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Significant aspects of the light–matter interaction can be strongly modified in suitably designed systems
consisting of semiconductor nanostructures and dielectric photonic crystals. To analyze such effects, a micro-
scopic theory is presented, which is capable of describing the optoelectronic properties of such hybrid systems
via a self-consistent solution of the dynamics of the optical field and the photoexcitations of the material. The
theory is applied to investigate the local excitonic resonances, which arise as a consequence of the modified
Coulomb interaction in the vicinity of a structured dielectric medium. The excitation of a coherent superposi-
tion of the spatially inhomogeneous optical transitions induces an intricate wave packet dynamics. In the
presence of dephasing and relaxation processes, the coherent oscillations are damped and the photoexcited
carriers relax into spatially inhomogeneous quasi-equilibrium distributions.

DOI: 10.1103/PhysRevB.71.195321 PACS numberssd: 71.35.Cc, 42.50.Md, 42.70.Qs, 71.35.2y

I. INTRODUCTION

Photonic crystals, i.e., periodically structured dielectric
materials, can be used to tailor the eigenmodes of the trans-
verse electromagnetic field.1–5 Since the light–matter interac-
tion in atoms, molecules, and solids is governed by this
transverse part of the field, the optical material properties can
be drastically changed with suitably designed photonic-
crystal structures. Using a photonic band gap one can sup-
press the spontaneous emission and thus increase the radia-
tive lifetime of optical excitations by several orders of
magnitude.1,2,6–8 By the interaction with localized defect
modes in photonic crystals novel strong coupling effects can
be achieved.9–12

In this context, semiconductor heterostructures are of par-
ticular interest not only because they can be grown with al-
most molecular precision but also because of their strong
excitonic resonances.13,14 The quantum efficiency of well-
designed optoelectronic semiconductor devices approaches
the fundamental radiative lifetime limit and combinations of
semiconductor nanostructures and photonic crystals allow
for the possibility to optimize characteristics of light-
emitting diodes and lasers.10,11,15–21In addition to this appli-
cation potential, however, semiconductor photonic-crystal
structures are also of interest in the context of fundamental
physics. For example, it has been demonstrated that the re-
duced spontaneous emission due to photonic crystals results
in strong modifications of the exciton statistics and Coulomb
many-particle correlations inside a semiconductor material.22

Beside the transverse field, also the longitudinal electro-
magnetic field, i.e., the Coulomb potential between charged
particles, can be modified significantly in suitably designed
semiconductor photonic-crystal structures.23–26 In such hy-
brid systems, induced surface polarizations alter the optical
semiconductor properties in comparison to a spatially homo-
geneous excitation configuration, resulting in dielectric shifts
of the band gap and the energetic position of the exciton
resonance.27,28 Furthermore, spatially inhomogeneous quasi-
equilibrium carrier populations can be obtained, which may
substantially influence the quasi-equilibrium gain spectra of

laser structures.26 The periodic modulation of the optical
properties may even result in superradiant emission.29,30

In this paper, we present and apply a microscopic ap-
proach, which is capable of describing the optical properties
of spatially inhomogeneous semiconductor photonic-crystal
structures. In most of our previous treatment,24–26 where we
have concentrated on longitudinal effects, the transverse op-
tical field has been assumed to be homogeneous. In contrast,
here, the coupled dynamics of the field and the material ex-
citations are treated self-consistently by evaluating the
coupled Maxwell semiconductor Bloch equationssMS-BEsd
by numerical integration. In each time step, Maxwells’ equa-
tions are solved using the finite-difference time-domain
sFDTDd method31 with complex fields. The semiconductor
Bloch equationssSBEd,13 which are used here in a real-space
basis in order to describe spatially inhomogeneous situations,
are integrated using the standard leap-frog algorithm.32 With
this combination it is possible to use the rotating wave ap-
proximation for the semiconductor excitations and to restrict
the analysis to resonant excitations. This approach has suc-
cessfully been applied in Ref. 33 to analyze optical absorp-
tion spectra in the presence of quasi-equilibrium electron and
hole populations. Here, it is extended and used to study be-
sides the dynamics of the optical polarization also the spa-
tiotemporal evolution of photoexcited populations.

In particular, we analyze the local absorption spectra and
discuss optical excitation of a coherent superposition of spa-
tially inhomogeneous excitonic resonances. After the inci-
dent laser pulse has decayed, the photoexcitations of the
semiconductor material oscillate coherently and display an
intricate wave packet dynamics. The predicted effects should
be measurable by ultrafast nonlinear optical spectroscopy
where they show up as temporal modulations of the
signal.34–36 In the course of time, the coherent oscillations
are damped due to dephasing and relaxation processes.
Therefore, in the long time limit the photoexcited carriers
approach quasi-equilibrium distributions. Due to the modi-
fied Coulomb interaction, these carrier distributions are inho-
mogeneous in space.

In Sec. II of this paper the microscopic approach and the
self-consistent analysis of the light–matter interaction in
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semiconductor photonic-crystal structures is described. Nu-
merical results on the excitonic absorption in spatially inho-
mogeneous situations, the coherent dynamics of excitonic
wave packets, and the decay of the coherent oscillations due
to dephasing and relaxation processes are presented and dis-
cussed in Sec. III. The most important results are briefly
summarized in Sec. IV.

II. SPATIALLY INHOMOGENEOUS MAXWELL-
SEMICONDUCTOR BLOCH EQUATIONS

In this section, we present our theoretical approach, which
provides a self-consistent description of the coupled dynam-
ics of the electromagnetic field and the optical material ex-
citations in semiconductor photonic-crystal structures.
Within a semiclassical treatment, the material system is de-
scribed quantum mechanically whereas the dynamics of the
electromagnetic field is treated classically. As shown in Sec.
II A, the transverse components of the field are determined
by Maxwell’s equations with a spatially varying dielectric
function. These equations include the coupling to the optical
material polarization whose time derivative appears as a
source in the equation for the electric field. Besides the time-
dependent field, also the static field, i.e., the Coulomb inter-
action among charged particles, is modified in the vicinity of
a spatially structured dielectric environment. The generalized
Coulomb potential describing the interaction of the charge
carriers in a semiconductor near a photonic crystal can be
obtained by solving an integral equation,23–26as described in
Sec. II B. The Hamiltonian, which governs the dynamics of
photoexcited electrons and holes in the semiconductor, is in-
troduced in Sec. II C. The equations of motion describing the
dynamics of the optical material excitations are presented in
Sec. II D where also the inclusion of nonradiative dephasing
and relaxation is discussed.

A. Inhomogeneous Maxwell’s equations in photonic crystals

Propagation of electromagnetic waves through a macro-
scopic material is governed by the inhomogeneous Maxwell
equations

= · D= r, s1d

= · B= 0, s2d

= Ã E +
]

]t
B = 0, s3d

= Ã H −
]

]t
D = j . s4d

Here, E and H are the macroscopic electric and magnetic
fields,D andB are the dielectric displacement and magnetic
induction fields, andr andj are the free charges and currents
in the material, respectively. Maxwell’s equations constitute
a set of 8 inhomogeneous differential equations for the 12
field components, where the charges and currents act as
source terms. For an interacting system, Maxwell’s equations

are solved together with the equations of motion for the par-
ticle charges and currents, that are in turn driven by the op-
tical fields E and H. In order to solve these equations, we
need the constitutive relationsD=DfEg andB=DfHg relat-
ing the macroscopic to the microscopic fields. In general, the
constititive relations can be arbitrarily complicated, relating
the components of the dielectric displacement and magnetic
induction in a nonlocal, anisotropic, frequency dependent,
and nonlinear manner to the components of the electric and
magnetic fields. As we are interested in optics in dielectric
photonic crystals, we shall assume nonmagnetic media in the
following, i.e., B=m0H. For the dielectric displacement, we
make the ansatz

D = e0esr dE, s5d

where the photonic crystal structure is described via a peri-
odically varying dielectric functionesr d, which is assumed to
be a local, scalar, and frequency independent. All other con-
tributions are mediated by the resonant light–matter interac-
tion and are determined by explicitly solving the microscopic
equations of motion for the particle system.

As is well known, the current and charge density couple
to the vector and scalar potential, respectively, rather than to
the electromagnetic field components. These are introduced
with the aid of the homogeneous Maxwell equations asB
= = ÃA, E=−Ȧ − =f. Inserting the potentials in the inho-
mogeneous Maxwell equations, we obtain

= Ã = Ã A +
esr d
c2

]2

]t2
A = −

esr d
c2 = ḟ + m0j , s6d

= · esr dS1

c

]

]t
A + = fD = − r/e0. s7d

From Eq. s7d, it is obvious that the scalar potential is not
truly an independent variable, but is determined by the vec-
tor potential, the dielectric function, and the charge density.
In homogeneous media, the scalar potential can be expressed
in terms of the charge density only with the aid of the Cou-
lomb gauge= ·A=0. Within a semiclassical treatment, the
interactions induced by this part of the electric field are
treated fully quantum mechanically, whereas that part of the
electromagnetic field that is associated with the vector poten-
tial is treated classically. In inhomogeneous media, the stan-
dard Coulomb gauge leads to a nonvanishing scalar potential
even in the absence of external charges. Therefore, it is ad-
vantageous to introduce the generalized Coulomb gauge
= ·esr dA =0.37,38This gauge corresponds to a division into a
transverse and longitudinal part of the dielectric displace-
ment rather than the electric field, i.e.,D=DT+DL with DT

=−esr dȦ andDL=−esr d=f. Within a semiclassical descrip-
tion, the transverse part of the dielectric displacement and
the magnetic field are treated classically and obey the
coupled wave equations

= Ã
DT

e0esr d
+

]

]t
B = 0, s8d
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= Ã B − m0
]

]t
DT = m0j T, s9d

wherej T is the transverse part of the current, which appears
as a source term for the classical part of the electromagnetic
field.

In our numerical solutions, the spatiotemporal evolution
of the electromagnetic field is obtained by solving the FDTD
equations.31 These equations are self-consistently integrated
together with the SBE, see Sec. II D, that determine the ma-
terial excitations.

B. The Coulomb interaction

Within our semiclassical treatment, the field energy asso-
ciated with the longitudinal part of the dielectric displace-
ment is treated quantum mechanically and results in the Cou-
lomb interaction among charged particles. Inserting the
definition of DL and Eq.s1d into the expression for the field
energy, we obtain

HC =
1

2
E d3r

DL · DL

e0esr d

= −
1

2
E d3r = f · DL

=
1

2
E d3rf = · DL

=
1

2
E d3rfsr drsr d. s10d

The scalar potential is the solution of a generalized Pois-
son equation

− = · fesr d = fsr ,tdg = rsr ,td/e0, s11d

with the charge densityrsr ,td as inhomogeneity. Defining
the generalized Coulomb potentialVCsr ,r 8d as the solution
of the generalized Poisson equation with ad-function inho-
mogeneity

− = · fesr d = VCsr ,r 8dg = dsr − r 8d/e0, s12d

the scalar potential can be expressed as

fsr ,td =E d3r8VCsr ,r 8drsr 8,td, s13d

yielding

HC =
1

2
E d3r E d3r8rsr dVCsr ,r 8drsr 8d s14d

for the Coulomb energy. The generalized Coulomb potential
describes the interaction among charged particles in an inho-
mogeneous dielectric environment.

With the exception of a few analytically solvable geom-
etries, like, e.g., two dielectric half spaces separated by a
plane or a single sphere embedded into a material of different
dielectric constant,39 Eq. s12d has to be solved numerically
for general situations. For this purpose, it is advantageous to
start from the integral equation23,26

VCsr ,r 8d = −
1

4p
E d3r9=9

1

ur 9 − r u
· Elsr 9,r 8d, s15d

whereElsr ,r 8d=−=VCsr ,r 8d is the electric field at the posi-
tion r due to a unit charge atr 8. If the dielectric function is
piecewise constant, which is usually the case in photonic
crystals, one can partially evaluate the volume integral ap-
pearing in Eq.s15d and use the boundary conditions for the
electric field El and the dielectric displacementDl at the
interfaces]Dij , which separate regionsDi andDj of different
dielectric functions. As shown in Ref. 23, one obtains

VCsr ,r 8d =
1

4pe0

1

esr 8d
1

ur − r 8u

−
1

4pe0
o
i j
S 1

ei
−

1

e j
DE

]Dij

da9
1

ur 9 − r u
ni9 · Dlsr 9,r 8d

= V0sr ,r 8d + dVsr ,r 8d, s16d

whereni9 denotes the unit vector normal to the surface atr 9.
According to Eq.s16d, VC is given by the sum of two con-
tributions.V0 has the usual 1/ur −r 8u spatial variation and is
additionally statically screened with the local value of the
dielectric function 1/esr 8d. The second term,dV, appears as
a result of induced surface polarizations at the interfaces
]Dij , which separate the regions of differente, over which is
integrated. The magnitude ofdV may be large, if the dielec-
tric contrast is large and, in particular, if the charge is close
to an interface since in this case the interaction with the
induced surface polarizations is strong.

In contrast to the situation in spatially homogeneous me-
dia, the generalized Coulomb potential is a function not only
of the relative coordinater rel=r −r 8 but also of the center of
mass coordinater c.m.=sm1/Mdr +sm2/Mdr 8 with m1+m2

=M. The dependence of the generalized Coulomb potential
on r c.m. obeys the same symmetry properties as the dielectric
function esr d. In systems where the dielectric function is
varying periodically in space, e.g., in photonic crystals, also
VC exhibits this periodicity.

The generalized Coulomb potential can be evaluated nu-
merically using an integral equation for the dielectric dis-
placementDl at the interfaces]Dij . This equation can be
obtained by applyingnisr d ·= to Eq. s16d, wherenisr d de-
notes the unit vector normal to the surface atr . Defining the
normal component of the dielectric displacement by

Dnsr ,r 8d = nisr d · Dlsr ,r 8d, s17d

one obtains25,26

Dnsr ,r 8d = nisr d ·
r − r 8

ur − r 8u3
+ lim

g→0+

1

4p
S1 −

e1

e2
D

3 E
]Dij

da9nisr d ·
r g − r 9

ur g − r 9u
Dnsr 9,r 8d, s18d

with r g=r −gnisr d. To determineDn, Eq. s18d can be solved
by matrix inversion on a grid in real-space using the
Nystrom method.32 Inserting this solution into Eq.s16d al-
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lows one to determine the generalized Coulomb potentialVC

in all spatial regions of interest.

C. Hamilton operator

The Hamiltonian describing the optical properties of
semiconductors and semiconductor nanostructures consists
of three terms13

Ĥ = Ĥ0 + ĤI + ĤC. s19d

Here, Ĥ0 contains the single-particle band structure,ĤI de-
notes the interaction of the semiconductor with the classical

part of the electromagnetic field, andĤC describes the many-
body Coulomb interaction among charged particles including
the modifications due to the dielectric structuring discussed
earlier. According to the minimal coupling approach, we
have

Ĥ0 + ĤI =E d3rc†sr dF 1

2m0
sp − eAd2 + VGsr d

+ Vconfsr dGcsr d. s20d

Here,m0 is the electron mass,VG is the periodic lattice po-
tential, Vconf is the confinement potential in a system of re-
duced dimensionality, andc†, c are the Heisenberg creation
and annihilation operators for the electrons. The total particle
current j entering as source term into the dynamical equa-
tions for the transverse field components is obtained from the
interaction Hamiltonian via

j = −
1

m0

dĤI

dA
= −

e

m0m0
c†Sp −

e

c
ADc. s21d

Using the Heisenberg equation of motion for the field opera-
tors, it is easily verified that the current can be expresses
alternatively as the time derivative of the polarization, i.e.,

j =
1

m0

]

]t
P =

1

m0

]

]t
c†erc = −

1

m0

d

dA
E d3rṖA . s22d

Since the total Hamiltonian can be changed by a total time
derivative without altering the equations of motion, the dy-
namics of the system can also be obtained from the dipole
interaction Hamiltonian

HI = −E d3rET · P, s23d

where we used the notationET=−Ȧ =DT/e0esr d. Note that
ET is not transverse but corresponds to the classical part of
the electromagnetic field. This is not yet the dipole approxi-
mation but is exact. The macroscopic polarization current
s] /]tdkPl has to be computed from the Heisenberg equations
of motion

i"
]

]t
kPl = kfP,Hgl. s24d

In order to solve these equations, it is convenient to expand
the creation and annihilation operators in terms of eigenfunc-

tions of H0. In general, the eigenfunctions ofH0 in a crystal
can be written as products of lattice periodic functions
um,ksr d and the envelope funtions fm,ksr d
=expsik i · ridwm,k'

sr 'd that vary on a length scale much
larger than the lattice constant, i.e., csr d
=om,kum,ksr dfm,ksr dam,k. Here,m denotes the band index,k
all other relevant quantum numbers,r i are the coordinates in
the extended directions of the semiconductor nanostructure,
r ' the coordinates perpendicular to the structure, andwm,k is
the confinement function. For simplicity, we restrict the
analysis to a two-band situation considering only the lowest
confinement subbands, i.e., a single conduction and a single
valence band, respectively. It is, however, straightforward to
extend this approach to multiple bands by including summa-
tions over the relevant bands in the following expressions.
Applying the electron hole picture byck =ac,k anddk =av,−k

+ ,
the single particle part of the Hamiltonian is given by

H0 = o
k

ek
eck

+ck + ek
hd−k

+ d−k , s25d

where the sum overk is taken parallel to the heterostructure
only and the subscripti has been dropped for better readibil-
ity. Here,ek

e=Egap+"2k2/2me andek
h="2k2/2mh, me/h are the

effective masses for the electrons/holes, respectively, and
Egap is the gap including the confinement energy.

To obtain a transparent description of the spatial inhomo-
geneities in semiconductor nanostructures close to photonic
crystals, we perform a coarse graining on the length scale of
an elementary cell, yielding the real-space representation

Ĥ0 =E ddr1Fĉ1
+SEG −

"2=1
2

2me
Dĉ1 + d̂1

+S−
"2=1

2

2mh
Dd̂1G ,

s26d

where the operators

ĉ1
+sd̂1

+d =E ddk

s2pdd exps− ik · r1dck
+sdk

+d

and ĉ1 sd̂1d create and destroy electrons of massme and
charge −e sholes of massmh and charge +ed at r 1, respec-
tively, andd is the effective dimensionality of the system.

For the light–matter interaction, we employ the dipole
approximation, which is obtained by a multipole expansion
over an elementary cell where only the dipole moment is
taken into account. A real space representation is again ob-
tained by a subsequent coarse graining, yielding

ĤI = −E ddr1E1std · msd̂1ĉ1 + ĉ1
+d̂1

+d, s27d

with the operator for the interband polarizationPsr 1,td
=msd̂1ĉ1+ ĉ1

+d̂1
+d. Here, E1std;Esr 1,td is the space-

dependent classical electric field,m is the interband dipole
matrix element, which is treated as a real space-independent

material constant, andd̂1ĉ1 sĉ1
+d̂1

+d describes the local inter-
band coherence, which corresponds to destroyingscreatingd
an electron–hole pair atr 1.
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The Coulomb interaction is obtained by usingrsr 1d
=−esc1

+c1−d1
+d1d in Eq. s14d for the charge density. It is

worthwhile to note that the Coulomb energy contains the
interaction between mutually different electrons and holes as
well as the self-interaction of the charge density with its own
potential. While the self-interaction with the bulk part of the
Coulomb potential is unphysical and can be removed by tak-
ing the normally ordered product of the field operators, the
self-interaction with induced surface polarizations at the in-
terfaces of the photonic crystal is physically meaningful and
must be included.27,28 Using the notationVCsr 1,r 2d;V12

C

=V12
0 +dV12 for the generalized Coulomb potential, the Cou-

lomb Hamiltonian reads23,26

ĤC =
e2

2
E ddr1E ddr2V12

C sĉ1
+ĉ2

+ĉ2ĉ1 + d̂1
+d̂2

+d̂2d̂1 − 2ĉ1
+d̂2

+d̂2ĉ1d

+
e2

2
E ddr1dV11sĉ1

+ĉ1 + d̂1
+d̂1d. s28d

Here, the terms in the double integral represent the repulsive
electron–electron and hole–hole interactions, as well as the
attractive interaction between electrons and holes. The last
term of Eq.s28d describes the self-interaction of the electron
and hole with their respective image charges. The self-energy
se2/2ddV11 acts as a spatially varying single-particle poten-
tial for the electrons and holes. One could thus add the terms
involving se2/2ddV11 to H0 and solve the resulting single-
particle Hamiltonian by calculating Bloch-type electronic
eigenfunctions using the spatial periodicity corresponding to
the period of the photonic crystal, see Sec. II D 2. Due to the
very different length scales involved, i.e., the long wave-
length of light and the small lattice constant, numerical
evaluations of this Bloch approach are rather demanding.
Nevertheless, this approach can be used to analyze the
density-dependent optical absorption in quasi-equilibrium
situations.26,33

D. Equations of motion

The dynamical properties of the semiconductor system
are described by the Heisenberg equations for the relevant
quantities describing the material excitations.13 The equation
of motion for the expectation value of an arbitrary operator

O=kÔl is obtained from

i"
]

]t
Ostd = kfO,Ĥgl. s29d

Whereas the commutators withĤ0 and ĤI lead to a set of
closed equations of motion on the single-particle level, i.e.,
optical Bloch equations, the many-particle part of the Hamil-

tonian, ĤC, introduces coupling to an infinite hierarchy
of correlation functions.13,14,40 To be able to analyze the
optical properties of a spatially inhomogeneous system
within reasonable numerical limits, we restrict our present
analysis to the level of the time-dependent Hartree–Fock
approximation.13

As an example, we discuss the dynamics of the off-

diagonal interband coherencep12=kp̂12l=kd̂1ĉ2l. Considering
the contribution of the Colulomb interaction to the time de-
rivative of the interband coherence we obtain

i"
]

]t
up12uC = kfp̂12,ĤCgl

= e2S1

2
dV11 +

1

2
dV22 − V12

C Dp12

+ e2E ddr3sV32
C − V13

C dskc3
+d1c2c3l + kd3

+d1d3c2ld.

s30d

As a consequence of the many-body Coulomb interactions,
we find on the right-hand side of Eq.s30d a coupling to
four-operator expectation values, which is the beginning of
the usual infinite hierarchy problem of many-body
physics.13,14,40A closed set of equations is obtained by using
the time-dependent Hartree–Fock factorization, which ap-
proximates the four-operator expectation values by products
of two-operator expectation values.13,14,40 This means that
the four-operator terms appearing in Eq.s30d are approxi-
mated by

kc3
+d1c2c3l < kc3

+c3lkd1c2l − kc3
+c2lkd1c3l = n33

e p12 − n32
e p13,

kd3
+d1d3c2l < kd3

+d1lkd3c2l − kd3
+d3lkd1c2l = n31

h p32 − n33
h p12,

s31d

where the electronsholed populations and intraband coher-

encesn12
e =kĉ1

+c2l sn12
h =kd̂1

+d2ld have been introduced.
Using such factorizations also in the equations of motion

for ne andnh and evaluating the remaining commutators with

Ĥ0 and ĤI, we obtain a closed set of coupled equations of
motion determining the dynamics of the expectation values
of all two-operator quantities. These equations are known as
the SBE in time-dependent Hartree–Fock approximation.13

For our inhomogeneous system the explicit form of the SBE
is

i"
]

]t
p12 = FEG −

"2

2mh
=1

2 −
"2

2me
=2

2 +
e2

2
dV11 +

e2

2
dV22 − V12

C

− e2E ddr3sV13
C − V32

C dsn33
e − n33

h dGp12

+ e2E ddr3sV13
C − V32

C dsn32
e p13 − n31

h p32d

− m · sE1d12 − E1n12
e − E2n21

h d + i"
]

]t
up12ucorr, s32d
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i"
]

]t
n12

e = F "2

2me
s=1

2 − =2
2d −

e2

2
dV11 +

e2

2
dV22

− e2E ddr3sV13
C − V32

C dsn33
e − n33

h dGn12
e

+ e2E ddr3sV13
C − V32

C dsn13
e n32

e + p31
* p32d

+ m · sE1p12 − E2p21
* d + i"

]

]t
un12

e ucorr, s33d

i"
]

]t
n12

h = F "2

2mh
s=1

2 − =2
2d −

e2

2
dV11 +

e2

2
dV22

+ e2E ddr3sV13
C − V32

C dsn33
e − n33

h dGn12
h

+ e2E ddr3sV13
C − V32

C dsn13
h n32

h + p13
* p23d

+ m · sE1p21 − E2p12
* d + i"

]

]t
un12

h ucorr. s34d

In Eqs. s32d–s34d, the terms denoted byucorr represent all
many-body correlations that are beyond the time-dependent
Hartree–Fock limit.13,14,40 In the analysis presented here,
these correlation terms are either neglected completely or
treated at a phenomenological level.

The single-particle self-energiesdV appear as potentials
in the homogeneous parts of the equations of motion, Eqs.
s32d–s34d. For the electron–hole interband coherencep12, the
homogeneous part of the equation of motion is furthermore
influenced by the electron–hole Coulomb attraction −e2V12

C ,
which gives rise to excitonic effects in the optical spectra.
Additionally, integrals over the generalized Coulomb poten-
tial VC and products ofp’s andn’s appear in Eqs.s32d–s34d,
and all equations of motion contain sources representing the
driving by the electric field.

Equationss32d–s34d together with FDTD equations for
the electromagnetic field allow for a self-consistent descrip-
tion of the dynamical evolution of the coupled light and ma-
terial system, where the field is driven by the material polar-
ization that is in turn driven by the electric field. This set of
equations may be solved for arbitrary field intensities. It con-
tains many-body Coulomb effects and can be used to inves-
tigate high-intensity effects like, e.g., excitonic Rabi-
flopping, in a self-consistent fashion. Due to the self-
consistency of the solution, radiative decay processes are
included automatically, yielding the correct radiative decay
rates for the polarization and the carrier populations even
within a semiclassical description. The only aspect a semi-
classical approach cannot account for is spontaneous emis-
sion, since the source term contains the expectation value of
the field only and no fluctuations.

1. Low-intensity limit

In order to eliminate density-dependent shifts of the
single-particle energies and to prevent rapid dephasing and
relaxation due to carrier–carrier scattering, the numerical re-

sults presented in the following are obtained using incident
laser beams of weak intensities. Therefore, one can describe
the light–matter coupling perturbatively and classify the ma-
terial excitations according to their power in the optical field.

Let us assume that the semiconductor is in its ground state
before the optical excitation, i.e., the electron and hole popu-
lations as well as the intraband and interband coherences
vanish initially. In this case, the linear optical properties of a
semiconductor are determined by the equation of motion for
the linear electron-hole interband coherence

i"
]

]t
p12

s1d = FEG −
1

2mh
=1

2 −
1

2me
=2

2 +
e2

2
sdV11 + dV22d

− e2V12
C Gp12

s1d − m · E1d12, s35d

where the superscripts1d indicates that the optical polariza-
tion is calculated in first order in the light field. By diagonal-
izing the homogeneous part on the right-hand side of Eq.
s35d, one can obtain the energies of the excitonic resonances
eX and the corresponding eigenfunctionsCXsr 1,r 2d. For ex-
citation with a homogeneous light field the oscillator strength
of each excitonic state is proportional tom2ueddrCXsr ,r du2,
i.e., to the absolute square of the electron–hole overlap, since
the field generates electrons and holes at the same position in
space, see Eqs.s27d ands35d. For an inhomogeneous excita-
tion the spatial overlap of the polarization eigenfunctions and
the light field redistributes the absorption strengths of the
excitonic states.

In second order in the light field, carrier populations and
coherences are generated. This process is described by

i"
]

]t
n12

es2d = F "2

2me
s=1

2 − =2
2d −

e2

2
dV11 +

e2

2
dV22Gn12

es2d

+E ddr3e
2sV13

C − V32
C dsp31

s1dd*p32
s1d

+ m · sE1p12
s1d − E2sp21

s1dd*d, s36d

i"
]

]t
n12

hs2d = F "2

2mh
s=1

2 − =2
2d −

e2

2
dV11 +

e2

2
dV22Gn12

hs2d

+E ddr3e
2sV13

C − V32
C dsp13

s1dd*p23
s1d

+ m · sE1p21
s1d − E2sp12

s1dd*d. s37d

By diagonalizing the homogeneous part on the right-hand
side of Eqs.s36d ands37d one can determine the electron and
hole eigenstates. These can be populated according to Fermi
functions and inserted into Eq.s32d if one wants to study the
density-dependent absorption in quasi-equilibrium
situations.13,26,33

Note that due to the spatial integrals which appear as a
consequence of the many-body Coulomb interaction it re-
quires a lot more effort to numerically solve Eqs.s36d and
s37d than the equation for the linear polarization, Eq.s35d,
which contains no spatial integrals. However, if the dynam-
ics is coherent and one considers only terms up to second
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order in the field, i.e., in the coherentxs2d-limit, it is actually
not necessary to solve the combined set of Eqs.s35d–s37d.
Using the equations of motion, one can easily verify that in
this limit the carrier populations and intraband coherences
are determined by the interband coherence via the sum rules

n12
es2d =E ddr3p32

s1dsp31
s1dd* , s38d

n12
hs2d =E ddr3p23

s1dsp13
s1dd* , s39d

i.e., they are given by spatial integrals over products of linear
polarizations.

2. Dephasing and relaxation

Due to the self-consistent solution of Maxwell’s equations
together with the SBE, the radiative decay of the photoex-
cited optical polarization and the populations is automati-
cally included in our description. However, in real systems
the material excitations often decay on shorter time scales.
The coupling between the electron and the phonon system
can be responsible for this, as well as the many-body corre-
lation contributions, which include Coulomb scattering pro-
cesses. Since a microscopic treatment of these processes in
spatially inhomogeneous situations requires a very high nu-
merical effort, we model them phenomenologically by insert-
ing decay and relaxation times into the equations of motion.

The nonradiative decay of the interband polarization, of-
ten called dephasing, is assumed to be exponential and is
described by adding −i"p12

s1d /T2
* to the right-hand side of Eq.

s35d. The total polarization decay timeT2 contains radiative
and nonradiative contributions and is obtained asT2

−1=Trad
−1

+T2
*−1. In the coherent limit, the dephasing of the carrier

populations and intraband coherences is induced purely by
the finite lifetime of the photoexcited carriers. Thus, the car-
rier populations and intraband coherences decay with the
time constantT2/2. Since the radiative contributions are in-
cluded automatically through the self-consistent solution of
the MSBE only the nonradiative contributions
−i"n12

es2d / sT2
* /2d and −i"n12

hs2d / sT2
* /2d must be added to the

right- hand sides of Eqs.s36d ands37d. In this case, the sum
rules, Eqs.s38d ands39d, remain valid and thusn12

es2d andn12
hs2d

can be calculated usingp12
s1d.

However, in reality the coherent limit is often not well
suited to describe the dynamics of the electron–hole excita-
tions in semiconductors. Typically, the populations and intra-
band coherences do not vanish on a time scale similar to the
dephasing of the optical polarization, but rather become in-
coherent and approach quasi-equilibrium distributions in the
respective bands. This thermalization process can be mod-
eled by adding −i"sn12

es2d−n12
e,eqd /T1 and −i"sn12

hs2d−n12
h,eqd /T1,

where n12
e,eq and n12

h,eq denote the populations and intraband
coherences in quasi-thermal equilibrium, to the right-hand
sides of Eqs.s36d ands37d. Since in this case the sum rules,
Eqs.s38d and s39d, are not valid any more, the dynamics of
n12

es2d andn12
hs2d has to be determined by solving Eqs.s36d and

s37d together with Eq.s35d. However, also in this situation it

is possible to avoid the evaluation of the space integrals in
the equations of motion. This can be achieved by decompos-
ing n12

es2d andn12
hs2d into a coherent and an incoherent part via

n12
es2d = n12

es2d;coh+ n12
es2d;incoh, s40d

n12
hs2d = n12

hs2d;coh+ n12
hs2d;incoh. s41d

The coherent parts ofnes2d andnhs2d are obtained using Eqs.
s38d and s39d, i.e., they decay with a time constant ofT2/2.
By inserting Eqs.s40d and s41d into Eqs.s36d and s37d, re-
spectively, and subtracting the coherent parts, one can deter-
mine the following equations of motion for the incoherent
terms:

i"
]

]t
n12

es2d;incoh= F "2

2me
s=1

2 − =2
2d −

e2

2
dV11 +

e2

2
dV22Gn12

es2d;incoh

− i"n12
es2d;cohS 1

T1
−

1

T2
* /2

D − i"
n12

es2d;incoh− n12
e,eq

T1
,

s42d

i"
]

]t
n12

hs2d;incoh= F "2

2mh
s=1

2 − =2
2d −

e2

2
dV11 +

e2

2
dV22Gn12

hs2d;incoh

− i"n12
hs2d;cohS 1

T1
−

1

T2
* /2

D
− i"

n12
hs2d;incoh− n12

h,eq

T1
. s43d

Equationss42d ands43d show that the incoherent populations
and intraband coherences have two sources. IfT1ÞT2

* /2 they
are generated directly from the coherent terms. Furthermore,
the relaxation toward quasi-equilibrium distributions always
leads to incoherent terms, sincene,eq andnh,eq are determined
by the totalscoherent and incoherentd populations, see the
following.

In order to determine the quasi-equilibrium distributions,
first the effective single-particle Hamiltonian defined by

Ĥsingle-particle= Ĥband structure+ ĤCoulomb self-energies

=E ddr1Fĉ1
+SEG −

"2=1
2

2me
Dĉ1 + d̂1

+S−
"2=1

2

2mh
Dd̂1G

+
1

2
E ddr1dV11sĉ1

+ĉ1 + d̂1
+d̂1d s44d

is diagonalized. Note that, besides the kinetic energies also
the spatially varying self-energies, which act as inhomoge-
neous potentials, are included in Eq.s44d. By diagonalizing
this Hamiltonian separately for electrons and holes using the
spatial periodicity induced by the photonic crystal, the dis-
persionsek

n, wheren labels the mini-bands, and the corre-
sponding Bloch-type eigenfunctionsFk

nsr d are obtained.
Since in the situations analyzed in the following the spatial
period is relatively large, sufficiently manysabout 100 in the
one-dimensional situation considered hered of the energeti-
cally rather narrow mini-bands have to be included in the
calculation.
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In this single-particle basis, the states are populated ac-
cording to a quasi-equilibrium distribution, i.e.,nk

n is given
by the Fermi functionF. The total densityn at temperatureT
can be expressed as

n = o
k,n

nk
n = o

k,n
Fsek

n,T,md, s45d

wherenk
n denotes the population of stateFk

n with energyek
n.

Since the total densityn depends on the chemical potential,
m needs to be determined self-consistently. Having obtained
nk

n, we then transform back to real space since this is numeri-
cally advantageous for performing the dynamic calculations.
In the time-dependent solutions of the equations of motion
the carrier density is changing during the optical excitation.
Therefore, the numerically calculated time-dependent den-
sity nstd is used to determine the quasi-equilibriumn12

e,eqstd
andn12

e,eqstd real-space populations and intraband coherences.

III. NUMERICAL RESULTS

A. Semiconductor photonic-crystal structure

Numerical solutions of the MSBE for semiconductor
photonic-crystal structures typically require a considerable
amount of computer time and memory. On the one hand, in
general situations a three-dimensional space discretization is
necessary for FDTD solutions of Maxwell’s equations. Since
the optical wavelength and the photonic structure have to be
resolved with a suitable accuracy, such evaluations have to
be performed with a high number of grid points. On the other
hand, due to the generalized Coulomb interaction and the
coupling to spatially inhomogeneous light fields, the analysis
of the material excitations has to be performed taking into
account both the relative and the center-of-mass coordinates.
Thus the SBE have to be solved for a spatially inhomoge-
neous situation where different length scales have to be re-
solved since typically the exciton Bohr radius is about one
order of magnitude smaller than the optical wavelength.

In order to keep these numerical complexities within rea-
sonable limits, we chose for the analysis presented in this
paper a model system consisting of a one-dimensional array
of dielectric slabsse=13d which extend inz direction and are
separated by airse=1d, see Fig. 1. The substrate below this
dielectric structure is made of the same material as the di-
electric slabs. Light propagating in this structure may create
photoexcitation in an array of parallel semiconductor quan-
tum wires, which extend iny direction perpendicular to the
slabs and are separated from the photonic structure by the
distanceS. In y direction the unit cell with lengthL is re-
peated periodically. In addition, periodic boundary condi-
tions are also used inz direction with periodD, which is the
distance between adjacent quantum wires. The parameters
used in the numerical calculations are as follows: the length
of the unit cell iny direction isL=180 nm, the height of the
slabs isH=700 nm, and for the widthW of the slabs differ-
ent values are used. The parallel wires are separated byD
=30 nm and the distance to the photonic crystal isS
=2.6 nm. This value is assumed to be small in order to ob-
tain a significant modification of the Coulomb interaction in
the quantum wires.

Due to the light propagation through the dielectric struc-
ture, the optical field is spatially inhomogeneous at the posi-
tions of the quantum wires. Furthermore, since the wires are
oriented perpendicular to the dielectric slabs, the generalized
Coulomb interaction varies periodically along the wires. Our
model system thus includes both a space-dependence of the
electromagnetic field and space-dependent modifications of
the semiconductor properties.

For later purposes, we introduce two reference systems.
The limit W=L is referred to as the homogeneous case, since
the dielectric–air interface is far awaysS+H=702.6 nmd
from the semiconductor quantum wires and thus the modifi-
cations of the Coulomb interaction are negligible. In the sec-
ond limit W=0, which is denoted as the half-space case, the
planar air–dielectric interface is very closesS=2.6 nmd to the
semiconductor wire array. Therefore, the Coulomb interac-
tion is significantly modified. Due to the planar interfaces,
the generalized Coulomb potential is homogeneous with re-
spect to the center-of-mass coordinate along the quantum
wire for both limiting cases.

In our calculations, we solve Eq.s18d for a single dielec-
tric slab, insert the solution in Eq.s16d to obtain the modified
Coulomb interaction, and add the resultingdV for the two
nearest slabs neglecting the surface polarizations between
them. Numerical tests have justified this approximation if the
distance between the slabs is not too small. The edges be-
tween the dielectric substrate and the slabs have been
smoothed as shown in Fig. 1. This avoids numerical prob-
lems when solving Eq.s18d using the Nystrom method and
takes into account that realistic photonic crystals made by
etching techniques have no sharp edges.

FIG. 1. Schematical drawing of the considered semiconductor
photonic-crystal structure. The photonic crystal is a periodic one-
dimensional array of dielectric slabsse=13d which are separated by
air se=1d. The lengthL of the unit cell iny direction is 180 nm. The
substrate below the photonic crystal is made of the same material as
the dielectric slabs. It surrounds the array of parallel quantum wires
which liesS=2.6 nm underneath the photonic crystal. The distance
between adjacent wires, which is also the length of the unit cell in
z direction, isD=30 nm. For the widthW of the slabs we use values
of 0, 60, 90, 120, and 180 nm, respectively. The situationsW=0 and
W=L=180 nm are denoted by half-space and homogeneous case,
respectively, as explained in the text. The heightH of the slabs is
always 700 nm.
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Figure 2 shows the Coulomb modificationsdVsr2,r1d in
the quantum wires for three fixed, representative positions
r2=−90 nmsad, r2=−45 nmsbd, andr2=0 nmscd as function
of position r1. Positionsr1 underneath the 90-nm-wide di-
electric slabs are indicated by the gray shading. The Cou-
lomb modificationsdV are small for positionsr2 directly
underneath the slabs, like in casescd, since in this situation
the distance to the dielectric–air interfaces of the photonic
structure is large.dV is bigger in the regions between the
slabs, as can be seen in casesad, because in this situation the
distance to the dielectric–air interfaces is small. Between
these extremal values, there is a quite sharp transition which
takes place within a few nanometers directly under the edges
of the slabs, i.e., at ±45 nm in Fig. 2. The single-particle
potentialdVsr1,r1d /2, dashed line in Fig. 2, shows this sharp
transition and follows the periodicity of the photonic crystal.
For short distancesur1−r2u, the magnitude and space depen-
dence of the modified Coulomb interaction calculated for
r2=−90 nm, i.e., casesad in Fig. 2, differ only marginally
from those which arise for the half-space casesW=0d. The
curvessad and sbd show a strong decrease of the Coulomb
modifications with increasing distance betweenr1 andr2. For
particle positionsr2 underneath the slab, i.e., casescd, dV
depends only weakly on distance for distances smaller than
the half slab width, and decreases significantly if the distance
exceedsW/2.

Figure 2 shows that the spatially periodically varying di-
electric environment introduces a periodic single particle po-
tential for the electron and holes, with minima underneath
the dielectric slabs. This single particle potential influences
the optical and electronical properties of the quantum wire
via electron and hole confinement effects and a periodic
modulation of the effective band gap. Furthermore, excitonic
properties are additionally altered as a result of the modified
space-dependent electron-hole attraction. All these effects
are analyzed in the following.

B. Linear excitonic absorption

In this section, the excitonic resonances in the linear ab-
sorption spectra are obtained by solving the linear polariza-
tion equation, Eq.s35d. We assume the incoming external
light field to be a plane wave propagating in negativex di-
rection. The incident electric field is linearly polarized iny
direction, i.e., in the direction of the quantum wires. They
andz components of the electric and magnetic field,Ey and
Hz, respectively, have slowly varying Gaussian envelopes
and oscillate in time with central frequencies close to the
band gap frequency, i.e.,EG/". The linear spectra, which are
analyzed below, have been computed using the net energy
flux through the boundaries of our FDTD simulation space

DĖ =E dsn · S, s46d

whereS=EÃH is the Poynting vector. The net flux contains
all information about the absorbed or gained energy per unit
time. In spectrally resolved experiments, the net flux is mea-
sured over all times and analyzed in frequency space

DE =E dt DĖ =E dvasvdI0svd, s47d

where

asvd =
1

I0
E dssE*sr ,vd Ã Hsr ,vd + c.c.d · n, s48d

and I0svd is the intensity of the incoming light field. The
absorption spectra shown in the following have been ob-
tained by computingasvd from Eq. s48d.

The semiconductor parameters used in the following are
m=3.5 eÅey for the dipole matrix element,mh/me=4 and
me=0.066m0 for the electron and hole masses, andEG
=1.42 eV for the energy gap. Considering a dielectric con-
stant ofe=13, these parameters result in a three-dimensional
exciton binding energy ofEB=4.25 meV and a Bohr radius
of aB<13 nm. In most of the calculations, nonradiative ho-
mogeneous broadening is modeled by introducing a decay
rate of g=" /T2

* =1 meV in the equation of motion of
the interband polarization. The Coulomb potential for
the one-dimensional wires has been regularized usingV0
=1/sur u+a0d.41,42 The regularization parameter is chosen as
a0=0.16aB. Except for changes of the nonradiative decay
time T2

* in Secs. III C and III D, these parameters are kept
constant in the following. Additionally, we consider dielec-
tric slabs with a thickness ofW=90 nm, except in Fig. 3
where the influence ofW on the excitonic absorption is in-
vestigated.

To obtain the results presented in the following, the
FDTD calculations are performed on a grid with a spatial
resolution of 5 nm, which requires a temporal resolution of
dt=dx/ s2cd.8.3310−18 s.31 The SBE have to be solved
with a resolution smaller than the exciton Bohr radiusaB.
Therefore, we use here 1.3 nm, i.e.,<aB/10. The self-
consistent solution of the MSBE is done in the following
scheme: With the electric field at timet, the magnetic field at
t+dt/2 and the polarization att+dt are computed. The po-

FIG. 2. Modification of the Coulomb potentialdVsr 2,r 1d
=dV21 ssolidd in the quantum wires for positionsr2=−90 nm sad,
r2=−45 nm sbd, and r2=0 nm scd as function of positionr1. The
single-particle potentialdVsr 1,r 1d /2=dV11/2 is also displayed
sdashedd. The dielectric slabs of the photonic crystal areW
=90 nm wide andH=700 nm high. Positionsr1 underneath the
slabs are indicated by the gray areas. The energy unit is the three-
dimensional exciton binding energy of GaAsEB=4.25 meV.
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larizations att and t+dt are used to determine its time de-
rivative at t+dt/2 which together with the magnetic field
allows us to evaluate the electric field att+dt. Then these
steps are repeated.

For the case of a semiconductor quantum well placed
close to a planar dielectric–air interface, image charge effects
cause a shift of the single-particle energies, i.e., the band gap
shifts to higher energies. Since the electron–hole attraction is
increased close to air, the exciton binding energy increases as
well.23,28 In semiconductor photonic-crystal structures both
the band gap and excitonic binding energy become space
dependent.24,25The band gap variation induces potential val-
leys underneath the dielectric slabs which give rise to con-
fined single-particle and exciton states, see insets in Fig. 3.
These local potentials affect the linear absorption spectra and
cause the double-peaked 1s-exciton resonance visible in
Figs. 3sbd–3sdd. Note that the spectra are plotted on a loga-
rithmic scale which emphasizes the continuum absorption.
For comparison, also the homogeneous and the half-space
cases are shown in Figs. 3sad and 3sed, respectively. Figure 3
demonstrates that the spectral positions of the two excitonic
peaks are hardly affected by varying the width of the dielec-
tric slabs. Whereas the lower exciton energy agrees with the
position of the exciton in the homogeneous case, the upper
one corresponds to the half-space case. In contrast to the
energetic positions, the heights of the maxima are influenced

significantly by the width of the dielectric slabs. With de-
creasing width, the absorption of the lower homogeneous-
like peak becomes smaller while that of the upper half-space-
like peak increases.

Further information on the relevant exciton resonances is
shown in the insets of Fig. 3. Diagonalizing the linear polar-
ization equation, Eq.s35d, for one unit cell with periodic
boundary conditions yields the energetic positions of the ex-
citonic states. Since the optical field at the quantum wire is
spatially varying, the oscillator strengths of the different
resonances have been computed by fitting the self-
consistently evaluated linear absorption spectra by a sum of
Lorentzian curvesoiAi / ssE−eX,id2+g2d, whereg=1 meV is
the decay constant used in the equation of motion for the
interband polarization. The insets of Fig. 3 show that except
for the homogeneous and the half-space cases, which are
dominated by a single excitonic peak, more than two exci-
tonic resonances contribute to the absorption. However, for
all considered widths of the dielectric slabs the two most
strongly absorbing resonances are at the energetic positions
of the homogeneous and the half-space excitons.

The number of quantized exciton states is determined by
the width of the dielectric slabs. For a 180-nm-wide slab, i.e.,
in the homogeneous case, the Coulomb modifications essen-
tially vanish and only the homogeneous 1s-exciton reso-
nance contributes, see Fig. 3sad. For slab widths in between
180 and 0 nm potential valleys appear, see Fig. 2. The
maxima and minima of the space-dependent potential lie be-
tween the values of the half-space and the homogeneous
case. The potential valleys are deepest for intermediate slab
widths, i.e, for W=90 nm=L /2. Correspondingly, Figs.
3sad–3sed nicely reflect the transition from the homogeneous
to the half-space case which takes place with decreasing slab
width.

The logarithmic plots of the linear absorption show that
the band gap appears at 0EB and <4 EB for the homoge-
neous and the half-space case, respectively, see Figs. 3sad
and 3sed. Thus the exciton binding energy, i.e., the energetic
distance between the lowest exciton resonance and the onset
of the continuum, increases from 4EB in the homogeneous
case to<7.2 EB in the half-space case. Qualitatively similar
results have been obtained for quantum wells close to two-
dimensional photonic crystals.24,25 In Figs. 3sad and 3sed, the
2s-exciton resonances are visible as small peaks at
<−0.5 EB and <3.1 EB. For energies above<3.4 EB the
continuum absorption is smooth also for the spatially inho-
mogeneous cases, Figs. 3sbd–3sdd. The inhomogeneity of the
system causes the appearance of small absorption peaks in
between<−0.5 EB and <3.1 EB which can be viewed as
modified higher excitonic resonances.

For a more detailed understanding of the excitonic reso-
nances, we show in Fig. 4 also the polarization eigenfunc-
tions, which belong to the excitonic states of Fig. 3scd. These
polarization eigenfunctionsCXsr1,r2d have been obtained by
diagonalization Eq.s35d and are real, since we use one unit
cell with periodic boundary conditions. Shown in Fig. 4sbd is
the spatial variation of the eigenfunction for equal electron
and hole positions, i.e.,CXsr1,r1d. The three lowest states are
localized in the potential valley underneath the dielectric
slabs, see Figs. 4sbd and 4scd. They look similar to usual

FIG. 3. Excitonic linear absorption spectra for dielectric slabs of
widths W=180 nmsad, W=120 nmsbd, W=90 nm scd, W=60 nm
sdd, and W=0 nm sed, respectively, on a logarithmic scale. The
height of the slabs is 700 nm in all cases. The insets show the
decomposition of the excitonic resonances into the contributing
bound excitonic states and their oscillator strengths on a linear
scale:sad corresponds to the homogeneous case andsed to the half-
space case. The calculations have been performed using a damping
of g=1 meV for the interband polarization and a quantum wire
length of five unit cells with periodic boundary conditions.
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quantum mechanical eigenfunctions of a particle which is
confined in a box-shaped potential and show an increasing
number of nodes with increasing energy. Due to its higher
energy, the fourth state has strong contributions for positions
in between the dielectric slabs, which explains its half-space
like character. The energetically higher fifth and sixth states
contribute negligibly to the excitonic absorption.

When diagonalizing Eq.s35d, we obtain also polarization
eigenfunctions which are antisymmetric, i.e.,CXsr1,r1d
=−CXs−r1,−r1d. Because of our initial conditions for the
light field these antisymmetric solutions of the polarization
are not excited and do not contribute to the absorption. This
is due to the fact that the incident light field is a homoge-
neous plane wave which propagates in negativex direction.
The photonic crystal destroys the spatial homogeneity of the
field but maintains its mirror symmetry with respect to the
middle of one unit cell. Therefore, the overlap between the
symmetric light field and an antisymmetric wave function
vanishes. For a spatially structured incident light field or
propagation in a different direction, the symmetry of the sys-
tem is broken and the antisymmetric wave function can be
excited.

C. Coherent wave packet dynamics

So far, we have focused on the linear optical properties of
the system, e.g., the excitonic resonances, their oscillator
strengths, resonance energies, and space-dependent eigen-
functions. In this section we start to investigate the intricate
coherent wave packet dynamics of the electron density after
resonant excitation of the excitonic resonances. The absorp-
tion spectra shown in the previous section have been com-

puted using five unit cells for the quantum wire with periodic
boundary conditions. This number of unit cells is required to
obtain a converged continuum absorption. The exciton reso-
nances are, however, already stable for just one unit cell.
Therefore, it is justified to reduce the numerical requirements
for the following investigations by considering one unit cell
with periodic boundary conditions.

The densities are calculated for excitation with laser
pulses of weak intensities up to second ordersxs2dd in the
light–matter interaction. In this section, we focus on the fully
coherent dynamics and neglect nonradiative dephasing and
relaxation processes, i.e., the limitT1, T2

* →`. The coherent
electron density is obtained by solving Eq.s35d and using
Eq. s38d. Figure 5 shows the spatiotemporal dynamics of the
electron densityn11

es2d;coh after excitation with a Gaussian
pulse of 2 ps full width at half maximumsFWHMd duration
of the pulse envelope and a central frequency which is tuned
to the four energetically lowest excitonic resonances shown
in Fig. 4. For excitation at the three lowest resonances, Figs.
5sad–5scd, the electron density is basically concentrated at
spatial positions underneath the dielectric slabs, i.e., between
±45 nm. Since the spectral width of the incident electric field
of 0.3 EB sFWHM of field intensityd is comparable to the
energetic spacing between the resonances, the density is not
constant as function of time. The pulses generate a coherent
superposition of the exciton transitions which leads to wave
packet dynamics. However, comparing Figs. 5sad–5scd with
the electron densities corresponding to the three lowest reso-
nances, see Fig. 6, shows that the resonantly excited excitons
give the strongest contributions to the density. When exciting
at the fourth excitonic resonance, Fig. 5sdd, the electron den-

FIG. 4. sad Linear excitonic absorption spectrum for the param-
eters considered in Fig. 3scd. The lines indicate the spectral posi-
tions and the oscillator strengths of the contributing excitonic reso-
nances.sbd Eigenfunctions of the interband polarization obtained by
diagonalizing Eq.s35d. Shown is the spatial variation of the polar-
ization eigenfunction for equal electron and hole positions, i.e.,
CX,isr1,r1d. The dotted lines indicate the eigenenergieseX,i and cor-
respond to the zero polarization axes.scd Corresponding single-
particle potential induced by the spatially-varying dielectric
environment.

FIG. 5. Contour plots showing the spatiotemporal dynamics of
the coherent electron densityn11

es2d;coh, see Eq.s38d, along one quan-
tum wire unit cell. The system is excited by a Gaussian pulses of
2 ps durationsFWHMd. The central frequencies of the pulses,vL,
are tuned to the four lowest exciton states:sad "vL=EG−4.05EB,
sbd "vL=EG−3.83EB, scd "vL=EG−3.46EB, and sdd "vL

=EG−3.16EB, respectively. The dielectric slabs areW=90 nm
wide andH=700 nm high. The calculations have been performed
assuming a fully coherent situation, i.e., nonradiative dephasing and
thermalization have not been consideredsT1,T2

* →`d. White corre-
sponds to the maximal density and black to zero density in each
plot.
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sity is concentrated underneath the air regions of the photo-
nic crystal. In this case the density dynamics corresponds
essentially to a coherent superposition of the fourth and third
excitonic resonances, see Fig. 6.

By using spectrally narrower, i.e., temporally longer laser
pulses, it is possible to selectively excite single exciton reso-
nances. In this case the coherently excited electron density is
constant as function of time and shows a spatial profile cor-

responding to the curves shown in Fig. 6. As an example, we
consider in Fig. 7 the excitation with a Gaussian pulses
which are tuned to the third lowest exciton state and have
different temporal durations. The short 1 ps pulse, Fig. 7sad,
generates essentially a superposition of the four lowest exci-
tonic resonances. Consequently, the wave packet dynamics
shows a complicated pattern and the density covers all spa-
tial positions. For the 2 ps pulse, Fig. 7sbd, the time evolu-
tion is basically dominated by the third and fourth excitonic
states since their energetic separation is smaller than the en-
ergy difference between the third and the second states. The
influence of the fourth state is reduced when the pulse dura-
tion is increased to 2.5 ps. Finally, for a 4.5 ps pulse the
coherently excited density shows no dynamics but just a
fixed shape which is determined by the wave function of the
third exciton resonance, cf. Fig. 6.

A similar analysis can be performed by monitoring the
time dependence of the spatially integrated optical polariza-
tion for different widths of the incident laser pulses. The
modulus of the polarization when exciting with a 1 ps pulse,
Fig. 8sad, shows modulations with a few frequencies. For the
2 ps pulse, Fig. 8sbd, and more clearly for the 2.5 ps pulse,
Fig. 8scd, the modulations are dominated by a single fre-
quency, i.e., in these cases only two excitonic transitions
contribute strongly to the polarization. For the long 4.5 ps
pulse, Fig. 8sdd, only a single exciton resonance contributes
and consequently the polarization shows no modulations as
function of time. Note that the very slow decay of the polar-
ization is due to the radiative decay which is included in our
self-consistent solutions of the MSBE.

Such investigations have also been performed for the
holes. The results are qualitatively similar to the ones ob-
tained for the electrons. However, due to the bigger effective
mass of the holes they are more strongly confined in the
potential valley and therefore their density shows somewhat
more pronounced maxima and minima.

FIG. 6. Coherent electron densities calculated using Eq.s38d
and the polarization eigenfunctions shown in Fig. 4sbd. On the left
side the energetic positions of the resonances are shown. The ver-
tically displaced lines indicate zero density.

FIG. 7. Contour plots showing the spatiotemporal dynamics of
the coherent electron densityn11

es2d;coh, see Eq.s38d, along one quan-
tum wire unit cell. The system is excited by Gaussian pulses of 1 ps
sad, 2 ps sbd, 2.5 psscd, and 4.5 pssdd durationsFWHMd, respec-
tively. The central laser frequency has been tuned to the third exci-
ton resonance"vL=EG−3.46EB. The dielectric slabs areW
=90 nm wide andH=700 nm high. The calculations have been
performed assuming a fully coherent situation, i.e., nonradiative
dephasing and thermalization have not been considered
sT1,T2

* →`d. White corresponds to the maximal density and black
to zero density in each plot.

FIG. 8. Temporal dynamics of the modulus of the spatially in-
tegrated macroscopic optical polarization for resonant excitation of
the third exciton, i.e.,"vL=EG−3.46EB, using Gaussian laser
pulses of durations of 1 pssad, 2 ps sbd, 2.5 psscd, and 4.5 pssdd
sFWHMd, respectively. The system parameter are the same as in
Fig. 7.
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D. Wave packet dynamics with dephasing and relaxation

Exciting semiconductor heterostructures with a short op-
tical laser pulse produces a coherent optical polarization in
the material. With increasing time this polarization decays
due to a variety of dephasing processes. Depending on the
relevant physical mechanisms and the excitation conditions,
typical dephasing times can vary between several picosec-
onds or just a few femtoseconds. Radiative decay due to the
finite lifetime of the excited states always contributes to the
decay of the optical polarization. However, in semiconduc-
tors the dephasing is typically dominated by the interaction
with phonons, by the many-body Coulomb interaction, or
sometimes by disorder.43 Simultaneous with the dephasing of
the polarization, the initially coherently excited carrier distri-
butions change their nature and gradually become incoher-
ent. Due to the interaction with phonons and Coulomb scat-
tering among the electrons and holes, these incoherent
populations approach thermal quasi-equilibrium distributions
with increasing time.

For spatially homogeneous systems, it is possible to de-
scribe dephasing and relaxation at a microscopic level.13,43

For spatially inhomogeneous systems such an analysis is
much more complicated. For example, the evaluation of
Coulomb scattering processes in the presence of disorder are
computationally very demanding and can be performed only
for very small systems, see, e.g., Ref. 44. Therefore, we de-
scribe these processes here on a phenomenological level. As
outlined in Sec. II D 2, the nonradiative decay of the polar-
ization is modeled by a dephasing timeT2

* and the carrier
populations approach a quasi-equilibrium Fermi–Dirac dis-
tribution within the relaxation timeT1.

Figure 9sbd shows the electron and hole quasi-equilibrium
densities, i.e.,n11

e;eq andn11
h;eq, for a small average density of

n0=0.001/aB sdotted lined at a temperature of 50 K. Since
the thermal energykBT<1EB is smaller than the depth of the
single-particle potentialdVsr1,r1d /2 of <2EB, see Fig. 9sad,
the quasi-equilibrium distributions are strongly concentrated

in the regions of low potential energy, i.e., underneath the
dielectric slabs. Due to the higher effective mass of the holes,
the spatial variation of the hole distribution is steeper than
that of the electron distribution in the regions underneath the
dielectric–air interfacess±45 nm in Fig. 9d where the single-
particle potential changes rapidly.

The computed spatiotemporal dynamics of the electron
density including dephasing and relaxation is displayed in
Fig. 10. Compared to Fig. 5 we have used the same structural
parameters and excitation conditions and only included the
incoherent processes by using relaxation and nonradiative
dephasing times ofT1=T2

* =6 ps. These values are reason-
able considering that excitonic transitions are excited with
pulses of weak intensities. Figure 10 shows that immediately
after the excitation the densities exhibit signatures of coher-
ent wave packet dynamics, similar to Fig. 5. Due to relax-
ation and dephasing, this wave packet dynamics is damped
with increasing time. In the limit of long times, i.e.,t
@T1,T2

* , the electron population approaches a quasi-
equilibrium Fermi–Dirac distribution. Therefore, regardless
of the excitation conditions which determine the position of
the initially created density, the electrons eventually accumu-
late in the regions of low potential energy, i.e., underneath
the dielectric slabs, cf. Fig. 9. This localization of the carrier
densities makes such structures interesting for possible appli-
cations in laser structures. The fact that in the regions of high
density, population inversion can be reached at a lower over-
all density can lead to a reduction of the laser threshold.26,33

FIG. 9. sad Single-particle potentialdV11/2 and sbd space-
dependent quasi-equilibrium electronssolidd and holesdashedd car-
rier densities, i.e.,n11

e/h;eq, for an average density ofn0=0.001/aB

sdottedd at a temperature of 50 K. The width of the dielectric slabs
is 90 nm.

FIG. 10. Contour plots showing the spatiotemporal dynamics of
the coherent electron densityn11

es2d, see Eq.s40d, along one quantum
wire unit cell. The system is excited by a Gaussian pulses of 2 ps
duration sFWHMd. The central frequencies of the pulses,vL, are
tuned to the four lowest exciton states:sad "vL=EG−4.05EB, sbd
"vL=EG−3.83EB, scd "vL=EG−3.46EB, and sdd "vL

=EG−3.16EB, respectively. The dielectric slabs areW=90 nm
wide andH=700 nm high. Nonradiative dephasing and relaxation
processes have been included usingT1=T2

* =6 ps at a temperature
of 50 K. Except for the dephasing and relaxation, the material pa-
rameters and the excitation conditions are the same as in Fig. 5.
White corresponds to the maximal density and black to zero density
in each plot.
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IV. SUMMARY

It has been shown that surface polarizations at the inter-
faces between different dielectric materials may significantly
modify the Coulomb interaction in their vicinity. As a result,
both the band gap energy and the electron–hole attraction
vary periodically in space near a photonic crystal. The modi-
fied Coulomb interaction leads to characteristic signatures in
the excitonic absorption spectra of semiconductor photonic-
crystal structures. In particular, the 1s-exciton resonance
splits into a certain number of resonances with spatially in-
homogeneous eigenfunctions.

Coherent excitation of the excitonic resonances leads to
an intricate wave packet dynamics of the carrier distribu-
tions. This dynamics depends very sensitively on the central
frequency of the laser pulses and also on their spectral width,
since these parameters determine the strength with which a
particular transition contributes to the coherent superposi-
tion. By using long laser pulses which are tuned to a specific
excitonic resonance, carrier distributions which reflect the
shape of a particular exciton wave function can be generated.

Due to dephasing and relaxation processes, the coherent
wave packet dynamics is visible only in a certain time win-

dow after the optical excitation. With increasing time, the
oscillations of the carrier densities are damped and in the
limit of long times the carriers approach spatially inhomoge-
neous quasi-equilibrium distributions. This means that the
carriers accumulate at the regions of low potential energy,
i.e., underneath the dielectric slabs for the structures consid-
ered here. Further investigations of the optoelectronic prop-
erties of semiconductor photonic-crystal structures in the
presence of spatially inhomogeneous carrier distributions are
planned. In particular, investigations of possible superradiant
light emission in structures with periodically varying space
dependent densities would be very interesting.
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