PHYSICAL REVIEW B 71, 195317(2005

Green-function theory of confined plasmons in coaxial cylindrical geometries: Finite
magnetic field

M. S. Kushwah&? and B. Djafari-Rouhafi
institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-Ku, Tokyo 153-8505, Japan
2UFR de Physique, CNRS 8024, University of Science and Technology of Lille |, 59655 Villeneuve d’Ascq Cedex, France
(Received 27 July 2004; revised manuscript received 22 November 2004; published 19 May 2005

We report on a theoretical investigation of plasmon propagation in the coaxial cylindrical geometries using
Green-function(or response-functiontheory in the presence of an applied axial magnetic f(éttli). The
magnetoplasmon excitations in such multiple-interface structures are characterized by the electromagnetic
(EM) fields that are localized at and decay exponentially away from the interfaces. Green-function theory,
when generalized to be applicable to such quasi-one-dimensional systems, enables us to derive explicit ex-
pressions for the corresponding response functiessociated with EM fieldswhich can in turn be used to
compute numerous physical properties of the system under consideration. A rigorous analytical diagnosis of the
general results in diverse situations leads us to reproduce exactly the previously well-established results on
planar systems, both in the presence and abseréeah‘tained within the different theoretical frameworks. As
an application, we present several illustrative examples on the dispersion characteristics of the confined and
extended magnetoplasmons in the single- and double-interface structures. These dispersive modes are also
substantiated through the computation of local as well as total density of states. It is found that, unlike as in the
zero-field case, the magnetoplasma propagation is nonreciprocal with respect to the sign of tine ondes
Bessel functions involved. The effects of an applied magnetic field and the aspect ratio on the dispersion of the
confined magnetoplasmons are discussed. We also briefly clarify some delusive traces of the edge magneto-
plasmons for a plasma shell embedded between two identical or unidentical dielectrics. The elegance of theory
lies in the fact that it does not require matching of the messsy boundary conditions and it also lies in its
simplicity and the compact form of the desired results. Our theoretical framework can also serve as a powerful
technique for studying the intrasubband plasmons and magnetoplasmons in the emerging mutiple-walled car-
bon nanotubes.
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[. INTRODUCTION stadter butterfly spectrufrand 2D extended states below the
.localized Fermi energy responsible for the quantum Hall

Ever since the discovery of quantum Hall effects, SeMl-effect? to name a few. These were investigated, and then

conducting systems of reduced dimensions and size hauge as the diagnostic tools for characterizing the materials.
been among the most important subjects of research in conx recent proposal where the resulting magnetization is
densed matter physics. We refer specifically to the quasi-twoshown to be a complementary tool for probing the shape of
dimensional (Q2D), quasi-one-dimensional(Q1D) and  the quantum dots, for example, is quite encouradfng.
quasi-zero-dimensionalQOD) systems and their periodic  The ongoing advancements in nanofabrication technology
counterparts, which are now known for providing a betterlead us to imagine the formation of even more sophisticated
understanding of how the charge carriers behave when comstructures such as quantum disks, pipes, snakes, balls, rings,
fined to still lower dimensions. The tremendous research inand ribbons where electrons are confined in the regions with
terest focused on these systems worldwide is reasonably ajuasidimensionality between three-dimensiot@D) and
tributed to advancements in thin-film growth and nano-zero-dimensionalOD) (see, for example, Ref.)1The fabri-
fabrication techniques that are allowing the synthesis otation of essentially arbitrary geometries is expected to lead
almost flawless heterointerfaces. A recent extensive reviewo dramatic control of the physical properties of solids. The
of the subject, both theoretical and experimental, can beole of the boundaries in understanding several electronic,
found in Ref. 1. optical, and transport phenomena in such nanostructures has
The role of an applied magnetic field to probe the treasurdeen much appreciated in the recent past. We refer, in par-
of conventional solids has been appreciated long before thicular, to the importance of the edge states in understanding,
advent of the nonconventional soliishis is because the for example, the magnetotransport in quantum Hall regimes
effect of the magnetic field on the band structure is morédn a broad range of mesoscopic systéms.
striking and is easily observed in the experiments. A number In this context, Pepper and co-work€rseported results
of interesting phenomena originate from the alteration in theon the band structure and conductance of axially symmetric,
band structure due to the magnetic field, such as the Blocburved, noninteracting 2D electron gé8DEG), topologi-
state$ yielding metallic conductivity, the Landau cally equivalent to a Corbino disk, in the presence of a non-
diamagnetisnt,the Shubnikov-de Haas effetthe de Haas- homogeneous magnetic field, arising as the result of an ap-
van Alphen effec, cyclotron resonancéthe appealing Hof-  plied axial magnetic field. They relied on the fact that the
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development of regrowth technology, usimgsitu cleaning ism for the inverse response functions to derive the final
techniques, now allows one to investigate the effects of varyexpressions for the magnetoplasmon dispersion relations,
ing the topography of an electron gas in addition to varyingdiscuss an interesting analytical diagnosis of the general ex-
its dimensionality. This offers the possibility of investigating pressions under special limits, and give an explicit analytical
the electron dynamics in a nonhomogeneous magnetic fielgelationship between the response functions and the density
even though the originally applied magnetic field is homogef states. In Sec. IV, we report several illustrative examples
neous. of numerical results on the magnetoplasmon dispersion and

Despite the enviable advances in revealing and explainings {he |ocal and total density of states in a variety of experi-
the exotic behavior of nanostructures based on the emerging,qna|ly realizable situations. Finally, in Sec. V, we conclude

. tiaated within classical electrod : i i "Wr findings and list some interesting dimensions worth add-
investigated within classical electrodynamics continue to reing to the problem in the future.

ceive considerable attention, especially the nanoscale cylin-
drical as well as the spherical structures. The cylindrical
structures have generated particular interest for their usefuly. BasIC NOTIONS AND BULK RESPONSE FUNCTIONS
ness, not just as electromagnetic waveguides, but also as
atom guides, where the guiding mechanism is governed First, we consider that it is important to make a careful
mainly by excited cavity modes. It is envisioned that theanalysis of Maxwell’s equations before using them in deriv-
understanding of atom guides at such a small scale woulthg the response functions for the respective systems. We
lead to many desirable advancements in atom lithographyonsider the electromagnetic waves propagating with an an-
which in turn should facilitate atomic physics researth. gular frequencyw and wave vectok||z in a medium defined

In this paper, we investigate, in general, the plasma modey the cylindrical coordinatep, #,z). For the sake of gen-
of a semiconductofdielectrig shell embedded between two erality, we consider every medium to be a semiconducting
unidentical dieleCtriC$SemiCOﬂdUCtOI)Sin the coaxial Cylin- p|asma, and the system is Subjected to an app“ed axial mag-
drical geometries using Green-function theory in the Pres; atic field (éHi)- This implicitly means that we are, in a

ence of an applied axial magnetic field. Our theoretical ap- . . .
proach is virtually the interface response thedtRT)!3 sense, working with the Faraday geomfiyr details of the

eneralized to be applicable to quasi-one-dimensie@aD) magnetic-field configurations, see Ref). IThe plasma
9 X PP 0 g s ; .waves, here as well as in the latter part of this work, will be
systems subjected to an applied magnetic field. Ever since 'tac'

incention. the IRT has been extensively apolied to study varic ssumed to observe spatial localization along the direction
ption, the | o y app y perpendicular to the axis of the cylinder. It is also noteworthy
ous quasiparticle excitationssuch as phonons, plasmons

magnons, etg.in heterostructures and superlattiéés In that we are interested in the nonmagnetic materials, and this

the recent past, it was successfully extended to investigat®eans thatB=H in Maxwell's curl-field equations. The
collective excitations in diverse two-dimensior@D) sys-  Physical system is also assumed to be isotropic, albeit the
tems, both with and without applied magnetic fieldd® Presence of the magnetic field imposes an anisotropy in the
Quite recently, we have studied the plasma modes in th&ystem. The latter implies that in the Cartesian coordinates,
coaxial cylindrical geometries in the absence of an appliedOr €X@MPIe €= €y, €= €y ANde€,= 6= €2y~ €,,=0, and
magnetic field® The present work is, in fact, a generaliza- the longitudinal component;, is, naturally, independent of
tion of the work presented in Ref. 19 to include the axialthe magnetic fieldsee Appendix A For the sake of brevity,
magnetic field. Note that the electromagnetic modes in 4/€ Will be working withe; =€y, €= €y, ande;= e, R
single dielectric or metallic cylinder had been known for To start with, we eliminate the magnetic-field varialile

many yearg? from Maxwell's curl-field equations to write
The general results on the confinéat, nonradiative as
well as extendedor, radiativg magnetoplasmon dispersion, V X (VX E)-qZe-E=0. (2.2

in both single-and double-interface geometries, are shown to

be correctly substantiated by the computed local and/or totghere the dielectric constafitis a tensor quantity, since the
density of states. In addition, we have also performed a caresystem we are concerned with is subjected to an external
ful analytical diagnosis of the final general expressions tqnagnetic field. In Eq(2.1), gy=w/c is the vacuum wave
reproduce the well-established results, obtained within thgector, wheree is the speed of light in the vacuum. Note that
different theoretical frameworks, on several planar geomin the presence of an applied magnetic field, B41) is the
etries, both with and without an applied magnetic fields.standard wave-field equation one starts with. We will use the

Apart from such tests of the theory, we believe that it shouldconvention that the EM fields obey the spatial and temporal
prove to be a S|mpl_e but powerful scher_ne of a theoret'ca!jependence of the form OA"(p,¢,Z):A_)(p)e(im0+ikz—iwt)’
framework for studying, for example, the intrasubband plas- . _ . .
mons and magnetoplasmons in the multiwalled carbon nandvhereA=E or B. Recalling the standard definitions Bf A,
tubes where theoretical research is gaining considerable m&?2¢ (with ¢ as any scalar and VXA in the cylindrical
mentum recently? coordinates, we split the original Maxwell’'s curl-field equa-
This paper is organized as follows. In Sec. Il, we discusgions in the cylindrical coordinates and evaluate the field
some basic notions of cylindrical geometry and calculate theomponents,, E, B,, andB, in terms ofE, andB,, since
bulk response functions in the presence of an applied axiake choose to work in terms of the latter components. The

magnetic field. In Sec. Ill, we present the theoretical formal-result, after straightforward manipulation, is
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pey ip ><BZ+( %262>—EZ—<m>EZ =0. 2.7)
J ki /dp PQo
+ iq(2)€2p_Ez+ml€Ez K(, (2.3 . . .
ap The coefficients of§(R-p) in these equations stand for the

perturbatiois) required for creating the black-box surfése
1 P needed in the formulation of the problem. The formal equa-
By=—; {— ik?e,p—E,— ma%elEz} do tions (2.6) and (2.7) will be the standard format for all the
pay Ip calculations of the Green-functions of the system of interest

Lo 0 in what follows. For the sake of brevity, we will henceforth
+l- 'klpa_szJf mcheB, K, (2.4 use the following notations:
1 5 Y=o~ K= Ig
By=—4{[—ia§elp—Ez+ mk262E2:|q0 »)/S:q(z)ev—kzz—ag, (28)
pay ap

4_ A, AD2_ 4
73—71*'%65—%

. J
+ ['qgle)&_sz+m|€Bz] k}, (2.9 where ¢,=(e;+ €3/ ;). Then the unperturbed parts of Egs.
(2.6) and(2.7) assume the following forms:
wherek?=(k?-q3e,), ai=K;+qges, andas=ki—03é5/ €. Be- err? P
fore we proceed further, we define the tenet of the interface('qofl 2) {l J ( d ) (537’3 m )E } + <qu€2>

4 T\ B T s
response theor{iRT), the black-box surfacéBBS). By the Y3 pdp\ dp 61)/3 p 61322

BBS we mean an entirely opaque surface through which

o , : 10( o m?
electromagnetic fields cannot propagate. The idea of intro- X|=—|p—B,| - —=B,| =0, (2.9
ducing the BBS in the IRT was conceived with two promi- padp\" dp p
nent advantages over the contemporary semiclassical ap-
proaches in mind. First, it allows one to disconnect entirelyand
from the extra mathematical world, and hence to confine _
oneself only within the true building block of the system idoys ) (Kape2\[ 1 0 Ie)- fT_le
concerned. Second, it implicitly provides a great opportunity 7‘31 ﬁ pap p(gp A
to get rid of using the messy boundary conditions one is so . 5
routinely accustomed to in dealing with inhomogeneous sys- _ 1d( o0 Y3 M _

. p 2]+ 5B, (=0

tems. In order to create a medium bounded by a black-box pdp\ dp ¥ p

surface, we assume that Eq2.2)—(2.5) are valid for either

p<Ror p>R, with R as the radius of the only cylinder in (2.19
guestion for now. In other words, we multiply the right-hand Next, try a solution of the form of

sides of EQs.(2.2—(2.5 by the step functiond(p—R) or

0(R-p), as the case may be. Evidently, the step functar E,=aJ(Bp)

hence the Dirac-delta functipmlictates the kind of physical (2.11

situation we will need to consider in what follows. Then the B, =bdn(Bp)
z components of Maxwell's curl-field equations satisfied byThis gives an expression fg as follows:
E,(p,0) andB,(p, ) assume, after careful mathematical ma-

. : ; _ , y ,
nipulation, the following forms: (637/3 ) 2)<ﬁ _/32> ) ( Q2 2>B4: o, 21
; 2 4 61’)/5 ,y21 61'}/%7/21
o[- ot
o pdp p(yp €as P 2\ ga? where, for each of the two solutiorgf (i=1,2),
X li( i)_mz B _5(R— ) iE +<imk2€2>
pap\"ap) b2 |7 Plap "\ peyad b ke o a__ Kb o
TR 2B or = yzzﬂi-
Kgper | 9 imki¢ & Y3~ NP i €33~ €1%2p;
><Ez-< > )—BZ+ 5B, | (=0, (2.6) (2.13
€/ dp pQo€ras
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The general solutions will, of course, be in the form of G(r,i")=G(F =) = G(p,6;p",6")
E; = a1Im(B1p) + 2dm(B2p) .
. (2.19 — m(6-6") .
B, = buJu(Bup) + Dodn(Bo0) 2 &"TGmpp), (215

Next, let r=(p,0), "=(p',¢'), and define Green- ¢, ha homogeneousgbulk) medium [see Egs.(2.9 and
function as (2.10] as

|3

()l ()] (B )
[l %) () (-5

10
:—§5<p—p')[ ] (2.19

2
] |:G11(m;pap,) Gio(m;p,p’)
Go(m;p,p") Ga(m;p,p’)

[ e o
N

01

We attempt a solution of the following forfisee Ref. 22

o Jadn(Bp)H(Bp") + adm(Bap)Hm(B2p'), p<p’
Gu(m;p,p’) =im

BuHo B I Br’) + BoHel B o), = (217
cimmr S 15
oS
comsir T S o

Let us note, for the moment, that both solutions &g, for example, can be combined together in the following form:
Gp1=im{[1-6(p=p')l[ardmHm+ 32dmHml + &p = p")[31Hmdm + 3Hmdml}, (2.2))

where 6(x)=1(0) for x>0(x<0) is the Heaviside step function. It is relatively involved, but straightforward, to verify
step-by-step that Eq$2.17—2.20 represent the correct and exact solutions of @ql16). For the sake of simplicity and

convenience, we redefine the coefficients involved in the elements of the Green-function@atrck that

AJm Hm 4 + A Jm Hm ’ ’ <
CnGn(m;p,p’)=i7T{ WIn(Bip)Hm(B1p") + Aodm(Bop)Hm(B2p") s p

AHW(B19)In(B1p") + AHi(Bap) I Bap), p=p" (222
o= (S SN 58
%Gn@pp>-w{2ﬁmfgf:;:2£12i:ifm:f;::;miﬁzx L e
coaman = LA D
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Before we define the coefficients, B, C, andD;, itis quite =175/ Vs, So=imCep/ (€117), Sa=ktbeio/ (€6172), Sa
important to employ following substitutions in order to make :imkyjzl/(qoejlyjzz), Ss= jllysz, Se=Kopej2/ yjzl, S

it simpler for the rest of the job to be done. These Rie  =imk/(q), and Ss:imOSEjz/(ijl)- Here the letterj in the
=e3vsl (15,  Pa=74l%, xi=kaper/(e175), and X, subscripts refers to the specific perturbation in question. At
=kdpe,/ 2. Thus the coefficientsy, B;, C;, andD; needed to  the same time, it is necessary to remember that all the quan-
redefine the bulk Green-functiofis the light of the prefac- tities that are inherently involved inside these substitutions,
tors involved in Eq.(2.16] in Egs. (2.22—2.29 take the such as, for examples, ¥, B, and P; will also carry a
following forms: A;=—(P,=B9)/Z, A;=(P,~p5)/Z, By  similar additional first inde in their subscripts.

=-p31Z, B,=f51Z, C,=-p1lZ, C,=f5/Z, D;=—(P,

‘ﬁi)/z, and Dz=(P1-B§)/Z, where Z=MS, with M=(1 A. Brief strategy of the methodology
+X%) and S=(B82-B3). Here Cy=—qle17alys Co In order to avoid expanding on the mathematical details
=q§y%/(y§‘x1), Cyip= —qgen/%/()éxz), and C,,= _qu%/ yg. later, we woul_d like to recall brief!y some important outlines
Then Eq.(2.12) assumes the following form: of the theoretical scheme of the interface response theory. It
should be noted first that all the quantities referred to earlier
(1 +x%)B* = (P +P)) B2+ P;P,=0,  (2.26  or to be referenced in what follows will carry a subscript

and hence the two solutions of this equation are defined suc‘Nhen referring to a given perturbative operation. The f|rs_t

and the foremost point is to create a black-box surface in

that \ L o

order to confine ourselves within the building block of the

5 system and disconnect altogether from the rest of the math-

(Py+P2) £ (P~ Pp)* — 4P Poxpxg]. ematical world. For this purpose, we assume a step function

6(---) specifying a given physical situation in front of Egs.

(2.27) (2.2—(2.5), for example. This then leads us to define a cleav-

It is important to note thaB;=+igj, with j=1,2, whereg, age operatoW(- - ) with the help of Eqs(2.6) and(2.7), for

represents the conventional definition of the decay constantsxample, which is, in fact, aré< 2n matrix, wheren is the

in the Faraday geometry and can easily be recovered fromumber of interfaces in question. Now we also know before-

1
Bl o= m[

Eq. (2.1). To be explicit,d) are given by hand that there is a bulk Green-function ma@y: --) rep-
s 2 resenting the medium we are confined to. With this, we de-
& ,= Z([(el + €3)K] — 0ges fine a response operator,
1
£ \{{(e1 - &)k ~ Gge3)” - AKk’oResed)) . (2.28) A=V IG( ). (3.2

a]:he arguments of all of these matrices are many, depending

For the sake of completeness, numerous identities interrel fioon the physical problem at hand, but the two that are the

ing x;, ¥, Bi» P;, andM are relegated to Appendix B. In what
follows, we will consider three types of perturbative opera- 7 7
tions to have the desired results for the response functions for B B
the resultant system at hand. In doing so, we will recall the
outlines of and abide by the conceptual scheme of interface
response theory?

Ill. FORMALISM FOR INVERSE RESPONSE FUNCTIONS R
g,(®) =

In this section, we will consider three perturbative opera- -
tions represented geometrically by Fig. 1. Specifically, Fig. R R,
1(a)-1(c) correspond, respectively, to the plasma cylinder of
radius R; surrounded by a black box surface, a black box
cylinder of radiusR, surrounded by a plasma medium, and a
plasma shell sandwiched between the black box cylinder of
radius R; and a semi-infinite black box surface outside a - — =
cylinder of radiusR,. The plasma media in the perturbations @) j)/ ©
1(a)-1(c) are, in general, characterized by the local dielectric
functions €;(w,B), ex(w,B), and e3(w,B), respectively(see FIG. 1. Schematics of the concept of three perturbatiphs;
Apendix A). We will consider the effect of retardation but [B], and[C]. The blank(shadedi region refers to the material me-
neglect the absorption throught. Any subsciigtl, 2, or 3  dium (black boy in the system. The sum of the first two perturba-
on the physical quantities should be understood to refer ttions defines a plasmalielectrig cylinder embedded in a dielectric
the respective perturbation until and unless stated otherwiséplasma and the sum of all three perturbations specifies, say, a

Before proceeding to the specific details for the respectivelasma(dielectrig shell surrounded by two unidentical dielectrics
perturbations, we would like to enlist some of the important(plasmas The magnetic fieldB) is oriented along thé axis of the
substitutions to be made in what follows. These &g¢  cylinder.

N
PLASMA SHELL

£(®)
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most important to be specified apeand p in the present §; (Rup')

problem, for example. Evidently, the response operator is n

also a 21X 2n matrix. Next, we define an operator, ( Jg 1 ) ( Jg 1 )

— — — — [— — + —
_rogg| TS5y TS S\ S S
K =T+A(), (3.2 2ﬁ3&4&§1+iﬁa _34;1_159
ap/ pl apl p/
wherel is a unit matrix of the same order as the rest. Now X8Ry —p'), (3.5

we need to calculate the inverse of the bulk Green-function _ S
G;(-+), which is given by, Saij—l(,_,)' As such, we now and the corresponding bulk Green-function is writtersese

have all that we need to calculate the inverse response fung_qs.(Z.ZZ)—(z.ZS)]

tion Qj‘l(---) in the interface spacesay,M,). This is defined ~ V26,1 Gy(12)
by Gﬂapv:iw—?{ ' ' }. (3.6
g5 L G1(21) G4(22)
G )= A -)éj'l(- ). (3.9 lItis noteworthy that although the operatdtsandA, as well

Notice thaff"X( --) representexclusivelythe response func- a5 the functionss; and@; are all functions of the variables,
) tsuch asm, k, o, wp, and w;, we have suppressed them

tion of the region we initially confined ourselves to, and tha X :
it does not yet stand for the physical system we may pdhroughout for the sake of brevity and convenience. The ma-

interested in. To be more explicit, suppose tHat(---) in trix elementsG,(ij) are relegated to Appendix C. With this,

Eq. (3.3 represents the dielectric, metallic, or semiconductWe define the response operator,
ing cylinder surrounded by a black box. And suppose we are

interested in a physical system made up of this cylinder sur- A1(R,Ry) = Vi(Ry,p)Ga(p,p)|p=ry=p’

rounded by a real, but different, material. Then we would iz [A(1D) A12

have to follow the identicalto those leading to Eq.3.3)] = —[ 1 1 ] (3.7
steps, but now we confine ourselves to the semi-infinite re- 2M1S [ A(21) Ag(22)

gion enclosing the black box. Suppose the latter system tu_rn]she matrix elementsA,(ij) are relegated to Appendix C.
out to be represented by an inverse response funCt'ORIext we define an opérator

G, X(--+). Then our actual, final, physical system, say, made
up of a semiconducting cylinder surrounded by a dielectric, _ - i {Al(ll) Al(lz)}
i Ay(Ry,Ry) =1+ A (R, Ry = :
is represented by 1(Ry,Ry) 1(Ry,Ry) IMLS, | AL21) A(22)

(3.9

G ) =)+ G ), (3.4
The matrix elementd(ij) are relegated to Appendix C. It
This response functiog, (- --) serves many useful purposes should be pointed out that in writing the second equality in
in realistic situations. For instance, the determinant ofEq.(3.8), we made a rigorous use of the identity in E811)
G (---) equated to zero yields the respective dispersivesee Appendix B2 Next, we calculate the inverse G to
modes of, for example, a semiconducting cylinder sur-write
rounded by a semi-infinite dielectric. It also becomes useful

to calculate the local as well as total density of statee SR, Ry) = - i05€11 1

Sec. Il F below. The analogous response functions are also L 2 Hin(Z10)3m(Z10) Hio(212) Im(22)
useful to compute numerous electronic, optical, and vibra-

tional properties of a given system under diverse physical G1(22) -Gy(12 (3.9
situations. Such is the strategy of the IRT to be pursued in -G,(2) G,(11 |’ '

what follows for the specific system we are interested in

here. As one can notice, one of the most important advanvherez;=pB;;Ry, with i=1,2. As such, we have all that we
tages of IRT over other classical or semiclassical theoreticdleed to calculate the inverse response function in the inter-
schemes is that one does not need to match the messy bouri@ice spaceM defined by

ary conditions one is so routinely used to in handling the - -

inhomogeneous systems. 81 "(R,Ry) = A1(Ry,R)GTH(Ry,Ry). (3.10

The result is that
B. First perturbation

. . . . . ~ -1 im Qp [ M(1D) hy(12
The first perturbatiofirepresented by Fig.(4)] is speci- 0; (R,Ry = oM h2D) h22) | (3.11
fied by a step functio®(R;-p) in front of Egs.(2.2—(2.5). 1S1LM(21) (22
That means that the black-box cleavage opersioR;,p’)  represents the response function of a plasma cylinder sur-
is defined such thdisee Eqs(2.6) and(2.7)] rounded by a black box. Her®, is defined as follows:
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i % My
Him(z1)In(ze)Hm(z12) In(z10)
(3.12

The matrix elementg;(ij) are relegated to Appendix C.

PHYSICAL REVIEW B 71, 195317(2005

C. Second perturbation
The second perturbatiofrepresented by Fig. ()] is
specified by a step functiorf(p—R,) in front of Egs.

(2.2—(2.5. Then the black-box cleavage opera%(Rz,p’)
is defined such thdisee Eqs(2.6) and(2.7)]

1
- 521<_, - _Szz) Sz1<523 ; ;524)

1
325<st ; _,527) ‘st(_,‘_,szaz)
p - p

X&p' ~Ry),

and the corresponding bulk Green-function is writterfsee
Egs.(2.22—(2.29)]

7’33{62(11) Gz<12>] (314

o5 L G2(21) Gy(22)

The matrix elementsG,(ij) are relegated to Appendix D.
With this, we define the response operator,

Ax(R2,Ry) = V(R p)Galp, )| p=ry=pr

_im {Az(ll) A(12)
2M2S L A(21) Ay(22)

The matrix element3\,(ij) are relegated to Appendix D.
Next we define an operator,

Gylp,p') =im

}. (3.195

Ax(Ry,Ry) =1+ Ay(Ry,Ry) = - im {Az(ll) Az(lz)]

2M,S,[ Ax(21) Ax(22)
(3.1
The matrix elementg\,(ij) are relegated to Appendix D.

Again, in writing the second equality in E¢3.16), we have
made a rigorous use of the identity in E§11) (see Appen-

dix B). Next, we calculate the inverse &, to write

~ __igges 1
Gy (RyRy) = Him(Z21) Im(Z2) Hinl(Z22) Im(222)
Gy(22 -Gy(12
-G,y(21) Gy(11) 24

wherez, = B5R;, with i=1,2. As such, we have all that we

need in order to calculate the inverse response function in the

interface spacd/ defined by

T (RyRy) = Ay(Ry, Rz)éil(Rzi Ry).

The result is that

(3.18

(3.13

im Q [h2<11> hy(12)
2 M3S,[ hy(21) hy(22)

represents the response function of a black-box cylinder sur-
rounded by a plasma medium. H&pg is defined as follows:

G '(Ry,Ry) = - } (3.19

i g5 M,
Him(Z20)Im(Z2) Him(Z22) Im(Z22)
(3.20

The matrix elementg,(ij) are relegated to Appendix D.

D. Third perturbation
The third perturbatiofirepresented by Fig.(&)] is speci-
fied by a step functiof8(p—R;)—0(p—R,)] in front of Egs.
(2.2—+2.5. Then the black-box cleavage operator
V3(Ri,p")8(p’ —R) P,y [with P,y =1(0) for n,n’ <2 and=3
(otherwisg; i=1 (2) for n,n’ <2 (=3)] is defined such that

~ Vi, O
V3(R|yp’): [ 32 ~ ]1
0 Vi

whereVs,=V, [see Eq (3.13)], with R,— Ry, ¥5— 5 and
S, — Sy, and V=V, [see Eq.(3.5], with Ri—Ry, i

(3.2)

— 3, and Sy — ;.
The corresponding bulk Green-function is written as
G3(11) G3(12 G3(13) G3(14)
i Ga(21) G(22) G423 G4(24)
G3(MS’MS) _2 ’
0o | G3(3D) G3(32) G3(33) G3(34)
G3(41) G342 G343 Gs(44)
(3.22

where the interface spadd, will be referred to(p=R;,p’
:Rl)1 (p:Rlap’:RZ)a (p:R21p’:R2)v and (p:R21p’:R]_)1
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respectively, in the first, second, third, and fourth quadrants hs(11) hy(12) hy(13) hy(14)
made up of X 2 submatrices, starting clockwise from the 2
top-left quadrant. The matrix elemer@s(ij) are relegated to g, %My, M) = 1o 1] hs2D) hy(22) hy(23) hy(24) ,
Appendix E. With this, we define the response operator, 2 7’5333 hs(31) hs(32) h3(33) hy(34)
B B B h3(41) h3(42) hs(43) hz(44)
A3(Mg,Mg) = V3(Mg)G3(Mg, M) (3.28
A3(11) A3(12) A(13) Ag(14) where the matrix elementg(ij) are relegated to Appendix
i | A3(2]) As(22) A(23) As(24) E. Having calculated the inverse response functions for the
= 2M,Ss| As(3D) As(32) A(33) As34) | three perturbations, it becomes an easy task to deduce the

dispersion relations for the plasmon propagation in the real
As(4D) Ag42) Ag(43) Ag(44) physical systems. These di¢a plasmadielectrig cylinder
(3.23 embedded in a dielectrigplasma and (ii) a plasmadielec-
tric) shell surrounded by two unidentical dielectrigdas-
The matrix elementss(ij) are relegated to Appendix E. mag, for example. This is what we intend to do in what

Now we define an operator, follows.
_ o A step-by-step careful diagnosis of all the analytical re-
A3(M,Mg) =1 + Az(Mg,My) sults in this perturbation leads us to reproduce exactly the

corresponding ones in the special limit®£0 (cf. Ref. 19.
A1) A5(12) 2513 A5(14) This remark is also valid for other perturbatiofia Secs.
i [ A3(2D) A3(22) Ag(23) As(24) 1B and Ill C. We recall and stress that we have, for the
B 2M3S;| A(31) A3(32) As(33) A4(34) | sakr:a 0;‘ ge?erality, cc))nsidereéi( so far eé)ery %hyﬁicda(l medium
in the first(Sec. Il B), second(Sec. Il C, and third(Sec.
834D 2542 A443) Aq44) Il D) perturbation to be a semiconducting plasma.

(3.29
The matrix elements\s(ij) are relegated to Appendix E. E. Plasma (dielectric) cylinder embedded in dielectric (plasma)
Again, in writing the second equality in E¢B.24), we have The merger of perturbatiori$igs. 1a) and 1b)] results
made use of the identity in E¢B11). Next, we calculate the into a geometry of a plasm@lielectrig cylinder embedded
inverse of the bulk Green-functioB; to write in a dielectric (plasma, of course, withw,=0=w. in the
medium considered to be a dielectric. As such, one can write
G M MY 9 71=9, *+3, %, whereg ! is the inverse response function
3T of a single cylinder embedded in a semi-infinite medium.
. qg 1 That means that formally the determinant of the sum of the
__'7.,_335 inverse response functions in Eq8.11) and (3.19, with

R;=R=R,, equated to zero, i.e.,
Gl1) G312 G139 G314 s

G321 G322 G;'(23) G3'(29) [§7H My M9l = 87 (Mo M9 +T; (Mg, M) = 0,

G:'3D) G3'32) G;'33) G;'34) |' (3.29
G;i(41) G342 G343 G349 yields the dispersion relation for magnetoplasmons with a
mixed (i.e., inseparabl@- ands-polarization$ character in a
(3.29 single-interface cylindrical geometry. In order to gain confi-
dence we subjected E@3.29 to the limit of R—~. The
result is that a careful mathematical manipulation leaves us
with an equation exactly identical to E5) in Ref. 24,
which represents the dispersion relation for the magnetoplas-

where the matrix element;'(ij) are relegated to Appendix
E and the symboD is defined as follows:

D= i[Hm(ZI&l)Jm(Zél) = In(Z)Hm(za)] mons propagating at an interface separating a semiconduct-
S1Ss5 ing plasma and a dielectric. We also checked the limiBof
X [Hin(Zao)In(Zs) = Im(Ze) Hin(Z30) ] =0 everywhere in EQq(3.29 to exactly reproduce our Eq.

(3.27 in Ref. 19.
X ‘Jm(z31)Hm(ZSZ)Jm(Zél)Hm(Zéz)y (326)

wherezg = 85R; andz;=5R,. Finally, we calculate the in-
verse response function of a cylindrical shell bounded by two
black boxes, In this section we are motivated to study a physical sys-
tem made up of two coaxial cylinders where we can have the
”gs‘l(Ms,MS) :Zs(Ms,Ms)és_l(Ms,Ms), (3.27 plasma shell bounded by two unidentical dielectrics or a di-
electric shell bounded by two unidentical plasmas, in gen-
to write eral. We will study diverse situations of practical interest.

F. Plasma (dielectric) shell bounded by two unidentical
dielectrics (plasmas)
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Methodologically, such a geometry becomes realizable by G. Local and total density of states

summing up the inverse response functions calculated in The density of state€DOS) is of fundamental importance
Eqs'(3'_1]);(_31'19'_?'19(_?{8)_'1” the Intgrf_e;c_e spackls. Oné 1, the understanding of many physical phenomena in
can writeg "=g; "+, +0; ", whereg ™" is the response .qnqensed-matter physics. The interpretation of quite a num-
function of the finite cylindrical shell surrounded by two, in e of experimental excitation spectra in a wide variety of
general, unidentical media. This implies that the following ¢y stems subjected to different physical conditions requires a
relation: detailed knowledge of the DOS. The classic textbooks and
monographs reveal that the standard algorithm to determine
G (M Mg)| = |§l‘1(|\/|s,|\/|s) +§2_1(M31MS) +§3_1(M5,M5)| the density of states is fou_nded on the Green-function ap-
: proach. Our purpose here is to calculate the local and total
=0 (3.30 DOS in order to substantiate the computed plasmon modes in
the cylindrical geometries at hand. Unless some numeric
represents the dispersion relation for the magnetoplasmons frurdle gets in the way, it is logical to expect that {lpesi-
such a resultant two-interface coaxial, cylindrical structuretive) peaks in the DOS should coincide with the zeros of the
where all the three physical media can, in principle, be dif-inverse response function, which determine the plasmon
ferent plasmas. However, such a situation would be too difmodes for a given propagation vector of a system.
ficult to understand and interpret, given the fact that even if
only one medium is magnetoplasr(ia, say, a one-interface 1. Local density of states

geometry there can, in general, propagafeur different The formal expression for the local density of states

kings oflrr:_odles[see, e.g., Ref. ]1tA.St S'“,:.Ch’ we dhecide? 0 (LDOY) in the framework of interface response theory is

ey e o s e e Joneraly quie fssy and es he name suggess requres
mple, P y ) . , some subtle details of the local physical conditions. These

trics, (ii) a plasma shell bounded by two unidentical d|elec—are’ for example, the basic definitions of the bulk Green-

trics, and(iii) a dielectric shell bounded by two identical f,tions, the spatial positions around the interface, the na-
plasmas. The term dielectric is literally used to mean a meg, e of the associated EM fields involved. etc. In the

dium where the dielectric function is simplynstantand 5 eqent context, the simplest definition of the LDOS at the
hence the magnetic field has no influence whatsoever. expense of a few negligible concerns, but which still con-

It should be pointed out that we performed two tests onins the important physics involved is giventby
the general analytical expression in E§.30 in the case of

a geometry made up of a plasma shell bounded by two uni- )

dentical dielectrics. First, we consider the lilfRi~R,~R Nilw) == 27_7 Im{tracgg(Ms, M9}, (3.32

—o0, but takeR,—R;=d as a finite quantity and fimm=0. In

this case a rigorous analytical diagnosis, which requires nuvhereg refers to the response function for which the inverse

merous identities listed in Appendix B, led us to exactlywas determined in Secs. Il B-IlI D for diverse situations.

derive Eq.(19) in Ref. 25, which represents the magneto- The important thing is to understand to which system the

plasmons in a semiconducting film bounded by two unidenresponse functiog refers in different physical situations. We

tical dielectrics. Second, we put the magnetic fiBl0 ev- ~ consider two such cases of our interest: a single-interface

erywhere in Eq(3.30 to reproduce exactly our E¢3.32 in  System(see Sec. Il Eand a double-interface systefsee

Ref. 19. Sec. llI B. For a single-interface systerq, is simply the
Before closing this section, we would like to remark thatinverse of the sum of; * and@, " (see Sec. Il E In the

in the numerical resultésee Sec. 1Y we will always come case of a two-interface system, we need to study the LDOS

across a situation in which all the magnetoplasma modes &t the two interface®; andR; independently. For interface

higher values of the propagation vector intend to beRy (Rp) the@in Eq.(3.32) is the 2< 2 submatrix in the first

asymptotic to certain characteristic frequendies We have  (fourth) quadrant of the inverse of the sum of three inverse

found that these characteristic frequencies turn out to be exesponse functiongsee Sec. Il

actly the same as those in the case of a single- or double-

interface planar geometry in the Faraday configurafian, 2. Total density of states
BIlk) and are specified by For thez components of the electromagnetic fields con-
sidered here, the analytical expression for the variation of the
1 total density of state§STDOS) within the interface response
0= ——{[(& - )02+ 2¢7] theory is given b}?
Z[GE - €&
1d (MM
+[(& - )%+ 4l 5]V, (3.3) Nr(w)=- ——(Arg de[{ f"(—ss)} ) . (3.33
mdw 0i(Mg,My)

where ¢, is the background dielectric constant of the semi-By the variation of TDOS we mean the difference between
conducting plasma mediung, is the dielectric constant of the TDOS of the finalphysica) system and an initial sys-

the dielectric medium, and).=w/w, is the normalized tem. HereT; (0;) stands for the response function of the
electron cyclotron frequency. initial (final) system in question. For the single-interface sys-
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tem,q; is the product ofj; andg,; andg; is the inverse of the 1.0 -__f_';;g'g___g; —_———
sum ofE]l‘1 andﬁz‘l. In the case of a two-interface system,
0i=0110,:, Whereqy; is the inverse of the sum of a>d4 1 LL
matrix comprised of th@, " andg, 2, Ty is the inverse of

95! that corresponds to perturbation 3 for the shell alone, 0.8
andQ; is the inverse of the sum @, ?, G, andg; ™ It
should be pointed out that both the local and total DOS are
computed for every value of integet.

It is also worth mentioning that in the course of studying
the total DOS we have the finit@r boundedl parts of the
system automatically incorporated. Therefore, we are bounc
to find some discrete modes in the TDOS, which usually
apppear as negative peaks in the D@Space and do not g
bear any physical significance if one is interested in studyings
only the confined or extended plasmon polaritons. Moreover,g | .- — M0 =131
if we are interested in understanding all the existing peaksin [ 7/ .. m=l e =124
the TDOS, we need to explore, for example, each of the three 5 | e 2 O =141
perturbations involved individually. We have found that s m3 o992
while the negative peaks in the individual perturbations sur- 1 /7 e =5 ¢
vive in the TDOS, all the positive peaks are seen to disap-
pear. Moreover, all thépositive plus negativepeaks in a 00
given perturbation are found to be well defined by the zeros —~, =~ { 5 = 2 4 &
of the respective inverse response function. This remains un REDUCED WAVE VECTOR (
failingly true for all the cases we have investigated, both for
single- and double-interface systems. All the peaks in the FIG. 2. Magnetoplasmon dispersion for a GaAs plasma cylinder
LDOS are always positive. More specific comments will be(e; =13.1 embedded in a GaAl,As dielectric(ey =12.4. The
made later(see Sec. IV. other parameters a®®,=1.41 and(2;=0.2. The solid straight line

marked asLL is the light line in the dielectric background. The

dashed horizontal line refers to the asymptotic frequercy
IV. ILLUSTRATIVE EXAMPLES =0.7305.

©.=0.7305

g

'DUCED FREQUENCY

As we have seen in Sec. lll, our final results for the mag-
netoplasmon dispersion characteristics are Eg9 and =Cck/w, and frequencyé=w/w,, where », stands for the
(3.30, respectively, for the single cylinder embedded in ascreened plasma frequency. Both local and total DOS will be
background of different material and the coaxial cylindricalShown in arbitrary units throughout. It is important to note
geometries. Note that both of these equations are, in generdhat we will henceforth label thenagnetic-field dependent
the complex transcendental functions. Therefore, in prin{independent) decay constants By (8;, with j=1, 2, or 3,
ciple, we need to search the zeros of such complex functiongeferring to the number of the perturbatjgost for the pur-
In spite of so many advancements in the software scienc&0se of discussion.
searching the reliable zeros of such complex functions is not
an easy task. So, we strike a compromise among a few
choices. We decided here to produce those zeros where the
real part of the function changes the sign, irrespective of
whether or not the imaginary part is zero. We believe that Figure 2 shows the plasmon dispersion for a GaAs plasma
this has resulted into a reliable scheme for studying the diseylinder in the Ga_,Al,As dielectric form=0, 1, 2, 3, and 5
persion characteristics of magnetoplasmons in the presenmtith (2,=1.41. The dashed horizontal line marked @s
systems. This is because all the magnetoplasma mocdaes =0.7305 indicates the corresponding asymptotic frequency
fined or extendedare found to have excellent correspon- )¢ [see, for instance, E¢3.31)] in the nonretardation limit.
dence with the peaks in the local and/or total density ofThe straight line marked d4_ stands for the light line in the
states. We consider mostly GaAs plasma, (58 ,As dielec-  dielectric background. It is observed that there are two
tric, and SiQ dielectric with background dielectric constants modes for everym: one starts in the radiative regidio-
¢ =13.1, 12.4, and 4.5, respectively. We will later assign arwards the left of the light line wherg, is purely real with a
additional numeral to the suffix of the background dielectricfinite frequency, and the other starts at the origin along and
constants corresponding to the region in the geometry cortowards the right of the light line in the non radiative region
cerned. Other parameters such as the aspectmafy/R;,  (towards the right of the light line wheig, is purely imagi-
the normalized plasma frequen€y,=wyR;/c, the normal-  nary). The former ends up merging with the light line, while
ized electron-cyclotron frequencf.=w./w,, and the azi- the latter becomes asymptotic ¢&0.7305. This is the fac-
muthal index of the Bessel functioms will be given at the tual detail, albeit the picture apparently reveals something
appropriate places during the discussion. We will present oudifferently. A simple look at Fig. 2 makes us believe that
results in terms of the dimensionless propagation vegtor there is one mode for every that starts with a finite& from

A. Plasma (dielectric) cylinder embedded in dielectric
(plasma)
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FIG. 3. Nonreciprocal behavior for the magnetoplasmon disper- . )
sion for a GaAs plasma cylinder embedded in 3 Gl As dielec- FIG_. 4. Local(total) density of states in the uppéower) panel
tric. The other parameters are listed inside the picture. The leffor various values_ ofn_and§:2.5. The r_est of the parameters used
panel shows the dispersion far<0, the middle panel shows the are thg same as in Elg. 2. The arrow in the lower panel refers to a
dispersion form>0, and the right panel shows the effect of the small invisible negative peak g=0.7100 form=0 wheref,=0.
variation of the magnetic field intensi. for a given(. ) o

field intensity. But it should be noted that this behavior is

£=0in the radiative region, propagates monotonously to takehown for a given value of. However, all the modes at any
a small dip(at least for smallem) in the close vicinity of the value of B do show a correct asymptotic behavior specified
light line, and gradually tends to become asymptoti€o by Eq.(3.31).
The only exception to this description is the casensfO, Figure 4 illustrates the locdtotal) density of states in the
where the actual bona fide mode starts from the origin and iapper (lower) panel in the nonradiative region in the-¢
seen to be always the true magnetoplasmon polariton. Evespace fom=0, 1, 2, 3, and 5 and faf=2.5. The rest of the
at considerably largég, all modes retain their character: the parameters are the same as in Fig. 2. The sharp peaks at
larger them, the higher the frequency. We see some addi=0.5124, 0.5339, 0.5738, 0.6230, and 0.7094 are seen to be
tional modes fom=0 andm=1 in the close vicinity of the common to both local and total DOS. The negative peaks are
plasma frequency=1. coming from the second perturbatigsee Sec. I, which

The triptych in Fig. 3 is made up of three parts: the left produces one positive and another negative peak for emery
part shows the dispersion characteristics for negativehe  The positive peak disappears and the negative one survives
middle part shows the dispersion for positiveand the right in the total DOS. The arrow &=0.7100 indicates an indis-
part depicts the influence of the variation of intensity of thecernibly small negative peak fan=0, where3, vanishes.
applied magnetic field for a given propagation vectokiost ~ We observe a pileup of rather small DOS, both local and
of the parameters used here are the same as in Fig. 2, and wetal, at £=0.7305. Every positive peak in the local and/or
cover only the radiative regions, where the nonreciprocity igotal DOS shows an excellent correspondence with the re-
predominant. Just as it is expected intuitively, it becomespective confined magnetoplasmon mdde the nonradia-
clear from the left and middle parts of this triptych that thetive region in Fig. 2. Let us clarify once and for all that
magnetoplasma wave propagation in a semiconducting cythese negative peaks in the total DOS are shown just for
inder embedded in a dielectric in the presence of an appliedompleteness, but really have no physical significance.
magnetic field in the Faraday geometry is non reciprocal Figure 5 depicts the plasmon dispersion for a Gal ,As
with respect to the change of the sign of the inadexf the  cylinder embedded in a GaAs plasma fop=1.41 and(),
Bessel functions, i.e&(m>0) # £m< 0). Note that the non- =0.2. The solid, dashed, dashed-dotted, dashed-dot-dotted,
reciprocity is found to be a general characteristic of the magand dotted curves stand for the magnetoplasmon modes, re-
netoplasmon propagation in the cylindrical geometries in thespectively, form=0, 1, 2, 3, and 5. The dashed line marked
presence of an applied magnetic field in the Faraday configuas é=0.7305 refers to its asymptotic frequency in the nonre-
ration. The right part clearly demonstrates the monotonoutardation limit. Unlike as in Fig. 2, we observe a larger num-
increase of the magnetoplasma frequency with the magnetiger of extended modg#n the region towards the left of the
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FIG. 5. Magnetoplasmon dispersion for a;GaAl,As dielectric
(€.=12.4 in GaAs plasma ey =13.1). There are five groups of
curves for five different values ah. The parameters used are as

listed in the figure.
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FIG. 7. Magnetoplasmon dispersion in a GaAs plastea
=13.1) shell sandwiched between identical G&l,As dielectrics
(€.=12.4=¢,). There are five groups of curves for five different
values ofm. The solid, straight line labeled &4 refers to the light
line in the Ga_,Al,As dielectrics. The parameters used in the com-
putation are as listed in the picture.

light line marked ad.L) for everym, even though the num-
ber of confined magnetoplasmons at laige still the same
(i.e., one for everym). It is interesting to note that in the
present case there is almost a smooth transition of the mag-
netoplasmon propagation in the vicinity of the light line. This
contrasts with the corresponding behavior in Fig. 2. Another
important difference is the fact that all the confined modes
seem to merge together and lose their identities—with re-
spect to(nonzerg indexm—at some characteristic value f
(see, for example, af=2.75. This kind of focusingeffect,
which is more explicit for this geometry than in othése,
e.g., Sec. V, could possibly be explored to characterize the
materials constituting the resultant structure.

Figure 6 shows the locdkotal) density of states in the
upper (lower) panel form=1 and{=0.5. The other param-
eters are the same as in Fig. 5. All three positive peaks ap-
pearing at{é=0.3012, 0.6435, and 0.8446 in the local DOS
are seen to be consistent with the corresponding positive
peaks in the total DOS. These positive peaks showing up in
the local and total DOS are seen to be in very good agree-
ment with the frequencies of the three radiative plasmon
modes at'=0.5 in Fig. 5. The existence of the two negative
peaks att=0.3190 and 0.4381 in the total DOS is attributed
to the first perturbation alone. It is found that both of the
negative peaks are the exact solution§gf'|=0. Moreover,

for m=1 andZ=0.5. The rest of the parameters used are the same d§€ positive peaks occurring &0.1420 and 0.7824vhere
in Fig. 5. The negative peaks in the lower panel emerge from the); vanishes in the first perturbation are seen to disappear

first perturbation alone and bear no physical significance.

from the total DOS.
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FIG. 9. Total density of states fan=0 and{=0.3. The higher
(lower) negative peak emerges from the fitsecond perturbation

IOWEJ (ugpoeg panel form:dQ an?szoﬁ' We call attentlond_to the " and has no physical significance. The rest of the parameters used
smaller resonancéindicated by the arroly corresponding 1o _o'ne"came as in Fig, 7.

the interfaceR,. The rest of the parameters used are the same as in

FIG. 8. Local density of states at the interfaRe (Ry) in the

Fig. 7. 0.5087, 0.7213, and 0.8819 corresponding to the interface
R;, whereas the interfac®, captures only two low DOS

B. Plasma (dielectric) shell bounded by two dielectrics peaks atf=0.0835 and 0.8819. That means that the two in-

(plasmas) terfaces in the coaxial cylindrical geometry have different

preferences. As it was pointed out befé?dt seems that the

Figure 7 illustrates the dispersion relations of thetwo interfaces are more sensitive to the geometry and less
magnetoplasmon-polariton modes for the coaxial cylindricakensitive to the materials in the bounding media. That is to
geometry made up of a GaAs plasma shell bounded by theay that the response of the two interfaces does not have to
Ga,Al,As dielectrics, both in the inner cylinder and the be identical simply because the bounding media are exactly
outer semi-infinite medium. As for other relevant parametersthe same. It is noteworthy that only the highest three peaks
we consider(,=1.87, 0,=0.2, andr=2.2. The solid, occurring at{=0.8819, 0.9541, and 0.9924 in the local DOS
dashed, dashed-dotted, and dotted curves stand for the valug® shared by both interfaces. Moreover, except for the low-
of m=0, 1, 2, and 3. Since the inner and outer media arest one at the interfad®,, which corresponds to the confined
identical, we still have a single asymptotic frequency in theplasmon mode, all of the higher resonances explain the ra-
nonretardation limitt=0.7305 assigned to the dashed hori-diative modes at this value df
zontal line. The straight, solid line marked las is the light Figure 9 presents the total density of states for the same
line in the Ga_,Al,As dielectrics enclosing the plasma shell. system as studied in Figs. 7 and 8 far0 and{=0.3. One
Note that while the number of the confined magnetoplasmogan notice at once that there are five positive resonance peaks
modes at large value df (in the nonradiative regioris still  lying at the same frequencies as those in the local DOS
two in conformation with the two interfaces in question, (summing up all the peaks at both interfaces, but excluding
there can be any number of extended modes in the radiatie two highest ongés In addition, there are two negative
region for a giverm, depending upon the aspect ratioThe  peaks att=0.0854 and 0.5878. We find that the loweip-
upper, confined magnetoplasmons fat 2.65 demonstrate per negative peak comes from the secdfist) perturbation
the same kind ofocusingeffect as observed in Fig. 5. An alone where the Bessel functidh vanishes. That is to say
additional effect of the presence of the magnetic field is thahat the position of the loweiuppe) negative peak refers to
accumulation of the radiative modes near the plasma frethe first(second zero ofJ;. Both positive peaks of the first
equency at=2.2. perturbation, which were seen to correspond to the first two

Figure 8 shows the local density of states at the interfaceeros ofJ,, have disappeared in the total DOS. A careful
R; (Ry) in the lower(uppe) panel form=0 and{=0.3. The |ook at the dispersion relations in Fig. 7 reveals that there is
rest of the parameters are the same as in Fig. 7. We note thaih excellent correspondence between the resonance peaks in
there are four well-defined sharp DOS peaksa0.3252, the DOS and the magnetoplasmon dispersion for a given
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FIG. 10. Magnetoplasmon dispersion in a GaAs plasg FIG. 11. Local density of states at the interfadRg(Ry) in the

=13.) shell sandwiched between unidentical ;GAlLAs (e lower (uppe)y panel form=0 and{=0.2. We call attention to the

=12.4 and SiQ (ez =4.9 dielectrics. The solid line labeled 881 5161 DOS resonances, indicated by the arrows, corresponding to

(LL2) refers to the light line in the SiXGa, Al AS). The dashed e interfaceR,. The rest of the parameters used are the same as in
horizontal line labeled as(¢=0.7305 (Q2s=0.8739 is the Fig. 10.

asymptotic frequency for the interfa& (R,). The parameters used

are as listed in the picture. two magnetoplasma modes at large propagation vecamp-

except for the lowest extended mode in the radiative regiofProach the different asymptotic limits. Comparing Fig. 10
(towards the left of the light linethat could be reproduced With Fig. 7 reveals that the asymmetric case yields a rela-
neither in the local nor in the total DOS. This is not surpris-tively richer spectrum at least for the radiative modes for a
ing, however, given the complexity of searching the zeros ofjivenm. Interesting, but not unexpected, is the fact that only
the determinant for the dispersion spectrum in Fig. 7. We didhe lowest pair of modes for evem crosses the rightmost
not pay much attention to the two highest positive as well adight line and attains the character of a pure mag-
negative peakgwhich come from the third perturbation netoplasmon-polariton before becoming asymptotic to the re-
alone in the local and/or total DOS for the reason that therespective frequencies. The lower confined magnetoplasmons
is, in general, not a very good correspondence between that {=2.5 demonstrate the same kind fotusingeffect for
dispersion spectrum and the DOS for the frequencies lyingionzerom as those observed, for example, in Figs. 5 and 7.
abovea characteristic curve that correspond@ic0 (i.e., at At {=2.5, the originally lowechighep m mode becomes the
£>0.9055 at the origin The disagreement is, of course, higher (lower) frequency mode until at very largg where
attributed to the strategy of determining the zeros of a comthey all become asymptotic to the lower limit.e., ¢
plex function for the purpose of plotting the dispersion=0.7309.
curves, for example. Figure 11 depicts the local density of states at interfce
Figure 10 illustrates the magnetoplasmon dispersion fofR,) in the lower (uppe) panel form=0 and {=0.2. The
the GaAs plasma shell bounded by unidentical dielectric®ther parameters are the same as those used in Fig. 10. We
(Ga Al As in the inner cylinder and Si{n the outer semi-  call attention to the point stated in the end of the discussion
infinite medium. For other parameters involved in the com- related to Fig. 9 and henceforth will not count any peak at
putation, we considef),=2.24, ().=0.2, andr=2.0. The &£>0.9055 that refers t@.=0 at{=0. We can se€irst) four
solid, dashed, dashed-dotted, and dotted curves represent, ofear resonances lying a&=0.2758, 0.4339, 0.6199, and
spectively, the case fom=0, 1, 2, and 3. The two solid 0.7751 at interfac&®;, whereas the interfad®, we observe
straight lines marked dsL1 andLL2 refer to the light lines only two at £=0.0928 and 0.7752. Thus the two interfaces
in the dielectric media Si9and Ga_Al,As, respectively. share only the highest resonance in the local DOS and with a
The two dashed horizontal lines labeled @s=0.7305 and difference of magnitude. Again, the two interfaces pose dif-
0,=0.8739 stand for the asymptotic frequencies for theferent preferences, and that really makes more sense here
plasmon-polaritons propagating at the interfageand R,, because of the asymmetric configuration. Note that only the
respectively. Unlike as in the symmetric cdsee Fig. 7, the  lowest resonance at interfaBg belongs to the confined plas-
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FIG. 12. Total density of states fon=0 and{=0.2. The rest of FIG. 13. Plasmon dispersion in a GaAl,As dielectric (e3

the parameters used are the same as in Fig. 10. While the lowest12.4 shell sandwiched between identical GaAs plasmas
negative peak emerges from the second perturbation, the two higher13.1=¢, ). There are four groups of curves for four different val-
peaks come from the first perturbation. Such negative peaks hauges ofm. The solid, straight line labeled &s refers to the light line
no physical significance. in the Ga_,Al,As dielectric. The parameters used in the computa-

. . tion are as listed in the picture.
mon mode, while the rest of the higher ones correspond to P

the radiative modes. As regards the peakg-a0.9055, al- ) . _
though there is a reasonable consistency between the peaksFinally, we take up the case of a dielect(@a Al As)
at the two interfaces, we do not, for the moment, want toshell symmetrically bounded by two identical GaAs plasmas
make any remark on the correspondence these peaks mayfer ,=1.41,Q0.=0.2, and the aspect ratie-2.5. The results
may not have with the respective modes in Fig. 10, for thgfor the magnetoplasmon dispersion in terms of the dimensio-
reason stated before. less frequencyé) and wave vectot?) are plotted in Fig. 13.
Figure 12 shows the total density of states for the sam&he solid, dashed, dashed-dotted, and dotted curves corre-
system as discussed in Figs. 10 and 11rfer0, 0,=0.2, spond tom=0, 1, 2, and 3, respectively. The solid, straight
and {=0.2. We find that there are five well-defined positive line marked as.L refers to the light line in the dielectric
resonances lying at the same frequencies as those specifyiggell, and the dashed horizontal line labeled¢a®.7305
the resonance peaks in the local DG&mming up all the indicates the asymptotic frequency for the magnetoplasmon-
peaks at both interfaces in Fig.)1ln addition, there are po|ariton at the large value df where nonretardation effects
three negative peaks occurring &0.0945, 0.4899, and e negligible. One can easily notice that while the number
0.8928, which have no physical significance. While the firsty \he modes in the nonradiative region is still two, the num-

one comes'from the.second perturbation, the pair .Of the S€Her of radiative modegowards the left of the light lineis
onql anq th'rg. nlegatlve peaks emerges from the first perturIélrger for anym as compared to that in Figs. 7 and 10. Also
bation (i.e., [g, |=0); their positions in frequency corre- ' ’ ’

L it is evident that no such nasty modsuch as the lowest
spond to the first three zeros of the Bessel functlanThe adiative mode encountered in Figs. 7 and &9 seen to
two positive resonances observed in the first perturbationr gs.

which correspond to the first two zeros &j, have disap- émerge in this case. In this case, the kindamfusingeffect

peared from the total DOS. It is found that all five reso-"e discussed before occurs for the upper branch of the con-

nances in the DOS exactly reproduce the frequencies of th&€d modes, is not so sharp, and is seen to shift to a higher
plasmon modes of Fig. 10 at the givénwith an exception value of {=2.85. The trend of getting the radiative magne-

for the lowest radiative mode above the light linel. How-  toplasma modes accumulated in the frequency range speci-
ever, this mode is found to have the same story as the corrdéied by 0.90555 £<1.0 bears nearly the same story as in
sponding one in Fig. 7, and hence our comments made ifigs. 7 and 10. This frequency range seems to be extremely
relation to Fig. 9 remain valid. Again, we did not count on sensitive as regards the search for the zeros of the kind of
the peaks emerging &@t>0.9055(see abovg albeit we un- complex function we have had in such systems.

derstand, for example, that the two negative peaks come Figure 14 illustrates the local density of states at interface
from the third perturbation alone. R; (Ry) in the lower(uppe) panel form=0, (.=0.2, and{
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FIG. 15. Total density of states fon=0 and{=0.5. The rest of

(dashedllines refer to the geometry studied in Fig(Fig. 10. The
rest of the parameters are listed in the picture.

=0.5. It is found that there are seven well-defined resonances
lying at £=0.1231, 0.3434, 0.3751, 0.6582, 0.6737, 0.9142,
and 0.9382, shared by both interfaces, of course, with a dif-
ference of magnitude. In that sense, this case is much differ-
ent than the previous one of the plasma shell between two
dielectrics (see, for example, Figs. 8 and)1RAgain, it is
only the lowest resonance that substantiates the confined
plasmon mode below the light line; the rest correspond to the
radiative modes for this value df. Interestingly, the DOS
resonances are sharper in this case even within the delicate
frequency regiméi.e., 0.9055 ¢=<1.0). We do not count on
the highest jump occurring at the frequengy 0.98.

Figure 15 shows the total density of states for the same
system as represented by Figs. 13 and 1sfe0, (1,=0.2,
and £/=0.5. We observe that there are seven well-defined
positive resonances located at the same frequencies as those
specifying the similar resonance peaks in the local DOS in
Fig. 14. Moreover, there are two negative resonances that are
seen to emerge af=0.4557 and 0.8598. These negative
peaks are a consequence of the third perturbation alone that
produces three positive peaks lying &t0.14201 B5=0,
0.4398, and 0.8507 and the two negative peaks as mentioned
above. While all three positive peaks disappear from the total
DOS, the two negative peaks survive. All tfositive plus
negative peaks in the third perturbation are seen to be the
exact solutions ofg; |=0. The case studied in Figs. 13-15
for the coaxial cylindrical geometry seems to be the clearest
one where there is no conflict at all between the DOS reso-

the parameters used are the same as in Fig. 13. Both of the negatin@nces and the plasmon dispersion. However, this remark is
peaks emerge from the third perturbation alone and have no physieserved with respect to this notoriously delicate frequency

cal significance.

region (0.9055< ¢€<1.0).
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Figure 16 illustrates the effect of the variation of aspectpaper, but we think it is worthwhile to add a word of warning
ratior (left pane) and the magnetic fiel€. (right panel on  about a very subtle issue regarding the delusive traces of the
the frequency of the magnetoplasmons of a system made gfige magnetoplasmon&MPS. We now know that the
of a plasma shell bounded by two identical or unidenticaEMPs—which are by definition the 2D analogs of the 3D
dielectrics. The soliddashedl lines in the left panel corre- surface plasmons and are characterized by their frequencies
spond to the case in which the bounding media are identicalecreasing with increasing magnetic flelehave their exis-
(unidentica). The plot in the left panel clearly reveals that tence known in several kinds of geometries, such as disks
the magnetoplasmon frequencies at highidwhere the re- and rings. So it occurred to us that if we take the propagation
tardation effect becomes very smaihtend to be sharply vector{=0 and compute the magnetoplasmon frequency as a
varying for a very thin shell, but start becomirtgimosy  function of magnetic field (or Q) for, for example, a very
insensitive at the larger values of (See, for example, the thin plasma shell sandwiched between two identical or uni-
behavior atr = 1.5) The right panel demonstrates that while dentical dielectrics, we must obtain something that would
the frequency of the lower mode of the systéor all values  mimic these EMPs. To our surprise, this is exactly what
of m) increases monotonously with the magnetic field, theturned out until and unless we tried to understand what these
upper mode does reveal an opposite behavior, at least fanodes actually were. Faf=0 andr=1.05, we found that,
smallerB. The latter behavior of the upper mode is seen toapart from such minutely distorted radiative modes, there is a
be sharper for a larger value of integer One can also just one such mode that starts from the plasma frequency
notice that for certain values @, both (nonzero m modes (i.e., £=1) the frequency of which gradually decreases with
cross each other and the higher thethe smaller the value increasingB. Furthermore, if we increase the number of
of that B. We hope that the variation of the aspect ratio such modes starts increasing. So this spectrum looks just like
should have a similar effect on the plasmon or magnetoplaghe one for the EMPs. However, we found that for a very thin
mon frequencies in othaurvedplasmas, as depicted in the plasma shell(i.e., r—0) such a mode is nothing but the
left panel in Fig. 16. solution of 3,=0, and for a thick plasma shdkay,r=2.2),

while the lowest one remains intatnd explicable as the
solution of 8,=0), the higher modes could not be substanti-
C. Some specific remarks ated by the local and/or total DOS. This led us to infer that

It is noteworthy that all the negative peaks showing up insuch a spectrum is nothing but the delusive traces of the
the variation of the total DOS, for example, in Figs. 6, 9, 12,EMPs.
and 15, originate from the initial systentsr the so-called
initial perturbationy comprising the resultant system. As no-
ticed before, these are seen to be obtainable from the zeros of
|§i‘1| (with i=1, 2, or 3 wherever a dielectric medium is In conclusion, we investigated the magnetoplasmon dis-
bounded by onéin the case of a single-interface syspjeon  persion and the density of states in the coaxial cylindrical
two (in the case of a double-interface sysjellack boxes. geometries in the presence of an applied axial magnetic field.
Since the black box does not represent a true physical sy&¥e derived the general dispersion relations using a Green-
tem, though it is an essential ingredient of the theoreticafunction theory in the framework of IR® which has now
schemé;? these peaks have, in fact, no physical significancefound widespread use in studying the numerous excitations
However, they do exist with a negative sign in the total DOS,in various composite systemis:1°In doing so, we not only
independently of the size, shape, and dimensionality of thelarified some basic notions in the use of cylindrical geom-
system concerned. etries, but also diagnosed our general analytical results under

Notice that most of the modes covered by our results orspecial limits to reproduce some well-known results on pla-
the DOS correspond to those that fall in the radiative regimenar systems, both with and without applied magnetic fields.
(i.e., towards the left of the left-most light line in, for ex- We also successfully attempted to substantiate our results on
ample, Figs. 5, 7, 10, and 13The LDOS in Figs. 6, 8, and plasmon dispersion through the computation of the local and
11 indicate that these modes are actually those of théotal density of states. While we considered the effect of
Ga,,Al,As dielectric bounded by the GaAs plasma, con-retardation, the absorption was neglected throughout, except
fined on the dielectric side and forbidden from propagatingor a small imaginary part added to the frequencies for the
in the GaAs plasma. This is true despite the fact that depengpurpose of computing the DOS. We hope that the present
ing on the aspect ratiothe radiative modes in Figs. 8 and 11 methodology for coaxial cylindrical geometries proves to be
can interact with the surrounding dielectric in the outer me-a powerful theoretical framework for studying, for example,
dium and hence may differ slightly from those in Fig. 6. the intrasubband plasmons and magnetoplasmons in multi-
Similarly, the modes in Fig. 14 are essentially those of thewalled carbon nanotubes.

Ga_,AlLAs shell that are disallowed to propagate in the The experimental observation of radiative as well as non-
neighboring plasmas. This also explains why such peaks amadiative magnetoplasmon modes in such coaxial, cylindrical
so strong. The modes in the nonradiative regime tend to beajeometries would be of great interest. Such experiments
a different story. They originate from the dielectric-plasmacould possibly involve the well-known attenuated total re-
heterointerfaces) and are truly magnetoplasmon-polariton- flection, the scattering of high-energy electrons, or even reso-
like. nant Raman spectroscopy. Electron-energy-loss spectroscopy
It is not apart and parcelof the work presented in this (EELS) is already becoming known as a powerful technique

V. CONCLUDING REMARKS
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for studying the electronic structure, dielectric properties, wEO_wZ_irw} (A4)

and plasmon excitations in carbon nanotubes and carbon on- € (w) = 6{ 2 2 _-

) - . wig— o —il'w

ions, for example. Our preference for plotting the numerical TO

results in terms of the dimensionless frequency and propagavheree., is the high-frequency dielectric constaifit,is the

tion vector leaves free an option of choosing a lower oroptical-phonon damping frequency, argy and wrg are,

higher plasma frequency, just as for the aspect ratio. respectively, the longitudinal and transverse optical-phonon
Many important problems remain open in the context offrequencies at the zone center of the Brillouin zone. Remem-

the present investigation. The issues that need to be consifder that the convention of an additional subscyigver all

ered and could give better insight into the problem includequantities applies. This subscript specifies the perturbation

the role of absorption, the effects of the spatial dispersiongconcerned.

the plasmons coupling to the optical phonons, effect of an

applied electric field that may create the drifted charge car- APPENDIX B: SEVERAL IDENTITIES RELATING  X;, %,

riers and help study the instability mechanism, and the mak- Bi. Pi, AND M

ing of a multicoaxial waveguide system that employs, for Here we enlist some identities interrelatirg y, 5, P;,
example, left-handed materials, to name a few. Currently, wgnd M., which have proved to be extremely useful in simpli-

have been investigating the plasma effects in such multicofying otherwise quite involved mathematical steps, particu-

axial waveguide systems that exploit the materials characte[é1r|y those concerned with the matrix elements of JX}y

ized bynegativepermittivity and permeability and the results ~~ ~~ 1 and Gk The first category of identities iS’f’g

will be reported shortly. Aj, G j
_Mj'yjél'yjzzr S153=S556  5154=5557  §256=X1X257,
S357=S2 S4S6=S2  S27X1%2%0Ss  S358=S4! Yjor
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APPENDIX A: LOCAL DIELECTRIC FUNCTIONS ..., etc. The third category of internal identities is

The dielectric tensor components employed in this work P +P,=(Bi+BIM, PP, =M, (B6)
are defined as follows:

2 (Py = BIM)B] — Po(P1 - B}) =0,
- wp(w +iv) 201\ 22 2\ _ 2
Exx — Eyy — €L 1- 2 2| (Al) (P1_182M)31_P2(P1_:81)_MSBL
ol(w+iv)*— o] 55 5 5 (B7)
(P1— BIM) 85 = Po(P = B5) = - MSB3,
o 2w, (Py = B3M)B5 — Py(Py = B3) = 0
ny__exy__lel‘w[(w+iv)z—wz]’ (A2)
‘ (P2 = BIM)(Py = B3) + X1X,P1 83 = = MS(Py = B3),
_o | wZE A3 (P, = BM) (P~ B) +XXP1 87 =0,
€2z €L wo+iv) |’ (A3) (P2~ BEM)(P; = B5) + X:X,P185= 0,

2 2 2_ 2
whereg,_ is the background dielectric constantis the free- (P2= BoM)(Py — B) +Xq%oP1 81 = MS(P, — ),
carrier-collision frequencyw, is the screened-plasma fre- (B8)
quency, andy, is the electron-cyclotron frequency.

If we also consider the effect of phonons, which, in a way, (P = B2 (P, — B3) + X1 %8385 = S(P1 — M),
incorporates the coupling of the plasmais magnetoplas- (B9)

— 2 _ 2 202 _ _ 2
mons to the optical phonons, then the background dielectric (P1=B2) (P2~ B1) + X155 = = Py = B5M).
constante, has to be replaced by its frequency dependenSimilar other identities follow if we just interchand® and
expression, P,. Remember that we have not specified the subsgript
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Egs.(B1)—(B4) for brevity, which has to be used on all quan- 1 ) )
tities while referring to a specific perturbation. The third cat- G1(22) = - g[Dle(ﬂlp)Jm(Blp ) + DoHil(B20) I Bap’) ]
egory of identities quite often used here involves some well- >

known relations between the Bessel functions. It is (C4
The matrix elements in Eq3.7) are defined as
") = — i
6@ =L@+ 0@, BLO A1) ={-[(P, - B) - xxaB)zHi2) Inf2) + (P, ~ )
_ 2 ’
where {=1J, Y, or H, which are, respectively, the Bessel X012 Hm(22) In(22) + S1PoHm(21) In(22)
functions of the first, second, and third kindstefers to the = S1LPoHW(Z)Im(Z)} (CH

complex argument and to the integer order thereof. The
prime stands for the derivative of the respective function  a (21) = 1+ x.P.z.H (2)J(2.) = X: P-z-H'(25)](Z
with respect to the argument. The other most useful identity 12D =1+ X4Pozy m(zl) m(_ll)z 1P222Hn(2) Inf2)
is + S (P2 = 81 = ¥o BiIHm(z)In(z0)
_ P2 12
H;(Z) ~ J;(Z):| _ ﬂ S_I.4[(P2 :82) Yo ﬁZ]Hm(ZZ)Jm(ZZ)}v (CG)

o o) m B

T

H V(Z)JV(Z)[
A1(12) = {= %P124H(21)In(Z1) + XoP12H1(22) Im(Z2)

The asymptotic expansions for the large arguméings, |z - SIL(P1 = £2) = Xy%o B2 Hm(z1) Im(Z0)
— o) of these Bessel functions are specified by ) 5
+ SiA (P~ B2) = XeBoHn(Z)In(2)},  (C7)

2 1 1
=+/— - v+ = ,
WA=NT °°S{Z 2(” zH ' A1(22) = {= [(P1 = B) — xuxoBlaHin (20 n(z0) +[(P1 - )
2 1 1 = XX Ba12H ! (20)In(2Z) + P, - 2
Y@ =12 sm[z_ _<V+ -H, (B12) XL 2 () + Sul P~ B)
2 2\ 2 + X0 Y083 H(20)In(2) = Sl (Py = )
H(2) = = exp{i {z— §(+ %)W] } + X708 H(2) 322, (o
T
wherez, = 8;R; andz,=3,R;. The prime on the Bessel func-
As such, we obtain tions stands for the derivative of the respective quantity with
respect to the full argument. The matrix elements in B®)
J/(2) . H(2 i are defined as
=, —/——= +i. (B13)
3.2 H.(2) A,(1D) =A(1D)  with H.J, replaced byd Hp, (C9)
APPENDIX C: DETAILS FOR SEC. Ill B ON THE FIRST A1(21) =Aq(21) - with H{Jn, replaced by, Hn,
PERTURBATION (C10

First of all, it should be pointed out that we will not use _ . , ,
the additional subscripit (which meansj=1 in the present 2,12 =A(12) - with HpJp, replaced bydpHp,
cas¢ with other quantities, except fdg;, for the sake of (C1)
brevity. However, the convention of using this additional

subscript over all quantities applies. The matrix elements in A(22)=A,(22)  with H.J,, replaced by H,y.
Eq. (3.6) are defined as m m

(C12
Gy(11) = - Sli[Ale(ﬁlp)Jm(ﬁlp') + AoH o (Bop) I Bop)], The matrix elements in Eq3.11) are defined as
1
1
(CY hy(1D) == S {[- (Py - B)ZIn(z0)3n(2) + (P - Bz
S , , X352 In(2) e 2) Hief20) = St
Gl(Zl) - §5[B]_Hm(,81p)\}m(ﬁlp ) + BZHm(ﬁZP)‘Jm(BZP )]1 X (Bi _ ,Bg)Jm(Zl)Hm(Zl)Jm(Zz)Hm(Zz)}, (C13)
(C2 L
hy(21) = gs{[xlﬂizﬂm(zoar’n(zz) ~X1B5234(21)3n(2)]
- S-L ’ !
G1(12)= = S CiHA(B1p)In(B1p") + CoHn( Bop) In( o)), % Ho(2)Hon(29) + S B2~ )
(C3) XJm(Zl)Hm(Zl)Jm(ZZ)Hm(zz)}v (C14)
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1
hy(12) = - 5{[x2ﬂizzam<zl>aaq<z2> — XoB52130(21) In(22)]
1
X H(2)Hi(22) + S17(82 - B2)
XIn(Z)Hm(Z) Im(Z)Hin(22)}, (C1H
1
hy(22) = 5{[@2 - B)23n(z)I(2) - (Po- Bz
1
X Jr,n(zl)‘]m(zz)]H m(zl) H m(ZZ) - S18

X (B = B2)In(z)H(z) In(Z)Hi(22)}.  (C16)

APPENDIX D: DETAILS FOR SEC. Il C ON THE
SECOND PERTURBATION

Again, it should be pointed out that we will not use this
additional subscript (which meang =2 in the present case
with other quantities, except fc3;, for the sake of brevity.

PHYSICAL REVIEW B 71, 195317(2005

Ax(22) = {~ [(Py = ) = X1XoB712131(2) Hin(20) + [(P1 = B5)
= XXo3512201(2)Hin(2Zo) + S (P1 = B)
+ 10BNz Hin(2) ~ S (P1 = )
+ Yo% B3 m(Z) Hi( 2}, (D8)

wherez; = 8;R, andz,=3,R,. The prime on the Bessel func-
tions stands for the derivative of the respective quantity with
respect to the full argument. The matrix elements in Eg.
(3.16 are defined as

Ay(11) = Ay(11), with J/H,, replaced byH, Jm,
(D9)

A,y(21) = Ay(21), with J/H,, replaced byH, Jm,
(D10)

Ay(12) = Ax(12), with J/H,, replaced byH, .,

However, the convention of using this additional subscript (D11

over all quantities applies. The matrix elements in Egl4)
are defined as

1
Gy(11) =- 51 [ArIn(Bre)H(B1p") + Axdml( B2p)Hm( Bop")

(DY)

Gy(21) = %S[BlJm(ﬁlp)Hm(ﬁlp» + BoJn(BopHn Bop')],
5

(D2)

Gy(12 = - %j[clamwlpmm(ﬁlp') + ol Bop) Hin( B,

(D3)

Gu(22 = = ¢ IDuIn{B1p)Ho(Bip') + Dol fap) 2.
(D4)
The matrix elements in Eq3.15 are defined as
A1) = {=[(P, = BY) ~ xxeB)aadi(z)Hin(2) + [(P2~ B3)
= X1Xo8512531 (22 Hin(2Z2) + S0P 23z Hin(20)
= $poP2Jn(Z)Hm(2)}, (D5)

Ay(21) ={+x;P,2:J1(z)H(Z1) — X1 P222J1(Z2)Hin(22)

+ S, (P2 = 8D = % BiIm(z)He(z1)
- S[(Pa= BD) = % BalIn(zHm(z2)},  (D6)

Ay(12) ={-%P12:31(z)H(Z1) + %P12J1(Z)Hin(22)

- Syl (Py = B9 = X082 Im(z) Hin(22)
+ Sy (Py - B2 — X%l Im(Z)Hm(z0)}, (D7)

Ay(22) = Ay(22), with J/H,, replaced byH, .
(D12
The matrix elements in Eq3.19 are defined as

1
hy(11) = - gs{[_ (P1= B)zH(z)H](2) + (P1 = Bo)zy

X Hr,n(zl)Hm(Z2)]‘]m(Zl)Jm(ZZ) -5
X (B3 - B)In(z)Hn(z)In(Z)H(z2)}, (D13

1
h,(21) = g{[xlﬁiZZH m(Z)H(Z2) = %0 B521H](z1) Hi(22)]
5
X In(20)In(22) + S8 - BY)
X In(Z)Hm(Z)In(Z)HW(2)}, (D14)
1
hy(12) = - gl{[xzﬁizsz(Zl)Hr%(Zz) — XoB521H7(21) Hin(2)]
X In(20)In(2Zo) + S B~ B5)
XIn(Z)Hm(2)In(Z)H(2)}, (D15)
1
h,(22) = gl{[(Pz - B)ZHn(z)H(20) = (P - Bo)zy

XH (2D Hm(22) (20 3n(2) — Se
X (B3 = B3)In(z)Hn(z)In(Z)Hi(z2)}.  (D16)

APPENDIX E: DETAILS FOR SEC. Il D ON THE THIRD
PERTURBATION

Again, it should be pointed out that we will not use this
additional subscrip} (which meang =3 in the present cage
over other quantities, except f&;, for the sake of brevity.
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However, the convention of using this additional subscript
over all quantities applies. The matrix elements in 8122

are given as hereunder:

1
Gi(1) =- gl[Al‘]m(ﬁlp)Hm(Blpl) + Agdn(Bap)Hm(B2p') ],

(E1)

Gy(21) = %z[sﬂm(mpwm(ﬂlp’) + Byd(Bop) H( Bop) ],

(E2)

1
Gs(3) =- gl[Ale(ﬁlp)‘]m(Blpl) + AoH(B2p) I B2p") ],

(E3)

Gy(41) = %{Bmmwlpmm(ﬁlp') + BoH(Bop)In( Bop')],
5

(E4)

Gy(12)= - %j[clamwlpmm(ﬁm') + Col( BopHo B,

(ED)

1
G3(22) =-— gS[DlJm(,BlP)Hm(,BlP') + Dodm(Bop)Hm(B20") 1,

(E6)

Gy(32) = - %{cmm(ﬂlpmm(ﬁlp') + CoHu(Bop) I B,
1

(E7)

1
G3(42) =-— gg’[Dle(ﬁlp)Jm(,BlP') + DoH(B20)Im(B2p") 1,

(E8)

1
G3(13) =- gl [Adm(B1p)H(B1p") + Apdm( Bap)Hil( B2p') 1,

(E9)

Gy(23) = %Z[Blamwlpmmwlp') + Bodn(Bop Hn Bop')],

(E10

1
G3(33) =- gl [AHW(B19)In(B1p") + AH(B20) I B2p’) ],

(E11)

Gy(43) = %Z[Ble(ﬁlp)Jm(ﬂlp') + BoHu(Bop) I Bop )],

(E12

Gy(14) = - %j[clam(ﬁlpmm(ﬂm + Codn(BoHun(Bop")],

(E13

1
G3(24) =- g[Dr]m(BﬂJ)Hm(ﬂlp’) + DoJn(B2p)Hin(B2p") ],
5

(E14)

Gy(34) = - %j[cmm(/slpmm(ﬂlpv + oM Bop) 3B )],

(E19

1
G;(44) = - gs[Dle(,Blp)Jm(,BlP') + DoHm(B20) Im(B2p") ]
(E16)

We would like to stress that the interface spadgwill be
referred to as(p=Ry,p’'=Ry), (p=Ry,p'=Ry), (p=Ry,p’
=Ry), and (p=R,,p’' =R;), respectively, in the first, second,
third, and fourth quadrants made up ok2 submatrices,
starting clockwise from the top-left quadrant. The matrix el-
ements in Eq(3.23 are defined as

As(1D) ={[(P2 = B2) = x1%oB312137(z0)H(za) = [(P2 = B3)
— XXo83) 220122 Hin(Z2) = S32P2dm(z0)Hin(20)
+ S3oPoJm(z)Hi(2)}, (E17)

A3(21) ={-x;P,zs31(z)Hin(Z0) + X1 P22:01 () Hin(22)
~ S (P2= B) = %" Bin(2)Hn(20)

+ Sl (P - BD) — v BelIn(ZHn(z)},  (E19

A3(3D) ={~[(P2 = B) = XyXoB31Z4H /() In(z0) + [(P2 = B3)
— X XoB3)ZoH(25) 3n(Z2) + S3oPoH(Z) (1)

— S5oPoHM(Z) In(22)} (E19

As(41) ={+ X1P225.Hr,n(zi)‘]m(zl) - lezzéHr'n(Zé)Jm(Zz)
+ S3d (P2 = ) = ¥5 BIHm(Z) In(20)

- S (P2- B2 - v BeHn(Z)In(z)},  (E20)

A3(12) = {+X,P12131(z) Hn(Z1) = %oP12231(Z2)Hin(22)
+ Sy (Py = B2) = XX 1020 Hin(2)

- Sy (P1— B5) — X5z Hn(20)},  (E2D)

As(22) = {+[(P1 =~ B) — x0%eBT1213(Z) Hin(20) = [(P1 = B9)
- Xlxzﬂ%]zzJéq(zz)Hm(Zz) - Sd (P - ,Bi)
+ YoXXoB1m(Z)Hin(z1) + Ssd (P1 - 585)

+ YoXaXoB51n(Z) Hin( )}, (E22
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A3(32) = {= %,P121H/(21) In(Z0) + XoP125H/(25) I(20) respective quantity with respect to the full argument. The
5 ) , matrix elements in Eq(3.24) are defined as follows:
= S (P1 = BY) = X XoB1IHm(21) In(20)

A5(11) = Ag(1D), with J\H,, replaced byH/ J..,
+ Sy (P~ B2~ xXoBH(Z)In(z)} . (E23) (1D =A(L), - wit replaced by a3
A3(42) = {=[(P1 = B) = xaXoBTZiH (2 In(za) + [(P1 = B5)
= %X B2 H 1(2)In(Z) + Sid (P - BD)

+ yoXXo BT Hm(Z) In(z) — Ssd (P1 — 5) _
+ 70X Hn(Z3)3n(2)}, (E24) 831 =As(3D), - with HrJy, replaced meHmv(ESS)

A3(21) = A3(21), with J/H,, replaced byH, Jm,
(E39)

As(13) ={[(P— BD) — x0BT1z1d(z)Hm(Z) ~ [(P2 = BY)
— XyXo/3512531 (2 Hin(Z) = S3oP2dm(z0)Hin(2))
+ S3oPoJm(Z2)Hi(2)} (E25

A3(41) = A3(41), with HJ,, replaced by Hp,
(E36)

A3(12) = A5(12), with J\H,, replaced byH/ Jp,

A3(23) ={- x;P,zsJ1(z)H(Z1) + X1 P2Z2d1(Z2) Hin(2)) (E37)

- S3d (P2 = ) = %5 B m(z)H(2)

+Sul(Po- ) - % (2 M@}, (E26 B6l22=Ad22),  WIth gk replacad DYl

(E39
Ay(33) = {~[(P2 = B2) — xxoB1Z1H1(2)In(Z) + [(Po = )
= X312 Hm(25)In(Z5) + S52PoHin(2) In(2)
= S3oPoHN(Z0)In(2)}, (E27)

A3(32) = A3(32), with H/.J,, replaced byd/ H,,
(E39

A3(42) = A3(42), with H].J,, replaced by, H,,
A3(43) = {+x1Pz1H11(21)In(21) = X1P2ZH1(2) Im(22) (E40
+ Sy (P, = BD) = %' BIHH(Z) ()

— Sl(Pa- ) - Yo B Hn(Z)In(z)},  (E29) As(13) = Ag(13), - with JnHp replaced by,

(E4))
A3(14) = {+ %,P12137(z)Hin(Z1) = XoP1231(z) Hm(25)
+ Sy (Py = BD) — X% 1920 Hro(Z0)
= Syl (Py = B5) — X3l n(2)H(Z)},  (E29)

A5(23) = A3(23), with J\H,, replaced byH, Jm,
(E42)
A5(33) = A3(33), with H;J,, replaced by, Hp,
As(24) = {+ (P, - BD) — xXeBT12 (20 Hm(Z) ~ [(P1 - BY) (E43)
= X1Xo8512231(22)Hin(23) = Sad (P1~ BY)
+ Yo% Xo B m(22) Hin(24) + Sad (P1 = 83)
+ 7008 (2 Hi(Z)}, (E30)

A3(43) = A3(43), with H;J,, replaced by, Hp,
(E44)

A3(14) = A3(14), with J/H,, replaced byH, .,

Ao(38) = (= X;PLZ A (Z)In(2) + XoPZHA(Z)In(2) €15

= Sy (P1 = B2) = XX BT Hm(z) In(Z))

+Sy(Py - ,8%) — XX ﬁ%]Hm(zé) 3.2}, (E3D) A3(24) = A3(24), with J/H,, replaced byH, .,

(E46)
Ag(44) = {~[(P,— B — x%B11Z1H(20) () + [(PL - BY)
~ XX B3)Z5H (25 I(2Z3) + Sed (P~ BY)
+ YoXXoBa Hm(Z)Im(ZD) — Ssd (P1— 85)
A EANNCAY (E32) As(44) = Az(44), with H J,, replaced by, H,.

A3(34) = A3(34), with H J,, replaced by H,
(E47)

where z,=8/Ry, z,=8,R;, z1=B,R», and z,=B,R,. The (B48)
prime on the Bessel functions stands for the derivative of the The matrix elements in Eq3.25 are defined as follows:
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G3H(11) = =+ (Py ~ B[ Hyn(2)In(2)
S
o2 In(20) P(22)302) - (P~ D)
X [Hi(2)30(2) ~ Ho2) I P2 322}
X HoZ)Ho(2), (E49

Sa3

G321 = {+ BiIHm(z)In(zy)

= Hin(2) In(20 13020 In(Z) = B Hir(22)Im(20)

= Hn(25)In(22) 19m(20) In(2) IHm(z) Hi(25)
(E50)

1
G;1(31) = g{‘ (P1= BA[Hm(z0)In(Z) = Hi(z)In(20)]
5

+(P1 = B[ Hin(22)In(25) = Hin(20) In(20) 1}
X ‘]m(zl)Jm(ZZ)Hm(ZDHm(Zé)a (E51)

Gii41) = %3{— Bl (20 In(Z) ~ HoZ))3n(21)]
5

+ B Hm(Z)In(25) = Hin(2) In(2) T}

X Inl(21)Im(Z)Him(Z) Hin(22), (E52

Ss6

G312 = Ss{ BiIHm(z)In(zy)

- m(zl m(Zl)]Jm(Zl)‘Jm(Zé)+,8§[Hm(22)‘]m(zé)

= Hinl(22) In(22) (1) Im(22) FHim(z) Hin( ),
(E53

G3(22) = =+ (P, - B[ H(20)3n()
S
= Hinl(2)3n(20) 19m(22) In(23) = (P2~ B5)
X [Hm(22)Im(z5) = H(25) Im(22) 19m(20) Im(22)}
X Hu(z)HW(Z), (E549)

G532 = %% B (20 In(Z) ~ HoZ))3n(21)]
1

— B Hin(22)In(2Z3) = Hin(25) In(2) T}
X In(2)In(ZIHm(Z)H(2), (E5H)

G;(42) -—{ (P2 = BD[Hm(z0)In(z) — H(2)In(20)]

+ (P2 = B)[Hn(2)In(2) — Hi(2) In(2) 1}

X In(z0)In(Z)Hm(Z) Hin(2Z) (E56)
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1
G;H(13) = g{‘ (P1= B)[Hm(z0)In(z) — Hi(z)In(20)]

5
+(P1 = B)[Hm(2)In(Z) = Hnl25) In(2o) 1}

X In(z)In(Z)Hm(Z) Hin(25), (E57)

Sa3

G51(23) = Sus Pt b ,Bl[Hm(Zl)Jm(Zl) Him(z1)Im(z1)]

+ ,32[Hm(22)~]m(22) “Hn(2)In(2) 1}

X In(2)In(Z)Hm(Z) Hin(23), (E58)

1
G533 = —{+ (P~ B)[Hn(z)In(z)
Sss

= Hin(2)I(22) IHm(Z) Heo(2) = (P = B9)
X[Hm(ZZ)Jm(Zé) - Hm(zé)‘Jm(ZZ)]Hm(zl)Hm(zé)}

X In(z)In(Z) s (E59)
1 Si3
G5 (43 = Si =2+ B Hm(z)In(2)
= Hin(2)3n(20) IHm(ZDHin(22) = B Him(2)I(25)

Hm(22) In(22) TH(Z) Hin(20) }m(21) In(22) ,

(E60)
1 Sz6 )
G; (14 = s, 2= B Hm(z)In(Z) = Hl2)In(z0)]
+ ,Bz[Hm(Zz)Jm(Zé) - Hn(2)In(2) 1}

X ‘]m(zl)Jm(ZZ)Hm(Z;,L)Hm(Zé)a (EG]-)

1
G324 = g{— (P2~ B[ Hm(20)In(Z) — Hin(20) Im(z0)]
1

+ (P2 = BI[Hm(2)In(Z) = Hinl25) In(20) 1}

X ‘]m(zl)‘]m(zz)Hm(Zi)Hm(Zé)1 (EGZ)

Ss6
S

~ Hi(ZD) In(20) IHm(Z) Hin(2o) + B Hin(22)3(25)

= Hin(20)In(22) IHm(20) Hinl(25) Fim(20) Il 22)
(E63)

651(34) - { ,Bl[Hm(Zl)Jm(Z]_)

1
G51(44) = —{+ (P~ BD[Hm(z0)In(Z))
S

= Hin(Z)In(z) H(ZDHm(22) — (P, = )
X [H(22)In(23) = Hinl25) In(22) Him(z0) Hi(2)}
X In(z)In(22) (E64)

Finally, the matrix elements in E43.28 are given by
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ha(11) = 831{— Sel BT - B5) — (P1— B

Hl(22)Im(2) — Hin(25)37,(20)

o2
(2232 — M@z | 2P
HE(Z03n(Z) — HeZ)I0(22)
, E6
A (2 In(Z) Hm<z1>am<z1>} (569

hs(21) = 531{ - S3(Bi- BY)

Hi(2)3(2) ~ Hi2)30(2)
Hin(22)In(25) = Hin(25)Im(22)
Hi(2030(Z) — HiZ)30(2) }
An(Z030(Z}) — HufZ)3n(2) |

2
)

+ :nglzl
(E66)

Hm(22)Im(25) — Hin(25)J7(25)

Hm(zz)Jm(zé) - Hm(zé)Jm(ZZ)

HL(Z)3n(Z) - Hm<z1>J;<z1>}
Hm(zl)‘]m(zi) - Hm(Z:,L)Jm(Zl) '

hy(31) = 531{ +(Py - B%)Zé

- (P,- Bz
(E67)

. s HUZ)I(Z) - o) I )
(40 = 531{+ P (2~ Fo(Z)In(2)

o HLZ)INE) ~ HeZ) (@)
P9 )3 — HnlZ) Iz } - (€68

hg(12) = sss{ + Sy 8- B3

H(2)3n(Z3) — Hn(Z5)3(2)
Hin(z2)In(z5) = Hin(25)Im(22)
HI(20)30(Z0) — Hn(Z)34(2) }
Hm(zl)‘-]m(z:,[) - Hm(Zi)Jm(Zl) ,

2
+ BXezz

2
= BoXozy

(E69

he(22) = 535{— Si(B2 - B — (Py— 8D
H(2)30(Z) = Hn20) 31(20)
?Hin(22)In(Z3) ~ Hin(Z0)In(22)

 Hin(2)3(Z) = He2) J(2)
"Hi(z0)3n(Z0) = Hoo(Z) 3n(22)

+(Py— 33)

}, (E70)

| H®3@) - He2)32)
(39 = 335{ P (2~ FoZ)In(2)

y HAZDIn(Z) - HalZ)3(Z)
PR 2032~ HnlZ)In(2) } - (E7Y)
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Hi(Z)3n(Z) ~ He(2)3(2))
Hin(2)In(25) = Hin(25)Im(22)
Hi(Z0)3m(Z)) — HefZD)3(Z) }
Him(z0)Im(z1) — Hin(z0)Im(z0) ’

hy(42) = 835{ +(Py- B2

- (P,- 87

(E72

Him(Z2)In(Z) — H(22)I0(2)
Hm(ZZ)Jm(Zé) - Hm(zé)Jm(ZZ)
Hn(z)Im(z0) - Hm(zl)‘]r,n(zl)}
Hin(z0)In(z1) = Hin(2) Im(z0) |

he(13) = ssl{ +(Py- Bz

-(P.- Bz

(E73

H/W(22)Im(Z2) — Hn(22)31(22)
Hm(ZZ)Jm(Zé) - Hm(zé)Jm(ZZ)
Ha(2)3n(2) = Huf2034(2) } e
Hm(zl)Jm(Zl) - Hm(zl)Jm(Zl)

hy(23) = sgl{ + Bixizy

2
— Xz

hs(33) = %1{ + S3(B2 - B5) = (P1 = BD)

, Hi(25)In(22) — Hin(22)31(25)

)
(2232 — HeZ) Iz TP
' Hr/n(zi)Jm(Zl) - Hm(zl)Jr/n(Z:’[)
, E7
(2032 — HeZ))3nf22) } (E79

hs(43) = 53.1{ + Sy - B5)
o HUZ)I2) ~ He(2) 32
P ()~ Fo(Z0)In(2)

2 H(z0)In(z1) = Hn(z1)0(z1)
TP 232 — FoZ)In2) }

(E76)

H/W(22)Im(Z2) — H(22)I0(22)
Hm(z2)Jm(Zé) - Hm(zé)Jm(ZZ)
Ha(2)30(2) = Haf2)34(2) } e
Hm(zl)Jm(Zl) - Hm(zl)Jm(Zl)

h3(14) = 535{ — BiXo2:

2
+ BXoZy

HW(22)Im(Z2) — Hn(22)30(22)
Hm(ZZ)Jm(Zé) - Hm(Zé)Jm(Zz)
Hin(20)Infz0) = Hm(zlm;n(zl)}
Hin(z1)Im(z1) = Hi(z0)Im(z0) ,

hs(24) = %5{ +(Py- )z,

-(P,- Bz

(E79
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ha(34) = %5{ - Sy L - ) o .
ha(44) = S35\ + S3e(B1— B5) — (P — BY)
H(Z5)Im(Z2) — Hinl(22) 30(25)

+ Xz,

H(22)In(25) = Ho2)In(2) égéwgé;jmg - Emﬁfijmg Py )
2 Z,H;n<z;>am<z1>—Hm<z1>a,’n<z1>} (2 3(2) = Hi(2) (22
P2 (20)30(2) — HoZ)In(z0) |  Hinl2)In(21) = Hm(zl)‘]”“(zi)}. (E80)
(E79 "Hi(2)30(2) ~ Hi(2)dn(20)
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