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I. INTRODUCTION

Spin transport in semiconductor heterostructures has re-
cently attracted much attention owing to a perspective of its
practical application for quantum computing and
communications.1–3 In the way of fundamental studies and
applications of the spin transport the key problem is how to
generate, detect, and manipulate the electron spin polariza-
tion. Many ideas have been proposed to achieve control of
the spin using magnetic materials, external magnetic fields,
and optical excitationsfor a review see Ref. 3d. At the same
time, a challenging goal remains to employ only the electric
control integrated by means of gates into a high-mobility
semiconductor heterostructure.

A promising opportunity in this way is opened due to the
strong Rashba spin-orbit interactionsSOId in narrow-gap
two-dimensionals2Dd electron systems.4 An important fea-
ture of this interaction is its tunability which can be achieved
by varying the gate voltage.5,6 The field-effect transistor was
the first proposal utilizing this phenomenon.7 The gate con-
trol of the spin current employing the Aronov-Casher effect8

was considered in Ref. 9. The electric-dipole spin resonance
controlled by the time-dependent gate was studied in Ref. 10.

The SO interaction effect alone or in combination with the
external electric field allows one to approach an important
goal to create spin currents and spin polarization by entirely
electrical means, not involving any of the magnetic materials
or optical excitation. One of the examples is the recently
predicted11 ssee also Ref. 12d and observed13,14 spin-Hall ef-
fect in 2D and 3D electron and hole gases, where the spin
current is driven by the electric field. A closely related phe-
nomenon is the spin polarization of 2D electron gass2DEGd
in response to the parallel electric field.15 Another method
utilizes the time-dependent gate to modulate the shape of a
quantum dot16 or the strength of the SO coupling constant in
1D17,18 and 2D systems.18 In the latter case an efficient spin-
current generation can be attained in the presence of high-
frequencyshundreds of MHz or higherd gate-voltage varia-
tions. The physics of this phenomenon is simple. The Rashba
spin-orbit interaction resembles an interaction with a spin-

dependent gauge field. Therefore, its time derivative pro-
duces a motive force on electrons, similar to the electromo-
tive force from the time-dependent electric vector potential.
The important difference is, however, that the force created
by the SOI acts in opposite directions for oppositely polar-
ized spins. Such a method of spin-current generation is con-
venient for implementations in conventional semiconductor
heterostructures. By a proper choice of gate shape it allows
one to create and rectify the ac spin current or accumulate
the spin polarization at a given location. However, the theory
in Ref. 18 is restricted to the spatially homogeneous case.
Therefore, within this theory one cannot properly consider
boundary effects, as well as spin-current generation due to a
time-dependent gate of small area. Also, it is impossible to
study any effects of spin-current generation accompanied by
spin accumulation.

In the present work we develop a theory which is based
on the Boltzmann transport equations. This approach is quite
universal and it allows us to study the spin transport under an
arbitrary space-time-dependent SO interaction, providing
that a characteristic scale of this dependence is within the
range of applicability of the semiclassical approximation.
This means that the spatial variations of the SO interaction
are assumed to have the scaleDr larger than the electron
Fermi wavelength and the scale of its time variationsDt
@" /EF, whereEF is the Fermi energy. For even larger time-
space scales, such asDr @ l and Dt@t, where l and t are,
respectively, the mean free path and the mean free scattering
time, we use the Boltzmann equation to derive the drift-
diffusion equation. Within this theory we consider the fol-
lowing problems.

sid Spin-current generation by a finite-size time-dependent
gate. In this case the spin polarization is pumped by the gate
into 2D regions adjacent to it. This polarization further dif-
fuses away from the gate, as well as in the backward direc-
tion.

sii d Spin-current generation in a gas confined within an
infinite 2D strip. In such a geometry the generated spin cur-
rent with the polarization perpendicular to boundaries flows
freely along the strip. At the same time, spins polarized par-
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allel to the boundaries are accumulated near them, opposite
spins near opposite banks.

siii d Rectification of the ac spin current. It will be shown
that the spin polarization generated by a finite-size ac gate in
some cases contains the dc component due to periodic varia-
tions of the electron density under the gate. The dc compo-
nent appears as a result of the interplay of two periodic pro-
cesses: oscillations of the SO coupling constant and
oscillations of the 2D electron density.

This paper is organized as follows. In Sec. II, the Boltz-
mann equation is derived for calculation of the spin transport
in the presence of the time-dependent SO interaction. In Sec.
III, we apply the Boltzmann equation to some of the spin-
transport problems. The derivation of the drift-diffusion
equation and its applications are presented in Sec. IV. The
results of this work are summarized in Sec. V.

II. BOLTZMANN TRANSPORT THEORY

We consider spin transport in a noninteracting 2DEG con-
fined within a narrow-gap semiconductor quantum well
sQWd. The 2DEG is applied atop by a gate under time-
dependent bias. The inversion asymmetry of the quantum-
well-confining potential is controllable by an external gate,
and hence electrons experience a tunable Rashba-type SO
interaction.5,6 The system is therefore described by the effec-
tive mass Hamiltonian

Hstd =
p2

2m* + M ·
1

2
fasr ,tdp + pasr ,tdg + Usr ,td, s1d

where m* represents the effective mass,p=spx,pyd is the
electron momentum in the 2DEG plane, andasr ,td denotes
the time-dependent Rashba coupling constant.asr ,td con-
tains both a static parta0 and a dynamic parta1sr ,td due to
the time-dependent gate. In addition to time dependence,a1
can also vary in space depending on the gate configuration
and applied bias. We denoteM =z3s wherez is the unit
vector along the growth direction ands=hsx,sy,szj is the
vector of the Pauli matrices. Further,Usr ,td indicates the
external potential energy of an electron in the electric field
produced by the gate. The static part of the Rashba coupling
constant lifts the spin degeneracy, resulting in a momentum-
dependent spin splitting of the conduction band: namely,

«±skd =
k2

2m* ± a0k. s2d

For the 2DEG density of interest the Rashba spin-splitting
energyD0=2a0k will be assumed to be small compared to
the Fermi energy,D0!EF. In the following, we set"=1 for
convenience.

Let us consider the time-modulated nonequilibrium elec-
tron system in the temperature regimeT!EF, assuming the
semiclassical conditions to be satisfied. Hence, the time in-
tervals Dt and distancesDr over which all quantities vary
significantly satisfy the inequalitiesEFDt@1 andpFDr @1.
These conditions are necessary for derivation of the kinetic
equation. We start this derivation by introducing the matrix
of the nonequilibrium Green’s function in Keldysh space:19

Ĝabs1,2d = FGab
−−s1,2d Gab

−+s1,2d
Gab

+−s1,2d Gab
++s1,2d

G , s3d

where 1 and 2 denote two pointsr 1,t1 andr 2,t2, in the time-
space, anda ,b are spinor indices. We will assume that be-
sides the time-dependent forces in the Hamiltonians1d, the
electrons are also subject to scattering from randomly dis-
tributed static impurities. This scattering can be taken into
account by introducing the self-energy

Ŝab = FSab
−− Sab

−+

Sab
+− Sab

++ G . s4d

The corresponding matrix Dyson equation is of the form

Ĝabs1,2d = Ĝab
0 s1,2d +E d4d3fĜag

0 s1,4dŜgds4,3dĜdbs3,2dg

s5d

or the conjugate form

Ĝabs1,2d = Ĝab
0 s1,2d +E d3d4fĜags1,3dŜgds3,4dĜdb

0 s4,2dg,

s6d

where the functions in the integrand are matrices both in real
space and in spin space being combined by the rule of matrix
multiplication. Acting on the Dyson equation from the left
sor from the right on its conjugated by the operator

fGab
0 s jdg−1 ; i

]

]tj
dab − Habstjd, s7d

where the suffixj =1 or 2 indicates that the differentiation is
with respect to the variablestj andr j. After some algebra, we
obtain the equation20

sÎscdab = − iS ]

]t1
+

]

]t2
DĜabs1,2d +

1

2m
sD2 − D1dĜabs1,2d

+ fUs1d − Us2dgĜabs1,2d

− ifas2d=2 · „Ĝags1,2dM gb…

+ as1d=1 · „M agĜgbs1,2d…g −
i

2
f=2as2d · sĜagM gbd

+ =1as1d · „M agĜgbs1,2d…g, s8d

which is equivalent to the set of integro-differential equa-
tions for the component Green functions. Here the scattering
integral is defined by20

sÎscdab =E d3ft̂Ŝags1,3dĜgbs3,2d − Ĝags1,3dŜgbs3,2dt̂g,

s9d

where t̂ is the matrix, such thatt++=−t−−=1 andt+−=t−+

=0.
In the semiclassical regime, it is convenient to transform

the variables to the Wigner coordinates:r =r 1−r 2, R= 1
2sr 1

+r 2d; t= t1− t2, T= 1
2st1+ t2d. The difference variablesr and t
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vary on a microscopic scale, while the center variablesR and
T are macroscopic variables. In the quasiclassic approxima-
tion the Green functions and self-energies vary slowly with
respect to the center variables. Accordingly, only linear gra-
dient expansions will be taken into account in Eq.s8d.21 It is
appropriate to define the space-time Fourier transform to the
fast variables,

Gab
i j sR,T;r ,td = o

k
E dv

2p
Gab

i j sR,T;k,vd

3expfisk · r − vtdg, s10d

where the indicesi , j take the values “1” or “ 2.” Denoting
asGijsR ,T;k ,vd a matrix with elementsGab

i j sR ,T;k ,vd and
making the gradient expansion of Eq.s8d one can write the
quantum kinetic equation in the form

iI sc
i j =

]Gij

]T
+ v · =RGij + iafk ·M ,Gijg +

1

2
ahM ,=RGijj

−
1

2
=Ra · hk ·M ,=kGijj +

1

2

]a

]T
Hk ·M ,

]Gij

]v
J

− = U · =kGij +
]U

]T

]Gij

]v
, s11d

wherev=k /m* and hA,Bj denotes the anticommutator. The
scattering part of this equation is obtained from Eq.s9d in the
leading order of the gradient expansion with respect to the
“slow” R ,T variables.20 In calculations below we will em-
ploy the three Green functions. There areG−+, retardedGr,
and advancedGa functions.Gr and Ga are defined by the
equations

Gr = G−− − G−+ = G+− − G++,

Ga = G−+ − G++ = G−− − G+−. s12d

The same equations are valid also for the retarded and ad-
vanced self-energies with the only difference thatS+− and
S−+ enter with the signs opposite to signs ofG+− andG−+ in
Eqs.s12d. In terms of these functions the corresponding scat-
tering parts of Eq.s11d are written as

Isc
−+ = − SrG−+ + G−+Sa − GrS−+ + S−+Ga, s13d

Isc
r = − fSr,Grg; Isc

a = − fSa,Gag. s14d

In order to determine the self-energy we assume, for sim-
plicity, that the impurity scattering potential is isotropic, spin
independent, and short range. Hence, it can be simply written
asVsr d=Vdsr d so that the corresponding Born-scattering am-
plitude does not depend on the electron wave vector. In the
quasiclassic approximation ignoring weak localization ef-
fects the averaged over random impurity positions self-
energy is thus given by22

Si j = s− 1di+juVu2o
k

GijsR,T;k,vd. s15d

One can see that the so-defined self-energy does not depend
on the wave vector. In the thermodynamic equilibrium the

unperturbed retarded and advanced Green functions are eas-
ily found from Eqs.s15d and s1d:

G0
r = G0

a† = sv − H0 + iGd−1, s16d

whereH0=sk2/2m*d+a0M ·k. The elastic scattering rateG is
obtained from Eq.s15d. Substituting Eq.s16d into Eq. s15d
one easily findsG=puVu2NF, whereNF=m* / s2pd is the one-
particle 2D density of states.22 The “21” unperturbed Green
function can be found from the equation20

G0
−+ = − nFsvdsG0

r − G0
ad, s17d

wherenFsvd is the equilibrium Fermi distribution.
The 232 matrix Wigner distribution function is defined

as −iG−+sR ,T;k ,vd. At the same time, the density matrix
which is used for calculations of observable physical
quantities—for example, spin density and spin current—can
be obtained from the Wigner function by integration overv.
Usually, the Boltzmann equation for this function is obtained
by integration overv of the quantum kinetic equation, such
as the “21” component of Eq.s11d. In our case, however,
this method cannot be used because of the term proportional
to ]a /]T, which vanishes after integration. Moreover, it be-
comes a not simple task to write the scattering part in terms
of the density function. A similar problem arises when one
derives the Boltzmann equation for the system driven out of
equilibrium by the electric field represented by a time-
dependent vector potential. This difficulty is resolved by
shifting variables from wave vectors to kinematic momenta
or to velocities.22 In the problem considered here such a shift
is not very helpful, because the velocityk /m* +asR ,TdM is
a matrix in spin space, not a number. We will employ a
different method. Let us represent the Wigner function in the
form

− iG−+ = inFsvdsGr − Gad + F. s18d

At UsR ,Td=0 andasR ,Td=a0 the first term on the right-
hand side turns into the unperturbed Wigner function. Hence,
theF function is not zero only due to deviation of the system
from the original homogeneous thermodynamically equilib-
rium state. Assuming this deviation to be small, we will lin-
earize Eq.s11d, omitting all products ofF with terms con-
taining the time and space derivatives ofa and U. After
substitution of Eq.s18d to the “21” component of Eq.s11d,
taking into account Eq.s13d and the corresponding equations
for Gr andGa with the scattering terms given by Eq.s14d, we
arrive at the following equation forF:

StfFg =
]F

]T
+ v · =RF + iafk ·M ,Fg +

1

2
ahM ,=RFj

+
i

2

]a

]T
hk ·M ,Gr − Gaj

]nfsvd
]v

+ i
]U

]T
sGr

− Gad
]nfsvd

]v
, s19d

where StfFg is given by
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StfFg = SrF − FSa − GrSsFd + SsFdGa, s20d

with SsFd defined asSsFd= uVu2okF.
A good approximation to the functionsGr and Ga is the

local equilibrium functionsGl
r andGl

a defined by

Gl
r = Gl

a† = sv − Hl + iGd−1, s21d

where Hl =sk2/2m*d+asR ,TdM ·k +UsR ,Td−EF. The local
function has the same form as the equilibrium functions16d
with the electron energy and spin splitting parametrically de-
pendent on time and space. It can be seen from Eq.s11d,
using Eqs.s12d, s14d, and s15d, that the corrections to the
local functions are proportional to the Green function gradi-
ents times the small parametera /vF, wherevF is the Fermi
velocity. Such a small parameter can be important for the
spin-Hall effect,11 but not for the case considered here of the
spin current driven by the time-dependent SO coupling con-
stant. One can further simplify Eq.s19d, omitting propor-
tional to this parameter terms in Eq.s19d, such as
ahM ,=RFj, which enters together with the much bigger
v ·=RF. After this simplification the linear operator acting
upon F on the right-hand side of Eq.s19d decouples into
scalar- and spin-dependent parts. Further, since we are inter-
ested in the spin transport driven by the term in Eq.s19d
proportional to the time derivative ofa, one can ignore the
term containing]U /]T, because it contributes additively into
the linear response and gives rise to the spin-Hall effect
which will not be considered in the present work. It should
be noted that the linearization is undertaken only with re-
spect to the time derivatives, while local values ofa andU
entering intoGl

rsad can vary noticeably within macroscopic
time-space scales.

Now let us take a look at the scattering parts20d. One can
easily see that since the SOI is an odd function with respect
to k, the self-energiesSr,a calculated from Eq.s15d with the
local equilibrium functionss21d are contributed only by the
scalar parts of these functions. Therefore, omitting the small
corrections of the order ofD /EF, where EF is the Fermi
energy, from Eqs.s21d, s15d, ands12d we get

SrF − FSa = − 2iGF. s22d

The other terms of Eq.s20d, the ones which containSsFd,
can be also simplified. We notice that the spin-dependent
parts ofGl

rsad contribute effectively with the small parameter
D /EF. Although small, these terms provide a coupling of the
particle density represented by the scalar TrfSsFdg to the
spin-distribution function associated with TrfsFg and vice
versa. They are important in the spin-Hall effect.23,24 In our
case we can ignore them. Taking into account all these sim-
plifications we are ready to derive the Boltzmann equation
for the particle distribution function in the space of particle
coordinates and momenta. This function is obtained by inte-
gration overv of Eq. s18d,20 with Gr,a given by Eq.s21d. In
the leading approximation we thus get

− iE
−`

` dv

2p
G−+ = nFl + aM ·k

]nFl

]E
+ fksR,Td, s23d

where nFl =nFfE+UsR ,Tdg is the local Fermi distribution
function, where the coordinate- and time-dependent potential
energy is added to the electron kinetic energyE. The func-
tion fksR ,Td is defined by

fksR,Td =E
−`

` dv

2p
FsR,T;k,vd. s24d

After integrating Eq.s19d over the frequency we get the
Boltzmann equation in the form

Stffg =
]fk

]T
+ v · =Rfk + iasR,Tdfk ·M , fkg

+ k ·M
]asR,Td

]T

]nFl

]E
. s25d

The scattering term is obtained as

Stffg =
2p

tm* o
k8

dsE8 − Edfk8 −
fk

t
, s26d

wheret=1/2G is the elastic scattering time.

III. SIMPLE EXAMPLES OF SPIN TRANSPORT
UNDER THE TIME-DEPENDENT GATE

In this section, we will employ Eq.s25d to investigate the
electron transport properties of two-dimensional electron
systems in the presence of a time-dependent SOI. Two
simple examples of application of the Boltzmann equation
will be considered: spin transport driven by a homogeneous
infinite gate and the ballistic transport due to a narrow time-
dependent gate.

Before proceeding with these examples, let us define the
spin current and spin density in terms offk. According to
definition of G−+,20 the spin distribution in the space of par-
ticle coordinates and momenta is given by the spin-
dependent part of Eq.s23d. Therefore, the spin density is
obtained by integration of nonscalar terms in Eq.s23d overk.
Taking into account that the second term in Eq.s23d turns to
zero after averaging overk directions, we get the spin den-
sity

PisR,Td =
1

2o
k

Trfsi fksR,Tdg. s27d

The spin current definition is based on the one-particle spin-
flux operator 1

4hsi ,vj, where the velocity operatorv=v
+aM . Hence, using Eq.s23d, the spin-current density can be
written in the form

J isR,Td =
1

4o
k

TrFhv,sijSnFl + aM ·k
]nFl

]E
DG

+
1

4o
k

Trfhv,sijfksR,Tdg. s28d

It is easy to see by a direct calculation that the first sum is
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zero. Therefore, only the nonequilibrium part of the spin cur-
rent associated withfksR ,Td contributes to Eq.s28d. In this
connection, it should be noted that the equilibrium spin cur-
rent was found to be nonzero in a homogeneous 2D gas.25

This is due to quantum effects which are beyond the semi-
classical approach used in the present work.

A. Homogeneous case

As a simple, yet nontrivial application, we consider the
case of a large ac-biased gate such that the time-dependent
region can be treated homogeneously. In this case one can
omit =Rfk in Eq. s25d and look for a solution of Eq.s25d in
the form fk =AskdM ·k. Since fk =−f−k, the first term in Eq.
s26d turns to zero and the solution of Eq.s25d is easily ob-
tained as

fk = M ·k
iVt

1 − iVt
asVd

]nFl

]E
, s29d

whereasVd is the Fourier transform ofasTd at the frequency
V. For simplicity we have assumed that the electron density,
as well as]nFl /]E, does not change in time. On the other
hand, this dependence can be important for obtaining the
rectified dc spin current. This effect will be discussed in the
next section. Substituting Eq.s29d into Eq. s28d we find the
spin-current expression in accordance with Ref. 18:

J j
i sVd =

1

2

rV

V + 2iG
«i j 3asVd, s30d

wherer=2oknFskd is the electron density and the indicesi
and j denote the spin polarization and direction of the current
flow, respectively. With the spin-distribution functions29d
the spin polarization obtained from Eq.s27d is P=0. Hence,
in the homogeneous case no spin polarization is induced.

B. Current generation by a narrow gate

We now consider the case of a narrow ac-biased gate,
which is infinitely long in they direction while the widthw
in thex direction is much smaller than the electron mean free
pathl, so that, except for a small number of particles moving
in the y direction, the motion of electrons under the gate is
ballistic. We are interested in spin current flowing in thex
direction. SinceMx=−sy, it follows from Eq. s25d that this
current is polarized along they axis. Neglecting the scatter-
ing term we obtain, from Eqs.s25d and s28d,

J x
ysqx,Vd =

m*2

4p
E dEF ]asx,Td

]T

]nFl

]E
G

V,qx

3E df

2p

v2 cos2 f

− iV + iqxv cosf + 0+ , s31d

whereqx is the wave number in the Fourier transform of the
current with respect to thex coordinate andf¯gV,qx

denotes
the V ,qx Fourier component of the product in the square
brackets. We assume thatnFl is coordinate and time depen-
dent due to the gate electric potential. AtVw!vF the fre-
quency in the denominator of Eq.s31d can be neglected.

Representingsiqxv cosf+0+d−1 aspdsqxd / svucosfud and re-
turning to the coordinate and time representation we obtain

J x
ysx,Td = −

m*

2p
E dx8

]asx8,Td
]T

kFsx8,Td, s32d

wherekFsx8 ,Td=Î2m*fEF−Usx8 ,Tdg. The above expression
is valid in the near vicinity of the gate, within the length of
the electron mean free path. This ballistic result gives only a
part of the spin current, the one associated with a direct
generation action of the time dependent gate. It does not take
into consideration the backflow of diffusion current due to
the spin polarization accumulated on both sides of the gate.
Such a diffusion current and the accumulated polarization
will be calculated within the drift-diffusion theory in the next
section. It is interesting to note that besides the ac compo-
nent, the spin current also contains the dc component due to
time dependence ofkF in the integrand of Eq.s32d. It can be
easily seen that the dc current is obtained from Eq.s32d if
harmonic oscillations ofasTd and kFsTd are phase shifted
with respect to each other. Such a rectification effect will be
studied in more detail in the next section.

IV. DRIFT-DIFFUSION EQUATION

In this section, we are interested in the time-dependent
spin dynamics in a disordered system, such that the charac-
teristic frequency of the gate time dependence is much
smaller then the elastic scattering rate 1/t, while the charac-
teristic length of the spatial variation offksR ,Td is larger
than the mean free pathl. To this end, we start from Eq.s25d
and representfk in the form

fksR,Td = s ·gksR,Td. s33d

Substituting Eq.s33d into Eq. s25d we obtain

]gk

]T
+ sv · =Rdgk + 2a0ksgk 3 hd + hk

]a

]T

]nFl

]E
=

1

t
sPE − gkd,

s34d

where the unit vector h=sk 3zd /k and PE

=s2p /m*dok8dsE8−Edgk8. With this definition ofPE, from
Eqs.s33d ands27d, the spin polarization can be expressed as

P =
m*

2p
E dEPE. s35d

For simplicity we have assumed small variations ofa and
put a=a0 in the third term of the left-hand side of Eq.s34d.

In order to derive the drift-diffusion equation the function
gk is expressed from Eq.s34d in the form

gk = L̂−1FPE

t
− D0sgk 3 hd − hk

]a

]T

]nFl

]E
G , s36d

whereL̂ is the operator inverse to −iV+v ·=R+1/t. As we
mentioned in the beginning of this section, in the diffusion

approximation one can expandL̂−1 with respect to the small
V andv ·=R compared to 1/t, so that
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L̂−1 < tf1 + iVt − tsv · =Rd + t2sv · =Rd2g. s37d

The next step is to expressg3h on the right-hand side of
Eq. s36d via PE. It can be done by decomposingg into par-
allel and perpendicular toh parts, according to

g = sg ·hdh + g'. s38d

Taking the perpendicular projection of Eq.s34d we find

gk 3 h =
1

t
sL̂2 + D0

2d−1fD0PE' + L̂sPE 3 hdg. s39d

After inserting this expression into Eq.s36d we use the ex-

pansions37d and a similar expansion forsL̂2+D0
2d−1. It will

be further assumed thatD0!1/t and only the terms not
smaller thansD0td2 will be retained on the right-hand side of
Eq. s36d. Since the current source in Eq.s34d is proportional
to ]nFl /]E, for a degenerate electron gas the functionPE has
a peak at the local Fermi energyEF−UsR ,Td. Hence, taking
into account the definitions35d, this function can be repre-
sented asPE=s2p /m*dd(E+UsR ,Td−EF)P. Integrating Eq.
s36d over energies and averaging over the angles ofk we
arrive at the diffusion equation for the spin transport:

]P

]T
= s= ·D = dP − 4Dm*a0fsz 3 = d 3 Pg − GsP − GsP

zz

−
1

2
s= 3 zdrt

]a

]T
, s40d

where D=vFl
2 t /2 is the diffusion constant andGs

=4Dsm*a0d2 is the spin-relaxation rate. It should be noted
that the diffusion constant can be coordinate and time depen-
dent via the local Fermi velocityvFl. Except for the last term
on the right-hand side of Eq.s40d the above spin-diffusion
equation coincides with that derived earlier from the Green
function formalism.26 In this equation the first three terms
represent, respectively, spin diffusion, spin precession due to
the SOI, and the D’yakonov-Perel’27 spin relaxation. The last
term is the spin-current source provided by the time-
dependent SOI. The spin relaxation gives the natural time
scaleTD=GD

−1 for the most of spin-diffusion processes. One
can also define the characteristic length of the spin-density
spatial variations as the spin-diffusion lengthLD=ÎDTD. The
drift-diffusion approach is valid whenTD@t. This condition
is provided by the smallD0 in comparison with 1/t.

For the following calculations we need an expression for
the spin current. It can be found from its initial definition
s28d. Inserting therefk written in the form s33d, the spin
current is found as

J j
i = o

k
v jgk

i sR,Td. s41d

Expressinggk
i according Eq.s36d, from Eqs.s37d–s39d we

obtain

J j
i = − D= jP

i − 2Dm*asdi j Pz − Pjdizd +
1

2
«i j 3rt

]a

]T
.

s42d

This equation shows that the spin current contains three com-
ponents. The first and second terms represent the usual dif-
fusion current and the current associated with spin preces-
sion. These two contributions have been found in earlier
works.26 The third term is the new one. It represents the
spin-current generation due to the time-dependent SOI.

It is interesting to note that in the homogeneous caseP
=0 and the spin current is simply of the formJ j

i

= 1
2«i j 3rts]a /]Td. This result coincides with Eq.s30d by tak-

ing the limit of V→0 in the denominator of Eq.s30d.

A. Finite-size ac-biased gate

We consider an ac-biased gate which is supposed to be
infinite alongy and with a widthw wider then the mean free
path l along x, with a Rashba coupling constantasxd. The
finiteness of the gate in thex direction results in anx depen-
dence ofP. At the same timeP does not depend ony. Re-
taining in Eq.s40d only derivatives with respect tox, one can
easily see that a pair of equations forPx andPz polarization
components is decoupled from the equation forPy and that
the current source term enters only into the latter equation.
Therefore, the solution of the diffusion equation is such that
Px=Pz=0 and the equation for the retained component is

]Py

]T
=

]

]x
D

]

]x
Py − GsP

y +
]

]x
Ssx,Td, s43d

where the time-dependent spin-current source is given by
Ssx,Td=rt]a /]T.

We will apply Eq.s43d to two problems. In the first prob-
lem the width of the gate will be assumed large, so thatw
@LD. The opposite case ofw!LD will be considered in the
second example.

1. wšLD

Let us assume that in the intervalx1,x,x2 the diffusion
constant isDsTd anda=a0+asTd, while outside this interval
D=D0 anda=a0. We will consider relatively slow variations
in time of asTd, such that their frequency is much less than
Gs. Consequently, the time derivative on the left-hand side of
Eq. s43d will be neglected. The spin current induced in the
rangex1,x,x2 will be injected near edges at the pointsx1
andx2, and the injected polarization will diffuse outward, as
well as backward to the modulation gate region, as shown in
Fig. 1. For analysis of this injection process it is enough to
consider the vicinity of either edge. Let it be the right edge.
Then, the solution of Eq.s43d has the form

Py = A expS−
ux − x2u

LD
D , s44d

where LD=sa0m
*d−1. The coefficientA, in its turn, can be

found from the spin-current conservation at the boundaryx2.
On the right of the boundary the current is represented by the

TANG, MAL’SHUKOV, AND CHAO PHYSICAL REVIEW B 71, 195314s2005d

195314-6



diffusion currentAD0/LD. It must be equal to the current on
the left, which is the sum of the diffusion and the source
terms −ADsTd /LD−SsTd. The factorA is thus

A = −
rsTdt

2m*a0fD0 + DsTdg
]a

]T
. s45d

Using the expressionD=vF
2t /2 andr=kF

2 /2p we obtain the
polarization at the right edge:

Py = −
m*rsTd

p"a0frsTd + r0g
]a

]T
. s46d

We restored conventional dimensionality by writing" in the
proper place. An important feature of this expression is that
Py does not depend on the absolute value of the SOI cou-
pling constant, but rather from the relative amplitude of its
variations in time. Hence, the same spin-injection effect is
expected for both QW’s with a large Rashba SOI and QW’s
with a not large SOI, providing that the relative variations of
a in time are the same in both cases. Another interesting
phenomenon, which follows from Eq.s46d, is that the ac-
modulated SOI can result in stationary spin accumulation
near the gate edges. This is due to the time dependence of the
electron density in Eq.s46d. The dc spin density is obtained
by time-averaging this expression. A phase shift between
rsTd andasTd is required to have this average nonzero. Such
a shift can be achieved, for example, by manipulating the
front and back gates, as shown in Fig. 2. Both the back and
front gates are equally efficient to induce electron density
oscillations. At the same time, as shown by Grundler,6 the
front gate close to the 2DEG is necessary to control effi-
ciently a. Therefore, the required phase shift can be obtained
by choosing appropriate phases ofV1 andV2.

2. w™LD

Another interesting regime is the case of a narrow gate
with sizew sin x directiond much shorter than the character-

istic diffusion lengthLD. Outside the gate region the solution
of Eq. s43d has the same form as in the previous example:
namely,

Py = ± A expS−
uxu
LD

D , s47d

where the2 and1 signs refer to thex.0 andx,0 regions,
respectively. Inside the gated region, as seen from Fig. 2 near
x=0, the polarization varies very fast. Therefore, within this
range one can retain in Eq.s43d only terms containing de-
rivatives ofPy andS. This gives

− Dsxd
]Py

]x
− Ssxd = C. s48d

This equation has the form of the spin-current conservation
law. The constantC is, obviously, equal to the current just
outside the gated region, whereSsxd=0, but still x!LD.
Hence, from Eq.s47d one obtainsC=D0A/LD. Further, inte-
grating Eq.s48d we arrive at the expression forPy in the near
vicinity of x=0:

Py = −
A

LD
x −E

0

x

dx8
Ssx8d
Dsx8d

−
A

LD
E

0

x

dx8S D0

Dsx8d
− 1D .

s49d

This expression must coincide with Eq.s47d at w,x!LD:
namely, withA exps−x/LDd.A−Ax/LD. Substituting the lat-
ter instead ofPy into Eq.s49d and settingx→`, one obtains

A = −F1 +
1

LD
E

0

`

dxS D0

Dsxd
− 1DG−1E

0

`

dx
Ssxd
Dsxd

. s50d

One can neglect the integral in the square brackets be-
cause it is small by the parameterw/LD, except for special
cases whenD0/Dsxd becomes very large at some points. Ex-
pressingDsxd via rsxd, as has been done in the previous
problem, we arrive at the simple formula

A = −
m*2

p"3 E dx
]a

]T
. s51d

Since the integral in Eq.s51d is of the order ofwda /dT, the
polarization injected into the case of a narrow gate is smaller
by a parameterw/LD than in the previous case of the wide
gate. That is because of a strong counterflow of the diffusion
current reducing the effect of the current −S pumped by the

FIG. 1. Illustration of the spin-current flow induced by a wide ac
gate:sad spin currentJ x

y as a function ofx, which is uniform under
the gate and exponentially decays outside the gate;sbd spin polar-
ization Py as a function ofx, which is accumulated at the gate
edges.

FIG. 2. Illustration of the setup for spin-current generation. The
front gate is close to 2DEG. This gate controls the spin-orbit cou-
pling constant via periodic oscillations ofV1. f denotes the phase
shift between electric potentials of the front and back gates.
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gate. Also, unlike the previous example, the narrow gate can-
not inject a stationary spin polarization. The rectification ef-
fect is absent in this case because in Eq.s51d there are no
time-dependent parameters beside]a /]T.

Figure 3 illustrates the spin currentfFig. 3sadg and spin
polarizationfFig. 3sbdg induced by the narrow ac gate. The
diffusion current exponentially decays far from the gate re-
gion with spin accumulation shown in Fig. 3sbd. The spin
polarization has opposite signs on two sides of the gate.

B. Spin flow in a channel

We consider a 2D channelsstripd of width d, so that par-
ticles are confined in they direction and free to move in the
x direction. The time-dependent gate atop of this channel
causes time variations of the Rashba SOI. We assumed@ l
and apply the drift-diffusion equation to describe the spin
transport in the channel. Since the gate is supposed to be
infinite in thex direction, the spin polarization does not de-
pend onx and only derivatives with respect toy andT have
to be retained in Eq.s40d.

In this case one can look for a solution of Eq.s46d such
that Py=Pz=0 andPx=Pxsyd. It is easy to check that with
such a choice ofP the spin current, Eq.s42d, in they direc-
tion does not containy andz polarization components. The
homogeneousy-polarized current given by the last term in
Eq. s40d flows only in thex direction. Hence, the only cur-
rent flowing along they axis isx polarized. For this current
the boundary condition is imposed thatsJ y

xdx=±d/2=0. Since
the time-dependenta in the last term of Eq.s42d generates
the spin currentJ y

x=s1/2drt]a /]T, to satisfy the boundary
condition this current must can be compensated by counter-
flow of the spin-diffusion current given by the first term in
Eq. s42d. Hence, the boundary condition is

FD¹yP
x −

1

2
rt

]a

]T
G

x=±d/2
= 0. s52d

In its turn, the equation forPx has the form

]Px

]T
= DsTd

]2Px

]y2 − GsP
xsyd. s53d

Assuming that the frequency ofa variations is small com-
pared to the spin-relaxation rateGs, we obtain a general so-
lution of Eq. s53d in the form

Pxsy,Vd = C1e
ky + C2e

−ky, s54d

wherek=1/LD. The solution satisfying the boundary condi-
tion is easily obtained as

Pxsy,Td =
m*

2"pa

sinhskyd

coshSk
d

2
D

]a

]T
. s55d

For an extended 2D electron system withd→`, it is easy to
see thatPxsy,Td→0 indicating the absence of the bulk spin
density, in agreement with the result of Sec. III A. At the
same time, as expected, the polarization is accumulated near
y= ±d/2, decreasing exponentially when the distance from
the boundary increases.

V. SUMMARY AND DISCUSSION

We have employed the electric gate effect on the Rashba
spin-orbit interaction in narrow-gap semiconductor QW’s
and considered spin transport in a 2DEG with the space-
time-dependent Rashba spin-orbit interaction. The variations
of the SOI in time and space were assumed to be provided by
gates of various shapes. Spin transport was considered in the
framework of the Keldysh formalism which has been applied
to derive the Boltzmann equation for the spin-distribution
function in phase space. This equation was further employed
in the derivation of the drift-diffusion equation for the spin
density. We found that besides the usual terms, both the Bolt-
zmann and drift-diffusion equations contain a spin-current
motive force proportional to the time derivative of the SO
coupling parameter.

We have considered several examples with various gate
geometries. Although these examples do not embrace many
other interesting possibilities, nevertheless, they demonstrate
how spin-current flow and spin-density accumulation can be
electrically controlled by means of gates. It has been shown
that in some geometries the ac bias applied to the gate can
result in dc spin current and stationary spin accumulation.
This is a simplest self-rectification effect. Probably, more
efficient could be a special rectification setup consisting of
several gates in series and combinations of back and forward
gates to control separately the electron density and SO pa-
rameter.
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FIG. 3. Illustration of the spin-current flow induced by a narrow
ac gate:sad spin currentJ x

y as a function ofx, which is exponen-
tially decays outside the gate;sbd spin polarizationPy as a function
of x, which is accumulated around the ac-biased narrow gate. The
polarization has opposite signs on two sides of the gate.
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