damped and the photoexcited
carriers relax into spatially inhomogeneous quasi-equilibrium distributions.
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I. INTRODUCTION laser structure$® The periodic modulation of the optical
Photonic crystals, i.e., periodically structured dielectricProPerties may even result in superradiant emis$igh.

materials, can be used to tailor the eigenmodes of the trans- In this paper, we present and. apply a miproscopic ap-
verse electromagnetic field® Since the light-matter interac- proach, which is capable of describing the optical properties

T S . of spatially inhomogeneous semiconductor photonic-crystal
tion in atoms, molecules, and solids is governed by thlsstructures. In most of our previous treatmé&it® where we

transverse part of the field, the optical material properties cal.ve concentrated on longitudinal effects, the transverse op-

be drastically changed with suitably designed phOtoniC'tical field has been assumed to be homogeneous. In contrast,

crystal structures. Using a photonic band gap one can SURre  the coupled dynamics of the field and the material ex-

press the spontaneous emission and thus increase the radigaiions are treated self-consistently by evaluating the
tive Ilfet|me of optical gxcnatpns by severgl orders of coupled Maxwell semiconductor Bloch equatidiS-BES
magnitudet>°-® By the interaction with localized defect py numerical integration. In each time step, Maxwells’ equa-
modes in photonic crystals novel strong coupling effects cafions are solved using the finite-difference time-domain
be achieved-12 (FDTD) method! with complex fields. The semiconductor
In this context, semiconductor heterostructures are of paBloch equation$SBE),'3 which are used here in a real-space
ticular interest not only because they can be grown with albasis in order to describe spatially inhomogeneous situations,
most molecular precision but also because of their strongre integrated using the standard leap-frog algorithivith
excitonic resonancés:'* The quantum efficiency of well- this combination it is possible to use the rotating wave ap-
designed optoelectronic semiconductor devices approach@soximation for the semiconductor excitations and to restrict
the fundamental radiative lifetime limit and combinations of the analysis to resonant excitations. This approach has suc-
semiconductor nanostructures and photonic crystals allowessfully been applied in Ref. 33 to analyze optical absorp-
for the possibility to optimize characteristics of light- tion spectra in the presence of quasi-equilibrium electron and
emitting diodes and laset81-15-21n addition to this appli- hole populations. Here, it is extended and used to study be-
cation potential, however, semiconductor photonic-crystafides the dynamics of the optical polarization also the spa-

structures are also of interest in the context of fundamentdiotemporal evolution of photoexcited populations.
_ In particular, we analyze the local absorption spectra and

physics. For example, it has been demonstrated that the re- . o o
duced spontaneous emission due to photonic crystals resu?éscuss optical excitation of a coherent superposition of spa-
[

in strong modifications of the exciton statistics and Coulombdilrz ;ggg:nggggeﬁgz zétggc;rgg r;ahs: np?hncftise.xégetirotnhse C;?Ctlh e
many-partlcle correlations !nS|de a semlcondgctqr matéfial semiconductor material oscillate coherently and display an
Besuje Fhe tr'ansverse field, also the .Iong|tud|nal electroi tricate wave packet dynamics. The predicted effects should
magnetic field, i.e., the Coulomb potential between chargefe measurable by ultrafast nonlinear optical spectroscopy
particles, can be modified significantly in suitably designed,ere they show up as temporal modulations of the
semiconductor photonic-crystal structuf€s® In such hy-  signal34-36In the course of time, the coherent oscillations
brid systems, induced surface polarizations alter the opticire damped due to dephasing and relaxation processes.
semlconductpr proper‘ugs In comparison to.a s_patlally homoTherefore, in the long time limit the photoexcited carriers
geneous excitation configuration, resulting in dielectric shiftsapproach quasi-equilibrium distributions. Due to the modi-
of the band gap and the energetic position of the excitorfied Coulomb interaction, these carrier distributions are inho-
resonancé’ 28 Furthermore, spatially inhomogeneous quasi-mogeneous in space.
equilibrium carrier populations can be obtained, which may In Sec. Il of this paper the microscopic approach and the
substantially influence the quasi-equilibrium gain spectra ofelf-consistent analysis of the light—-matter interaction in
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semiconductor photonic-crystal structures is described. Nuare solved together with the equations of motion for the par-
merical results on the excitonic absorption in spatially inho-ticle charges and currents, that are in turn driven by the op-
mogeneous situations, the coherent dynamics of excitonitical fields E andH. In order to solve these equations, we
wave packets, and the decay of the coherent oscillations dueeed the constitutive relatioi3=D[E] andB=D[H] relat-
to dephasing and relaxation processes are presented and disg the macroscopic to the microscopic fields. In general, the
cussed in Sec. Ill. The most important results are brieflyconstititive relations can be arbitrarily complicated, relating
summarized in Sec. IV. the components of the dielectric displacement and magnetic
induction in a nonlocal, anisotropic, frequency dependent,
and nonlinear manner to the components of the electric and
magnetic fields. As we are interested in optics in dielectric
photonic crystals, we shall assume nonmagnetic media in the
In this section, we present our theoretical approach, whictiollowing, i.e., B=uqH. For the dielectric displacement, we
provides a self-consistent description of the coupled dynammake the ansatz
ics of the electromagnetic field and the optical material ex-
citations in semiconductor photonic-crystal structures. D = €pel(r)E, ©)

Within a semiclassical treatment, the material system is de- i . . . .
scribed quantum mechanically whereas the dynamics of thwhere the photonic crystal structure is described via a peri-

electromagnetic field is treated classically. As shown in SecPdically varying dielectric functior(r), which is assumed to

Il A, the transverse components of the field are determine@® @ local, scalar, and frequency independent. All other con-
by Maxwell's equations with a spatially varying dielectric tr|but|ons are medla_\ted by the resonant .I|ght—matlter interac-
function. These equations include the coupling to the opticalion and are determined by explicitly solving the microscopic
material polarization whose time derivative appears as &duations of motion for the particle system. .

source in the equation for the electric field. Besides the time- AS iS well known, the current and charge density couple
dependent field, also the static field, i.e., the Coulomb interf© the vector and scalar potential, respectively, rather than to
action among charged particles, is modified in the vicinity 0fth_e eIectrqmagnetlc field components. These are_mtroduced
a spatially structured dielectric environment. The generalizedVith the aid of the homogeneous Maxwell equationsBas
Coulomb potential describing the interaction of the chargee VXA, E=-A-V ¢. Inserting the potentials in the inho-
carriers in a semiconductor near a photonic crystal can bsogeneous Maxwell equations, we obtain

obtained by solving an integral equati&ii?®as described in " 2 .

Sec. Il B. The Hamiltonian, which governs the dynamics of er)o = el . :

photoexcited electrons and holes in the semiconductor, is in- VXV XA+ ??A -T2 Vo+ i, (6)
troduced in Sec. Il C. The equations of motion describing the

dynamics of the optical material excitations are presented in 10

Sec. Il D where also the inclusion of nonradiative dephasing \v -e(r)(——A +V ¢,> =-ple. (7)

and relaxation is discussed. cat

Il. SPATIALLY INHOMOGENEOUS MAXWELL-
SEMICONDUCTOR BLOCH EQUATIONS

o _ From Eq.(7), it is obvious that the scalar potential is not
A. Inhomogeneous Maxwell's equations in photonic crystals  tryly an independent variable, but is determined by the vec-

Propagation of e|ectromagnetic waves through a macrotor potential, the diele'CtriC fUnCtion, and the Chal’ge denSity.
scopic material is governed by the inhomogeneous Maxwelln homogeneous media, the scalar potential can be expressed

equations in terms of the charge density only with the aid of the Cou-
lomb gaugeV-A=0. Within a semiclassical treatment, the
V.-D=p, (1) interactions induced by this part of the electric field are

treated fully quantum mechanically, whereas that part of the

V-B=0, (2 electromagnetic field that is associated with the vector poten-

tial is treated classically. In inhomogeneous media, the stan-
J dard Coulomb gauge leads to a nonvanishing scalar potential
VXE+ EB =0, (3)  even in the absence of external charges. Therefore, it is ad-
vantageous to introduce the generalized Coulomb gauge
V-€(r)A=023"38This gauge corresponds to a division into a
VXH- iD =j. (4)  transverse and longitudinal part of the dielectric displace-
at ment rather than the electric field, i.&~=D;+D_ with Dy

Here, E andH are the macroscopic electric and magnetic=—€(r)A andD, =~-€(r)V ¢. Within a semiclassical descrip-
fields,D andB are the dielectric displacement and magnetiction, the transverse part of the dielectric displacement and
induction fields, ang and] are the free charges and currentsthe magnetic field are treated classically and obey the
in the material, respectively. Maxwell's equations constitutecoupled wave equations

a set of 8 inhomogeneous differential equations for the 12

field components, where the charges and currents act as Vv X Dr +£B:0 (8)
source terms. For an interacting system, Maxwell's equations €e(r) ot '
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J _ 1 1
V XB - ug—Dr= i, (9 Ve(r,r'y=-— f Frv' ——— EF(I"r'), (15
at 4 Ir"—r|
wherejy is the transverse part of the current, which appeargyherek,(r,r')=-VVE(r,r’) is the electric field at the posi-
as a source term for the classical part of the electromagneticy, v que to a unit charge at. If the dielectric function is

field. , , , . piecewise constant, which is usually the case in photonic

In our numerical solutions, the spatiotemporal evolutiongysials, one can partially evaluate the volume integral ap-
of the electromagnetic field is obtained by solving the FDTDpearing in Eq(15) and use the boundary conditions for the
equation§.1_ These equations are self-consistently_ integrateQectric field E, and the dielectric displacemem, at the
together Wlth the SBE, see Sec. Il D, that determine the m%hterfacesaDij, which separate regior; andD; of different
terial excitations. dielectric functions. As shown in Ref. 23, one obtains

B. The Coulomb interaction 1 1 1

4drrege(r')|r —r’|

Within our semiclassical treatment, the field energy assoY (r.r')=
ciated with the longitudinal part of the dielectric displace-

ment is treated quantum mechanically and results in the Cou- _ 1 (i - 1)] da’ ni-D(r"r’)
lomb interaction among charged particles. Inserting the dme’; \& €/ )p, [r"=r| " I
definition of D, and Eq.(1) into the expression for the field !
energy, we obtain =Vo(r,r') +oV(r,r'), (16)
1 5 D.-D wheren;" denotes the unit vector normal to the surface”at
He= Ef f?(r) According to Eq.(16), VC is given by the sum of two con-
0 tributions.V, has the usual 1v—r’| spatial variation and is
_ 1 f v D additionally statically screened with the local value of the
T2 L dielectric function 1£(r’). The second termyV, appears as

a result of induced surface polarizations at the interfaces
- 1 J d*rpV - D, dDj;, which separate the regions of differentover which is
2 integrated. The magnitude @ may be large, if the dielec-
1 tric contrast is large and, in particular, if the charge is close
:—fd3r¢,(r)p(r)_ (10) to an interface since in this case the interaction with the
2 induced surface polarizations is strong.
The scalar potential is the solution of a generalized Pois- " contrast to the situation in spatially homogeneous me-
son equation dia, the generallzed _Coulomb potential is a function not only
of the relative coordinate,,=r —r’ but also of the center of
-V - [er)V ¢(r,0)]=p(r,t) &, (11)  mass coordinater ¢, =(my/M)r+(my/M)r’ with m;+m,
=M. The dependence of the generalized Coulomb potential
onr. ., obeys the same symmetry properties as the dielectric
function €(r). In systems where the dielectric function is
varying periodically in space, e.g., in photonic crystals, also
VC exhibits this periodicity.
-V [elr) VVE(r,r")]=8r —t')le, (12) The generalized Coulomb potential can be evaluated nu-
merically using an integral equation for the dielectric dis-
placementD, at the interfaces)D;;. This equation can be
obtained by applyingy(r)-V to Eg. (16), wheren;(r) de-
@(r,t) = f d?r'Ve(r,r)p(r',1), (13)  notes the unit vector normal to the surface aDefining the
normal component of the dielectric displacement by

with the charge density(r,t) as inhomogeneity. Defining
the generalized Coulomb potentf(r,r’) as the solution
of the generalized Poisson equation witl#-unction inho-

mogeneity

the scalar potential can be expressed as

yielding D,(r,r")=ni(r) - D(r,r’), (17)

1
He= > J dr J A’ p(r)VE(r,r")p(r’) (14 one obtain®:26

for the Coulomb energy. The generalized Coulomb potential N r-r’ . 1 €
describes the interaction among charged particles in an inho- D(r,r) =m(r) - + lim _(1 __>

g ged p Ir=r’]° ,-o, 4m &
mogeneous dielectric environment. ,

With the exception of a few analytically solvable geom- v f dani(r) - 2L ", (18)
etries, like, e.g., two dielectric half spaces separated by a D S, s
plane or a single sphere embedded into a material of different
dielectric constant? Eq. (12) has to be solved numerically with r,=r—yn;(r). To determineD,, Eq.(18) can be solved
for general situations. For this purpose, it is advantageous tby matrix inversion on a grid in real-space using the
start from the integral equatiéh?® Nystrom method? Inserting this solution into Eg(16) al-

ij
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lows one to determine the generalized Coulomb potekfital tions of H. In general, the eigenfunctions bk, in a crystal
in all spatial regions of interest. can be written as products of lattice periodic functions
U, k(1) and the envelope  funtions ¢, (r)
:exp(ikH-r”)goM,ki(ri) that vary on a length scale much
The Hamiltonian describing the optical properties oflarger than the lattice constant, i.e., ¥(r)
semiconductors and semiconductor nanostructures COﬂSiSiiﬂyku#Yk(r)%yk(r)aﬂ'k. Here, u denotes the band indek,
of three term¥’ all other relevant quantum numbersare the coordinates in
N the extended directions of the semiconductor nanostructure,
H=Ho+H,+Hc. (19 r , the coordinates perpendicular to the structure, @ngdis
the confinement function. For simplicity, we restrict the
notes the interaction of the semiconductor with the classica‘?malys's to a two-band situation considering pnly the Iovx_/est
L ~ i confinement subbands, i.e., a single conduction and a single
part of the electromagnetic field, ahtt describes the many-  gience band, respectively. It is, however, straightforward to

body Co_u_lom_b interaction among cha_lrged parti_cles i_”dUdin%xtend this approach to multiple bands by including summa-
the modifications due to the dielectric structuring discusseg s over the relevant bands in the following expressions.

earlier. According to the minimal coupling approach, WeAppIying the electron hole picture by,=ac, anddy=a’ _,,
have the single particle part of the Hamiltonian is given by

~ ~ 1
Ho+H, = f d’r 'ﬁT(r){ﬁ(p -eA)?+Vg(r) Ho= 2 efciCy + epd’ydy, (25
k

C. Hamilton operator

Here,I:|0 contains the single-particle band structuﬁa,de—

+ Vconf(r):| (r). (200  Where the sum ovdf is taken parallel to the heterostruc'gure
only and the subscript has been dropped for better readibil-
ity. Here, ef = Egq+ 1%k?/ 2m, and ,=%2k?/ 2my,, myy, are the

Here,m, is the electron masy/; is the periodic lattice po- ; .
Mo G b P effective masses for the electrons/holes, respectively, and

tential, Vonf IS the confinement potential in a system of re- E isth including th i A
duced dimensionality, and', ¢ are the Heisenberg creation GELIE IS bte _gaptmc uding i 3 con.lr:.emer; tﬁnergyi_ Linh

and annihilation operators for the electrons. The total particle 0 obtain a transparent description of the spatial inhomo-
currentj entering as source term into the dynamical equagenemes in semiconductor nanostructures close to photonic

tions for the transverse field components is obtained from thgrystals, we perform a coarse graining on the length sc_ale of
interaction Hamiltonian via an elementary cell, yielding the real-space representation

R R ﬁZVZ R ﬁ2v2 R
1 6H = | d,| & Ex - —2 |&, +d7| - L
j :———':—iw(p—%)w (21 Ho fd “{Cl(EG 2m, )Cl*dl( 2m, /)
Mo OA MolMg c 26
Using the Heisenberg equation of motion for the field opera-

tors, it is easily verified that the current can be expressews/here the operators
alternatively as the time derivative of the polarization, i.e.,

At d(Sk s +/ gt
J':——P=——szer$=—iifd3r|5A. (22 Cl(dl)_f(zw)ﬁe)(p( k- ry)eddy)
Mo OA

@nd ¢, (dy) create and destroy electrons of mass and
charge € (holes of massn, and charge &) atr,, respec-
tively, and é is the effective dimensionality of the system.

For the light—-matter interaction, we employ the dipole
approximation, which is obtained by a multipole expansion
over an elementary cell where only the dipole moment is
taken into account. A real space representation is again ob-
tained by a subsequent coarse graining, yielding

Since the total Hamiltonian can be changed by a total tim
derivative without altering the equations of motion, the dy-
namics of the system can also be obtained from the dipol
interaction Hamiltonian

H, :—Jd3rET- P, (23)

where we used the notatidB;=—-A =D/ €ye(r). Note that

Et is not transverse but corresponds to the classical part of N s A L AAH

the electromagnetic field. This ig not yet the dipole apgroxi- H = f draE(t) - (s + Gy, @7

mation but is exact. The macroscopic polarization current . o

(91 %)(P) has to be computed from the Heisenberg equation¥ith the operator for the interband polarizatid?(ry,t)

of motion =p(d,&,+¢d]). Here, E;(t)=E(r,,t) is the space-
g dependent classical electric fielg, is the interband dipole

ih—(P) ={[P,H]). (24) matrix element, whichA is trea‘Eed as a real space-independent

A material constant, and,¢, (¢;d;) describes the local inter-

In order to solve these equations, it is convenient to expantiand coherence, which corresponds to destroyingating

the creation and annihilation operators in terms of eigenfuncan electron—-hole pair a.
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The Coulomb interaction is obtained by usingr,) As an example, we discuss the dynamics of the off-
=—e(cyc;—dydy) in Eq. (14) for the charge density. It is diagonal interband coherenpg,=(py,)=(d,&,). Considering
worthwhile to note that the Coulomb energy contains thethe contribution of the Colulomb interaction to the time de-
interaction between mutually different electrons and holes agyative of the interband coherence we obtain
well as the self-interaction of the charge density with its own
potential. While the self-interaction with the bulk part of the
Coulomb potential is unphysical and can be removed by tak- P
ing the normally ordered product of the field operators, the'ﬁa Pralc = ([Pr2HcD
self-interaction with induced surface polarizations at the in-
terfaces of the photonic crystal is physically meaningful and - e2<1(>\/ + lé\/ _ Vc)p
must be included’28 Using the notationVe(ry,r,)=V5, 271 22 T1zjHiz
:V22+ 6V, for the generalized Coulomb potential, the Cou-
lomb Hamiltonian read$-26 +é f dr5(Vg, — VS ((C501C,C5) + (d5d104C,)) .

fic= %2 f dr, f P VSEIEEE + Ay, — 28 daL,E,) 30
e? s e A As a consequence of the many-body Coulomb interactions,
+5Jd r16V11(C1Cy +dpdy). (28)  we find on the right-hand side of E¢30) a coupling to
four-operator expectation values, which is the beginning of
Here, the terms in the double integral represent the repulsivél® usual - infinite hierarchy problem of ~many-body
electron—electron and hole-hole interactions, as well as thehysics-*'*“°A closed set of equations is obtained by using
attractive interaction between electrons and holes. The ladhe time-dependent Hartree—Fock factorization, which ap-
term of Eq.(28) describes the self-interaction of the electron Proximates the four-operator expectation values by products
and hole with their respective image charges. The self-energ§f tWo-Operator expectation valu€s:*“° This means that
(€2/2)6Vy; acts as a spatially varying single-particle poten-the four-operator terms appearing in H§0) are approxi-
tial for the electrons and holes. One could thus add the termi@ated by
involving (€2/2)6V,; to Hy and solve the resulting single-
particle Hamiltonian by calculating Bloch-type electronic
eigenfunctions using the spatial periodicity corresponding to
the period of the photonic crystal, see Sec. Il D 2. Due to the
very different length scales involved, i.e., the long wave- N N N N
length of light and the small lattice constant, numerical (d3d103Co) = (d3d1)(dsCy) = (d3d3)(d1Co) = N31P32 = N3gP12,
evaluations of this Bloch approach are rather demanding. (31)
Nevertheless, this approach can be used to analyze the
density-dependent optical absorption in quasi-equilibrium
situations?6:33 where the electrorhole) populations and intraband coher-
encesnt,=(¢ic,) (nfl,=(d{d,)) have been introduced.
D. Equations of motion Using such factorizations also in the equations of motion
for n® andn" and evaluating the remaining commutators with

e descried by he Hoisenberg equatons for th roevaffo 1C, e SHAr 3 osee o 1 souped Sons of
quantities describing the material excitatiddd.he equation 9 Y Xp
of all two-operator quantities. These equations are known as

of motion for the expectation value of an arbitrary operatorthe SBE in time-dependent Hartree—Fock approximation.

(C304CoCa) = (C3C)(d1Cp) — (C3C)(d1C3) = NG3P12— NGyP13,

The dynamical properties of the semiconductor syste

0=(0) is obtained from For our inhomogeneous system the explicit form of the SBE
is
J -
iﬁa@(t) =([O,H]). (29
3 h? h? e e
A ~ |h—p12={EG——Vi——V§+—é\/M+—b\/22—V§_32
Whereas the commutators with, and H, lead to a set of ot 2my, 2me 2 2

closed equations of motion on the single-particle level, i.e.,
optical Bloch equations, the many-particle part of the Hamil- - eZJ dor3(VE3— V5, (NS, - n23) P12
tonian, H¢, introduces coupling to an infinite hierarchy
of correlation functiond®'44%° To be able to analyze the s . h
optical properties of a spatially inhomogeneous system +e’ | d r3(V§fg—V§2)(n32p13—n31p32)
within reasonable numerical limits, we restrict our present
analysis to the level of the time-dependent Hartree—Fock E.8.—E.nt hyoiz?

S -m- —Eqn{,—Eonyy) +ih— , (32
approximation3 m - (E1012— Eang, =~ Eonyy) 7t P12lcorm (32)
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) 5 e? sults presented in the following are obtained using incident
Iﬁ&nﬂ: ﬁ(vl Vi) - 0\/11 > - Va2 laser beams of weak intensities. Therefore, one can describe
the light—-matter coupling perturbatively and classify the ma-
terial excitations according to their power in the optical field.
— 3 _ e _ h e
eZJ d%r3(Vis = Vo) (Mg~ nigg) [ Let us assume that the semiconductor is in its ground state
before the optical excitation, i.e., the electron and hole popu-
5, e e * lations as well as the intraband and interband coherences
" eZJ 0°r3(Vis = Vo) (N33 + PaaPao) vanish initially. In this case, the linear optical properties of a
p semiconductor are determined by the equation of motion for
+ - (Eqpia— EaPyy) +ifi— NS com (33)  the linear electron-hole interband coherence
1 1 e
ih— p(l) =|Eg= 5 —Vi-5—V3+ —(8Viy+ 8Vy))
2 e? e? 2m 2 2
0 h e s h Me
ifi—nl,=| ——(Vi-V3) - 5\/11 - NV
at 2m, 2 )
— V5, [P — p - Eidu, (395

" 3 (VC. = VE) (N n) [ nh
ezfd oVis ™ Vap)(gs = Mg oz where the superscrifgfl) indicates that the optical polariza-
tion is calculated in first order in the light field. By diagonal-
+e2f dr 3(VS— VS, (nflan, + prapas) izing the homogeneous part on the right-hand side of Eq.
(35), one can obtain the energies of the excitonic resonances
. 9 ex and the corresponding eigenfunctiofig(r,,r,). For ex-
+p- (Eapor— Eoppp) + iﬁa Mieor- (34 citation with a homogeneous light field the oscillator strength
of each excitonic state is proportional t&|[drWy(r,r)[?,
In Egs. (32«(34), the terms denoted big,, represent all i.e., to the absolute square of the electron—hole overlap, since
many-body correlations that are beyond the time-dependetthe field generates electrons and holes at the same position in
Hartree—Fock limit31440 In the analysis presented here, space, see Eq&27) and(35). For an inhomogeneous excita-
these correlation terms are either neglected completely dion the spatial overlap of the polarization eigenfunctions and
treated at a phenomenological level. the light field redistributes the absorption strengths of the
The single-particle self-energia®/ appear as potentials excitonic states.
in the homogeneous parts of the equations of motion, Egs. In second order in the light field, carrier populations and
(32)—(34). For the electron—hole interband coherepggthe  coherences are generated. This process is described by
homogeneous part of the equation of motion is furthermore

influenced by the electron—hole Coulomb attractiad\%,, ins ne(2) - ﬁ_z(vz_v 2) - e—zé\/ll 92&/22 ne?
which gives rise to excitonic effects in the optical spectra. a2 . 2 12

Additionally, integrals over the generalized Coulomb poten-

tial VC and products op’s andn’s appear in Eqs(32)—(34), + f d5r3e2(vf3— ch)(p(l)) p(l)

and all equations of motion contain sources representing the

driving by the electric field. ) L (1
Equations(32)—(34) together with FDTD equations for TH (Elp ~Ealpsi)). (36)

the electromagnetic field allow for a self-consistent descrip- ) &2

tion of the dynamical evolution of the coupled light and ma- ins J nri(zz - {ﬁ—(Vi— V) - c‘Nu

terial system, where the field is driven by the material polar- at

ization that is in turn driven by the electric field. This set of

equations may be solved for arbitrary field intensities. It con- + f d5r3e2(v§33—vcz)(p ))* p

tains many-body Coulomb effects and can be used to inves-

tigateT hig.h—intensity effgcts like, eg., excitonic Rabi- - (Elp(D Ez(p ) ). (37)

flopping, in a self-consistent fashion. Due to the self-

consistency of the solution, radiative decay processes amy diagonalizing the homogeneous part on the right-hand

included automatically, yielding the correct radiative decayside of Eqs(36) and(37) one can determine the electron and

rates for the polarization and the carrier populations evefole eigenstates. These can be populated according to Fermi

within a semiclassical description. The only aspect a semifunctions and inserted into E¢32) if one wants to study the

classical approach cannot account for is spontaneous emigensity-dependent  absorption  in  quasi-equilibrium

sion, since the source term contains the expectation value @ituations!326:33
the field only and no fluctuations. Note that due to the spatial integrals which appear as a

consequence of the many-body Coulomb interaction it re-
quires a lot more effort to numerically solve Ed86) and

In order to eliminate density-dependent shifts of the(37) than the equation for the linear polarization, E85),
single-particle energies and to prevent rapid dephasing anghich contains no spatial integrals. However, if the dynam-
relaxation due to carrier—carrier scattering, the numerical reics is coherent and one considers only terms up to second

=8V (2)
2 22

1. Low-intensity limit
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order in the field, i.e., in the cohereg®-limit, it is actually  is possible to avoid the evaluation of the space integrals in
not necessary to solve the combined set of E§5)—(37).  the equations of motion. This can be achieved by decompos-

Using the equations of motion, one can easily verify that ining ni(zz) and n'l‘(zz) into a coherent and an incoherent part via
this limit the carrier populations and intraband coherences o2 _ e(2):coh . e(2)incoh
are determined by the interband coherence via the sum rules N2 =Ng2 +N; ' (40)
R h(2) h(2);coh+ h(2);incoh
ngy' = f drsp53(psy)", (38) nyy = ngg O gy O, (42)

The coherent parts af*? andn"@ are obtained using Egs.
(38) and(39), i.e., they decay with a time constant B/ 2.

By inserting Eqs(40) and (41) into Eqgs.(36) and(37), re-
spectively, and subtracting the coherent parts, one can deter-

. . . .__mine the following equations of motion for the incoherent
i.e., they are given by spatial integrals over products of I'”ea[erms:

polarizations.

= [ oo 9

iﬁine@;incoh: ﬁ_Z(VZ_ VZ) _ e—zb\/ + Ezb\/ pe(2)incon
2. Dephasing and relaxation a 12 om, 1 2 T 22 |N12

Due to the self-consistent solution of Maxwell’s equations - szrcon 1 1 _ n613(22);incoh_ nggd
together with the SBE, the radiative decay of the photoex- —ianp N — - o T
X . o ; : : T, T2 T
cited optical polarization and the populations is automati-
cally included in our description. However, in real systems (42)
the material excitations often decay on shorter time scales.
The coupling between the electron and the phonon systen;i
can be responsible for this, as well as the many-body corré?

d o h? e e .
_n2(22),|ncoh: (Vi _ V%) _ —é\/11+ _b\/ZZ I"I?(Zz)’mwh
. SO S . ot 2my, 2

lation contributions, which include Coulomb scattering pro-

2

cesses. Since a microscopic treatment of these processes in _ mnh(z);mn( 1 1 )

spatially inhomogeneous situations requires a very high nu- 12 T, T,2

merical effort, we model them phenomenologically by insert- ph(@yincoh _ h.eq

ing decay and relaxation times into the equations of motion. —jpx2 12 (43)
The nonradiative decay of the interband polarization, of- T

ten called dephasing, is assumed to be exponential and

described by addingi#p\; /T, to the right-hand side of EQ. 40 intraband coherences have two sourceB, # T,/ 2 they
(35). The total polarization decay timE, contains radiative

e Lo . ) S are generated directly from the coherent terms. Furthermore,
ang_lnonrad|at|ve contrlbgtlpns and is obt.amedTg Trad _the relaxation toward quasi-equilibrium distributions always
+T, . In the coherent limit, the dephasing of the carrier|a54s to incoherent terms, sine&®dandn"ed are determined

populations and intraband coherences is induced purely byy the total (coherent and incoherénpopulations, see the
the finite lifetime of the photoexcited carriers. Thus, the Car'following.

rier populations and intraband coherences decay with the ', order to determine the quasi-equilibrium distributions,

time constantrz{z. Since the radiative contributions are iN- first the effective single-particle Hamiltonian defined by
cluded automatically through the self-consistent solution of

the MSBE only the nonradiative contributions {
—ihnS?1(T,/2) and -AN]Y/(T,/2) must be added to the

f:squations(42) and(43) show that the incoherent populations

single—particle: Hband structure” HCoqumb self-energies

2 2
right- hand sides of Eq$36) and(37). In this case, the sum - 5 | at _ ﬁz_v P RV -
- - e2) h(2) d’ry| C;| E Ci+d; d;
rules, Eqs(38) and(39), remain valid and thus,;” andn,> 2m, 2m,

can be calculated using). 1 .

However, in reality the coherent limit is often not well +—Jd5rlé\/11(6{61+d’1'd1) (44)
suited to describe the dynamics of the electron—hole excita- 2
tions in semiconductors. Typically, the populations and intrajs diagonalized. Note that, besides the kinetic energies also
band coherences do not vanish on a time scale similar to t%e Spa“a”y Varying Se|f-energiesy which act as inhomoge_
dephasing of the optical polarization, but rather become innegus potentials, are included in Hd4). By diagonalizing
coherent and approach quasi-equilibrium distributions in thghjs Hamiltonian separately for electrons and holes using the
respective bands. This thermalization process can be mo@patial periodicity induced by the photonic crystal, the dis-
eled by adding #(n%? —n$$9/T, and A (n]¥ -nl$9/T,, persionse;, where v labels the mini-bands, and the corre-
where n5? and nf$ denote the populations and intraband sponding Bloch-type eigenfunction®/(r) are obtained.
coherences in quasi-thermal equilibrium, to the right-handsince in the situations analyzed in the following the spatial
sides of Eqs(36) and(37). Since in this case the sum rules, period is relatively large, sufficiently marigbout 100 in the
Egs.(38) and(39), are not valid any more, the dynamics of one-dimensional situation considered heoé the energeti-
n%? andnf?’ has to be determined by solving E¢86) and  cally rather narrow mini-bands have to be included in the
(37) together with Eq(35). However, also in this situation it calculation.

195321-7



PASENOWet al. PHYSICAL REVIEW B 71, 195321(2005

In this single-particle basis, the states are populated ac- ]
cording to a quasi-equilibrium distribution, i.ey, is given
by the Fermi functior. The total densityr at temperaturd
can be expressed as y H

n=>n.=> F(e, T, m), (45) -
k,v k,v

whereny denotes the population of stadg with energye,.
Since the total densitp depends on the chemical potential,
© needs to be determined self-consistently. Having obtained
ny, we then transform back to real space since this is numeri- iS
cally advantageous for performing the dynamic calculations.
In the time-dependent solutions of the equations of motion quantum wire
the carrier density is changing during the optical excitation. I
Therefore, the numerically calculated time-dependent den-
sity n(t) is used to determine the quasi-equilibrinfg4t) FIG. 1. Schematical drawing of the considered semiconductor
andn{s4t) real-space populations and intraband coherenceghotonic-crystal structure. The photonic crystal is a periodic one-
dimensional array of dielectric slalpe=13) which are separated by
IIl. NUMERICAL RESULTS air (e=1). The lengthL of the unit cell iny direction is 180 nm. The
substrate below the photonic crystal is made of the same material as
the dielectric slabs. It surrounds the array of parallel quantum wires
Numerical solutions of the MSBE for semiconductor which liesS=2.6 nm underneath the photonic crystal. The distance
photonic-crystal structures typically require a considerablédetween adjacent wires, which is also the length of the unit cell in
amount of computer time and memory. On the one hand, i direction, isD=30 nm. For the widtiW of the slabs we use values
general situations a three-dimensional space discretization @ 0, 60, 90, 120, and 180 nm, respectively. The situatidi) and
necessary for FDTD solutions of Maxwell’'s equations. Since’V=L=180 nm are denoted by half-space and homogeneous case,
the optical wavelength and the photonic structure have to bespectively, as explained in the text. The heighof the slabs is
resolved with a suitable accuracy, such evaluations have @ways 700 nm.
be performed with a high number of grid points. On the other ;6 {4 the light propagation through the dielectric struc-
hand, due to the generalized Coulomb interaction and thge the optical field is spatially inhomogeneous at the posi-
coupling to spatially inhomogeneous light fields, the analysigions of the quantum wires. Furthermore, since the wires are
of the material excitations has to be performed taking intpriented perpendicular to the dielectric slabs, the generalized
account both the relative and the center-of-mass coordinategoulomb interaction varies periodically along the wires. Our
Thus the SBE have to be solved for a spatially inhomogemodel system thus includes both a space-dependence of the
neous situation where different length scales have to be reslectromagnetic field and space-dependent modifications of
solved since typically the exciton Bohr radius is about onethe semiconductor properties.
order of magnitude smaller than the optical wavelength. For later purposes, we introduce two reference systems.
In order to keep these numerical complexities within rea-The limit W=L is referred to as the homogeneous case, since
sonable limits, we chose for the analysis presented in thithe dielectric—air interface is far awa§s+H=702.6 nm
paper a model system consisting of a one-dimensional arrafyom the semiconductor quantum wires and thus the modifi-
of dielectric slabge=13) which extend irz direction and are  cations of the Coulomb interaction are negligible. In the sec-
separated by aife=1), see Fig. 1. The substrate below this ond limit W=0, which is denoted as the half-space case, the
dielectric structure is made of the same material as the diplanar air—dielectric interface is very clo€&=2.6 nm) to the
electric slabs. Light propagating in this structure may createsemiconductor wire array. Therefore, the Coulomb interac-
photoexcitation in an array of parallel semiconductor quantion is significantly modified. Due to the planar interfaces,
tum wires, which extend ity direction perpendicular to the the generalized Coulomb potential is homogeneous with re-
slabs and are separated from the photonic structure by thepect to the center-of-mass coordinate along the quantum
distanceS. In y direction the unit cell with length. is re-  wire for both limiting cases.
peated periodically. In addition, periodic boundary condi- In our calculations, we solve E¢18) for a single dielec-
tions are also used indirection with periodD, which is the tric slab, insert the solution in E¢L6) to obtain the modified
distance between adjacent quantum wires. The paramete@oulomb interaction, and add the resultiay for the two
used in the numerical calculations are as follows: the lengtimearest slabs neglecting the surface polarizations between
of the unit cell iny direction isL=180 nm, the height of the them. Numerical tests have justified this approximation if the
slabs isH=700 nm, and for the widthV of the slabs differ- distance between the slabs is not too small. The edges be-
ent values are used. The parallel wires are separated by tween the dielectric substrate and the slabs have been
=30 nm and the distance to the photonic crystalSs smoothed as shown in Fig. 1. This avoids numerical prob-
=2.6 nm. This value is assumed to be small in order to oblems when solving Eq(18) using the Nystrom method and
tain a significant modification of the Coulomb interaction in takes into account that realistic photonic crystals made by
the quantum wires. etching techniques have no sharp edges.

A. Semiconductor photonic-crystal structure
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B. Linear excitonic absorption

n

3] z/**A¢ renusiod ejonred ejbuis

In this section, the excitonic resonances in the linear ab-
sorption spectra are obtained by solving the linear polariza-
tion equation, Eq(35). We assume the incoming external
light field to be a plane wave propagating in negatkvdi-
rection. The incident electric field is linearly polarizedyin
direction, i.e., in the direction of the quantum wires. The
andz components of the electric and magnetic fidig,and
H,, respectively, have slowly varying Gaussian envelopes
and oscillate in time with central frequencies close to the
band gap frequency, i.eEg/A. The linear spectra, which are
analyzed below, have been computed using the net energy
flux through the boundaries of our FDTD simulation space

"
py

Coulomb modifications & V,, [E_]

-180 -90 0 90
position r, [nm]

AE= J don - S, (46)

FIG. 2. Modification of the Coulomb potentiabV(r,,rq)
=6V, (solid) in the quantum wires for positions=-90 nm(a),  WhereS=E X H is the Poynting vector. The net flux contains
r,=—45 nm(b), andr,=0 nm (c) as function of positiorr;. The  all information about the absorbed or gained energy per unit
single-particle potentialéV(r,,r1)/2=6V,1/2 is also displayed time. In spectrally resolved experiments, the net flux is mea-

(dashegl The dielectric slabs of the photonic crystal awé  sured over all times and analyzed in frequency space
=90 nm wide andH=700 nm high. Positions; underneath the

slabs are indicated by the gray areas. The energy unit is the three- _ =
dimensional exciton binding energy of Gakg=4.25 meV. AE= [ dtAE= | doa(w)lg(w), (47)

Figure 2 shows the Coulomb modificatiof¥(r,,r;) in  where
the quantum wires for three fixed, representative positions
r,=-90 nm(a), r,=-45 nm(b), andr,=0 nm(c) as function
of positionry. Positionsr, underneath the 90-nm-wide di-
electric slabs are indicated by the gray shading. The Cou-
lomb modificationséV are small for positiong, directly — and lg(w) is the intensity of the incoming light field. The
underneath the slabs, like in ca@®, since in this situation absorption spectra shown in the following have been ob-
the distance to the dielectric—air interfaces of the photonid¢ained by computingy(w) from Eq. (48).
structure is largedV is bigger in the regions between the  The semiconductor parameters used in the following are
slabs, as can be seen in c&gg because in this situation the =35 eAey for the dipole matrix elementn,/m,=4 and
distance to the dielectric-air interfaces is small. Betweenn,=0.066n, for the electron and hole masses, aRg
these extremal values, there is a quite sharp transition whicB1 42 eV for the energy gap. Considering a dielectric con-
takes place within a few nanometers directly under the edgestant ofe=13, these parameters result in a three-dimensional
of the_slabs, i.e., at 45 nm in Fig. 2. The smgle_-parncleexciton binding energy oEg=4.25 meV and a Bohr radius
potential&V(ry,r,)/2, dashed line in Fig. 2, shows this sharp o 5.~ 13 nm. In most of the calculations, nonradiative ho-

transition and follows the periodicity_ of the photonic crystal. mogeneous broadening is modeled by introducing a decay
For short distancel;-r,|, the magnitude and space depen—rate of 'y:ﬁ/T;:1 meV in the equation of motion of

de_nce of the modified Coulomb interaction calculated forthe interband polarization. The Coulomb potential for
r,=—90 nm, i.e., caséa) in Fig. 2, differ only marginally

from those which arise for the half-space c&a¥é=0). The t_he one-dimensional wires .ha?’ been regulari_zed uslpg
=1/(|r|+ag).**? The regularization parameter is chosen as
curves(a) and (b) show a strong decrease of the Coulomb_ o
modifications with increasing distance betweeg@andr,. For 6.‘0_0'];6.6‘5' Except for changes of the nonradiative decay
particle positionsr, underneath the slab, i.e., cags, sv  UMe T, in Secs. Il C and Ill D, these parameters are kept
depends only weakly on distance for distances smaller thafonstant in the following. Additionally, we consider dielec-
the half slab width, and decreases significantly if the distanc&iC slabs with a thickness 0V=90 nm, except in Fig. 3
exceedsanN/ 2. where the influence ofV on the excitonic absorption is in-
Figure 2 shows that the spatially periodically varying di- vestigated.
electric environment introduces a periodic single particle po- To obtain the results presented in the following, the
tential for the electron and holes, with minima underneathiFDTD calculations are performed on a grid with a spatial
the dielectric slabs. This single particle potential influencegesolution of 5 nm, which requires a temporal resolution of
the optical and electronical properties of the quantum wiredt=dx/(2c)=8.3x 108 s3! The SBE have to be solved
via electron and hole confinement effects and a periodiavith a resolution smaller than the exciton Bohr radags
modulation of the effective band gap. Furthermore, excitonicTherefore, we use here 1.3 nm, i.esag/10. The self-
properties are additionally altered as a result of the modifiedtonsistent solution of the MSBE is done in the following
space-dependent electron-hole attraction. All these effecischeme: With the electric field at tintiethe magnetic field at
are analyzed in the following. t+dt/2 and the polarization dt+dt are computed. The po-

a(w) = Ii f do(E"(r,w) X H(r,w) +c.c)-n, (498
0
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1 @ significantly by the width of the dielectric slabs. With de-
01 /)\ creasing width, the absorption of the lower homogeneous-
) 4 3 like peak becomes smaller while that of the upper half-space-
0.01 like peak increases.
1 Further information on the relevant exciton resonances is
() /\/\iigi shown in the insets of Fig. 3. Diagonalizing the linear polar-
- 0.1} % £ ization equation, Eq(35), for one unit cell with periodic
Z 0.01 boundary conditions yields the energetic positions of the ex-
S | citonic states. Since the optical field at the quantum wire is
g (0 m | > spatially varying, the oscillator strengths of the different
= 0.1} ° o2 resonances have been computed by fitting the self-
'%_ consistently evaluated linear absorption spectra by a sum of
g 091 : Lorentzian curve; A/ ((E-ex;)?+9%), wherey=1 meV is
§ (d) the decay constant used in the equation of motion for the
0.1} 4 . interband polarization. The insets of Fig. 3 show that except
0.01 for the homogeneous and the half-space cases, which are
4 dominated by a single excitonic peak, more than two exci-

tonic resonances contribute to the absorption. However, for
all considered widths of the dielectric slabs the two most
strongly absorbing resonances are at the energetic positions
‘ : : : of the homogeneous and the half-space excitons.
-6 -4 =2 0 2 4 . . . .
(E-E ) [E.] The number of quantized exciton states is determined by
¢ B the width of the dielectric slabs. For a 180-nm-wide slab, i.e.,
FIG. 3. Excitonic linear absorption spectra for dielectric slabs ofi" theé homogeneous case, the Coulomb modifications essen-
widths W=180 nm(a), W=120 nm(b), W=90 nm (c), W=60 nm tially vanish and only the homogeneous-éxciton reso-
(d), and W=0 nm (e), respectively, on a logarithmic scale. The nance contributes, see FigiaR For slab widths in between
height of the slabs is 700 nm in all cases. The insets show thd80 and 0 nm potential valleys appear, see Fig. 2. The
decomposition of the excitonic resonances into the contributingnaxima and minima of the space-dependent potential lie be-
bound excitonic states and their oscillator strengths on a lineatween the values of the half-space and the homogeneous
scale:(a) corresponds to the homogeneous case(entb the half-  case. The potential valleys are deepest for intermediate slab
space case. The calculations have been performed using a dampingdths, i.e, for W=90 nm=L/2. Correspondingly, Figs.
of y=1 meV for the interband polarization and a quantum wire 3(a)—3(e) nicely reflect the transition from the homogeneous
length of five unit cells with periodic boundary conditions. to the half-space case which takes place with decreasing slab
width.
larizations att andt+dt are used to determine its time de-  The logarithmic plots of the linear absorption show that
rivative att+dt/2 which together with the magnetic field the band gap appears atHg and ~4 Eg for the homoge-
allows us to evaluate the electric field tatdt. Then these neous and the half-space case, respectively, see Figs. 3
steps are repeated. and 3e). Thus the exciton binding energy, i.e., the energetic
For the case of a semiconductor quantum well placedlistance between the lowest exciton resonance and the onset
close to a planar dielectric—air interface, image charge effectef the continuum, increases fromg in the homogeneous
cause a shift of the single-particle energies, i.e., the band gagase to=7.2 Eg in the half-space case. Qualitatively similar
shifts to higher energies. Since the electron—hole attraction ikgsults have been obtained for quantum wells close to two-
increased close to air, the exciton binding energy increases gémensional photonic crystaté:>In Figs. 3a) and 3e), the
well.2328 In semiconductor photonic-crystal structures both2s-exciton resonances are visible as small peaks at
the band gap and excitonic binding energy become space—0.5Ez and =~3.1Eg. For energies above=3.4 Eg the
dependent*2°The band gap variation induces potential val- continuum absorption is smooth also for the spatially inho-
leys underneath the dielectric slabs which give rise to conmogeneous cases, FiggbB-3(d). The inhomogeneity of the
fined single-particle and exciton states, see insets in Fig. 3ystem causes the appearance of small absorption peaks in
These local potentials affect the linear absorption spectra arletween=-0.5Eg and ~3.1 Eg which can be viewed as
cause the double-peakeds-@xciton resonance visible in modified higher excitonic resonances.
Figs. 3b)-3(d). Note that the spectra are plotted on a loga- For a more detailed understanding of the excitonic reso-
rithmic scale which emphasizes the continuum absorptionnances, we show in Fig. 4 also the polarization eigenfunc-
For comparison, also the homogeneous and the half-spatiens, which belong to the excitonic states of Figc)3These
cases are shown in Figs(a® and 3e), respectively. Figure 3 polarization eigenfunctiond’y(r,,r,) have been obtained by
demonstrates that the spectral positions of the two excitonidiagonalization Eq(35) and are real, since we use one unit
peaks are hardly affected by varying the width of the dielec-cell with periodic boundary conditions. Shown in Figbsis
tric slabs. Whereas the lower exciton energy agrees with théhe spatial variation of the eigenfunction for equal electron
position of the exciton in the homogeneous case, the uppend hole positions, i.eWy(r1,r1). The three lowest states are
one corresponds to the half-space case. In contrast to thecalized in the potential valley underneath the dielectric
energetic positions, the heights of the maxima are influencesdlabs, see Figs.(d) and 4c). They look similar to usual
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FIG. 4. (a) Linear excitonic absorption spectrum for the param-  FIG. 5. Contour plots showing the spatiotemporal dynamics of
eters considered in Fig.(&. The lines indicate the spectral posi- the coherent electron densinﬁ(lzm’h, see Eq(38), along one quan-
tions and the oscillator strengths of the contributing excitonic resotum wire unit cell. The system is excited by a Gaussian pulses of
nances(b) Eigenfunctions of the interband polarization obtained by 2 ps duration(FWHM). The central frequencies of the pulses,
diagonalizing Eq(35). Shown is the spatial variation of the polar- are tuned to the four lowest exciton staté®: 7iw =Eg—4.05Eg,
ization eigenfunction for equal electron and hole positions, i.e.(b) #iw =Eg—-3.83Eg, (¢) Aw =Eg—-3.46Eg, and (d) fw_
Wyi(ry,ry). The dotted lines indicate the eigenenergigsand cor-  =Eg—3.16Eg, respectively. The dielectric slabs a=90 nm
respond to the zero polarization axés) Corresponding single- wide andH=700 nm high. The calculations have been performed
particle potential induced by the spatially-varying dielectric assuming a fully coherent situation, i.e., nonradiative dephasing and
environment. thermalization have not been conside(é’gi,T;Hoo). White corre-

sponds to the maximal density and black to zero density in each

quantum mechanical eigenfunctions of a particle which it

confined in a box-shaped potential and show an increasingieq using five unit cells for the quantum wire with periodic
number of nodes with increasing energy. Due 1o its highelndary conditions. This number of unit cells is required to
energy, the fourth state has strong contributions for positiongpain a converged continuum absorption. The exciton reso-
in between the dielectric slabs, which explains its half-space sces are. however already stable for just one unit cell.
like character. The energetically higher fifth and sixth stateSrherefore, it is justified to reduce the numerical requirements
contribute negligibly to the excitonic absorption. oy the following investigations by considering one unit cell
When diagonalizing Eq35), we obtain also polarization ity periodic boundary conditions.
eigenfunctions which are antisymmetric, i.elx(ry,ry) The densities are calculated for excitation with laser
=-Wx(-r1,—r,). Because of our initial conditions for the pises of weak intensities up to second or@g?) in the
light field these antisymmetric solutions of the polarization|ight—matter interaction. In this section, we focus on the fully
are not excited and do not contribute to the absorption. Thigonerent dynamics and neglect nonradiative dephasing and
is due to the fact that the incident light field is a homoge-yg|axation processes, i.e., the linfif, T,— . The coherent
neous plane wave which propagates in negatidirection.  gjectron density is obtained by solving E@5) and using

The photonic crystal destroys the spatial homogeneity of thgq_ (38). Figure 5 shows the spatiotemporal dynamics of the

field but maintains its mirror symmetry with respect to the electron densityni(f);mh after excitation with a Gaussian

middle of one unit cell. Therefore, the overlap between thepulse of 2 ps full width at half maximurtFWHM) duration
symmetric light field and an antisymmetric wave function ut e pulise envelope and a central frequency which is tuned
vanishes. For a spatially structured incident light field ory, the four energetically lowest excitonic resonances shown

propagation in a different direction, the symmetry of the SySy, iy 4 For excitation at the three lowest resonances, Figs.

tem' is broken and the antisymmetric wave function can b%(a)—S(c), the electron density is basically concentrated at
excited. spatial positions underneath the dielectric slabs, i.e., between
+45 nm. Since the spectral width of the incident electric field
of 0.3Ez (FWHM of field intensity is comparable to the
energetic spacing between the resonances, the density is not
So far, we have focused on the linear optical properties otonstant as function of time. The pulses generate a coherent
the system, e.g., the excitonic resonances, their oscillat@uperposition of the exciton transitions which leads to wave
strengths, resonance energies, and space-dependent eigpaeket dynamics. However, comparing Fig&a)55(c) with
functions. In this section we start to investigate the intricatethe electron densities corresponding to the three lowest reso-
coherent wave packet dynamics of the electron density aftatances, see Fig. 6, shows that the resonantly excited excitons
resonant excitation of the excitonic resonances. The absorgive the strongest contributions to the density. When exciting
tion spectra shown in the previous section have been comat the fourth excitonic resonance, Figdh the electron den-

C. Coherent wave packet dynamics

195321-11



PASENOWet al. PHYSICAL REVIEW B 71, 195321(2005

—
()
=

{b)
L P N J 3 3

@
—, 2.78 2 5
w e g 2 2
— a )
il -3.o4=—-————ﬁ = = ,
1 () N
W -3.16 2 0 0
g L o 4 8 12 o 4 8 12
o
S L5l DOSDSOB. | © @ 4
c -3.46 s 3

QO -
o =] 3 3
2 = g2

c = 2
£ y U W N = =
3 -3.83 @, T 1 1
© ‘ 0 0

4.05 o 4 8 12 -4 0 4 8 12

-50 0 50 time [ps] time [ps]

pusiion [nm] FIG. 8. Temporal dynamics of the modulus of the spatially in-

FIG. 6. Coherent electron densities calculated using (B8) tegrated macroscopic optical polarization for resonant excitation of
and the polarization eigenfunctions shown in Figa)40n the left thel th'rdf gxcnc_)n, |.ef.,iiwL=E§—3.4E)6E23,5usmg Ga(ljjs45|5an Izser
side the energetic positions of the resonances are shown. The vajulses of durations o p®), 2 ps(b), 2.5 ps(c), and 4.5 ps(d)

tically displaced lines indicate zero density. ::;;V;IM) respectively. The system parameter are the same as in

sity is concentrated underneath the air regions of the photo- dind to th h in Fig. 6. A |

nic crystal. In this case the density dynamics correspondEeSp(.)g Ing ?:. e7cutrr\]/es S (')twtr'] n Igth ’ éan examp el’ we

essentially to a coherent superposition of the fourth and thirg@Ns1der in Fg. € excitation with a f>aussian puises

excitonic resonances, see Fig. 6. vv_hlch are tuned to the'th|rd lowest exciton state and have
By using spectrally narrower, i.e., temporally longer |aserd|fferer1[t temporatl' c“na’nons. The .:?hort fltﬁs FUIS?’ F(g)t,7 .

pulses, it is possible to selectively excite single exciton resoJenerates essen IaCy a superpt<|)3| ;ﬁn ot the ourkotwgzs excl-

nances. In this case the coherently excited electron densityF nic resonances. Lonsequently, the wave packet dynamics

constant as function of time and shows a spatial profile corsOWs a complicated pattern and the density covers all spa-
tial positions. For the 2 ps pulse, Fig(bJ, the time evolu-

®) 12 tion is basically dominated by the third and fourth excitonic
states since their energetic separation is smaller than the en-
ergy difference between the third and the second states. The
influence of the fourth state is reduced when the pulse dura-
tion is increased to 2.5 ps. Finally, for a 4.5 ps pulse the
coherently excited density shows no dynamics but just a
fixed shape which is determined by the wave function of the

(@ 12

9
6

9
6

time [ps]

3
0

3
0
90 -45 0 45 90 90 -45 0 45 90 third exciton resonance, cf. Fig. 6.

A similar analysis can be performed by monitoring the
time dependence of the spatially integrated optical polariza-
tion for different widths of the incident laser pulses. The
modulus of the polarization when exciting with a 1 ps pulse,
Fig. 8@, shows modulations with a few frequencies. For the
2 ps pulse, Fig. @), and more clearly for the 2.5 ps pulse,

0 0 Fig. 8(c), the modulations are dominated by a single fre-
90 45 0 45 90 -90 -45 0 45 90 quency, i.e., in these cases only two excitonic transitions
Prositian o] Fesitien [l contribute strongly to the polarization. For the long 4.5 ps

FIG. 7. Contour plots showing the spatiotemporal dynamics Ofpulse, Fig. &), only a smgle_ eX_C|ton resonance contrl_butes
the coherent electron densi 12);coh, see Eq(38), along one quan- and (_:onseq_uently the polarization shows no modulations as
tum wire unit cell. The system is excited by Gaussian pulses of 1 péun?“oﬂ of time. Note th_at_the very SlOV‘_’ depa_y of the pOIar'
@), 2 ps(b), 2.5 ps(c), and 4.5 psd) duration(FWHM), respec- ization |s.due to the .radlatlve decay which is included in our
tively. The central laser frequency has been tuned to the third exciS€lf-consistent solutions of the MSBE.
ton resonancehw =Eg-3.46Eg. The dielectric slabs aren Such investigations have also been performed for the
=90 nm wide andH=700 nm high. The calculations have been holes. The results are qualitatively similar to the ones ob-
performed assuming a fully coherent situation, i.e., nonradiativdained for the electrons. However, due to the bigger effective
dephasing and thermalization have not been considerethass of the holes they are more strongly confined in the
(T, T,— ). White corresponds to the maximal density and blackpotential valley and therefore their density shows somewhat
to zero density in each plot. more pronounced maxima and minima.

time [ps]
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FIG. 9. (a) Single-particle potentialdV,;/2 and (b) space- FIG. 10. Contour plots showing the spatiotemporal dynamics of

o2
dependent quasi-equilibrium electrsolid) and hole(dashegicar-  the coherent electron densm)?l), see Eq(40), along one quantum
rier densities, i_e.nillh:eq’ for an average density af,=0.001/Ag wire unit cell. The system is excited by a Gaussian pulses of 2 ps
(dotted at a temperature of 50 K. The width of the dielectric slabsduration (FWHM). The central frequencies of the pulses, are

is 90 nm. tuned to the four lowest exciton statds) w =Eg—4.05Eg, (b)
ﬁwL:EG_S.SS EB! (C) ﬁwL:EG_3.46 EB! and (d) th
D. Wave packet dynamics with dephasing and relaxation =E~3.16Eg, respectively. The dielectric slabs a®/=90 nm

o . . wide andH=700 nm high. Nonradiative dephasing and relaxation
Exciting semiconductor heterostructures with a short op- rocesses have been included uqugT;:G ps at a temperature

tical laser_pl"lse_ pr(_)duces_a cqherent_ optical_ po_larization i f 50 K. Except for the dephasing and relaxation, the material pa-
the material. With increasing time this polarization decaySameters and the excitation conditions are the same as in Fig. 5.

due to a variety of dephasing processes. Depending on thgpite corresponds to the maximal density and black to zero density
relevant physical mechanisms and the excitation conditionsy each plot.

typical dephasing times can vary between several picosec-
onds or just a few femtoseconds. Radiative decay due to the
decay of the optical polarization. However, in semiconduc-gjg|ectric slabs. Due to the higher effective mass of the holes,
tors the dephasing is typically dominated by the interactione gpatial variation of the hole distribution is steeper than

with p.honons, t_)y the many—body Cou]omb interacti_on, Ofthat of the electron distribution in the regions underneath the
sometimes by disordé?.Simultaneous with the dephasing of dielectric—air interface+45 nm in Fig. 9 where the single-
the polarization, the initially coherently excited carrier distri- Particle potential changes rapidly.

butions change their nature and gradually become incohe The computed spatiotemporal dvnamics of the electron
ent. Due to the interaction with phonons and Coulomb scat- € compu P emp y SO .
nsity including dephasing and relaxation is displayed in

tering among the electrons and holes, these incoherejﬂte )
populations approach thermal quasi-equilibrium distributiond 9+ 10- Compared to Fig. 5 we have used the same structural
with increasing time. parameters and excitation cqndmons arld only mcludeq t_he

For spatially homogeneous systems, it is possible to de|_ncoher_ent processes b*y using relaxation and nonradiative
scribe dephasing and relaxation at a microscopic [E/. dephasing times of;=T,=6 ps. These values are reason-
For Spa“a”y inhomogeneous Systems such an ana|ysis @Dle ConSidering that excitonic transitions are excited with
much more complicated. For example, the evaluation oPulses of weak intensities. Figure 10 shows that immediately
Coulomb scattering processes in the presence of disorder apdter the excitation the densities exhibit signatures of coher-
computationally very demanding and can be performed onlgnt wave packet dynamics, similar to Fig. 5. Due to relax-
for very small systems, see, e.g., Ref. 44. Therefore, we deation and dephasing, this wave packet dynamics is damped
scribe these processes here on a phenomenological level. Asth increasing time. In the limit of long times, i.et,
outlined in Sec. 1l D 2, the nonradiative decay of the polar->T,,T,, the electron population approaches a quasi-
ization is modeled by a dephasing tirffé and the carrier equilibrium Fermi-Dirac distribution. Therefore, regardless
populations approach a quasi-equilibrium Fermi—Dirac dis-of the excitation conditions which determine the position of
tribution within the relaxation timd. the initially created density, the electrons eventually accumu-

Figure 9b) shows the electron and hole quasi-equilibriumlate in the regions of low potential energy, i.e., underneath
densities, i.e.nS9 andnfli¥% for a small average density of the dielectric slabs, cf. Fig. 9. This localization of the carrier
ny=0.001/a5 (dotted ling at a temperature of 50 K. Since densities makes such structures interesting for possible appli-
the thermal energlsT =~ 1Eg is smaller than the depth of the cations in laser structures. The fact that in the regions of high
single-particle potentiabV(r,,r1)/2 of =~2Eg, see Fig. 88),  density, population inversion can be reached at a lower over-
the quasi-equilibrium distributions are strongly concentratecall density can lead to a reduction of the laser thresfdfd.
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IV. SUMMARY dow after the optical excitation. With increasing time, the

oscillations of the carrier densities are damped and in the

It has been shown that surface polarizations at the intefimit of long times the carriers approach spatially inhomoge-
faces between different dielectric materials may significantlyhegqus quasi-equilibrium distributions. This means that the
modify the Coulomb interaction in their vicinity. As a result, carriers accumulate at the regions of low potential energy,
both the band gap energy and the electron-hole attractione. underneath the dielectric slabs for the structures consid-
vary periodically in space near a photonic crystal. The modiered here. Further investigations of the optoelectronic prop-
fied Coulomb interaction leads to characteristic signatures igrties of semiconductor photonic-crystal structures in the
the excitonic absorption spectra of semiconductor photonicpresence of spatially inhomogeneous carrier distributions are
crystal structures. In particular, thes-gxciton resonance planned. In particular, investigations of possible superradiant
splits into a certain number of resonances with spatially in{ight emission in structures with periodically varying space

homogeneous eigenfunctions. dependent densities would be very interesting.
Coherent excitation of the excitonic resonances leads to
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