PHYSICAL REVIEW B 71, 195314(2005

Generation of spin current and polarization under dynamic gate control of spin-orbit interaction
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Based on the Keldysh formalism, the Boltzmann kinetic equation and the drift-diffusion equation have been
derived for studying spin-polarization flow and spin accumulation under effect of the time-dependent Rashba
spin-orbit interaction in a semiconductor quantum well. The time-dependent Rashba interaction is provided by
time-dependent electric gates of appropriate shapes. Several examples of spin manipulation by gates have been
considered. Mechanisms and conditions for obtaining the stationary spin density and the induced rectified dc
spin current are studied.
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[. INTRODUCTION dependent gauge field. Therefore, its time derivative pro-
duces a motive force on electrons, similar to the electromo-
Spin transport in semiconductor heterostructures has reive force from the time-dependent electric vector potential.
cently attracted much attention owing to a perspective of itsSThe important difference is, however, that the force created
practical application for quantum computing and by the SOI acts in opposite directions for oppositely polar-
communications=2 In the way of fundamental studies and ized spins. Such a method of spin-current generation is con-
applications of the spin transport the key problem is how tovenient for implementations in conventional semiconductor
generate, detect, and manipulate the electron spin polariz&eterostructures. By a proper choice of gate shape it allows
tion. Many ideas have been proposed to achieve control adne to create and rectify the ac spin current or accumulate
the spin using magnetic materials, external magnetic fieldghe spin polarization at a given location. However, the theory
and optical excitatiorifor a review see Ref.)3At the same in Ref. 18 is restricted to the spatially homogeneous case.
time, a challenging goal remains to employ only the electricTherefore, within this theory one cannot properly consider
control integrated by means of gates into a high-mobilityboundary effects, as well as spin-current generation due to a
semiconductor heterostructure. time-dependent gate of small area. Also, it is impossible to
A promising opportunity in this way is opened due to thestudy any effects of spin-current generation accompanied by
strong Rashba spin-orbit interactidi®Ol) in narrow-gap spin accumulation.
two-dimensional(2D) electron system$An important fea- In the present work we develop a theory which is based
ture of this interaction is its tunability which can be achievedon the Boltzmann transport equations. This approach is quite
by varying the gate voltage® The field-effect transistor was universal and it allows us to study the spin transport under an
the first proposal utilizing this phenomenbiThe gate con- arbitrary space-time-dependent SO interaction, providing
trol of the spin current employing the Aronov-Casher effect that a characteristic scale of this dependence is within the
was considered in Ref. 9. The electric-dipole spin resonanceange of applicability of the semiclassical approximation.
controlled by the time-dependent gate was studied in Ref. 10This means that the spatial variations of the SO interaction
The SO interaction effect alone or in combination with theare assumed to have the scale larger than the electron
external electric field allows one to approach an importanfFermi wavelength and the scale of its time variatiaXis
goal to create spin currents and spin polarization by entirely>#/Eg, whereEg is the Fermi energy. For even larger time-
electrical means, not involving any of the magnetic materialspace scales, such as>| and At> r, wherel and 7 are,
or optical excitation. One of the examples is the recentlyrespectively, the mean free path and the mean free scattering
predicted! (see also Ref. )2and observeld'*spin-Hall ef-  time, we use the Boltzmann equation to derive the drift-
fect in 2D and 3D electron and hole gases, where the spidiffusion equation. Within this theory we consider the fol-
current is driven by the electric field. A closely related phe-lowing problems.
nomenon is the spin polarization of 2D electron 2SEG) (i) Spin-current generation by a finite-size time-dependent
in response to the parallel electric fiéRlAnother method gate. In this case the spin polarization is pumped by the gate
utilizes the time-dependent gate to modulate the shape of iato 2D regions adjacent to it. This polarization further dif-
quantum dd¥® or the strength of the SO coupling constant in fuses away from the gate, as well as in the backward direc-
1DY"18and 2D system¥ In the latter case an efficient spin- tion.
current generation can be attained in the presence of high- (ii) Spin-current generation in a gas confined within an
frequency(hundreds of MHz or highgrgate-voltage varia- infinite 2D strip. In such a geometry the generated spin cur-
tions. The physics of this phenomenon is simple. The Rashbeent with the polarization perpendicular to boundaries flows
spin-orbit interaction resembles an interaction with a spin{freely along the strip. At the same time, spins polarized par-

1098-0121/2005/7119)/1953149)/$23.00 195314-1 ©2005 The American Physical Society



TANG, MAL'SHUKOV, AND CHAO PHYSICAL REVIEW B 71, 195314(2009

allel to the boundaries are accumulated near them, opposite R G.5(1,2 G,4(1,2
spins near opposite banks. Gap(1,2) = G (12 ™M1 |’
(iii ) Rectification of the ac spin current. It will be shown o129 Gopl1,2)
that the spin polarization generated by a finite-size ac gate iwhere 1 and 2 denote two points,t; andr,,t,, in the time-
some cases contains the dc component due to periodic varigpace, andy, 8 are spinor indices. We will assume that be-
tions of the electron density under the gate. The dc composides the time-dependent forces in the Hamiltor(idn the
nent appears as a result of the interplay of two periodic proelectrons are also subject to scattering from randomly dis-
cesses: oscillations of the SO coupling constant andributed static impurities. This scattering can be taken into

3

oscillations of the 2D electron density. account by introducing the self-energy

This paper is organized as follows. In Sec. Il, the Boltz- ey
mann equation is derived for calculation of the spin transport S | Eaﬁ 4)
in the presence of the time-dependent SO interaction. In Sec. ap 2;; 2;;

[ll, we apply the Boltzmann equation to some of the spin- _ . o
transport problems. The derivation of the drift-diffusion 1N€ corresponding matrix Dyson equation is of the form

equation and its applications are presented in Sec. IV. The R . ~ .
results of this work are summarized in Sec. V. Gup(1,2=G0x(1,2) +f d4d3[G0,(1,93,5(4,3)G54(3,2)]
Il. BOLTZMANN TRANSPORT THEORY 5)

. . : . . r th nj form
We consider spin transport in a noninteracting 2DEG con-0 the conjugate fo

fined within a narrow-gap semiconductor quantum well . ~0 S A 0

(QW). The 2DEG is applied atop by a gate under time- gaﬁ(1,2)=gaﬁ(1,2)+fd3d4[gay(1,3)275(3,4)%3(4,2)],
dependent bias. The inversion asymmetry of the quantum-

well-confining potential is controllable by an external gate, (6)

and hence electrons experience a tunable Rashba-type Spere the functions in the integrand are matrices both in real
i_nteractionff”6 The system is therefore described by the effec-space and in spin space being combined by the rule of matrix
tive mass Hamiltonian multiplication. Acting on the Dyson equation from the left
p2 (or from the right on its conjugateéby the operator

—+M - %[a(r,t)p +pa(r,t)]+U(r,t), (1)

H(Y) = 2m

(G = 48,5 Hoglty), ™
where m" represents the effective masgs= (py, py) is the i
electron momentum in the 2DEG plane, am@ ,t) denotes  where the suffix =1 or 2 indicates that the differentiation is
the time-dependent Rashba coupling constaft.t) con-  with respect to the variablgsandr ;. After some algebra, we
tains both a static part, and a dynamic par;(r ,t) due to  obtain the equaticii
the time-dependent gate. In addition to time dependemgce,
can also vary in space depending on the gate configuratio(ﬁsc)aﬁz —i(
and applied bias. We denoM =zX o wherez is the unit
vector along the growth direction anrgi={oy, o, 0} is the -
vector of the Pauli matrices. Furthdd(r,t) inydicates the *lU@) - UQ)]Ges(1.2)
external potential energy of an electron in the electric field —i[a(2)V,- (@ (1,2M )
produced by the gate. The static part of the Rashba coupling “ G
constant lifts the spin degeneracy, resulting in a momentum-
dependent spin splitting of the conduction band: namely,

d d \~ 1 ~
El + %)gaﬁ(laz) + En(Az —A)G.5(1,2

+ oDV, (M, G,4(1,2)]- 'E[vza@) (G,

2 A
k) = 2 agk @ +V10(D) - (M 1,0,41,2)], ®

m which is equivalent to the set of integro-differential equa-
For the 2DEG density of interest the Rashba spin-splittingions for the component Green functions. Here the scattering
energyAp=2apk will be assumed to be small compared to integral is defined ??
the Fermi energyAo<Eg. In the following, we seti=1 for
convenience. 7 - S G - C S -

Let us consider the time-modulated nonequilibrium elec- Tsdas fd3[72“7(1’3)gy’3(3’2) Grl1:325(3,27],

tron system in the temperature regime Eg, assuming the (9)
semiclassical conditions to be satisfied. Hence, the time in-
tervals At and distances\r over which all quantities vary WhereT is the matrix, such that**=-7"=1 and7""=7
significantly satisfy the inequalitie§-At>1 andpgAr>1. =0.
These conditions are necessary for derivation of the kinetic In the semiclassical regime, it is convenient to transform
equation. We start this derivation by introducing the matrixthe variables to the Wigner coordinates:r—r, R:%(r1
of the nonequilibrium Green’s function in Keldysh spde: +r,); t=t;—t,, T:%(tl+t2). The difference variables andt

+
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vary on a microscopic scale, while the center variaRemnd  unperturbed retarded and advanced Green functions are eas-
T are macroscopic variables. In the quasiclassic approximaly found from Eqgs.(15) and(1):

tion the Green functions and self-energies vary slowly with

respect to the center variables. Accordingly, only linear gra- Go= GST =(w-Hy+iD)™?, (16)

dient expansions will be taken into account in E8).%* It is . ) ) )
appropriate to define the space-time Fourier transform to th&hereHo=(k?/2m’) + agM -k. The elastic scattering raieis

fast variables, obtained from Eq(15). Substituting Eq(16) into Eq. (15)
one easily findd" =7|V|?Ng, whereNz=m'"/(27) is the one-
y do . ; ; «_
i ) = do _j; ) particle 2D density of stat€g.The “—+” unperturbed Green
CapR.Tir.0 % J ZWG“ﬁ(R’T’k’w) function can be found from the equatfdn
xexdi(k -1 - wt)], (10) Gy' = - ne(w)(Gh - GY), (17)
where the indices, | take the values+" or “ —." Denoting

whereng(w) is the equilibrium Fermi distribution.

The 2X 2 matrix Wigner distribution function is defined
as 4G*(R,T;k,w). At the same time, the density matrix
which is used for calculations of observable physical

asGI(R,T;k,w) a matrix with eIement@EB(R,T; k,w) and
making the gradient expansion of E®) one can write the
quantum kinetic equation in the form

i oGl . S . quantities—for example, spin density and spin current—can
i1d=——+Vv VG +idfk -M,G"] + -a{M,VG'} be obtained from the Wigner function by integration ouer
ar 2 . ) S .
. Usually, the Boltzmann equation for this function is obtained
1 o 1da G by integration ovew of the quantum kinetic equation, such
-z Ak - N 225k —=— '
ZVR“ k- M.V, G+ Z[ﬂ'{k M, Jo } as the “=+” component of Eq(11). In our case, however,
i this method cannot be used because of the term proportional
_ . ij M 9G to da/ JT, which vanishes after integration. Moreover, it be-
VuU-V.G'+ , (11 X ) ' k
dT dw comes a not simple task to write the scattering part in terms

of the density function. A similar problem arises when one
derives the Boltzmann equation for the system driven out of
equilibrium by the electric field represented by a time-
%iependent vector potential. This difficulty is resolved by
shifting variables from wave vectors to kinematic momenta
or to velocities?? In the problem considered here such a shift
is not very helpful, because the velockym' +a(R,T)M is

wherev=k/m" and{A, B} denotes the anticommutator. The
scattering part of this equation is obtained from E&j.in the
leading order of the gradient expansion with respect to th
“slow” R,T variables?® In calculations below we will em-
ploy the three Green functions. There @€', retardedG',
and advanced? functions.G" and G? are defined by the

equations L : _
a matrix in spin space, not a number. We will employ a
=G -G =G -G, different method. Let us represent the Wigner function in the
form
G*=G"-G"=G " -G". 12
(12 -G =ing(w)(G' - G? +F. (18

The same equations are valid also for the retarded and ad-
vanced self-energies with the only difference tRar and At U(R,T)=0 anda(R,T)=aq the first term on the right-
37" enter with the signs opposite to signs@f~ andG ™ in hand side turns into the unperturbed Wigner function. Hence,
Egs.(12). In terms of these functions the corresponding scatthe F function is not zero only due to deviation of the system
tering parts of Eq(11) are written as from the original homogeneous thermodynamically equilib-
. _ _ _ _ rium state. Assuming this deviation to be small, we will lin-
e =-2GT+GTEA-GET+ X7, (13 earize Eq.(11), omitting all products of~ with terms con-
taining the time and space derivatives @fand U. After
le=-[2".G]; 15=-[2%G7. (14 substitution of Eq(18) to the “—+" component of Eq(11),
taking into account Eq.13) and the corresponding equations
for G andG? with the scattering terms given by Ed4), we
ﬂrrive at the following equation fdF:

In order to determine the self-energy we assume, for sim
plicity, that the impurity scattering potential is isotropic, spin
independent, and short range. Hence, it can be simply writte
asV(r)=V4(r) so that the corresponding Born-scattering am-

. JF . 1
plitude does not depend on the electron wave vector. In the  S{F]=—+v-VgF +iafk -M,F]+ =a{M,VF}
quasiclassic approximation ignoring weak localization ef- ar 2

fects the averaged over random impurity positions self- i da ng(w) U
[ i +-—{k-M,G'-GC}——+i—(G
energy is thus given By 2(9.'.{ } P aT(
3= (=D)MVEY GI(R, Tk, ). (15) an
< : Ga)—af(“’) , (19
(0]

One can see that the so-defined self-energy does not depend
on the wave vector. In the thermodynamic equilibrium thewhere StF] is given by
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— N'r a r a ®©
SIFI=2F-FX7-GE(P) + (PG, (20 —if d—wG“‘:nm +aM -k% +fi (R, T), (23
_ 27T JE
with 3(F) defined ass.(F)=|V|?ZF.
A good approximation to the functior@" and G? is the
local equilibrium functionsG| and G} defined by

where ng=ng[E+U(R,T)] is the local Fermi distribution
function, where the coordinate- and time-dependent potential
energy is added to the electron kinetic enekyyThe func-
tion f (R, T) is defined by

G =G = (w-H,+i)}, (21) - g

f(R,T) :f z—wF(R,T;k,w). (24)
where H,=(k?/2m")+a(R,T)M -k+U(R,T)-Eg. The local i
function has the same form as the equilibrium functi®6)  After integrating Eq.(19) over the frequency we get the
with the electron energy and spin splitting parametrically de-Boltzmann equation in the form

pendent on time and space. It can be seen from(Eg,

using Egs.(12), (14), and (15), that the corrections to the S{f]= Ity +V - Vef +iaR DK -M,f,]

local functions are proportional to the Green function gradi- ar ’ ’

ents times the small parametefvg, wherevg is the Fermi 9a(R,T) n

velocity. Such a small parameter can be important for the +k - Ma—’_F'_ (25)
spin-Hall effect!! but not for the case considered here of the ar ok

spin current driven by the time-dependent SO coupling conqpe scattering term is obtained as
stant. One can further simplify Eq19), omitting propor-
tional to this parameter terms in Ed19), such as _ 2w , K
o{M ,VgF}, which enters together with the much bigger Stf]= 7.mz aE _E)fk’_:’ (26)
v-ViF. After this simplification the linear operator acting K
upon F on the right-hand side of Eq19) decouples into wherer=1/2I" is the elastic scattering time.
scalar- and spin-dependent parts. Further, since we are inter-
ested in the spin transport driven by the term in Et) IIl. SIMPLE EXAMPLES OF SPIN TRANSPORT
proportional to the time derivative af, one can ignore the UNDER THE TIME-DEPENDENT GATE
term containing/U/JT, because it contributes additively into | this section, we will employ Eq25) to investigate the
the linear response and gives rise to the spin-Hall effecgiectron transport properties of two-dimensional electron
which will not be considered in the present work. It 3h0U|dsystems in the presence of a time-dependent SOI. Two
be noted thay the Iin_ear!zation i§ undertaken only with résimple examples of application of the Boltzmann equation
spect to the time derivatives, while local valuescofndU i be considered: spin transport driven by a homogeneous
entering intoG{® can vary noticeably within macroscopic infinite gate and the ballistic transport due to a narrow time-
time-space scales. dependent gate.

Now let us take a look at the scattering pe®). One can Before proceeding with these examples, let us define the
easily see that since the SOl is an odd function with reSpe(‘épin current and Spin density in terms 'b(f According to
to k, the self-energie&" calculated from Eq(15) with the  definition of G™*,2° the spin distribution in the space of par-
local equilibrium functions(21) are contributed onIy by the ticle coordinates and momenta is given by the Spin-
scalar parts of these functions. Therefore, omitting the smallependent part of Eq(23). Therefore, the spin density is
corrections of the order oA/Eg, whereEg is the Fermi  obtained by integration of nonscalar terms in E2p) overk.

energy, from Eqgs(21), (15), and(12) we get Taking into account that the second term in E2P) turns to
zero after averaging ovee directions, we get the spin den-
S'F-F32=-2i[F. 22 SV
. 1 .
. . P(R,T) =52 THof (R T]. (27
The other terms of Eq(20), the ones which contail(F), 2%

can be also simplified. We notice that the spin-depende
parts ofG['® contribute effectively with the small parameter
A/Eg. Although small, these terms provide a coupling of the
particle density represented by the scalaf>TF)] to the
spin-distribution function associated with[&F] and vice
versa. They are important in the spin-Hall effé&t* In our : 1 4 Nk
case we can ignore them. Taking into account all these sim- J'(RT)= ZE Tri{v,0'}| N + aM 'kE
plifications we are ready to derive the Boltzmann equation k

n'l'he spin current definition is based on the one-particle spin-
flux operator ;ll{oi , v}, where the velocity operatop=v
+aM. Hence, using E¢23), the spin-current density can be
written in the form

for the particle distribution function in the space of particle 1 '

coordinates and momenta. This function is obtained by inte- * ZE T, }(R.T]. (28)
gration overw of Eq. (18),° with G"2 given by Eq.(21). In :

the leading approximation we thus get It is easy to see by a direct calculation that the first sum is
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zero. Therefore, only the nonequilibrium part of the spin cur-Representingig,w cos¢+0%) ™! as78(qy)/ (v|cos¢|) and re-
rent associated witfi, (R, T) contributes to Eq(28). In this  turning to the coordinate and time representation we obtain
connection, it should be noted that the equilibrium spin cur- . o7
rent was found to be nonzero in a homogeneous 2DX%as. y __m f , da(X', '

o . i ) =—— | dX——ke(X', T), 32
This is due to quantum effects which are beyond the semi- THxT) 27 X ar FOCT) (32
classical approach used in the present work.

wherekg(x',T)=2m[Ez-U(x', T)]. The above expression
is valid in the near vicinity of the gate, within the length of
the electron mean free path. This ballistic result gives only a
As a simple, yet nontrivial application, we consider thepart of the spin current, the one associated with a direct
case of a large ac-biased gate such that the time-dependeygneration action of the time dependent gate. It does not take
region can be treated homogeneously. In this case one camto consideration the backflow of diffusion current due to
omit Vif, in Eq. (25 and look for a solution of Eq25) in  the spin polarization accumulated on both sides of the gate.
the form f, =A(k)M -k. Sincef,=-f_, the first term in Eq. Such a diffusion current and the accumulated polarization
(26) turns to zero and the solution of E@5) is easily ob-  will be calculated within the drift-diffusion theory in the next
tained as section. It is interesting to note that besides the ac compo-
nent, the spin current also contains the dc component due to
, (29) time dependence d¢: in the integrand of Eq(32). It can be
JE easily seen that the dc current is obtained from &) if

. . harmonic oscillations ofx(T) and ke(T) are phase shifted
wherea({) is the Fourier transform a(T) at the frequency with respect to each other. Such a rectification effect will be

Q). For simplicity we have assumed that the electron denSityétudied i1 more detail in the next section

as well asdng/JE, does not change in time. On the other '
hand, this dependence can be important for obtaining the

rectified dc spin current. This effect will be discussed in the IV. DRIFT-DIFFUSION EQUATION
next section. Substituting EG29) into Eq. (28) we find the

A. Homogeneous case

iQT (9n|:|

fo=M -k Q
k 1-in, Y

; S . i In this section, we are interested in the time-dependent
spin-current expression in accordance with Ref. 18: spin dynamics in a disordered system, such that the charac-
i 1 pQ g teristic frequency of the gate time dependence is much
J(Q) = EMSJ a(Q), (30)  smaller then the elastic scattering raterwhile the charac-
teristic length of the spatial variation df(R,T) is larger
where p=23ng(K) is the electron density and the indices than the mean free pathTo this end, we start from E25)
andj denote the spin polarization and direction of the currentand represent, in the form
flow, respectively. With the spin-distribution functiai29)
the spin polarization obtained from E@7) is P=0. Hence, iR T) =0 g(RT). (33
in the homogeneous case no spin polarization is induced. Substituting Eq(33) into Eq. (25) we obtain

B. Current generation by a narrow gate I + dadng 1
— +(v-V + 2a0k(ge X h) +hk——=—-(Pg—gy\),
( ROk + 2aoK(gx ) aT (Pe =0k

We now consider the case of a narrow ac-biased gate,‘ﬂ- E T
which is infinitely long in they direction while the widthw (39
in thex direction is much smaller than the electron mean free )
pathl, so that, except for a small number of particles moving¥here  the unit  vector h=(kXz)/k and Peg
in the y direction, the motion of electrons under the gate is= (27/M )2/ 8(E"~E)g,:. With this definition ofPg, from
ballistic. We are interested in spin current flowing in the Eds.(33) and(27), the spin polarization can be expressed as
direction. SinceM,=-ay, it follows from Eq. (25) that this o
current is polarized along theaxis. Neglecting the scatter- p=— f dEPE. (35)
ing term we obtain, from Eq<$25) and(28), 2m

m da(x,T) ngy For simplicity we have assumed small variationscofind
Tx(0,Q) = o f dE T & put a=ay in the third term of the left-hand side of E(R4).
& R In order to derive the drift-diffusion equation the function
J de v2cod ¢ 31 Ok is expressed from Ed34) in the form
27 -iQ +iq,v cos¢ + 0"’ R
| i cosd o :A-{E - Aolgk X h) - hka—“%], (3
whereq, is the wave number in the Fourier transform of the T dT JE

current with respect to the coordinate and- - -]Q,qx denotes . _ _

the Q,q, Fourier component of the product in the squarewhereA is the operator inverse toiQ+v-Vg+1/7. As we
brackets. We assume thag, is coordinate and time depen- Mentioned in the beginning of this section, in the diffusion
dent due to the gate electric potential. @ <uvg the fre-  approximation one can expard?® with respect to the small
quency in the denominator of E§31) can be neglected. () andv-Vg compared to 1#, so that
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A= Ad1+iQ7r- v -Vg)+A(vV-Vg)?.  (37) j}:_DVjPi_ZDm*a(éﬁpz_Pjgz)+%8ij3p7.j__cr“_
The next .step is to expregpx h on the right—har)d side of (42)
Eq. (36) via P¢. It can be done by decomposimginto par-
allel and perpendicular tb parts, according to This equation shows that the spin current contains three com-
ponents. The first and second terms represent the usual dif-
g=(g-hh+g,. (39) fusion current and the current associated with spin preces-

sion. These two contributions have been found in earlier
works?26 The third term is the new one. It represents the
spin-current generation due to the time-dependent SOI.
1. A It is interesting to note that in the homogeneous dase
g X h:_(A2+A(2))_1[AOPEJ_+A(PEX h)]. (39 =0 ‘_and the spin current is simply of the forr[j7}
T =%8”3p7'(&a/&T). This result coincides with Eq30) by tak-
ing the limit of Q2 — 0 in the denominator of Eq30).

Taking the perpendicular projection of E@4) we find

After inserting this expression into E¢36) we use the ex-
pansion(37) and a similar expansion fdvA\2+A§)‘1. It will
be further assumed thaty<1/7 and only the terms not
smaller thar(A,7)? will be retained on the right-hand side of ~ We consider an ac-biased gate which is supposed to be
Eqg. (36). Since the current source in E@4) is proportional  infinite alongy and with a widthw wider then the mean free

to dng / JE, for a degenerate electron gas the funcfarhas  pathl alongx, with a Rashba coupling constaatx). The

a peak at the local Fermi ener@¢—U(R,T). Hence, taking finiteness of the gate in thedirection results in ax depen-

into account the definitiort35), this function can be repre- dence ofP. At the same timeP does not depend on Re-
sented aPe=(27/m’)SE+U(R,T)-Eg)P. Integrating Eq. taining in Eq.(40) only derivatives with respect to, one can

(36) over energies and averaging over the anglek afe  easily see that a pair of equations f&f and P* polarization

A. Finite-size ac-biased gate

arrive at the diffusion equation for the spin transport: components is decoupled from the equation P¥rand that
the current source term enters only into the latter equation.
P . Therefore, the solution of the diffusion equation is such that
T (V-DV)P-4Dm ag[(zX V) X P]-TP-T'P7Z P*=P?=0 and the equation for the retained component is
Py 9 _a d
1 da — = D—PY-T.PY+ —

where the time-dependent spin-current source is given by
where D=v%7/2 is the diffusion constant andl'y  S(x,T)=prdaldT.
=4D(m" ap)? is the spin-relaxation rate. It should be noted  We will apply Eq.(43) to two problems. In the first prob-
that the diffusion constant can be coordinate and time deperiem the width of the gate will be assumed large, so that
dent via the local Fermi velocityg. Except for the last term > L. The opposite case af<Lp will be considered in the
on the right-hand side of Eq40) the above spin-diffusion second example.
equation coincides with that derived earlier from the Green
function formalisn?® In this equation the first three terms 1. w>Lp
represent, respectively, spin diffusion, spin precession due to . . o
the SO, and the D’yakonov-Per&l'spin relaxation. The last L€t US assume that in the intervgl<x<x, the diffusion
term is the spin-current source provided by the time-ConstantisD(T) anda=ag+a(T), while outside this interval
dependent SOI. The spin relaxation gives the natural timQ:.DO anda=ap. We will consllder relatlvely slow variations
scaleTp=Tz" for the most of spin-diffusion processes. Onein time of «(T), such that their frequency is much less than

can also define the characteristic length of the spin-density/s Consequently, the time derivative on the left-hand side of

spatial variations as the spin-diffusion lengig=\DTp. The ~ EQ. (43) will be neglected. The spin current induced in the
drift-diffusion approach is valid whefi, > 7. This condition ~ r@ngeX; <x<X, will be injected near edges at the points
is provided by the small, in comparison with 1#. andx,, and the injected polarization will diffuse outward, as

For the following calculations we need an expression forVell as backward to the modulation gate region, as shown in
the spin current. It can be found from its initial definition Fig- 1. For analysis of this injection process it is enough to

(29). Inserting theref, written in the form(33), the spin  consider the vicinity of either edge. Let it be the right edge.
current is found as Then, the solution of Eq(43) has the form

, . Y _ _ X=x|
Ji=2vg(R,T). (41) PY=Aex L) (44)
k

_ where Lp=(agm’)™. The coefficientA, in its turn, can be
Expressingg, according Eq.(36), from Eqgs.(37)—«39) we  found from the spin-current conservation at the boundary
obtain On the right of the boundary the current is represented by the
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@) e (D

2DEG ¥

0 u
(b) FIG. 2. lllustration of the setup for spin-current generation. The
front gate is close to 2DEG. This gate controls the spin-orbit cou-
pling constant via periodic oscillations df. ¢ denotes the phase

/\ shift between electric potentials of the front and back gates.
— X

v
=

®-

PY

istic diffusion lengthLp. Outside the gate region the solution
of Eqg. (43) has the same form as in the previous example:
FIG. 1. lllustration of the spin-current flow induced by a wide ac namely,
gate:(a) spin current7} as a function ok, which is uniform under

the gate and exponentially decays outside the dajespin polar- pY = +Aexp<— M) (47)
ization PY as a function ofx, which is accumulated at the gate B o/’
edges.

where the— and + signs refer to th&>0 andx< 0 regions,
respectively. Inside the gated region, as seen from Fig. 2 near
x=0, the polarization varies very fast. Therefore, within this
range one can retain in E¢43) only terms containing de-
rivatives of PY andS. This gives

diffusion currentAD,/Lp. It must be equal to the current on
the left, which is the sum of the diffusion and the source
terms -AD(T)/Lp—S(T). The factorA is thus

_ p(MT Ja oPY
= m g Do+ D()] 4T (45) - D(X)E -9x) =C. (48)

Using the expressioB=vgr/2 andp=kz/2m we obtain the  This equation has the form of the spin-current conservation
polarization at the right edge: law. The constan€ is, obviously, equal to the current just

i p(T) Ja outside the gated region, whe&x)=0, but still x<Lp.
Pze—eoroe—————. (46) Hence, from Eq(47) one obtainsC=DyA/Lp. Further, inte-
mhiagl p(T) + pol IT grating Eq.(48) we arrive at the expression f&¥ in the near
We restored conventional dimensionality by writifign the  Vicinity of x=0:
proper place. An important feature of this expression is that A X gx) A (X Do
PY does not depend on the absolute value of the SOI cou- Py:——x—f X ———=— ’(— - )
Lo Jo D) LpJo D(X")

pling constant, but rather from the relative amplitude of its
variations in time. Hence, the same spin-injection effect is (49)
expected for both QW's with a large Rashba SOI and QW'’s_ . ) o ]

with a not large SOI, providing that the relative variations of TiS €xpression must coincide with Eet7) at w<x<Lp:
« in time are the same in both cases. Another interestin?amelyv withA exp(-x/Lp) =A-Ax/Lp. Substituting the lat-
phenomenon, which follows from Eq46), is that the ac- ter instead oP” into Eq.(49) and settingc— %, one obtains
modulated SOI can result in stationary spin accumulation [ 1 (* Do e gy

near the gate edges. This is due to the time dependence ofthe A=-|1+ —f dx(— 1) f dx——-. (50)
electron density in Eq46). The dc spin density is obtained LoJo DX o DX

by time-averaging this expression. A phase shift between e can neglect the integral in the square brackets be-
p(T) and«(T) is required to have this average nonzero. Suchyy se it is small by the parametsrLp, except for special
a shift can be achieved, for example, by manipulating thg5ses wheid,/D(x) becomes very large at some points. Ex-

front and back gates, as sho_wn in F_ig. 2. Both the back anBressingD(x) via p(x), as has been done in the previous
front gates are equally efficient to induce electron dens'typroblem we arrive at the simple formula

oscillations. At the same time, as shown by Grun8ldre k

front gate close to the 2DEG is necessary to control effi- A__l”ﬂ_2 f dx&—a (51)

ciently . Therefore, the required phase shift can be obtained T k3 JT’

by choosing appropriate phases\gf and V,. ) ) ) )

Since the integral in Eq51) is of the order ofwda/dT, the

polarization injected into the case of a narrow gate is smaller

by a parametew/Lp than in the previous case of the wide
Another interesting regime is the case of a narrow gateate. That is because of a strong counterflow of the diffusion

with sizew (in x direction much shorter than the character- current reducing the effect of the currers pumped by the

2. w<lp
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(a IP* FP*
—=D(T)—5 - T'PXy). 53
A P (T) a7 L V) (53
Assuming that the frequency aefvariations is small com-
pared to the spin-relaxation ralg, we obtain a general so-

0 Y gl lution of Eq. (53) in the form
PX(y,Q) =Ce¥+Ce, (54)

() wherexk=1/Lp. The solution satisfying the boundary condi-
tion is easily obtained as

. . m  sinh(ky) da
/\ Py, D)= 2hma }( d) aTr’ (55)
0 \/ cos

Y

“2

For an extended 2D electron system wdth- oo, it is easy to
FIG. 3. lllustration of the spin-current flow induced by a narrow S€€ thatP*(y,T) — 0 indicating the absence of the bulk spin

ac gate:(a) spin current7Y as a function ok, which is exponen- density_, in agreement with the re;ult_ of .Sec. I A. At the
tially decays outside the gatéh) spin polarizatiorP as a function ~same time, as expected, the polarization is accumulated near

of x, which is accumulated around the ac-biased narrow gate. Thg=+d/2, decreasing exponentially when the distance from
polarization has opposite signs on two sides of the gate. the boundary increases.

gate. Also, unlike the previous example, the narrow gate can-
not inject a stationary spin polarization. The rectification ef-
fect is absent in this case because in E{) there are no We have employed the electric gate effect on the Rashba
time-dependent parameters besidg JT. spin-orbit interaction in narrow-gap semiconductor QW'’s
Figure 3 illustrates the spin curreffig. 3(@] and spin  and considered spin transport in a 2DEG with the space-
polarization[Fig. 3(b)] induced by the narrow ac gate. The time-dependent Rashba spin-orbit interaction. The variations
diffusion current exponentially decays far from the gate ref the SOI in time and space were assumed to be provided by
gion with spin accumulation shown in Fig(l8. The spin  gates of various shapes. Spin transport was considered in the
polarization has opposite signs on two sides of the gate.  framework of the Keldysh formalism which has been applied
to derive the Boltzmann equation for the spin-distribution
) . i function in phase space. This equation was further employed
We consider a 2D channétrip) of width d, so that par- iy the derivation of the drift-diffusion equation for the spin
ticles are confined in thg direction and free to move in the gensity. We found that besides the usual terms, both the Bolt-

x direction. The time-dependent gate atop of this channeymann and drift-diffusion equations contain a spin-current
causes time variations of the Rashba SOI. We asslimk  motive force proportional to the time derivative of the SO

and apply the drift-diffusion equation to describe the spincoupling parameter.
transport in the channel. Since the gate is supposed to be we have considered several examples with various gate
infinite in thex direCtion, the Spin pOIarization does not de- geometries_ A|th0ugh these examp|es do not embrace many
pend onx and only derivatives with respect foandT have  other interesting possibilities, nevertheless, they demonstrate
to be retained in Eq40). how spin-current flow and spin-density accumulation can be
In this case one can look for a solution of H46) such  electrically controlled by means of gates. It has been shown
that PY=P?=0 andP*=P*(y). It is easy to check that with that in some geometries the ac bias applied to the gate can
such a choice oP the spin current, Eq42), in they direc-  result in dc spin current and stationary spin accumulation.
tion does not contaily and z polarization components. The Thijs is a simplest self-rectification effect. Probably, more
homogeneouy-polarized current given by the last term in efficient could be a special rectification setup consisting of
Eq. (40) flows only in thex direction. Hence, the only cur- several gates in series and combinations of back and forward

rent flowing along they axis isx polarized. For this current gates to control separately the electron density and SO pa-
the boundary condition is imposed tr(ar§)xzid,2:0. Since  rameter.

the time-dependent in the last term of Eq(42) generates
the spin current7§:(1/2)p7-aa/aT, to satisfy the boundary
condition this current must can be compensated by counter-
flow of the spin-diffusion current given by the first term in Thjs work was partly funded by the Taiwan National Sci-

V. SUMMARY AND DISCUSSION

B. Spin flow in a channel
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