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We report on a theoretical investigation of plasmon propagation in the coaxial cylindrical geometries using

Green-functionsor response-functiond theory in the presence of an applied axial magnetic fieldsBW i ẑd. The
magnetoplasmon excitations in such multiple-interface structures are characterized by the electromagnetic
sEMd fields that are localized at and decay exponentially away from the interfaces. Green-function theory,
when generalized to be applicable to such quasi-one-dimensional systems, enables us to derive explicit ex-
pressions for the corresponding response functionssassociated with EM fieldsd, which can in turn be used to
compute numerous physical properties of the system under consideration. A rigorous analytical diagnosis of the
general results in diverse situations leads us to reproduce exactly the previously well-established results on

planar systems, both in the presence and absence ofBW , obtained within the different theoretical frameworks. As
an application, we present several illustrative examples on the dispersion characteristics of the confined and
extended magnetoplasmons in the single- and double-interface structures. These dispersive modes are also
substantiated through the computation of local as well as total density of states. It is found that, unlike as in the
zero-field case, the magnetoplasma propagation is nonreciprocal with respect to the sign of the indexm of the
Bessel functions involved. The effects of an applied magnetic field and the aspect ratio on the dispersion of the
confined magnetoplasmons are discussed. We also briefly clarify some delusive traces of the edge magneto-
plasmons for a plasma shell embedded between two identical or unidentical dielectrics. The elegance of theory
lies in the fact that it does not require matching of the messsy boundary conditions and it also lies in its
simplicity and the compact form of the desired results. Our theoretical framework can also serve as a powerful
technique for studying the intrasubband plasmons and magnetoplasmons in the emerging mutiple-walled car-
bon nanotubes.

DOI: 10.1103/PhysRevB.71.195317 PACS numberssd: 68.65.La, 78.20.Ls, 78.67.Ch, 52.35.Hr

I. INTRODUCTION

Ever since the discovery of quantum Hall effects, semi-
conducting systems of reduced dimensions and size have
been among the most important subjects of research in con-
densed matter physics. We refer specifically to the quasi-two-
dimensional sQ2Dd, quasi-one-dimensionalsQ1Dd and
quasi-zero-dimensionalsQ0Dd systems and their periodic
counterparts, which are now known for providing a better
understanding of how the charge carriers behave when con-
fined to still lower dimensions. The tremendous research in-
terest focused on these systems worldwide is reasonably at-
tributed to advancements in thin-film growth and nano-
fabrication techniques that are allowing the synthesis of
almost flawless heterointerfaces. A recent extensive review
of the subject, both theoretical and experimental, can be
found in Ref. 1.

The role of an applied magnetic field to probe the treasure
of conventional solids has been appreciated long before the
advent of the nonconventional solids.2 This is because the
effect of the magnetic field on the band structure is more
striking and is easily observed in the experiments. A number
of interesting phenomena originate from the alteration in the
band structure due to the magnetic field, such as the Bloch
states3 yielding metallic conductivity,3 the Landau
diamagnetism,4 the Shubnikov-de Haas effect,5 the de Haas-
van Alphen effect,6 cyclotron resonance,7 the appealing Hof-

stadter butterfly spectrum,8 and 2D extended states below the
localized Fermi energy responsible for the quantum Hall
effect,9 to name a few. These were investigated, and then
serve as the diagnostic tools for characterizing the materials.
A recent proposal where the resulting magnetization is
shown to be a complementary tool for probing the shape of
the quantum dots, for example, is quite encouraging.10

The ongoing advancements in nanofabrication technology
lead us to imagine the formation of even more sophisticated
structures such as quantum disks, pipes, snakes, balls, rings,
and ribbons where electrons are confined in the regions with
quasidimensionality between three-dimensionals3Dd and
zero-dimensionals0Dd ssee, for example, Ref. 1d. The fabri-
cation of essentially arbitrary geometries is expected to lead
to dramatic control of the physical properties of solids. The
role of the boundaries in understanding several electronic,
optical, and transport phenomena in such nanostructures has
been much appreciated in the recent past. We refer, in par-
ticular, to the importance of the edge states in understanding,
for example, the magnetotransport in quantum Hall regimes
in a broad range of mesoscopic systems.1

In this context, Pepper and co-workers11 reported results
on the band structure and conductance of axially symmetric,
curved, noninteracting 2D electron gass2DEGd, topologi-
cally equivalent to a Corbino disk, in the presence of a non-
homogeneous magnetic field, arising as the result of an ap-
plied axial magnetic field. They relied on the fact that the
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development of regrowth technology, usingin situ cleaning
techniques, now allows one to investigate the effects of vary-
ing the topography of an electron gas in addition to varying
its dimensionality. This offers the possibility of investigating
the electron dynamics in a nonhomogeneous magnetic field,
even though the originally applied magnetic field is homoge-
neous.

Despite the enviable advances in revealing and explaining
the exotic behavior of nanostructures based on the emerging,
sophisticated quantal theories, the optical phenomena being
investigated within classical electrodynamics continue to re-
ceive considerable attention, especially the nanoscale cylin-
drical as well as the spherical structures. The cylindrical
structures have generated particular interest for their useful-
ness, not just as electromagnetic waveguides, but also as
atom guides, where the guiding mechanism is governed
mainly by excited cavity modes. It is envisioned that the
understanding of atom guides at such a small scale would
lead to many desirable advancements in atom lithography,
which in turn should facilitate atomic physics research.12

In this paper, we investigate, in general, the plasma modes
of a semiconductorsdielectricd shell embedded between two
unidentical dielectricsssemiconductorsd in the coaxial cylin-
drical geometries using Green-function theory in the pres-
ence of an applied axial magnetic field. Our theoretical ap-
proach is virtually the interface response theorysIRTd13

generalized to be applicable to quasi-one-dimensionalsQ1Dd
systems subjected to an applied magnetic field. Ever since its
inception, the IRT has been extensively applied to study vari-
ous quasiparticle excitationsssuch as phonons, plasmons,
magnons, etc.d in heterostructures and superlattices.14–16 In
the recent past, it was successfully extended to investigate
collective excitations in diverse two-dimensionals2Dd sys-
tems, both with and without applied magnetic fields.17,18

Quite recently, we have studied the plasma modes in the
coaxial cylindrical geometries in the absence of an applied
magnetic field.19 The present work is, in fact, a generaliza-
tion of the work presented in Ref. 19 to include the axial
magnetic field. Note that the electromagnetic modes in a
single dielectric or metallic cylinder had been known for
many years.20

The general results on the confinedsor, nonradiatived as
well as extendedsor, radiatived magnetoplasmon dispersion,
in both single-and double-interface geometries, are shown to
be correctly substantiated by the computed local and/or total
density of states. In addition, we have also performed a care-
ful analytical diagnosis of the final general expressions to
reproduce the well-established results, obtained within the
different theoretical frameworks, on several planar geom-
etries, both with and without an applied magnetic fields.
Apart from such tests of the theory, we believe that it should
prove to be a simple but powerful scheme of a theoretical
framework for studying, for example, the intrasubband plas-
mons and magnetoplasmons in the multiwalled carbon nano-
tubes where theoretical research is gaining considerable mo-
mentum recently.21

This paper is organized as follows. In Sec. II, we discuss
some basic notions of cylindrical geometry and calculate the
bulk response functions in the presence of an applied axial
magnetic field. In Sec. III, we present the theoretical formal-

ism for the inverse response functions to derive the final
expressions for the magnetoplasmon dispersion relations,
discuss an interesting analytical diagnosis of the general ex-
pressions under special limits, and give an explicit analytical
relationship between the response functions and the density
of states. In Sec. IV, we report several illustrative examples
of numerical results on the magnetoplasmon dispersion and
of the local and total density of states in a variety of experi-
mentally realizable situations. Finally, in Sec. V, we conclude
our findings and list some interesting dimensions worth add-
ing to the problem in the future.

II. BASIC NOTIONS AND BULK RESPONSE FUNCTIONS

First, we consider that it is important to make a careful
analysis of Maxwell’s equations before using them in deriv-
ing the response functions for the respective systems. We
consider the electromagnetic waves propagating with an an-
gular frequencyv and wave vectork" ẑ in a medium defined
by the cylindrical coordinatessr ,u ,zd. For the sake of gen-
erality, we consider every medium to be a semiconducting
plasma, and the system is subjected to an applied axial mag-

netic field sBW " ẑd. This implicitly means that we are, in a
sense, working with the Faraday geometrysfor details of the
magnetic-field configurations, see Ref. 1d. The plasma
waves, here as well as in the latter part of this work, will be
assumed to observe spatial localization along the direction
perpendicular to the axis of the cylinder. It is also noteworthy
that we are interested in the nonmagnetic materials, and this

means thatBW ;HW in Maxwell’s curl-field equations. The
physical system is also assumed to be isotropic, albeit the
presence of the magnetic field imposes an anisotropy in the
system. The latter implies that in the Cartesian coordinates,
for example,exx=eyy, exy=−eyx, andezx=exz=ezy=eyz=0, and
the longitudinal componentezz is, naturally, independent of
the magnetic fieldssee Appendix Ad. For the sake of brevity,
we will be working withe1=exx, e2=exy, ande3=ezz.

To start with, we eliminate the magnetic-field variableBW

from Maxwell’s curl-field equations to write

¹W 3 s¹W 3 EW d − q0
2ẽ ·EW = 0. s2.1d

Here the dielectric constantẽ is a tensor quantity, since the
system we are concerned with is subjected to an external
magnetic field. In Eq.s2.1d, q0=v /c is the vacuum wave
vector, wherec is the speed of light in the vacuum. Note that
in the presence of an applied magnetic field, Eq.s2.1d is the
standard wave-field equation one starts with. We will use the
convention that the EM fields obey the spatial and temporal

dependence of the form ofAW sr ,f ,zd=AW srdesimu+ikz−ivtd,

whereAW ;EW or BW . Recalling the standard definitions of¹W ·AW ,

¹2f swith f as any scalard, and ¹W 3AW in the cylindrical
coordinates, we split the original Maxwell’s curl-field equa-
tions in the cylindrical coordinates and evaluate the field
componentsEx, Ey, Bx, andBy in terms ofEz andBz, since
we choose to work in terms of the latter components. The
result, after straightforward manipulation, is
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Ex =
1

ra1
4HFiq0

2e2r
]

]r
Bz + mk1

2BzGq0

+ F− ik1
2r

]

]r
Ez + mq0

2e2EzGkJ , s2.2d

Ey =
1

ra1
4HFik1

2r
]

]r
Bz − mq0

2e2BzGq0

+ Fiq0
2e2r

]

]r
Ez + mk1

2EzGkJ , s2.3d

Bx =
1

ra1
4HF− ik2e2r

]

]r
Ez − ma2

2e1EzGq0

+ F− ik1
2r

]

]r
Bz + mq0

2e2BzGkJ , s2.4d

By =
1

ra1
4HF− ia2

2e1r
]

]r
Ez + mk2e2EzGq0

+ Fiq0
2e2r

]

]r
Bz + mk1

2BzGkJ , s2.5d

wherek1
2=sk2−q0

2e1d, a1
4=k1

4+q0
4e2

2, anda2
2=k1

2−q0
2e2

2/e1. Be-
fore we proceed further, we define the tenet of the interface
response theorysIRTd, the black-box surfacesBBSd. By the
BBS we mean an entirely opaque surface through which
electromagnetic fields cannot propagate. The idea of intro-
ducing the BBS in the IRT was conceived with two promi-
nent advantages over the contemporary semiclassical ap-
proaches in mind. First, it allows one to disconnect entirely
from the extra mathematical world, and hence to confine
oneself only within the true building block of the system
concerned. Second, it implicitly provides a great opportunity
to get rid of using the messy boundary conditions one is so
routinely accustomed to in dealing with inhomogeneous sys-
tems. In order to create a medium bounded by a black-box
surface, we assume that Eqs.s2.2d–s2.5d are valid for either
r,R or r.R, with R as the radius of the only cylinder in
question for now. In other words, we multiply the right-hand
sides of Eqs.s2.2d–s2.5d by the step functionusr−Rd or
usR−rd, as the case may be. Evidently, the step functionsand
hence the Dirac-delta functiond dictates the kind of physical
situation we will need to consider in what follows. Then the
z components of Maxwell’s curl-field equations satisfied by
Ezsr ,ud andBzsr ,ud assume, after careful mathematical ma-
nipulation, the following forms:

S− iq0a2
2e1

a1
4 DHF1

r

]

]r
Sr

]

]r
D + S−

e3a1
4

e1a2
2 −

m2

r2 DGEz − Skq0e2

e1a2
2 D

3F1

r

]

]r
Sr

]

]r
D −

m2

r2 GBz − dsR− rdF ]

]r
Ez + S imk2e2

re1a2
2 D

3Ez − Skq0e2

e1a2
2 D ]

]r
Bz + S imkk1

2

rq0e1a2
2DBzGJ = 0, s2.6d

and

S iq0k1
2

a1
4 DHF1

r

]

]r
Sr

]

]r
D + S−

a1
4

k1
2 −

m2

r2 DGBz + Skq0e2

k1
2 D

3F1

r

]

]r
Sr

]

]r
D −

m2

r2 GEz − dsR− rdF ]

]r
Bz + S imq0

2e2

rk1
2 D

3Bz + Skq0e2

k1
2 D ]

]r
Ez − S imk

rq0
DEzGJ = 0. s2.7d

The coefficients ofdsR−rd in these equations stand for the
perturbationssd required for creating the black-box surfacessd
needed in the formulation of the problem. The formal equa-
tions s2.6d and s2.7d will be the standard format for all the
calculations of the Green-functions of the system of interest
in what follows. For the sake of brevity, we will henceforth
use the following notations:

g1
2 = q0

2e1 − k2 = − k1
2

g2
2 = q0

2ev − k2 = − a2
2

g3
4 = g1

4 + q0
4e2

2 = a1
4

, s2.8d

where ev=se1+e2
2/e1d. Then the unperturbed parts of Eqs.

s2.6d and s2.7d assume the following forms:

S iq0e1g2
2

g3
4 DHF1

r

]

]r
Sr

]

]r
EzD + S e3g3

4

e1g2
2 −

m2

r2 DEzG + Skq0e2

e1g2
2 D

3F1

r

]

]r
Sr

]

]r
BzD −

m2

r2 BzGJ = 0, s2.9d

and

S iq0g1
2

g3
4 DHSkq0e2

g1
2 DF1

r

]

]r
Sr

]

]r
EzD −

m2

r2 EzG
− F1

r

]

]r
Sr

]

]r
BzD + Sg3

4

g1
2 −

m2

r2 DBzGJ = 0.

s2.10d

Next, try a solution of the form of

Ez = aJmsbrd
Bz = bJmsbrd

. s2.11d

This gives an expression forb as follows:

S e3g3
4

e1g2
2 − b2DSg3

4

g1
2 − b2D + S k2q0

2e2
2

e1g2
2g1

2Db4 = 0, s2.12d

where, for each of the two solutionsbi
2 si =1,2d,

bi

ai
=

kq0e2

g3
4 − g1

2bi
2bi

2, or
ai

bi
=

kq0e2

e3g3
4 − e1g2

2bi
2bi

2.

s2.13d
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The general solutions will, of course, be in the form of

Ez = a1Jmsb1rd + a2Jmsb2rd
Bz = b1Jmsb1rd + b2Jmsb2rd

. s2.14d

Next, let rW;sr ,ud, rW8;sr8 ,u8d, and define Green-
function as

GsrW,rW8d ; GsurW − rW8ud ; Gsr,u;r8,u8d

; o
m=−`

`

eimsu−u8dGsm;r,r8d, s2.15d

for the homogeneoussbulkd medium fsee Eqs.s2.9d and
s2.10dg as

3− Sq0
2e1g2

2

g3
4 DF1

r

]

]r
Sr

]

]r
D + S e3g3

4

e1g2
2 −

m2

r2 DG − Sq0
2e1g2

2

g3
4 DSkq0e2

e1g2
2 DF1

r

]

]r
Sr

]

]r
D −

m2

r2 G
Sq0

2g1
2

g3
4 DSkq0e2

g1
2 DF1

r

]

]r
Sr

]

]r
D −

m2

r2 G − Sq0
2g1

2

g3
4 DF1

r

]

]r
Sr

]

]r
D + Sg3

4

g1
2 −

m2

r2 DG 4 3 FG11sm;r,r8d G12sm;r,r8d
G21sm;r,r8d G22sm;r,r8d

G
= −

2

r
dsr − r8dF1 0

0 1
G . s2.16d

We attempt a solution of the following formfsee Ref. 22g:

G11sm;r,r8d = ipHa1Jmsb1rdHmsb1r8d + a2Jmsb2rdHmsb2r8d, r ø r8

a1Hmsb1rdJmsb1r8d + a2Hmsb2rdJmsb2r8d, r ù r8,
J s2.17d

G21sm;r,r8d = ipHb1Jmsb1rdHmsb1r8d + b2Jmsb2rdHmsb2r8d, r ø r8

b1Hmsb1rdJmsb1r8d + b2Hmsb2rdJmsb2r8d, r ù r8
J , s2.18d

G12sm;r,r8d = ipHc1Jmsb1rdHmsb1r8d + c2Jmsb2rdHmsb2r8d, r ø r8

c1Hmsb1rdJmsb1r8d + c2Hmsb2rdJmsb2r8d, r ù r8
J , s2.19d

G22sm;r,r8d = ipHd1Jmsb1rdHmsb1r8d + d2Jmsb2rdHmsb2r8d, r ø r8

d1Hmsb1rdJmsb1r8d + d2Hmsb2rdJmsb2r8d, r ù r8
J . s2.20d

Let us note, for the moment, that both solutions forG11, for example, can be combined together in the following form:

G11 = iphf1 − usr − r8dgfa1JmHm + a2JmHmg + usr − r8dfa1HmJm + a2HmJmgj, s2.21d

where usxd=1s0d for x.0sx,0d is the Heaviside step function. It is relatively involved, but straightforward, to verify
step-by-step that Eqs.s2.17d–s2.20d represent the correct and exact solutions of Eq.s2.16d. For the sake of simplicity and

convenience, we redefine the coefficients involved in the elements of the Green-function matrixG̃ such that

C11G11sm;r,r8d = ipHA1Jmsb1rdHmsb1r8d + A2Jmsb2rdHmsb2r8d, r ø r8

A1Hmsb1rdJmsb1r8d + A2Hmsb2rdJmsb2r8d, r ù r8
J , s2.22d

C21G21sm;r,r8d = ipHB1Jmsb1rdHmsb1r8d + B2Jmsb2rdHmsb2r8d, r ø r8

B1Hmsb1rdJmsb1r8d + B2Hmsb2rdJmsb2r8d, r ù r8
J , s2.23d

C12G12sm;r,r8d = ipHC1Jmsb1rdHmsb1r8d + C2Jmsb2rdHmsb2r8d, r ø r8

C1Hmsb1rdJmsb1r8d + C2Hmsb2rdJmsb2r8d, r ù r8
J , s2.24d

C22G22sm;r,r8d = ipHD1Jmsb1rdHmsb1r8d + D2Jmsb2rdHmsb2r8d, r ø r8

D1Hmsb1rdJmsb1r8d + D2Hmsb2rdJmsb2r8d, r ù r8
J . s2.25d
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Before we define the coefficientsAi, Bi, Ci, andDi, it is quite
important to employ following substitutions in order to make
it simpler for the rest of the job to be done. These areP1
=e3g3

4/ se1g2
2d, P2=g3

4/g1
2, x1=kq0e2/ se1g2

2d, and x2

=kq0e2/g1
2. Thus the coefficientsAi, Bi, Ci, andDi needed to

redefine the bulk Green-functionsfin the light of the prefac-
tors involved in Eq.s2.16dg in Eqs. s2.22d–s2.25d take the
following forms: A1=−sP2−b1

2d /Z, A2=sP2−b2
2d /Z, B1

=−b1
2/Z, B2=b2

2/Z, C1=−b1
2/Z, C2=b2

2/Z, D1=−sP1

−b1
2d /Z, and D2=sP1−b2

2d /Z, where Z=MS, with M =s1
+x1x2d and S=sb1

2−b2
2d. Here C11=−q0

2e1g2
2/g3

4, C21

=q0
2g1

2/ sg3
4x1d, C12=−q0

2e1g2
2/ sg3

4x2d, and C22=−q0
2g1

2/g3
4.

Then Eq.s2.12d assumes the following form:

s1 + x1x2db4 − sP1 + P2db2 + P1P2 = 0, s2.26d

and hence the two solutions of this equation are defined such
that

b1,2
2 =

1

2M
fsP1 + P2d ± ÎsP1 − P2d2 − 4P1P2x1x2g.

s2.27d

It is important to note thatb j = ± id j, with j ;1,2, whered j
represents the conventional definition of the decay constants
in the Faraday geometry and can easily be recovered from
Eq. s2.1d. To be explicit,d j are given by1

d1,2
2 =

1

2e1
„fse1 + e3dk1

2 − q0
2e2

2g

± Îhfse1 − e3dk1
2 − q0

2e2
2g2 − 4k2q0

2e3e2
2j…. s2.28d

For the sake of completeness, numerous identities interrelat-
ing xi, gi, bi, Pi, andM are relegated to Appendix B. In what
follows, we will consider three types of perturbative opera-
tions to have the desired results for the response functions for
the resultant system at hand. In doing so, we will recall the
outlines of and abide by the conceptual scheme of interface
response theory.13

III. FORMALISM FOR INVERSE RESPONSE FUNCTIONS

In this section, we will consider three perturbative opera-
tions represented geometrically by Fig. 1. Specifically, Fig.
1sad–1scd correspond, respectively, to the plasma cylinder of
radius R1 surrounded by a black box surface, a black box
cylinder of radiusR2 surrounded by a plasma medium, and a
plasma shell sandwiched between the black box cylinder of
radius R1 and a semi-infinite black box surface outside a
cylinder of radiusR2. The plasma media in the perturbations
1sad–1scd are, in general, characterized by the local dielectric
functionse1sv ,Bd, e2sv ,Bd, and e3sv ,Bd, respectivelyssee
Apendix Ad. We will consider the effect of retardation but
neglect the absorption throught. Any subscripti ;1, 2, or 3
on the physical quantities should be understood to refer to
the respective perturbation until and unless stated otherwise.

Before proceeding to the specific details for the respective
perturbations, we would like to enlist some of the important
substitutions to be made in what follows. These areSj1

=e j1g j2
2 /g j3

2 , Sj2= imk2e j2/ se j1g j2
2 d, Sj3=kq0e j2/ se j1g j2

2 d, Sj4

= imkg j1
2 / sq0e j1g j2

2 d, Sj5=g j1
2 /g j3

2 , Sj6=kq0e j2/g j1
2 , Sj7

= imk/ sq0d, and Sj8= imq0
2e j2/ sg j1

2 d. Here the letterj in the
subscripts refers to the specific perturbation in question. At
the same time, it is necessary to remember that all the quan-
tities that are inherently involved inside these substitutions,
such as, for example,xi, gi, bi, and Pi will also carry a
similar additional first indexj in their subscripts.

A. Brief strategy of the methodology

In order to avoid expanding on the mathematical details
later, we would like to recall briefly some important outlines
of the theoretical scheme of the interface response theory. It
should be noted first that all the quantities referred to earlier
or to be referenced in what follows will carry a subscriptj
when referring to a given perturbative operation. The first
and the foremost point is to create a black-box surface in
order to confine ourselves within the building block of the
system and disconnect altogether from the rest of the math-
ematical world. For this purpose, we assume a step function
us¯d specifying a given physical situation in front of Eqs.
s2.2d–s2.5d, for example. This then leads us to define a cleav-

age operatorṼjs¯d with the help of Eqs.s2.6d ands2.7d, for
example, which is, in fact, a 2n32n matrix, wheren is the
number of interfaces in question. Now we also know before-

hand that there is a bulk Green-function matrixG̃js¯d rep-
resenting the medium we are confined to. With this, we de-
fine a response operator,

Ãjs¯d = Ṽjs¯dG̃js¯d. s3.1d

The arguments of all of these matrices are many, depending
upon the physical problem at hand, but the two that are the

FIG. 1. Schematics of the concept of three perturbations:fAg,
fBg, andfCg. The blanksshadedd region refers to the material me-
dium sblack boxd in the system. The sum of the first two perturba-
tions defines a plasmasdielectricd cylinder embedded in a dielectric
splasmad and the sum of all three perturbations specifies, say, a
plasmasdielectricd shell surrounded by two unidentical dielectrics

splasmasd. The magnetic fieldsBW d is oriented along theẑ axis of the
cylinder.

GREEN-FUNCTION THEORY OF CONFINED PLASMONS… PHYSICAL REVIEW B 71, 195317s2005d

195317-5



most important to be specified arer and r8 in the present
problem, for example. Evidently, the response operator is
also a 2n32n matrix. Next, we define an operator,

D̃ js¯d = Ĩ + Ãjs¯d, s3.2d

where Ĩ is a unit matrix of the same order as the rest. Now
we need to calculate the inverse of the bulk Green-function

G̃js¯d, which is given by, say,G̃j
−1s¯d. As such, we now

have all that we need to calculate the inverse response func-
tion g̃j

−1s¯d in the interface spacessay,Msd. This is defined
by

g̃j
−1s¯d = D̃ js¯dG̃j

−1s¯d. s3.3d

Notice thatg̃j
−1s¯d representsexclusivelythe response func-

tion of the region we initially confined ourselves to, and that
it does not yet stand for the physical system we may be
interested in. To be more explicit, suppose thatg̃1

−1s¯d in
Eq. s3.3d represents the dielectric, metallic, or semiconduct-
ing cylinder surrounded by a black box. And suppose we are
interested in a physical system made up of this cylinder sur-
rounded by a real, but different, material. Then we would
have to follow the identicalfto those leading to Eq.s3.3dg
steps, but now we confine ourselves to the semi-infinite re-
gion enclosing the black box. Suppose the latter system turns
out to be represented by an inverse response function
g̃2

−1s¯d. Then our actual, final, physical system, say, made
up of a semiconducting cylinder surrounded by a dielectric,
is represented by

g̃f
−1s¯d = g̃1

−1s¯d + g̃2
−1s¯d. s3.4d

This response functiong̃f
−1s¯d serves many useful purposes

in realistic situations. For instance, the determinant of
g̃f

−1s¯d equated to zero yields the respective dispersive
modes of, for example, a semiconducting cylinder sur-
rounded by a semi-infinite dielectric. It also becomes useful
to calculate the local as well as total density of statesssee
Sec. III F belowd. The analogous response functions are also
useful to compute numerous electronic, optical, and vibra-
tional properties of a given system under diverse physical
situations. Such is the strategy of the IRT to be pursued in
what follows for the specific system we are interested in
here. As one can notice, one of the most important advan-
tages of IRT over other classical or semiclassical theoretical
schemes is that one does not need to match the messy bound-
ary conditions one is so routinely used to in handling the
inhomogeneous systems.

B. First perturbation

The first perturbationfrepresented by Fig. 1sadg is speci-
fied by a step functionusR1−rd in front of Eqs.s2.2d–s2.5d.
That means that the black-box cleavage operatorṼ1sR1,r8d
is defined such thatfsee Eqs.s2.6d and s2.7dg

Ṽ1sR1,r8d

=
R1

2

q0
2

g13
2 3 − S11S ]

]r8
−

1

r8
S12D − S11SS13

]

]r8
+

1

r8
S14D

S15SS16
]

]r8
+

1

r8
S17D − S15S ]

]r8
−

1

r8
S18D 4

3dsR1 − r8d, s3.5d

and the corresponding bulk Green-function is written asfsee
Eqs.s2.22d–s2.25dg

G̃1sr,r8d = ip
g13

2

q0
2 FG1s11d G1s12d

G1s21d G1s22d G . s3.6d

It is noteworthy that although the operatorsṼ1 andÃ1 as well

as the functionsG̃1 and g̃1 are all functions of the variables,
such asm, k, v, vp, and vc, we have suppressed them
throughout for the sake of brevity and convenience. The ma-
trix elementsG1si j d are relegated to Appendix C. With this,
we define the response operator,

Ã1sR1,R1d = uṼ1sR1,rdG̃1sr,r8dur=R1=r8

=
ip

2M1S1
FA1s11d A1s12d

A1s21d A1s22d G . s3.7d

The matrix elementsA1si j d are relegated to Appendix C.
Next we define an operator,

D̃1sR1,R1d = Ĩ + Ã1sR1,R1d =
ip

2M1S1
FD1s11d D1s12d

D1s21d D1s22d G .

s3.8d

The matrix elementsD1si j d are relegated to Appendix C. It
should be pointed out that in writing the second equality in
Eq. s3.8d, we made a rigorous use of the identity in Eq.sB11d
ssee Appendix Bd.23 Next, we calculate the inverse ofG̃1 to
write

G̃1
−1sR1,R1d = −

iq0
2e11

pg13
2

1

Hmsz11dJmsz11dHmsz12dJmsz12d

3F G1s22d − G1s12d
− G1s21d G1s11d G , s3.9d

wherez1i =b1iR1, with i ;1,2. As such, we have all that we
need to calculate the inverse response function in the inter-
face spaceMs defined by

g̃1
−1sR1,R1d = D̃1sR1,R1dG̃1

−1sR1,R1d. s3.10d

The result is that

g̃1
−1sR1,R1d =

ip

2

Q1

M1S1
Fh1s11d h1s12d

h1s21d h1s22d G , s3.11d

represents the response function of a plasma cylinder sur-
rounded by a black box. HereQ1 is defined as follows:
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Q1 = −
i

p

q0
2

g13
2 S11S15

M1

Hmsz11dJmsz11dHmsz12dJmsz12d
.

s3.12d

The matrix elementsg1si j d are relegated to Appendix C.

C. Second perturbation

The second perturbationfrepresented by Fig. 1sbdg is
specified by a step functionusr−R2d in front of Eqs.

s2.2d–s2.5d. Then the black-box cleavage operatorṼ2sR2,r8d
is defined such thatfsee Eqs.s2.6d and s2.7dg

Ṽ2sR2,r8d = −
R2

2

q0
2

g23
2

33 − S21S ]

]r8
−

1

r8
S22D − S21SS23

]

]r8
+

1

r8
S24D

S25SS26
]

]r8
+

1

r8
S27D − S25S ]

]r8
−

1

r8
S28D 4

3dsr8 − R2d, s3.13d

and the corresponding bulk Green-function is written asfsee
Eqs.s2.22d–s2.25dg

G̃2sr,r8d = ip
g23

2

q0
2 FG2s11d G2s12d

G2s21d G2s22d G . s3.14d

The matrix elementsG2si j d are relegated to Appendix D.
With this, we define the response operator,

Ã2sR2,R2d = uṼ2sR2,rdG̃2sr,r8dur=R2=r8

= −
ip

2M2S2
FA2s11d A2s12d

A2s21d A2s22d G . s3.15d

The matrix elementsA2si j d are relegated to Appendix D.
Next we define an operator,

D̃2sR2,R2d = Ĩ + Ã2sR2,R2d = −
ip

2M2S2
FD2s11d D2s12d

D2s21d D2s22d G .

s3.16d

The matrix elementsD2si j d are relegated to Appendix D.
Again, in writing the second equality in Eq.s3.16d, we have
made a rigorous use of the identity in Eq.sB11d ssee Appen-

dix Bd. Next, we calculate the inverse ofG̃2 to write

G̃2
−1sR2,R2d = −

iq0
2e21

pg23
2

1

Hmsz21dJmsz21dHmsz22dJmsz22d

3F G2s22d − G2s12d
− G2s21d G2s11d G , s3.17d

wherez2i =b2iR1, with i ;1,2. As such, we have all that we
need in order to calculate the inverse response function in the
interface spaceMs defined by

g̃2
−1sR2,R2d = D̃2sR2,R2dG̃2

−1sR2,R2d. s3.18d

The result is that

g̃2
−1sR2,R2d = −

ip

2

Q2

M2S2
Fh2s11d h2s12d

h2s21d h2s22d G s3.19d

represents the response function of a black-box cylinder sur-
rounded by a plasma medium. HereQ2 is defined as follows:

Q2 = −
i

p

q0
2

g23
2 S21S25

M2

Hmsz21dJmsz21dHmsz22dJmsz22d
.

s3.20d

The matrix elementsg2si j d are relegated to Appendix D.

D. Third perturbation

The third perturbationfrepresented by Fig. 1scdg is speci-
fied by a step functionfusr−R1d−usr−R2dg in front of Eqs.
s2.2d–s2.5d. Then the black-box cleavage operator

Ṽ3sRi ,r8ddsr8−RidPnn8 fwith Pnn8=1s0d for n,n8ø2 andù3
sotherwised; i =1 s2d for n,n8ø2 sù3dg is defined such that

Ṽ3sRi,r8d =FṼ32 0̃

0̃ Ṽ31

G , s3.21d

whereṼ32=Ṽ2 fsee Eq.s3.13dg, with R2→R1, g2i →g3i and

S2i →S3i, and Ṽ31=Ṽ1 fsee Eq.s3.5dg, with R1→R2, g1i
→g3i, andS1i →S3i.

The corresponding bulk Green-function is written as

G̃3sMs,Msd = ip
g33

2

q0
2 3

G3s11d G3s12d G3s13d G3s14d
G3s21d G3s22d G3s23d G3s24d
G3s31d G3s32d G3s33d G3s34d
G3s41d G3s42d G3s43d G3s44d

4 ,

s3.22d

where the interface spaceMs will be referred tosr=R1,r8
=R1d, sr=R1,r8=R2d, sr=R2,r8=R2d, and sr=R2,r8=R1d,
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respectively, in the first, second, third, and fourth quadrants
made up of 232 submatrices, starting clockwise from the
top-left quadrant. The matrix elementsG3si j d are relegated to
Appendix E. With this, we define the response operator,

Ã3sMs,Msd = Ṽ3sMsdG̃3sMs,Msd

=
ip

2M3S33
A3s11d A3s12d A3s13d A3s14d
A3s21d A3s22d A3s23d A3s24d
A3s31d A3s32d A3s33d A3s34d
A3s41d A3s42d A3s43d A3s44d

4 .

s3.23d

The matrix elementsA3si j d are relegated to Appendix E.
Now we define an operator,

D̃3sMs,Msd = Ĩ + Ã3sMs,Msd

=
ip

2M3S33
D3s11d D3s12d D3s13d D3s14d
D3s21d D3s22d D3s23d D3s24d
D3s31d D3s32d D3s33d D3s34d
D3s41d D3s42d D3s43d D3s44d

4 .

s3.24d

The matrix elementsD3si j d are relegated to Appendix E.
Again, in writing the second equality in Eq.s3.24d, we have
made use of the identity in Eq.sB11d. Next, we calculate the

inverse of the bulk Green-functionG̃3 to write

G̃3
−1sMs,Msd

= − i
q0

2

pg33
2

1

D

33
G3

−1s11d G3
−1s12d G3

−1s13d G3
−1s14d

G3
−1s21d G3

−1s22d G3
−1s23d G3

−1s24d
G3

−1s31d G3
−1s32d G3

−1s33d G3
−1s34d

G3
−1s41d G3

−1s42d G3
−1s43d G3

−1s44d
4 ,

s3.25d

where the matrix elementsG3
−1si j d are relegated to Appendix

E and the symbolD is defined as follows:

D =
S3

S31S35
fHmsz31dJmsz318 d − Jmsz318 dHmsz31dg

3 fHmsz32dJmsz328 d − Jmsz328 dHmsz32dg

3 Jmsz31dHmsz32dJmsz318 dHmsz328 d, s3.26d

wherez3i =b3iR1 andz3i8 =b3iR2. Finally, we calculate the in-
verse response function of a cylindrical shell bounded by two
black boxes,

g̃3
−1sMs,Msd = D̃3sMs,MsdG̃3

−1sMs,Msd, s3.27d

to write

g̃3
−1sMs,Msd =

1

2

q0
2

g33
2

1

S33
h3s11d h3s12d h3s13d h3s14d
h3s21d h3s22d h3s23d h3s24d
h3s31d h3s32d h3s33d h3s34d
h3s41d h3s42d h3s43d h3s44d

4 ,

s3.28d

where the matrix elementsg3si j d are relegated to Appendix
E. Having calculated the inverse response functions for the
three perturbations, it becomes an easy task to deduce the
dispersion relations for the plasmon propagation in the real
physical systems. These aresid a plasmasdielectricd cylinder
embedded in a dielectricsplasmad and sii d a plasmasdielec-
tricd shell surrounded by two unidentical dielectricssplas-
masd, for example. This is what we intend to do in what
follows.

A step-by-step careful diagnosis of all the analytical re-
sults in this perturbation leads us to reproduce exactly the
corresponding ones in the special limit ofB=0 scf. Ref. 19d.
This remark is also valid for other perturbationssin Secs.
III B and III C. We recall and stress that we have, for the
sake of generality, considered so far every physical medium
in the first sSec. III Bd, secondsSec. III Cd, and thirdsSec.
III D d perturbation to be a semiconducting plasma.

E. Plasma (dielectric) cylinder embedded in dielectric (plasma)

The merger of perturbationsfFigs. 1sad and 1sbdg results
into a geometry of a plasmasdielectricd cylinder embedded
in a dielectric splasmad, of course, withvp=0=vc in the
medium considered to be a dielectric. As such, one can write
g̃ −1= g̃1

−1+ g̃2
−1, whereg̃ −1 is the inverse response function

of a single cylinder embedded in a semi-infinite medium.
That means that formally the determinant of the sum of the
inverse response functions in Eqs.s3.11d and s3.19d, with
R1=R=R2, equated to zero, i.e.,

ug̃ −1sMs,Msdu = ug̃1
−1sMs,Msd + g̃2

−1sMs,Msdu = 0,

s3.29d

yields the dispersion relation for magnetoplasmons with a
mixed si.e., inseparablep- ands-polarizationsd character in a
single-interface cylindrical geometry. In order to gain confi-
dence we subjected Eq.s3.29d to the limit of R→`. The
result is that a careful mathematical manipulation leaves us
with an equation exactly identical to Eq.s45d in Ref. 24,
which represents the dispersion relation for the magnetoplas-
mons propagating at an interface separating a semiconduct-
ing plasma and a dielectric. We also checked the limit ofB
=0 everywhere in Eq.s3.29d to exactly reproduce our Eq.
s3.27d in Ref. 19.

F. Plasma (dielectric) shell bounded by two unidentical
dielectrics (plasmas)

In this section we are motivated to study a physical sys-
tem made up of two coaxial cylinders where we can have the
plasma shell bounded by two unidentical dielectrics or a di-
electric shell bounded by two unidentical plasmas, in gen-
eral. We will study diverse situations of practical interest.
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Methodologically, such a geometry becomes realizable by
summing up the inverse response functions calculated in
Eqs.s3.11d, s3.19d, ands3.28d in the interface spaceMs. One
can write g̃ −1= g̃1

−1+ g̃2
−1+ g̃3

−1, where g̃ −1 is the response
function of the finite cylindrical shell surrounded by two, in
general, unidentical media. This implies that the following
relation:

ug̃ −1sMs,Msdu = ug̃1
−1sMs,Msd + g̃2

−1sMs,Msd + g̃3
−1sMs,Msdu

= 0 s3.30d

represents the dispersion relation for the magnetoplasmons in
such a resultant two-interface coaxial, cylindrical structure
where all the three physical media can, in principle, be dif-
ferent plasmas. However, such a situation would be too dif-
ficult to understand and interpret, given the fact that even if
only one medium is magnetoplasmasin, say, a one-interface
geometryd there can, in general, propagatefour different
kinds of modesfsee, e.g., Ref. 1g. As such, we decided to
study relatively more convenient situations such as, for ex-
ample, sid a plasma shell bounded by two identical dielec-
trics, sii d a plasma shell bounded by two unidentical dielec-
trics, and siii d a dielectric shell bounded by two identical
plasmas. The term dielectric is literally used to mean a me-
dium where the dielectric function is simply aconstant, and
hence the magnetic field has no influence whatsoever.

It should be pointed out that we performed two tests on
the general analytical expression in Eq.s3.30d in the case of
a geometry made up of a plasma shell bounded by two uni-
dentical dielectrics. First, we consider the limitR1,R2,R
→`, but takeR2−R1=d as a finite quantity and fixm=0. In
this case a rigorous analytical diagnosis, which requires nu-
merous identities listed in Appendix B, led us to exactly
derive Eq.s19d in Ref. 25, which represents the magneto-
plasmons in a semiconducting film bounded by two uniden-
tical dielectrics. Second, we put the magnetic fieldB=0 ev-
erywhere in Eq.s3.30d to reproduce exactly our Eq.s3.32d in
Ref. 19.

Before closing this section, we would like to remark that
in the numerical resultsssee Sec. IVd we will always come
across a situation in which all the magnetoplasma modes at
higher values of the propagation vector intend to be
asymptotic to certain characteristic frequenciesVs. We have
found that these characteristic frequencies turn out to be ex-
actly the same as those in the case of a single- or double-
interface planar geometry in the Faraday configurationsi.e.,

BW ikWd and are specified by

Vs
2 =

1

2feL
2 − e0

2g
hfseL

2 − e0
2dVc

2 + 2eL
2g

± fseL
2 − e0

2d2Vc
4 + 4eL

2e0
2g1/2j, s3.31d

whereeL is the background dielectric constant of the semi-
conducting plasma medium,e0 is the dielectric constant of
the dielectric medium, andVc=vc/vp is the normalized
electron cyclotron frequency.

G. Local and total density of states

The density of statessDOSd is of fundamental importance
to the understanding of many physical phenomena in
condensed-matter physics. The interpretation of quite a num-
ber of experimental excitation spectra in a wide variety of
systems subjected to different physical conditions requires a
detailed knowledge of the DOS. The classic textbooks and
monographs reveal that the standard algorithm to determine
the density of states is founded on the Green-function ap-
proach. Our purpose here is to calculate the local and total
DOS in order to substantiate the computed plasmon modes in
the cylindrical geometries at hand. Unless some numeric
hurdle gets in the way, it is logical to expect that thesposi-
tived peaks in the DOS should coincide with the zeros of the
inverse response function, which determine the plasmon
modes for a given propagation vector of a system.

1. Local density of states

The formal expression for the local density of states
sLDOSd in the framework of interface response theory is
generally quite fussy, and as the name suggests requires
some subtle details of the local physical conditions. These
are, for example, the basic definitions of the bulk Green-
functions, the spatial positions around the interface, the na-
ture of the associated EM fields involved,…, etc. In the
present context, the simplest definition of the LDOS at the
expense of a few negligible concerns, but which still con-
tains the important physics involved is given by13

NLsvd = − 2
v

p
Imhtracefg̃sMs,Msdgj, s3.32d

whereg̃ refers to the response function for which the inverse
was determined in Secs. III B–III D for diverse situations.
The important thing is to understand to which system the
response functiong̃ refers in different physical situations. We
consider two such cases of our interest: a single-interface
systemssee Sec. III Ed and a double-interface systemssee
Sec. III Fd. For a single-interface system,g̃ is simply the
inverse of the sum ofg̃1

−1 and g̃2
−1 ssee Sec. III Ed. In the

case of a two-interface system, we need to study the LDOS
at the two interfacesR1 andR2 independently. For interface
R1 sR2d the g̃ in Eq. s3.32d is the 232 submatrix in the first
sfourthd quadrant of the inverse of the sum of three inverse
response functionsssee Sec. III Fd.

2. Total density of states

For thez components of the electromagnetic fields con-
sidered here, the analytical expression for the variation of the
total density of statessTDOSd within the interface response
theory is given by13

NTsvd = −
1

p

d

dv
SArg detF g̃isMs,Msd

g̃fsMs,Msd
GD . s3.33d

By the variation of TDOS we mean the difference between
the TDOS of the finalsphysicald system and an initial sys-
tem. Hereg̃i sg̃fd stands for the response function of the
initial sfinald system in question. For the single-interface sys-
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tem,g̃i is the product ofg̃1 andg̃2; andg̃f is the inverse of the
sum of g̃1

−1 and g̃2
−1. In the case of a two-interface system,

g̃i = g̃1fg̃2f, where g̃1f is the inverse of the sum of a 434
matrix comprised of theg̃1

−1 and g̃2
−2, g̃2f is the inverse of

g̃3
−1 that corresponds to perturbation 3 for the shell alone,

and g̃f is the inverse of the sum ofg̃1
−1, g̃2

−1, and g̃3
−1. It

should be pointed out that both the local and total DOS are
computed for every value of integerm.

It is also worth mentioning that in the course of studying
the total DOS we have the finitesor boundedd parts of the
system automatically incorporated. Therefore, we are bound
to find some discrete modes in the TDOS, which usually
apppear as negative peaks in the DOS-v space and do not
bear any physical significance if one is interested in studying
only the confined or extended plasmon polaritons. Moreover,
if we are interested in understanding all the existing peaks in
the TDOS, we need to explore, for example, each of the three
perturbations involved individually. We have found that
while the negative peaks in the individual perturbations sur-
vive in the TDOS, all the positive peaks are seen to disap-
pear. Moreover, all thespositive plus negatived peaks in a
given perturbation are found to be well defined by the zeros
of the respective inverse response function. This remains un-
failingly true for all the cases we have investigated, both for
single- and double-interface systems. All the peaks in the
LDOS are always positive. More specific comments will be
made laterssee Sec. IVd.

IV. ILLUSTRATIVE EXAMPLES

As we have seen in Sec. III, our final results for the mag-
netoplasmon dispersion characteristics are Eqs.s3.29d and
s3.30d, respectively, for the single cylinder embedded in a
background of different material and the coaxial cylindrical
geometries. Note that both of these equations are, in general,
the complex transcendental functions. Therefore, in prin-
ciple, we need to search the zeros of such complex functions.
In spite of so many advancements in the software science,
searching the reliable zeros of such complex functions is not
an easy task. So, we strike a compromise among a few
choices. We decided here to produce those zeros where the
real part of the function changes the sign, irrespective of
whether or not the imaginary part is zero. We believe that
this has resulted into a reliable scheme for studying the dis-
persion characteristics of magnetoplasmons in the present
systems. This is because all the magnetoplasma modesscon-
fined or extendedd are found to have excellent correspon-
dence with the peaks in the local and/or total density of
states. We consider mostly GaAs plasma, Ga1−xAl xAs dielec-
tric, and SiO2 dielectric with background dielectric constants
eL=13.1, 12.4, and 4.5, respectively. We will later assign an
additional numeral to the suffix of the background dielectric
constants corresponding to the region in the geometry con-
cerned. Other parameters such as the aspect ratior =R2/R1,
the normalized plasma frequencyVp=vpR1/c, the normal-
ized electron-cyclotron frequencyVc=vc/vp, and the azi-
muthal index of the Bessel functionsm will be given at the
appropriate places during the discussion. We will present our
results in terms of the dimensionless propagation vectorz

=ck/vp and frequencyj=v /vp, where vp stands for the
screened plasma frequency. Both local and total DOS will be
shown in arbitrary units throughout. It is important to note
that we will henceforth label themagnetic-field dependent
(independent) decay constants byb± sb j, with j ;1, 2, or 3,
referring to the number of the perturbationd just for the pur-
pose of discussion.

A. Plasma (dielectric) cylinder embedded in dielectric
(plasma)

Figure 2 shows the plasmon dispersion for a GaAs plasma
cylinder in the Ga1−xAl xAs dielectric form=0, 1, 2, 3, and 5
with Vp=1.41. The dashed horizontal line marked asVs
=0.7305 indicates the corresponding asymptotic frequency
Vs fsee, for instance, Eq.s3.31dg in the nonretardation limit.
The straight line marked asLL stands for the light line in the
dielectric background. It is observed that there are two
modes for everym: one starts in the radiative regionsto-
wards the left of the light line whereb2 is purely reald with a
finite frequency, and the other starts at the origin along and
towards the right of the light line in the non radiative region
stowards the right of the light line whereb2 is purely imagi-
naryd. The former ends up merging with the light line, while
the latter becomes asymptotic toj=0.7305. This is the fac-
tual detail, albeit the picture apparently reveals something
differently. A simple look at Fig. 2 makes us believe that
there is one mode for everym that starts with a finitej from

FIG. 2. Magnetoplasmon dispersion for a GaAs plasma cylinder
se1L=13.1d embedded in a Ga1−xAl xAs dielectric se2L=12.4d. The
other parameters areVp=1.41 andVc=0.2. The solid straight line
marked asLL is the light line in the dielectric background. The
dashed horizontal line refers to the asymptotic frequencyj
=0.7305.
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z=0 in the radiative region, propagates monotonously to take
a small dipsat least for smallermd in the close vicinity of the
light line, and gradually tends to become asymptotic toVs.
The only exception to this description is the case ofm=0,
where the actual bona fide mode starts from the origin and is
seen to be always the true magnetoplasmon polariton. Even
at considerably largez, all modes retain their character: the
larger them, the higher the frequency. We see some addi-
tional modes form=0 andm=1 in the close vicinity of the
plasma frequencyj=1.

The triptych in Fig. 3 is made up of three parts: the left
part shows the dispersion characteristics for negativem, the
middle part shows the dispersion for positivem, and the right
part depicts the influence of the variation of intensity of the
applied magnetic field for a given propagation vectorz. Most
of the parameters used here are the same as in Fig. 2, and we
cover only the radiative regions, where the nonreciprocity is
predominant. Just as it is expected intuitively, it becomes
clear from the left and middle parts of this triptych that the
magnetoplasma wave propagation in a semiconducting cyl-
inder embedded in a dielectric in the presence of an applied
magnetic field in the Faraday geometry is non reciprocal
with respect to the change of the sign of the indexm of the
Bessel functions, i.e.,jsm.0dÞjsm,0d. Note that the non-
reciprocity is found to be a general characteristic of the mag-
netoplasmon propagation in the cylindrical geometries in the
presence of an applied magnetic field in the Faraday configu-
ration. The right part clearly demonstrates the monotonous
increase of the magnetoplasma frequency with the magnetic

field intensity. But it should be noted that this behavior is
shown for a given value ofz. However, all the modes at any
value ofB do show a correct asymptotic behavior specified
by Eq. s3.31d.

Figure 4 illustrates the localstotald density of states in the
upper slowerd panel in the nonradiative region in thej−z
space form=0, 1, 2, 3, and 5 and forz=2.5. The rest of the
parameters are the same as in Fig. 2. The sharp peaks atj
=0.5124, 0.5339, 0.5738, 0.6230, and 0.7094 are seen to be
common to both local and total DOS. The negative peaks are
coming from the second perturbationssee Sec. IIId, which
produces one positive and another negative peak for everym.
The positive peak disappears and the negative one survives
in the total DOS. The arrow atj=0.7100 indicates an indis-
cernibly small negative peak form=0, whereb2 vanishes.
We observe a pileup of rather small DOS, both local and
total, atjù0.7305. Every positive peak in the local and/or
total DOS shows an excellent correspondence with the re-
spective confined magnetoplasmon modesin the nonradia-
tive regiond in Fig. 2. Let us clarify once and for all that
these negative peaks in the total DOS are shown just for
completeness, but really have no physical significance.

Figure 5 depicts the plasmon dispersion for a Ga1−xAl xAs
cylinder embedded in a GaAs plasma forVp=1.41 andVc
=0.2. The solid, dashed, dashed-dotted, dashed-dot-dotted,
and dotted curves stand for the magnetoplasmon modes, re-
spectively, form=0, 1, 2, 3, and 5. The dashed line marked
asj=0.7305 refers to its asymptotic frequency in the nonre-
tardation limit. Unlike as in Fig. 2, we observe a larger num-
ber of extended modessin the region towards the left of the

FIG. 3. Nonreciprocal behavior for the magnetoplasmon disper-
sion for a GaAs plasma cylinder embedded in a Ga1−xAl xAs dielec-
tric. The other parameters are listed inside the picture. The left
panel shows the dispersion form,0, the middle panel shows the
dispersion form.0, and the right panel shows the effect of the
variation of the magnetic field intensityVc for a givenz.

FIG. 4. Localstotald density of states in the upperslowerd panel
for various values ofm andz=2.5. The rest of the parameters used
are the same as in Fig. 2. The arrow in the lower panel refers to a
small invisible negative peak atj=0.7100 form=0 whereb2=0.
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light line marked asLLd for everym, even though the num-
ber of confined magnetoplasmons at largez is still the same
si.e., one for everymd. It is interesting to note that in the
present case there is almost a smooth transition of the mag-
netoplasmon propagation in the vicinity of the light line. This
contrasts with the corresponding behavior in Fig. 2. Another
important difference is the fact that all the confined modes
seem to merge together and lose their identities—with re-
spect tosnonzerod indexm—at some characteristic value ofz
ssee, for example, atz.2.75d. This kind of focusingeffect,
which is more explicit for this geometry than in othersssee,
e.g., Sec. Vd, could possibly be explored to characterize the
materials constituting the resultant structure.

Figure 6 shows the localstotald density of states in the
upper slowerd panel form=1 andz=0.5. The other param-
eters are the same as in Fig. 5. All three positive peaks ap-
pearing atj=0.3012, 0.6435, and 0.8446 in the local DOS
are seen to be consistent with the corresponding positive
peaks in the total DOS. These positive peaks showing up in
the local and total DOS are seen to be in very good agree-
ment with the frequencies of the three radiative plasmon
modes atz=0.5 in Fig. 5. The existence of the two negative
peaks atj=0.3190 and 0.4381 in the total DOS is attributed
to the first perturbation alone. It is found that both of the
negative peaks are the exact solutions ofug̃1

−1u=0. Moreover,
the positive peaks occurring atj=0.1420 and 0.7824swhere
J1 vanishesd in the first perturbation are seen to disappear
from the total DOS.

FIG. 5. Magnetoplasmon dispersion for a Ga1−xAl xAs dielectric
se1L=12.4d in GaAs plasmase2L=13.1d. There are five groups of
curves for five different values ofm. The parameters used are as
listed in the figure.

FIG. 6. Localstotald density of states in the upperslowerd panel
for m=1 andz=0.5. The rest of the parameters used are the same as
in Fig. 5. The negative peaks in the lower panel emerge from the
first perturbation alone and bear no physical significance.

FIG. 7. Magnetoplasmon dispersion in a GaAs plasmase3L

=13.1d shell sandwiched between identical Ga1−xAl xAs dielectrics
se1L=12.4=e2Ld. There are five groups of curves for five different
values ofm. The solid, straight line labeled asLL refers to the light
line in the Ga1−xAl xAs dielectrics. The parameters used in the com-
putation are as listed in the picture.
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B. Plasma (dielectric) shell bounded by two dielectrics
(plasmas)

Figure 7 illustrates the dispersion relations of the
magnetoplasmon-polariton modes for the coaxial cylindrical
geometry made up of a GaAs plasma shell bounded by the
Ga1−xAl xAs dielectrics, both in the inner cylinder and the
outer semi-infinite medium. As for other relevant parameters,
we consider Vp=1.87, Vc=0.2, and r =2.2. The solid,
dashed, dashed-dotted, and dotted curves stand for the values
of m=0, 1, 2, and 3. Since the inner and outer media are
identical, we still have a single asymptotic frequency in the
nonretardation limitj=0.7305 assigned to the dashed hori-
zontal line. The straight, solid line marked asLL is the light
line in the Ga1−xAl xAs dielectrics enclosing the plasma shell.
Note that while the number of the confined magnetoplasmon
modes at large value ofz sin the nonradiative regiond is still
two in conformation with the two interfaces in question,
there can be any number of extended modes in the radiative
region for a givenm, depending upon the aspect ratior. The
upper, confined magnetoplasmons atz.2.65 demonstrate
the same kind offocusingeffect as observed in Fig. 5. An
additional effect of the presence of the magnetic field is the
accumulation of the radiative modes near the plasma fre-
equency atz&2.2.

Figure 8 shows the local density of states at the interface
R1 sR2d in the lowersupperd panel form=0 andz=0.3. The
rest of the parameters are the same as in Fig. 7. We note that
there are four well-defined sharp DOS peaks atj=0.3252,

0.5087, 0.7213, and 0.8819 corresponding to the interface
R1, whereas the interfaceR2 captures only two low DOS
peaks atj=0.0835 and 0.8819. That means that the two in-
terfaces in the coaxial cylindrical geometry have different
preferences. As it was pointed out before,19 it seems that the
two interfaces are more sensitive to the geometry and less
sensitive to the materials in the bounding media. That is to
say that the response of the two interfaces does not have to
be identical simply because the bounding media are exactly
the same. It is noteworthy that only the highest three peaks
occurring atj=0.8819, 0.9541, and 0.9924 in the local DOS
are shared by both interfaces. Moreover, except for the low-
est one at the interfaceR2, which corresponds to the confined
plasmon mode, all of the higher resonances explain the ra-
diative modes at this value ofz.

Figure 9 presents the total density of states for the same
system as studied in Figs. 7 and 8 form=0 andz=0.3. One
can notice at once that there are five positive resonance peaks
lying at the same frequencies as those in the local DOS
ssumming up all the peaks at both interfaces, but excluding
the two highest onesd. In addition, there are two negative
peaks atj=0.0854 and 0.5878. We find that the lowersup-
perd negative peak comes from the secondsfirstd perturbation
alone where the Bessel functionJ1 vanishes. That is to say
that the position of the lowersupperd negative peak refers to
the first ssecondd zero ofJ1. Both positive peaks of the first
perturbation, which were seen to correspond to the first two
zeros ofJ0, have disappeared in the total DOS. A careful
look at the dispersion relations in Fig. 7 reveals that there is
an excellent correspondence between the resonance peaks in
the DOS and the magnetoplasmon dispersion for a givenz,

FIG. 8. Local density of states at the interfaceR1 sR2d in the
lower supperd panel form=0 andz=0.3. We call attention to the
smaller DOS resonance,sindicated by the arrowd, corresponding to
the interfaceR2. The rest of the parameters used are the same as in
Fig. 7.

FIG. 9. Total density of states form=0 andz=0.3. The higher
slowerd negative peak emerges from the firstssecondd perturbation
and has no physical significance. The rest of the parameters used
are the same as in Fig. 7.
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except for the lowest extended mode in the radiative region
stowards the left of the light lined that could be reproduced
neither in the local nor in the total DOS. This is not surpris-
ing, however, given the complexity of searching the zeros of
the determinant for the dispersion spectrum in Fig. 7. We did
not pay much attention to the two highest positive as well as
negative peaksswhich come from the third perturbation
aloned in the local and/or total DOS for the reason that there
is, in general, not a very good correspondence between the
dispersion spectrum and the DOS for the frequencies lying
abovea characteristic curve that corresponds tob±=0 si.e., at
j.0.9055 at the origind. The disagreement is, of course,
attributed to the strategy of determining the zeros of a com-
plex function for the purpose of plotting the dispersion
curves, for example.

Figure 10 illustrates the magnetoplasmon dispersion for
the GaAs plasma shell bounded by unidentical dielectrics
sGa1−xAl xAs in the inner cylinder and SiO2 in the outer semi-
infinite mediumd. For other parameters involved in the com-
putation, we considerVp=2.24, Vc=0.2, andr =2.0. The
solid, dashed, dashed-dotted, and dotted curves represent, re-
spectively, the case form=0, 1, 2, and 3. The two solid
straight lines marked asLL1 andLL2 refer to the light lines
in the dielectric media SiO2 and Ga1−xAl xAs, respectively.
The two dashed horizontal lines labeled asVs=0.7305 and
Vs=0.8739 stand for the asymptotic frequencies for the
plasmon-polaritons propagating at the interfaceR1 and R2,
respectively. Unlike as in the symmetric casessee Fig. 7d, the

two magnetoplasma modes at large propagation vectorz ap-
proach the different asymptotic limits. Comparing Fig. 10
with Fig. 7 reveals that the asymmetric case yields a rela-
tively richer spectrum at least for the radiative modes for a
givenm. Interesting, but not unexpected, is the fact that only
the lowest pair of modes for everym crosses the rightmost
light line and attains the character of a pure mag-
netoplasmon-polariton before becoming asymptotic to the re-
spective frequencies. The lower confined magnetoplasmons
at z.2.5 demonstrate the same kind offocusingeffect for
nonzerom as those observed, for example, in Figs. 5 and 7.
At z*2.5, the originally lowershigherd m mode becomes the
higher slowerd frequency mode until at very largez, where
they all become asymptotic to the lower limitsi.e., j
=0.7305d.

Figure 11 depicts the local density of states at interfaceR1
sR2d in the lower supperd panel for m=0 and z=0.2. The
other parameters are the same as those used in Fig. 10. We
call attention to the point stated in the end of the discussion
related to Fig. 9 and henceforth will not count any peak at
j.0.9055 that refers tob±=0 atz=0. We can seesfirstd four
clear resonances lying atj=0.2758, 0.4339, 0.6199, and
0.7751 at interfaceR1, whereas the interfaceR2 we observe
only two at j=0.0928 and 0.7752. Thus the two interfaces
share only the highest resonance in the local DOS and with a
difference of magnitude. Again, the two interfaces pose dif-
ferent preferences, and that really makes more sense here
because of the asymmetric configuration. Note that only the
lowest resonance at interfaceR2 belongs to the confined plas-

FIG. 10. Magnetoplasmon dispersion in a GaAs plasmase3L

=13.1d shell sandwiched between unidentical Ga1−xAl xAs se1L

=12.4d and SiO2 se2L=4.5d dielectrics. The solid line labeled asLL1
sLL2d refers to the light line in the SiO2 sGa1−xAl xAsd. The dashed
horizontal line labeled asVs=0.7305 sVs=0.8739d is the
asymptotic frequency for the interfaceR1 sR2d. The parameters used
are as listed in the picture.

FIG. 11. Local density of states at the interfaceR1 sR2d in the
lower supperd panel form=0 andz=0.2. We call attention to the
smaller DOS resonances, indicated by the arrows, corresponding to
the interfaceR2. The rest of the parameters used are the same as in
Fig. 10.
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mon mode, while the rest of the higher ones correspond to
the radiative modes. As regards the peaks atj.0.9055, al-
though there is a reasonable consistency between the peaks
at the two interfaces, we do not, for the moment, want to
make any remark on the correspondence these peaks may or
may not have with the respective modes in Fig. 10, for the
reason stated before.

Figure 12 shows the total density of states for the same
system as discussed in Figs. 10 and 11 form=0, Vc=0.2,
andz=0.2. We find that there are five well-defined positive
resonances lying at the same frequencies as those specifying
the resonance peaks in the local DOSssumming up all the
peaks at both interfaces in Fig. 11d. In addition, there are
three negative peaks occurring atj=0.0945, 0.4899, and
0.8928, which have no physical significance. While the first
one comes from the second perturbation, the pair of the sec-
ond and third negative peaks emerges from the first pertur-
bation si.e., ug̃1

−1u=0d; their positions in frequency corre-
spond to the first three zeros of the Bessel functionJ1. The
two positive resonances observed in the first perturbation,
which correspond to the first two zeros ofJ0, have disap-
peared from the total DOS. It is found that all five reso-
nances in the DOS exactly reproduce the frequencies of the
plasmon modes of Fig. 10 at the givenz, with an exception
for the lowest radiative mode above the light lineLL1. How-
ever, this mode is found to have the same story as the corre-
sponding one in Fig. 7, and hence our comments made in
relation to Fig. 9 remain valid. Again, we did not count on
the peaks emerging atj.0.9055ssee aboved, albeit we un-
derstand, for example, that the two negative peaks come
from the third perturbation alone.

Finally, we take up the case of a dielectricsGa1−xAl xAsd
shell symmetrically bounded by two identical GaAs plasmas
for Vp=1.41,Vc=0.2, and the aspect ratior =2.5. The results
for the magnetoplasmon dispersion in terms of the dimensio-
less frequencysjd and wave vectorszd are plotted in Fig. 13.
The solid, dashed, dashed-dotted, and dotted curves corre-
spond tom=0, 1, 2, and 3, respectively. The solid, straight
line marked asLL refers to the light line in the dielectric
shell, and the dashed horizontal line labeled asj=0.7305
indicates the asymptotic frequency for the magnetoplasmon-
polariton at the large value ofz, where nonretardation effects
are negligible. One can easily notice that while the number
of the modes in the nonradiative region is still two, the num-
ber of radiative modesstowards the left of the light lined is
larger for anym as compared to that in Figs. 7 and 10. Also,
it is evident that no such nasty modessuch as the lowest
radiative mode encountered in Figs. 7 and 10d is seen to
emerge in this case. In this case, the kind offocusingeffect
we discussed before occurs for the upper branch of the con-
fined modes, is not so sharp, and is seen to shift to a higher
value ofz.2.85. The trend of getting the radiative magne-
toplasma modes accumulated in the frequency range speci-
fied by 0.9055&j&1.0 bears nearly the same story as in
Figs. 7 and 10. This frequency range seems to be extremely
sensitive as regards the search for the zeros of the kind of
complex function we have had in such systems.

Figure 14 illustrates the local density of states at interface
R1 sR2d in the lowersupperd panel form=0, Vc=0.2, andz

FIG. 12. Total density of states form=0 andz=0.2. The rest of
the parameters used are the same as in Fig. 10. While the lowest
negative peak emerges from the second perturbation, the two higher
peaks come from the first perturbation. Such negative peaks have
no physical significance.

FIG. 13. Plasmon dispersion in a Ga1−xAl xAs dielectric se3L

=12.4d shell sandwiched between identical GaAs plasmasse1L

=13.1=e2Ld. There are four groups of curves for four different val-
ues ofm. The solid, straight line labeled asLL refers to the light line
in the Ga1−xAl xAs dielectric. The parameters used in the computa-
tion are as listed in the picture.
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=0.5. It is found that there are seven well-defined resonances
lying at j=0.1231, 0.3434, 0.3751, 0.6582, 0.6737, 0.9142,
and 0.9382, shared by both interfaces, of course, with a dif-
ference of magnitude. In that sense, this case is much differ-
ent than the previous one of the plasma shell between two
dielectrics ssee, for example, Figs. 8 and 11d. Again, it is
only the lowest resonance that substantiates the confined
plasmon mode below the light line; the rest correspond to the
radiative modes for this value ofz. Interestingly, the DOS
resonances are sharper in this case even within the delicate
frequency regimesi.e., 0.9055&j&1.0d. We do not count on
the highest jump occurring at the frequencyj<0.98.

Figure 15 shows the total density of states for the same
system as represented by Figs. 13 and 14 form=0, Vc=0.2,
and z=0.5. We observe that there are seven well-defined
positive resonances located at the same frequencies as those
specifying the similar resonance peaks in the local DOS in
Fig. 14. Moreover, there are two negative resonances that are
seen to emerge atj=0.4557 and 0.8598. These negative
peaks are a consequence of the third perturbation alone that
produces three positive peaks lying atj=0.1420⇒b3=0,
0.4398, and 0.8507 and the two negative peaks as mentioned
above. While all three positive peaks disappear from the total
DOS, the two negative peaks survive. All thespositive plus
negatived peaks in the third perturbation are seen to be the
exact solutions ofug̃3

−1u=0. The case studied in Figs. 13–15
for the coaxial cylindrical geometry seems to be the clearest
one where there is no conflict at all between the DOS reso-
nances and the plasmon dispersion. However, this remark is
reserved with respect to this notoriously delicate frequency
region s0.9055&j&1.0d.

FIG. 14. Local density of states form=0 andz=0.5. The rest of
the parameters used are the same as in Fig. 13. We call attention to
the smallersindiscernibled resonances atj=0.1231, indicated by the
arrows.

FIG. 15. Total density of states form=0 andz=0.5. The rest of
the parameters used are the same as in Fig. 13. Both of the negative
peaks emerge from the third perturbation alone and have no physi-
cal significance.

FIG. 16. The effect of the variation of the aspect ratior
=R2/R1 sleft paneld and the magnetic field intensitysright paneld on
the magnetoplasmon frequency for a givenz=5.0. The solid
sdashedd lines refer to the geometry studied in Fig. 7sFig. 10d. The
rest of the parameters are listed in the picture.
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Figure 16 illustrates the effect of the variation of aspect
ratio r sleft paneld and the magnetic fieldVc sright paneld on
the frequency of the magnetoplasmons of a system made up
of a plasma shell bounded by two identical or unidentical
dielectrics. The solidsdashedd lines in the left panel corre-
spond to the case in which the bounding media are identical
sunidenticald. The plot in the left panel clearly reveals that
the magnetoplasmon frequencies at higherz swhere the re-
tardation effect becomes very smalld intend to be sharply
varying for a very thin shell, but start becomingsalmostd
insensitive at the larger values ofr. sSee, for example, the
behavior atr ù1.5.d The right panel demonstrates that while
the frequency of the lower mode of the systemsfor all values
of md increases monotonously with the magnetic field, the
upper mode does reveal an opposite behavior, at least for
smallerB. The latter behavior of the upper mode is seen to
be sharper for a larger value of integerm. One can also
notice that for certain values ofB, both snonzerod m modes
cross each other and the higher them, the smaller the value
of that B. We hope that the variation of the aspect ratior
should have a similar effect on the plasmon or magnetoplas-
mon frequencies in othercurvedplasmas, as depicted in the
left panel in Fig. 16.

C. Some specific remarks

It is noteworthy that all the negative peaks showing up in
the variation of the total DOS, for example, in Figs. 6, 9, 12,
and 15, originate from the initial systemssor the so-called
initial perturbationsd comprising the resultant system. As no-
ticed before, these are seen to be obtainable from the zeros of
ug̃i

−1u swith i ;1, 2, or 3d wherever a dielectric medium is
bounded by onesin the case of a single-interface systemd or
two sin the case of a double-interface systemd black boxes.
Since the black box does not represent a true physical sys-
tem, though it is an essential ingredient of the theoretical
scheme,13 these peaks have, in fact, no physical significance.
However, they do exist with a negative sign in the total DOS,
independently of the size, shape, and dimensionality of the
system concerned.

Notice that most of the modes covered by our results on
the DOS correspond to those that fall in the radiative regime
si.e., towards the left of the left-most light line in, for ex-
ample, Figs. 5, 7, 10, and 13d. The LDOS in Figs. 6, 8, and
11 indicate that these modes are actually those of the
Ga1−xAl xAs dielectric bounded by the GaAs plasma, con-
fined on the dielectric side and forbidden from propagating
in the GaAs plasma. This is true despite the fact that depend-
ing on the aspect ratior the radiative modes in Figs. 8 and 11
can interact with the surrounding dielectric in the outer me-
dium and hence may differ slightly from those in Fig. 6.
Similarly, the modes in Fig. 14 are essentially those of the
Ga1−xAl xAs shell that are disallowed to propagate in the
neighboring plasmas. This also explains why such peaks are
so strong. The modes in the nonradiative regime tend to bear
a different story. They originate from the dielectric-plasma
heterointerfacessd and are truly magnetoplasmon-polariton-
like.

It is not a part and parcelof the work presented in this

paper, but we think it is worthwhile to add a word of warning
about a very subtle issue regarding the delusive traces of the
edge magnetoplasmonssEMPsd. We now know that the
EMPs—which are by definition the 2D analogs of the 3D
surface plasmons and are characterized by their frequencies
decreasing with increasing magnetic field1—have their exis-
tence known in several kinds of geometries, such as disks
and rings. So it occurred to us that if we take the propagation
vectorz=0 and compute the magnetoplasmon frequency as a
function of magnetic fieldB sor Vcd for, for example, a very
thin plasma shell sandwiched between two identical or uni-
dentical dielectrics, we must obtain something that would
mimic these EMPs. To our surprise, this is exactly what
turned out until and unless we tried to understand what these
modes actually were. Forz=0 and r =1.05, we found that,
apart from such minutely distorted radiative modes, there is a
just one such mode that starts from the plasma frequency
si.e., j=1d the frequency of which gradually decreases with
increasingB. Furthermore, if we increaser, the number of
such modes starts increasing. So this spectrum looks just like
the one for the EMPs. However, we found that for a very thin
plasma shellsi.e., r →0d such a mode is nothing but the
solution ofb±=0, and for a thick plasma shellssay,r =2.2d,
while the lowest one remains intactsand explicable as the
solution ofb±=0d, the higher modes could not be substanti-
ated by the local and/or total DOS. This led us to infer that
such a spectrum is nothing but the delusive traces of the
EMPs.

V. CONCLUDING REMARKS

In conclusion, we investigated the magnetoplasmon dis-
persion and the density of states in the coaxial cylindrical
geometries in the presence of an applied axial magnetic field.
We derived the general dispersion relations using a Green-
function theory in the framework of IRT,13 which has now
found widespread use in studying the numerous excitations
in various composite systems.15–19 In doing so, we not only
clarified some basic notions in the use of cylindrical geom-
etries, but also diagnosed our general analytical results under
special limits to reproduce some well-known results on pla-
nar systems, both with and without applied magnetic fields.
We also successfully attempted to substantiate our results on
plasmon dispersion through the computation of the local and
total density of states. While we considered the effect of
retardation, the absorption was neglected throughout, except
for a small imaginary part added to the frequencies for the
purpose of computing the DOS. We hope that the present
methodology for coaxial cylindrical geometries proves to be
a powerful theoretical framework for studying, for example,
the intrasubband plasmons and magnetoplasmons in multi-
walled carbon nanotubes.

The experimental observation of radiative as well as non-
radiative magnetoplasmon modes in such coaxial, cylindrical
geometries would be of great interest. Such experiments
could possibly involve the well-known attenuated total re-
flection, the scattering of high-energy electrons, or even reso-
nant Raman spectroscopy. Electron-energy-loss spectroscopy
sEELSd is already becoming known as a powerful technique
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for studying the electronic structure, dielectric properties,
and plasmon excitations in carbon nanotubes and carbon on-
ions, for example. Our preference for plotting the numerical
results in terms of the dimensionless frequency and propaga-
tion vector leaves free an option of choosing a lower or
higher plasma frequency, just as for the aspect ratio.

Many important problems remain open in the context of
the present investigation. The issues that need to be consid-
ered and could give better insight into the problem include
the role of absorption, the effects of the spatial dispersion,
the plasmons coupling to the optical phonons, effect of an
applied electric field that may create the drifted charge car-
riers and help study the instability mechanism, and the mak-
ing of a multicoaxial waveguide system that employs, for
example, left-handed materials, to name a few. Currently, we
have been investigating the plasma effects in such multico-
axial waveguide systems that exploit the materials character-
ized bynegativepermittivity and permeability and the results
will be reported shortly.
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APPENDIX A: LOCAL DIELECTRIC FUNCTIONS

The dielectric tensor components employed in this work
are defined as follows:

exx = eyy = eLH1 −
vp

2sv + ind
vfsv + ind2 − vc

2gJ , sA1d

eyx = − exy = − ieL

vp
2vc

vfsv + ind2 − vc
2g

, sA2d

ezz= eLF1 −
vp

2

vsv + indG , sA3d

whereeL is the background dielectric constant,n is the free-
carrier-collision frequency,vp is the screened-plasma fre-
quency, andvc is the electron-cyclotron frequency.

If we also consider the effect of phonons, which, in a way,
incorporates the coupling of the plasmonssor magnetoplas-
monsd to the optical phonons, then the background dielectric
constanteL has to be replaced by its frequency dependent
expression,

eLsvd = e`FvLO
2 − v2 − iGv

vTO
2 − v2 − iGv

G , sA4d

wheree` is the high-frequency dielectric constant,G is the
optical-phonon damping frequency, andvLO and vTO are,
respectively, the longitudinal and transverse optical-phonon
frequencies at the zone center of the Brillouin zone. Remem-
ber that the convention of an additional subscriptj over all
quantities applies. This subscript specifies the perturbation
concerned.

APPENDIX B: SEVERAL IDENTITIES RELATING xi, gi,
bi, Pi, AND M

Here we enlist some identities interrelatingxi, gi, bi, Pi,
andMi, which have proved to be extremely useful in simpli-
fying otherwise quite involved mathematical steps, particu-

larly those concerned with the matrix elements of, say,Ãj,

D̃ j, G̃j
−1, and g̃j

−1. The first category of identities isg j3
4

=Mjg j1
2 g j2

2 , Sj1Sj3=Sj5Sj6, Sj1Sj4=Sj5Sj7, Sj2Sj6=xj1xj2Sj7,
Sj3Sj7=Sj2, Sj4Sj6=Sj2, Sj2=xj1xj2g j0Sj8, Sj3Sj8=Sj4/g j0,
whereMj =s1+xj1xj2d and g j0=g j1

4 / sq0
4e j2

2 d. The second cat-
egory of identities associated withAi, Bi, Ci, andDi is

A1D1 + x1x2B1C1 = 0, sB1d

A2D2 + x1x2B2C2 = 0, sB2d

A1D2 + A2D1 =
1

M2S2fsb1
4 + b2

4dM − 2b1
2b2

2g, sB3d

B1C2 + B2C1 = −
2

M2S2b1
2b2

2, sB4d

fsA1D2 + A2D1d + x1x2sB1C2 + B2C1dg =
1

M
, sB5d

…, etc. The third category of internal identities is

P1 + P2 = sb1
2 + b2

2dM, P1P2 = b1
2b2

2M , sB6d

sP1 − b1
2Mdb1

2 − P2sP1 − b1
2d = 0,

sP1 − b2
2Mdb1

2 − P2sP1 − b1
2d = MSb1

2,

sP1 − b1
2Mdb2

2 − P2sP1 − b2
2d = − MSb2

2,

sP1 − b2
2Mdb2

2 − P2sP1 − b2
2d = 0

sB7d

sP2 − b1
2MdsP1 − b2

2d + x1x2P1b2
2 = − MSsP1 − b2

2d,

sP2 − b1
2MdsP1 − b1

2d + x1x2P1b1
2 = 0,

sP2 − b2
2MdsP1 − b2

2d + x1x2P1b2
2 = 0,

sP2 − b2
2MdsP1 − b1

2d + x1x2P1b1
2 = MSsP1 − b1

2d,

sB8d

sP1 − b1
2dsP2 − b2

2d + x1x2b1
2b2

2 = SsP1 − b1
2Md,

sP1 − b2
2dsP2 − b1

2d + x1x2b1
2b2

2 = − SsP1 − b2
2Md.

sB9d

Similar other identities follow if we just interchangeP1 and
P2. Remember that we have not specified the subscriptj in
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Eqs.sB1d–sB4d for brevity, which has to be used on all quan-
tities while referring to a specific perturbation. The third cat-
egory of identities quite often used here involves some well-
known relations between the Bessel functions. It is

zn8szd = − zn+1szd +
n

z
znszd, sB10d

where z;J, Y, or H, which are, respectively, the Bessel
functions of the first, second, and third kinds.z refers to the
complex argument andn to the integer order thereof. The
prime stands for the derivative of the respective function
with respect to the argument. The other most useful identity
is

HnszdJnszdFHn8szd
Hnszd

−
Jn8szd
JnszdG =

2i

pz
. sB11d

The asymptotic expansions for the large argumentssi.e., uzu
→`d of these Bessel functions are specified by

Jnszd >Î 2

pz
cosFz−

1

2
Sn +

1

2
DpG ,

Ynszd >Î 2

pz
sinFz−

1

2
Sn +

1

2
DpG ,

Hnszd >Î 2

pz
expHiFz−

1

2
Sn +

1

2
DpGJ .

sB12d

As such, we obtain

Jn8szd
Jnszd

= − i,
Hn8szd
Hnszd

= + i . sB13d

APPENDIX C: DETAILS FOR SEC. III B ON THE FIRST
PERTURBATION

First of all, it should be pointed out that we will not use
the additional subscriptj swhich meansj =1 in the present
cased with other quantities, except forSji , for the sake of
brevity. However, the convention of using this additional
subscript over all quantities applies. The matrix elements in
Eq. s3.6d are defined as

G1s11d = −
1

S11
fA1Hmsb1rdJmsb1r8d + A2Hmsb2rdJmsb2r8dg,

sC1d

G1s21d =
S13

S15
fB1Hmsb1rdJmsb1r8d + B2Hmsb2rdJmsb2r8dg,

sC2d

G1s12d = −
S16

S11
fC1Hmsb1rdJmsb1r8d + C2Hmsb2rdJmsb2r8dg,

sC3d

G1s22d = −
1

S15
fD1Hmsb1rdJmsb1r8d + D2Hmsb2rdJmsb2r8dg.

sC4d

The matrix elements in Eq.s3.7d are defined as

A1s11d = h− fsP2 − b1
2d − x1x2b1

2gz1Hm8 sz1dJmsz1d + fsP2 − b2
2d

− x1x2b2
2gz2Hm8 sz2dJmsz2d + S12P2Hmsz1dJmsz1d

− S12P2Hmsz2dJmsz2dj, sC5d

A1s21d = h+ x1P2z1Hm8 sz1dJmsz1d − x1P2z2Hm8 sz2dJmsz2d

+ S14fsP2 − b1
2d − g0

−1b1
2gHmsz1dJmsz1d

− S14fsP2 − b2
2d − g0

−1b2
2gHmsz2dJmsz2dj, sC6d

A1s12d = h− x2P1z1Hm8 sz1dJmsz1d + x2P1z2Hm8 sz2dJmsz2d

− S17fsP1 − b1
2d − x1x2b1

2gHmsz1dJmsz1d

+ S17fsP1 − b2
2d − x1x2b2

2gHmsz2dJmsz2dj, sC7d

A1s22d = h− fsP1 − b1
2d − x1x2b1

2gz1Hm8 sz1dJmsz1d + fsP1 − b2
2d

− x1x2b2
2gz2Hm8 sz2dJmsz2d + S18fsP1 − b1

2d

+ x1x2g0b1
2gHmsz1dJmsz1d − S18fsP1 − b2

2d

+ x1x2g0b2
2gHmsz2dJmsz2dj, sC8d

wherez1=b1R1 andz2=b2R1. The prime on the Bessel func-
tions stands for the derivative of the respective quantity with
respect to the full argument. The matrix elements in Eq.s3.8d
are defined as

D1s11d = A1s11d with Hm8 Jm replaced byJm8 Hm, sC9d

D1s21d = A1s21d with Hm8 Jm replaced byJm8 Hm,

sC10d

D1s12d = A1s12d with Hm8 Jm replaced byJm8 Hm,

sC11d

D1s22d = A1s22d with Hm8 Jm replaced byJm8 Hm.

sC12d

The matrix elements in Eq.s3.11d are defined as

h1s11d = −
1

S15
hf− sP1 − b1

2dz2Jmsz1dJm8 sz2d + sP1 − b2
2dz1

3Jm8 sz1dJmsz2dgHmsz1dHmsz2d − S12

3sb1
2 − b2

2dJmsz1dHmsz1dJmsz2dHmsz2dj, sC13d

h1s21d =
1

S15
hfx1b1

2z2Jmsz1dJm8 sz2d − x1b2
2z1Jm8 sz1dJmsz2dg

3 Hmsz1dHmsz2d + S14sb1
2 − b2

2d

3Jmsz1dHmsz1dJmsz2dHmsz2dj, sC14d
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h1s12d = −
1

S11
hfx2b1

2z2Jmsz1dJm8 sz2d − x2b2
2z1Jm8 sz1dJmsz2dg

3 Hmsz1dHmsz2d + S17sb1
2 − b2

2d

3Jmsz1dHmsz1dJmsz2dHmsz2dj, sC15d

h1s22d =
1

S11
hfsP2 − b1

2dz2Jmsz1dJm8 sz2d − sP2 − b2
2dz1

3Jm8 sz1dJmsz2dgHmsz1dHmsz2d − S18

3sb1
2 − b2

2dJmsz1dHmsz1dJmsz2dHmsz2dj. sC16d

APPENDIX D: DETAILS FOR SEC. III C ON THE
SECOND PERTURBATION

Again, it should be pointed out that we will not use this
additional subscriptj swhich meansj =2 in the present cased
with other quantities, except forSji , for the sake of brevity.
However, the convention of using this additional subscript
over all quantities applies. The matrix elements in Eq.s3.14d
are defined as

G2s11d = −
1

S21
fA1Jmsb1rdHmsb1r8d + A2Jmsb2rdHmsb2r8dg,

sD1d

G2s21d =
S23

S25
fB1Jmsb1rdHmsb1r8d + B2Jmsb2rdHmsb2r8dg,

sD2d

G2s12d = −
S26

S21
fC1Jmsb1rdHmsb1r8d + C2Jmsb2rdHmsb2r8dg,

sD3d

G2s22d = −
1

S25
fD1Jmsb1rdHmsb1r8d + D2Jmsb2rdHmsb2r8dg.

sD4d

The matrix elements in Eq.s3.15d are defined as

A2s11d = h− fsP2 − b1
2d − x1x2b1

2gz1Jm8 sz1dHmsz1d + fsP2 − b2
2d

− x1x2b2
2gz2Jm8 sz2dHmsz2d + S22P2Jmsz1dHmsz1d

− S22P2Jmsz2dHmsz2dj, sD5d

A2s21d = h+ x1P2z1Jm8 sz1dHmsz1d − x1P2z2Jm8 sz2dHmsz2d

+ S24fsP2 − b1
2d − g0

−1b1
2gJmsz1dHmsz1d

− S24fsP2 − b2
2d − g0

−1b2
2gJmsz2dHmsz2dj, sD6d

A2s12d = h− x2P1z1Jm8 sz1dHmsz1d + x2P1z2Jm8 sz2dHmsz2d

− S27fsP1 − b1
2d − x1x2b1

2gJmsz1dHmsz1d

+ S27fsP1 − b2
2d − x1x2b2

2gJmsz2dHmsz2dj, sD7d

A2s22d = h− fsP1 − b1
2d − x1x2b1

2gz1Jm8 sz1dHmsz1d + fsP1 − b2
2d

− x1x2b2
2gz2Jm8 sz2dHmsz2d + S28fsP1 − b1

2d

+ g0x1x2b1
2gJmsz1dHmsz1d − S28fsP1 − b2

2d

+ g0x1x2b2
2gJmsz2dHmsz2dj, sD8d

wherez1=b1R2 andz2=b2R2. The prime on the Bessel func-
tions stands for the derivative of the respective quantity with
respect to the full argument. The matrix elements in Eq.
s3.16d are defined as

D2s11d = A2s11d, with Jm8 Hm replaced byHm8 Jm,

sD9d

D2s21d = A2s21d, with Jm8 Hm replaced byHm8 Jm,

sD10d

D2s12d = A2s12d, with Jm8 Hm replaced byHm8 Jm,

sD11d

D2s22d = A2s22d, with Jm8 Hm replaced byHm8 Jm.

sD12d

The matrix elements in Eq.s3.19d are defined as

h2s11d = −
1

S25
hf− sP1 − b1

2dz2Hmsz1dHm8 sz2d + sP1 − b2
2dz1

3Hm8 sz1dHmsz2dgJmsz1dJmsz2d − S22

3sb1
2 − b2

2dJmsz1dHmsz1dJmsz2dHmsz2dj, sD13d

h2s21d =
1

S25
hfx1b1

2z2Hmsz1dHm8 sz2d − x1b2
2z1Hm8 sz1dHmsz2dg

3 Jmsz1dJmsz2d + S24sb1
2 − b2

2d

3Jmsz1dHmsz1dJmsz2dHmsz2dj, sD14d

h2s12d = −
1

S21
hfx2b1

2z2Hmsz1dHm8 sz2d − x2b2
2z1Hm8 sz1dHmsz2dg

3Jmsz1dJmsz2d + S27sb1
2 − b2

2d

3Jmsz1dHmsz1dJmsz2dHmsz2dj, sD15d

h2s22d =
1

S21
hfsP2 − b1

2dz2Hmsz1dHm8 sz2d − sP2 − b2
2dz1

3Hm8 sz1dHmsz2dgJmsz1dJmsz2d − S28

3sb1
2 − b2

2dJmsz1dHmsz1dJmsz2dHmsz2dj. sD16d

APPENDIX E: DETAILS FOR SEC. III D ON THE THIRD
PERTURBATION

Again, it should be pointed out that we will not use this
additional subscriptj swhich meansj =3 in the present cased
over other quantities, except forSji , for the sake of brevity.
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However, the convention of using this additional subscript
over all quantities applies. The matrix elements in Eq.s3.22d
are given as hereunder:

G3s11d = −
1

S31
fA1Jmsb1rdHmsb1r8d + A2Jmsb2rdHmsb2r8dg,

sE1d

G3s21d =
S33

S35
fB1Jmsb1rdHmsb1r8d + B2Jmsb2rdHmsb2r8dg,

sE2d

G3s31d = −
1

S31
fA1Hmsb1rdJmsb1r8d + A2Hmsb2rdJmsb2r8dg,

sE3d

G3s41d =
S33

S35
fB1Hmsb1rdJmsb1r8d + B2Hmsb2rdJmsb2r8dg,

sE4d

G3s12d = −
S36

S31
fC1Jmsb1rdHmsb1r8d + C2Jmsb2rdHmsb2r8dg,

sE5d

G3s22d = −
1

S35
fD1Jmsb1rdHmsb1r8d + D2Jmsb2rdHmsb2r8dg,

sE6d

G3s32d = −
S36

S31
fC1Hmsb1rdJmsb1r8d + C2Hmsb2rdJmsb2r8dg,

sE7d

G3s42d = −
1

S35
fD1Hmsb1rdJmsb1r8d + D2Hmsb2rdJmsb2r8dg,

sE8d

G3s13d = −
1

S31
fA1Jmsb1rdHmsb1r8d + A2Jmsb2rdHmsb2r8dg,

sE9d

G3s23d =
S33

S35
fB1Jmsb1rdHmsb1r8d + B2Jmsb2rdHmsb2r8dg,

sE10d

G3s33d = −
1

S31
fA1Hmsb1rdJmsb1r8d + A2Hmsb2rdJmsb2r8dg,

sE11d

G3s43d =
S33

S35
fB1Hmsb1rdJmsb1r8d + B2Hmsb2rdJmsb2r8dg,

sE12d

G3s14d = −
S36

S31
fC1Jmsb1rdHmsb1r8d + C2Jmsb2rdHmsb2r8dg,

sE13d

G3s24d = −
1

S35
fD1Jmsb1rdHmsb1r8d + D2Jmsb2rdHmsb2r8dg,

sE14d

G3s34d = −
S36

S31
fC1Hmsb1rdJmsb1r8d + C2Hmsb2rdJmsb2r8dg,

sE15d

G3s44d = −
1

S35
fD1Hmsb1rdJmsb1r8d + D2Hmsb2rdJmsb2r8dg.

sE16d

We would like to stress that the interface spaceMs will be
referred to assr=R1,r8=R1d, sr=R1,r8=R2d, sr=R2,r8
=R2d, and sr=R2,r8=R1d, respectively, in the first, second,
third, and fourth quadrants made up of 232 submatrices,
starting clockwise from the top-left quadrant. The matrix el-
ements in Eq.s3.23d are defined as

A3s11d = hfsP2 − b1
2d − x1x2b1

2gz1Jm8 sz1dHmsz1d − fsP2 − b2
2d

− x1x2b2
2gz2Jm8 sz2dHmsz2d − S32P2Jmsz1dHmsz1d

+ S32P2Jmsz2dHmsz2dj, sE17d

A3s21d = h− x1P2z1Jm8 sz1dHmsz1d + x1P2z2Jm8 sz2dHmsz2d

− S34fsP2 − b1
2d − g0

−1b1
2gJmsz1dHmsz1d

+ S34fsP2 − b2
2d − g0

−1b2
2gJmsz2dHmsz2dj, sE18d

A3s31d = h− fsP2 − b1
2d − x1x2b1

2gz18Hm8 sz18dJmsz1d + fsP2 − b2
2d

− x1x2b2
2gz28Hm8 sz28dJmsz2d + S32P2Hmsz18dJmsz1d

− S32P2Hmsz28dJmsz2dj, sE19d

A3s41d = h+ x1P2z18Hm8 sz18dJmsz1d − x1P2z28Hm8 sz28dJmsz2d

+ S34fsP2 − b1
2d − g0

−1b1
2gHmsz18dJmsz1d

− S34fsP2 − b2
2d − g0

−1b2
2gHmsz28dJmsz2dj, sE20d

A3s12d = h+ x2P1z1Jm8 sz1dHmsz1d − x2P1z2Jm8 sz2dHmsz2d

+ S37fsP1 − b1
2d − x1x2b1

2gJmsz1dHmsz1d

− S37fsP1 − b2
2d − x1x2b2

2gJmsz2dHmsz2dj, sE21d

A3s22d = h+ fsP1 − b1
2d − x1x2b1

2gz1Jm8 sz1dHmsz1d − fsP1 − b2
2d

− x1x2b2
2gz2Jm8 sz2dHmsz2d − S38fsP1 − b1

2d

+ g0x1x2b1
2gJmsz1dHmsz1d + S38fsP1 − b2

2d

+ g0x1x2b2
2gJmsz2dHmsz2dj, sE22d
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A3s32d = h− x2P1z18Hm8 sz18dJmsz1d + x2P1z28Hm8 sz28dJmsz2d

− S37fsP1 − b1
2d − x1x2b1

2gHmsz18dJmsz1d

+ S37fsP1 − b2
2d − x1x2b2

2gHmsz28dJmsz2dj, sE23d

A3s42d = h− fsP1 − b1
2d − x1x2b1

2gz18Hm8 sz18dJmsz1d + fsP1 − b2
2d

− x1x2b2
2gz28Hm8 sz28dJmsz2d + S38fsP1 − b1

2d

+ g0x1x2b1
2gHmsz18dJmsz1d − S38fsP1 − b2

2d

+ g0x1x2b2
2gHmsz28dJmsz2dj, sE24d

A3s13d = hfsP2 − b1
2d − x1x2b1

2gz1Jm8 sz1dHmsz18d − fsP2 − b2
2d

− x1x2b2
2gz2Jm8 sz2dHmsz28d − S32P2Jmsz1dHmsz18d

+ S32P2Jmsz2dHmsz28dj, sE25d

A3s23d = h− x1P2z1Jm8 sz1dHmsz18d + x1P2z2Jm8 sz2dHmsz28d

− S34fsP2 − b1
2d − g0

−1b1
2gJmsz1dHmsz18d

+ S34fsP2 − b2
2d − g0

−1b2
2gJmsz2dHmsz28dj, sE26d

A3s33d = h− fsP2 − b1
2d − x1x2b1

2gz18Hm8 sz18dJmsz18d + fsP2 − b2
2d

− x1x2b2
2gz28Hm8 sz28dJmsz28d + S32P2Hmsz18dJmsz18d

− S32P2Hmsz28dJmsz28dj, sE27d

A3s43d = h+ x1P2z18Hm8 sz18dJmsz18d − x1P2z28Hm8 sz28dJmsz28d

+ S34fsP2 − b1
2d − g0

−1b1
2gHmsz18dJmsz18d

− S34fsP2 − b2
2d − g0

−1b2
2gHmsz28dJmsz28dj, sE28d

A3s14d = h+ x2P1z1Jm8 sz1dHmsz18d − x2P1z2Jm8 sz2dHmsz28d

+ S37fsP1 − b1
2d − x1x2b1

2gJmsz1dHmsz18d

− S37fsP1 − b2
2d − x1x2b2

2gJmsz2dHmsz28dj, sE29d

A3s24d = h+ fsP1 − b1
2d − x1x2b1

2gz1Jm8 sz1dHmsz18d − fsP1 − b2
2d

− x1x2b2
2gz2Jm8 sz2dHmsz28d − S38fsP1 − b1

2d

+ g0x1x2b1
2gJmsz1dHmsz18d + S38fsP1 − b2

2d

+ g0x1x2b2
2gJmsz2dHmsz28dj, sE30d

A3s34d = h− x2P1z18Hm8 sz18dJmsz18d + x2P1z28Hm8 sz28dJmsz28d

− S37fsP1 − b1
2d − x1x2b1

2gHmsz18dJmsz18d

+ S37fsP1 − b2
2d − x1x2b2

2gHmsz28dJmsz28dj, sE31d

A3s44d = h− fsP1 − b1
2d − x1x2b1

2gz18Hm8 sz18dJmsz18d + fsP1 − b2
2d

− x1x2b2
2gz28Hm8 sz28dJmsz28d + S38fsP1 − b1

2d

+ g0x1x2b1
2gHmsz18dJmsz18d − S38fsP1 − b2

2d

+ g0x1x2b2
2gHmsz28dJmsz28dj, sE32d

where z1=b1R1, z2=b2R1, z18=b1R2, and z28=b2R2. The
prime on the Bessel functions stands for the derivative of the

respective quantity with respect to the full argument. The
matrix elements in Eq.s3.24d are defined as follows:

D3s11d = A3s11d, with Jm8 Hm replaced byHm8 Jm,

sE33d

D3s21d = A3s21d, with Jm8 Hm replaced byHm8 Jm,

sE34d

D3s31d = A3s31d, with Hm8 Jm replaced byJm8 Hm,

sE35d

D3s41d = A3s41d, with Hm8 Jm replaced byJm8 Hm,

sE36d

D3s12d = A3s12d, with Jm8 Hm replaced byHm8 Jm,

sE37d

D3s22d = A3s22d, with Jm8 Hm replaced byHm8 Jm,

sE38d

D3s32d = A3s32d, with Hm8 Jm replaced byJm8 Hm,

sE39d

D3s42d = A3s42d, with Hm8 Jm replaced byJm8 Hm,

sE40d

D3s13d = A3s13d, with Jm8 Hm replaced byHm8 Jm,

sE41d

D3s23d = A3s23d, with Jm8 Hm replaced byHm8 Jm,

sE42d

D3s33d = A3s33d, with Hm8 Jm replaced byJm8 Hm,

sE43d

D3s43d = A3s43d, with Hm8 Jm replaced byJm8 Hm,

sE44d

D3s14d = A3s14d, with Jm8 Hm replaced byHm8 Jm,

sE45d

D3s24d = A3s24d, with Jm8 Hm replaced byHm8 Jm,

sE46d

D3s34d = A3s34d, with Hm8 Jm replaced byJm8 Hm,

sE47d

D3s44d = A3s44d, with Hm8 Jm replaced byJm8 Hm.

sE48d

The matrix elements in Eq.s3.25d are defined as follows:
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G3
−1s11d =

1

S35
h+ sP1 − b1

2dfHmsz1dJmsz18d

− Hmsz18dJmsz1dgJmsz1dJmsz28d − sP1 − b2
2d

3fHmsz2dJmsz28d − Hmsz28dJmsz2dgJmsz18dJmsz2dj

3 Hmsz18dHmsz28d, sE49d

G3
−1s21d =

S33

S35
h+ b1

2fHmsz1dJmsz18d

− Hmsz18dJmsz1dgJmsz1dJmsz28d − b2
2fHmsz2dJmsz28d

− Hmsz28dJmsz2dgJmsz18dJmsz2djHmsz18dHmsz28d,

sE50d

G3
−1s31d =

1

S35
h− sP1 − b1

2dfHmsz1dJmsz18d − Hmsz18dJmsz1dg

+ sP1 − b2
2dfHmsz2dJmsz28d − Hmsz28dJmsz2dgj

3 Jmsz1dJmsz2dHmsz18dHmsz28d, sE51d

G3
−1s41d =

S33

S35
h− b1

2fHmsz1dJmsz18d − Hmsz18dJmsz1dg

+ b2
2fHmsz2dJmsz28d − Hmsz28dJmsz2dgj

3 Jmsz1dJmsz2dHmsz18dHmsz28d, sE52d

G3
−1s12d =

S36

S31
h− b1

2fHmsz1dJmsz18d

− Hmsz18dJmsz1dgJmsz1dJmsz28d + b2
2fHmsz2dJmsz28d

− Hmsz28dJmsz2dgJmsz18dJmsz2djHmsz18dHmsz28d,

sE53d

G3
−1s22d =

1

S31
h+ sP1 − b1

2dfHmsz1dJmsz18d

− Hmsz18dJmsz1dgJmsz1dJmsz28d − sP2 − b2
2d

3fHmsz2dJmsz28d − Hmsz28dJmsz2dgJmsz18dJmsz2dj

3 Hmsz18dHmsz28d, sE54d

G3
−1s32d =

S36

S31
h+ b1

2fHmsz1dJmsz18d − Hmsz18dJmsz1dg

− b2
2fHmsz2dJmsz28d − Hmsz28dJmsz2dgj

3 Jmsz1dJmsz2dHmsz18dHmsz28d, sE55d

G3
−1s42d =

1

S31
h− sP2 − b1

2dfHmsz1dJmsz18d − Hmsz18dJmsz1dg

+ sP2 − b2
2dfHmsz2dJmsz28d − Hmsz28dJmsz2dgj

3 Jmsz1dJmsz2dHmsz18dHmsz28d, sE56d

G3
−1s13d =

1

S35
h− sP1 − b1

2dfHmsz1dJmsz18d − Hmsz18dJmsz1dg

+ sP1 − b2
2dfHmsz2dJmsz28d − Hmsz28dJmsz2dgj

3 Jmsz1dJmsz2dHmsz18dHmsz28d, sE57d

G3
−1s23d =

S33

S35
h− b1

2fHmsz1dJmsz18d − Hmsz18dJmsz1dg

+ b2
2fHmsz2dJmsz28d − Hmsz28dJmsz2dgj

3 Jmsz1dJmsz2dHmsz18dHmsz28d, sE58d

G3
−1s33d =

1

S35
h+ sP1 − b1

2dfHmsz1dJmsz18d

− Hmsz18dJmsz1dgHmsz18dHmsz2d − sP1 − b2
2d

3fHmsz2dJmsz28d − Hmsz28dJmsz2dgHmsz1dHmsz28dj

3 Jmsz1dJmsz2d, sE59d

G3
−1s43d =

S33

S35
h+ b1

2fHmsz1dJmsz18d

− Hmsz18dJmsz1dgHmsz18dHmsz2d − b2
2fHmsz2dJmsz28d

− Hmsz28dJmsz2dgHmsz1dHmsz28djJmsz1dJmsz2d,

sE60d

G3
−1s14d =

S36

S31
h− b1

2fHmsz1dJmsz18d − Hmsz18dJmsz1dg

+ b2
2fHmsz2dJmsz28d − Hmsz28dJmsz2dgj

3 Jmsz1dJmsz2dHmsz18dHmsz28d, sE61d

G3
−1s24d =

1

S31
h− sP2 − b1

2dfHmsz1dJmsz18d − Hmsz18dJmsz1dg

+ sP2 − b2
2dfHmsz2dJmsz28d − Hmsz28dJmsz2dgj

3 Jmsz1dJmsz2dHmsz18dHmsz28d, sE62d

G3
−1s34d =

S36

S31
h− b1

2fHmsz1dJmsz18d

− Hmsz18dJmsz1dgHmsz18dHmsz2d + b2
2fHmsz2dJmsz28d

− Hmsz28dJmsz2dgHmsz1dHmsz28djJmsz1dJmsz2d,

sE63d

G3
−1s44d =

1

S31
h+ sP2 − b1

2dfHmsz1dJmsz18d

− Hmsz18dJmsz1dgHmsz18dHmsz2d − sP2 − b2
2d

3fHmsz2dJmsz28d − Hmsz28dJmsz2dgHmsz1dHmsz28dj

3 Jmsz1dJmsz2d. sE64d

Finally, the matrix elements in Eq.s3.28d are given by
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h3s11d = S31H− S32sb1
2 − b2

2d − sP1 − b1
2d

3z2
Hm8 sz2dJmsz28d − Hmsz28dJm8 sz2d
Hmsz2dJmsz28d − Hmsz28dJmsz2d

+ sP1 − b2
2d

3z1
Hm8 sz1dJmsz18d − Hmsz18dJm8 sz1d
Hmsz1dJmsz18d − Hmsz18dJmsz1dJ , sE65d

h3s21d = S31H− S34sb1
2 − b2

2d

− b1
2x1z2

Hm8 sz2dJmsz28d − Hmsz28dJm8 sz2d
Hmsz2dJmsz28d − Hmsz28dJmsz2d

+ b2
2x1z1

Hm8 sz1dJmsz18d − Hmsz18dJm8 sz1d
Hmsz1dJmsz18d − Hmsz18dJmsz1dJ ,

sE66d

h3s31d = S31H+ sP1 − b1
2dz28

Hm8 sz28dJmsz28d − Hmsz28dJm8 sz28d
Hmsz2dJmsz28d − Hmsz28dJmsz2d

− sP1 − b2
2dz18

Hm8 sz18dJmsz18d − Hmsz18dJm8 sz18d
Hmsz1dJmsz18d − Hmsz18dJmsz1dJ ,

sE67d

h3s41d = S31H+ b1
2x1z28

Hm8 sz28dJmsz28d − Hmsz28dJm8 sz28d
Hmsz2dJmsz28d − Hmsz28dJmsz2d

− b2
2x1z18

Hm8 sz18dJmsz18d − Hmsz18dJm8 sz18d
Hmsz1dJmsz18d − Hmsz18dJmsz1dJ , sE68d

h3s12d = S35H+ S37sb1
2 − b2

2d

+ b1
2x2z2

Hm8 sz2dJmsz28d − Hmsz28dJm8 sz2d
Hmsz2dJmsz28d − Hmsz28dJmsz2d

− b2
2x2z1

Hm8 sz1dJmsz18d − Hmsz18dJm8 sz1d
Hmsz1dJmsz18d − Hmsz18dJmsz1dJ ,

sE69d

h3s22d = S35H− S38sb1
2 − b2

2d − sP2 − b1
2d

3z2
Hm8 sz2dJmsz28d − Hmsz28dJm8 sz2d
Hmsz2dJmsz28d − Hmsz28dJmsz2d

+ sP2 − b2
2d

3z1
Hm8 sz1dJmsz18d − Hmsz18dJm8 sz1d
Hmsz1dJmsz18d − Hmsz18dJmsz1dJ , sE70d

h3s32d = S35H− b1
2x2z28

Hm8 sz28dJmsz28d − Hmsz28dJm8 sz28d
Hmsz2dJmsz28d − Hmsz28dJmsz2d

+ b2
2x2z18

Hm8 sz18dJmsz18d − Hmsz18dJ18sz18d
Hmsz1dJmsz18d − Hmsz18dJmsz1dJ , sE71d

h3s42d = S35H+ sP2 − b1
2dz28

Hm8 sz28dJmsz28d − Hmsz28dJm8 sz28d
Hmsz2dJmsz28d − Hmsz28dJmsz2d

− sP2 − b2
2dz18

Hm8 sz18dJmsz18d − Hmsz18dJm8 sz18d
Hmsz1dJmsz18d − Hmsz18dJmsz1dJ ,

sE72d

h3s13d = S31H+ sP1 − b1
2dz2

Hm8 sz2dJmsz2d − Hmsz2dJm8 sz2d
Hmsz2dJmsz28d − Hmsz28dJmsz2d

− sP1 − b2
2dz1

Hm8 sz1dJmsz1d − Hmsz1dJm8 sz1d
Hmsz1dJmsz18d − Hmsz18dJmsz1dJ ,

sE73d

h3s23d = S31H+ b1
2x1z2

Hm8 sz2dJmsz2d − Hmsz2dJm8 sz2d
Hmsz2dJmsz28d − Hmsz28dJmsz2d

− b2
2x1z1

Hm8 sz1dJmsz1d − Hmsz1dJm8 sz1d
Hmsz1dJmsz18d − Hmsz18dJmsz1dJ , sE74d

h3s33d = S31H+ S32sb1
2 − b2

2d − sP1 − b1
2d

3z28
Hm8 sz28dJmsz2d − Hmsz2dJm8 sz28d
Hmsz2dJmsz28d − Hmsz28dJmsz2d

+ sP1 − b2
2d

3z18
Hm8 sz18dJmsz1d − Hmsz1dJm8 sz18d
Hmsz1dJmsz18d − Hmsz18dJmsz1dJ , sE75d

h3s43d = S31H+ S34sb1
2 − b2

2d

− b1
2x1z28

Hm8 sz28dJmsz2d − Hmsz2dJm8 sz28d
Hmsz2dJmsz28d − Hmsz28dJmsz2d

+ b2
2x1z18

Hm8 sz18dJmsz1d − Hmsz1dJm8 sz18d
Hmsz1dJmsz18d − Hmsz18dJmsz1dJ ,

sE76d

h3s14d = S35H− b1
2x2z2

Hm8 sz2dJmsz2d − Hmsz2dJm8 sz2d
Hmsz2dJmsz28d − Hmsz28dJmsz2d

+ b2
2x2z1

Hm8 sz1dJmsz1d − Hmsz1dJm8 sz1d
Hmsz1dJmsz18d − Hmsz18dJmsz1dJ , sE77d

h3s24d = S35H+ sP2 − b1
2dz2

Hm8 sz2dJmsz2d − Hmsz2dJm8 sz2d
Hmsz2dJmsz28d − Hmsz28dJmsz2d

− sP2 − b2
2dz1

Hm8 sz1dJmsz1d − Hmsz1dJm8 sz1d
Hmsz1dJmsz18d − Hmsz18dJmsz1dJ ,

sE78d
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h3s34d = S35H− S37sb1
2 − b2

2d

+ b1
2x2z28

Hm8 sz28dJmsz2d − Hmsz2dJm8 sz28d
Hmsz2dJmsz28d − Hmsz28dJmsz2d

− b2
2x2z18

Hm8 sz18dJmsz1d − Hmsz1dJm8 sz18d
Hmsz1dJmsz18d − Hmsz18dJmsz1dJ ,

sE79d

h3s44d = S35H+ S38sb1
2 − b2

2d − sP2 − b1
2d

3z28
Hm8 sz28dJmsz2d − Hmsz2dJm8 sz28d
Hmsz2dJmsz28d − Hmsz28dJmsz2d

+ sP2 − b2
2d

3z18
Hm8 sz18dJmsz1d − Hmsz1dJm8 sz18d
Hmsz1dJmsz18d − Hmsz18dJmsz1dJ . sE80d
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