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Control of field-induced localization in superlattices: Coherence and relaxation
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We consider al-dimensional conductdia semiconductor/optical superlattice, quantum/molecular) wiith
arbitrary electron dispersion within the independent-electron one-band approach. Its nonperturbative nonsta-
tionary response to arbitrary time-periodic electric fields is stuteih the quantum coherent “dynami¢dr
short-time regime andb) in the “kinetic” (or long-time regime under the influence of weak scattering. We
provide a classification and analysis of field-induced dynamic localization and response through the dc/ac
current and mean square displacement of electrons. We demonstrate that the overall localization increases in
passing from the periodic regime through the commensurate to the incommensurdgoesmed by the
relation of field period and Bloch frequencioth in the dynamic and kinetic cases. Simultaneously, excep-
tional localization(for some particular values of field parameters or symmettigscally retains its order in
the small relaxation rate, but on the background of increasing overall localization becomes less pronounced,
both in dynamic and kinetic regimes. In the dynamic regime exceptional localization is manifested through
diffusion and dc response, in the kinetic—through diffusion and ac response. In the commensurate case with
long-range overlap the leading responses are formed by “resonant” neighbors only; within nearest-neighbor
approximation the commensurate regime becomes qualitatively analogous to the incommensurate one. Ways of
controlling localization/response by the applied field and the reasons for the similarity/difference of dynamic
and kinetic regimes are discussed.
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[. INTRODUCTION states in arbitrary time-periodic electric fields has been
7,28 i H
For several years experimental and theoretical studies diésented’?® In Ref. 31 it has been shown that dynamic
electron kinetics in semiconductor superlattices have atoc@lization persists in a nonlinear system. General aspects of
tracted considerable attentiérf. More than three decades the theory of electronic properties in muiti-band superlattices
ago Esaki and Tusuggested that electrons in a constant@ve been addressétf? The quasienergy spectrum and its
electric field, undergoing Bloch oscillatioAshould produce relation to dynamic localization has been considered in Refs.

terahertz radiation. However, in experiments, coherence e12-3 and 32. A first-principles treatment of the motion of a

: : guantum particle in a crystal interacting with a thermostat,
fects in sup_erlattlces_have been ol_)served only re(_:%ﬁf-ly. . followed by destruction of coherence effects, has been pro-
Electronic properties of crystalline conductors in the ki-

netic regime under the action of an electric field have bee vided in Ref. 15. The effect of relaxation processes on dy-

died ively Usi . hes. including b amic localization in an ac field has been investigafed:2®
studied extensively using various approaches, including bangy jinhoton absorption in a superlattice in the presence of a

theory, the Boltzmann kinetic equation, BBGKY  hierarchy giatic electric field has been studddCoherent electronic
for the density matrix with various truncation schemes,ang excitonic Bloch oscillations in the Stark ladder have
Wannier-Stark hopping, sequential tunneling, diagrammatigeen analyzed and compared to the semiclassical résults.
methods for linear response, nonequilibrium Green’s funcTerahertz emission and four-wa\/e-mixing Signa|s from
tion technique, etc(see Refs. 2, 5-8, and 12-16 and refer-Bloch oscillations in a semiconductor superlattice have been
ences therein However, the investigation of the nearly co- computed, and the effect of Coulomb interactions upon dy-
herent electron dynamics in band conductors with slownamic localization, and of the latter upon the effective di-
scattering in strong and nonstationary electric fields is nomensionality of excitons, has been considefe@oherent
complete yet, except for Bloch oscillations and some othetime-dependent transport, dynamic localization effect, and
particular case%.®17-2°The Wannier-Stark ladder states in a linear absorption spectra of multiband semiconductor super-
constant electric field have been considered in Refs. 6—8, 1Tattices in THz field have been analyzed with the help of the
and 21-26. The effect of dynamic localization under the acdensity matrix and nonequilibrium Green functicisThe

tion of a harmonic field has been foufénd studied within  validity of different theories for inelastic quantum transport
various approaches:-28:31-33.35-3E|ectron dynamics in a dc in superlattices, including the Boltzmann equation approach,
and ac field and a rectangular alternating field have beehas been investigated on the basis of Keldysh diagram
considered??122 A classification of localized/delocalized technique’* Degenerate four-wave-mixing signals from dc-
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and ac-driven semiconductor superlattices, and their relation Il. MODEL AND GENERAL SOLUTION

to dynamic localization, have been analyZedhe relation _ _ _ _ o

of linear optical properties of superlattices and dynamic lo- We consider al-dimensional crystalline conductor within
calization has been discuss&drhe delocalization transiton an independent-electron one-band approach. The lattice
in coupled minibands as function of ac field parameters hastructure is arbitrarypossibly anisotropig so that the elec-
been studied’ Optical absorption and sideband generationtron dispersionH©(k) is of general type, and the overlap

in quantum wells driven by a terahertz electric field has beetbetween all sites may be taken into account. The basis set in
calculated®® Nonperturbative dynamic electro-optical effects the real-space lattice we denote &ythe basis in the recip-

in semiconductor quantum wires under the action of a strongocal lattice byb!. Site positions ar@=n'a;,, while the wave
THz field have been consider@YA new phasorlike interpre-  vector in the reciprocal space ks=k;b! with orthonormality
tation of electronic motion in constant and time-periodic condition aibi=6f. The system is exposed to an arbitrary
electric fields and of dynamic chalizz_atiop has beentime-periodic (period T, basic frequencyw=27/T) space-
constructed? Electron transport in a tight-binding model of homogeneous electric field(t)=E;(t)b/, which may be

a field-driven molecular wire within Floguet approach hasgrong. In the Wannier basis the quantum Hamiltonian reads
been consideret!. Nonlinear optical properties of semicon-

ductors under an intense terahertz field have been studied by ©
diagrammatic methods on the basis of Floquet st#tes. Ht) =2 Hh
Qualitatively analogous coherent effects are also revealed

by cold atoms in optical lattices:*>44 The matrix H'?, is translationally invariant, and in some
Another interesting and promising field of research is COcases we WiTI’nconsider lattices with inversion symmetry,
herent control of properties of matter with the help of spe- - (©) _14(0) . '
cially tailored laser pulses®14.3045-53n solid state systems when additionally H,, =H, _,. The sign of the electron
typically it implies control over the magnitude and direction charge is incorporated in the equations here and below, so

of the electric current through phase relationships of the apt-ha_f_ﬁ |sf}tsldmoc<jjulusd. localizati d th i ¢
plied coherent ac fields. Most often a laser figldand its € field-induced localization an € noniinear nonsta-

generated second harmonie vith some phase shif are tionary electric properties of the model are characterized by

used, without any dc field component. Changing the pkase the evolution of the_ electron average arld mean-square dis-
and the amplitudes of the componeids and E,, one con- plazcementsz <R(t)>_§1np“'“(t)’ 2A<R(t)>—<R2(t)>—<R(20)>,
trols the magnitude and even the polarity of the producedR (1))=2N"pnn(D=N{Znpn a5 ARAL)=(RYV)
direct current. Many aspects of the effect have been studied(R*(0)) (p is the density matrixN, is the number of elec-
lately for semiconductors, superlattices, optical lattices, an@rons, and Tr(p)=N,), the induced polarizationAd(t)
molecular and quantum wires—both theoretically and=-eA(R(t)), and the electric currerjt(t)=(d/dt)Ad(t). By
experimentally?,513.14.26-30.43-53phase-coherent control of localization we mean an electron evolution such that the
the direct current, generated in shallow-level doped semicorchanges of both the average displacement and the mean-
ductors by multi-frequency laser excitation, has been considsquare displacement are bounded in tifiee any initial con-
ered in Ref. 49. Coherent control through the carrier photoditions), when the wavepacket breathes and/or oscillates
excitation from the ground state in the quantum well of awithout propagation. We will not address directly the spatial
superlattice up to the continuum has been studied for theadius of localization heréwhich would require the specifi-
interpretation of the performed experiment in Ref. 50. Cal-cation of particular initial conditions but rely on the defini-
culations of phase-controlled interband transitions in bulktion through the electric current and diffusion coefficient, or
semiconductors have been performed in Ref. 51. Rectificathrough the changeS(R(t)), A(R?(t)). The angular brackets
tion of the harmonic-mixing field in a single-band tight- here and below denote quantum averaging in the coherent
binding system with quantum dissipation in the sequentiatelaxation-free case, while in the kinetic regime averaging
tunneling regime has been studied in Ref. 52. Laser-assistegiith the density operator over scattering and fluctuations is
conductance of molecular wires and the switching effecimplied. Double angular brackets denote additional time-
have been consideré@The space-time symmetry aspects of average over the period.
the directed diffusion and direct current in ac fields, both in  The electron wavepacket velocity and the diffusion coef-
the classical and quantum framework, have been investigateitient are defined in the usual wagu)=(d/dt)A(R(t)) and
in Ref. 30. D=(1/2dt)A(R%(t)), whered in the second expression de-
In our previous papé? (see also Ref. 55we demon-  notes dimension. In the following discussions we speak in-
strated that phasécoherent control of electric currents is erchangeably of the electric current or of the wavepacket
possible within the one-band model of a semiconductor SUgelocity, summed over the band filling. Clearly, these quan-
perlattice in the nearly coherent regirfgow relaxation, low jties are proportional to each other with coefficierst —

temperatures In the present paper our goal is to demonstrate  Tpe Schrodinger equation of the system without relax-

and to study in detail the possibility of coherent control of 4jon (1) can be solved exactly to giv@ef. 27, generaliza-
electron localization within the same model—through fieldiig, of Ref. 19

effect upon intraband evolution. We provide a classification

of localized/delocalized behavior and response of electrons o) (!

in arbitrary time-periodic electric fields, and analyze the ef- A(R(1)) = J dkpka dt'Vier),
fect of scattering in the nearly coherent regime. Vez Jo

nn’[+eE® S nlnxnl. (D)

195311-2



CONTROL OF FIELD-INDUCED LOCALIZATION IN... PHYSICAL REVIEW B 71, 195311(2005

1
= %VKH(O)(k(t)), k() =k + %A(t), (2) A(RA(t)) = Zf dk—J dt'e™ Vk+(e/hc YA (Rk k(0)

t/
2 +f AtV @noalPk(0) + N (e - 1)])
A(Rz(t)> Jdkpk k( )<f dt'Vk(tr)> 0 e ¢
0

1
- —(R(1))2. ©
fdkz (0) fo vy - RO (3) N

BZ Despite the different appearance, E(. and (5) are in
. ] ] fact generalizations of Eq$2.20 and(4.5) of Ref. 20 to the
Here A(t)=-c[dtE(t) is the vector potential, so th&(0)  case of arbitrary lattice structure, long-distance overlap, and
=0. The scalar potential is identically zerd®(k) is the  arbitrary initial conditions. Another point is that the defini-
electron dispersion in the absence of the figig (O)—the  tion of the density matrix in Refs. 19 and 20 differs from the
initial density matrix with the normVg [ pykdk=Ne, and  conventional one by taking a complex conjugate of it. The
Ry k(0)=2p npnn (O)[(n+n")/2] exd-ik(n—-n")] is the form of Egs.(2)—(6) presented here is more convenient for
Fourier component of the initial average displacem¥gtis  analytical analysis, and it makes the relation to conventional
the volume of the Brillouin zone. We take the intersite dis-formulas of solid-state theory more transparent. As in Ref.
tancea as length unit throughout. 20, Eq.(6) has been obtained in the high-temperature limit or
Scattering by phonons within the stochastic Liouville uniform equilibrium band filling. Equatiofs) is equivalent
equation is introduced by imposing dephasing of the waveo the solution of the kinetic Boltzmann equation. Equations
function (relaxation of nondiagonal elements of the density(2), (3), (5), and(6) form the starting point of the present
matrix p, ) at a constant rate.>* Besides, relaxation of site analysis.
populations(diagonal elementp,, ,) to the thermal equilib- The first term in Eq(5) characterizes the quantum evolu-
rium distribution functionf(e(k)) at ratea is introduced®  tion of the electron, exponentially damped by relaxation
Diagonal relaxation is required as in its absefmefor equi-  from the initial coherent oscillations. At low scattering
librium distribution, independent of wave vectkr f(s(k)) <1 (T is the period of the field, as defined abpaad short
=Vg2] the distribution functionp would relax to uniform time at<1 the first term governs the evolution—it is inde-
band filling p,x=Ne (equivalent to high-temperature ap- pendent ofa, while the second one is small witaT. This
proximatior), which is both logically unsatisfactory and limit in the main term is equivalent to the coherent
leads to the long-time current vanishing identically in anyrelaxation-free cas€) and (3). The second term describes
field 202728 Thjs is discussed in more detail in Ref. 20. Thethe kinetic regime plus the transition process: a small frac-
formal equation for the density matrixt) in the mixedn  tion aN, of the electrons is scattered, relaxes towards the
-k representation then takes the form equilibrium distribution f(e(k)), and then again evolves
quantum mechanically in the field. This term becomes domi-

9 nant at long timent> 1, when the first term fades. The first
ihapn,n’(t) =[HO, p(t)], 0 + EE(M)(N = N")ppy () regime we call dynami¢short time, the second one kinetic
(long time. Note that the dynamideither short time or

—iah(1 = 6, n)pnnr(t) purely coherentregime cannot be obtained from the long-

N time kinetic one even in the limit of vanishing scattering.
—iaﬁ5n,nr<pn,nr(t)——eVBzf(S(k)))- (4)  Indeed, by going to the long-time limit first at whatever

N small but finite damping we imply that the electron during
fthat time has suffered many scatterings. This precludes us
from going back to the purely cohereilynamic, relaxation-
free) regime of electron evolution by subsequent transition
aT—0.

The density matrix is normalized to the total humber o
electronsZpp, n(t) =Ne, andNg is the number of sites in the
lattice. The equilibrium distribution function is normalized as
[f(e(k))dk=1 and is assumed symmetric ik +

In the solution of Eq(4) we follow Ref. 20. The resulting
expressions for the average displacement and the mean- Il. FIELD-INDUCED LOCALIZATION

square displacement are ) o
Let us analyze the electron propagation/localization in the

applied field with the account of relaxation.

A(R(1)) = fdkpk 10 f dt' e Vs @noa) First, we note that strong scattering > 1 leads to the
conventional kinetic regime, which at present is not of inter-
est to us.

+ aNef dkf(g(k))f dt’e ' For the study of coherence effects and induced localiza-
0 tion the limiting case of slow scatteringT<1 (nearly co-

" herent regimgis of major interest, and it will be addressed in
xf df'e“t"Vk+<e/ﬁc)A(tf)-(e/ﬁc)A(tv), (5) thg rest of the paper. At short tmﬁ<1 and for low scat-
0 tering the purely coherer{lynamiq results with no relax-
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duced. The most interesting results, however, deal with the 1_eat d(At)e (T4t )Vk+Z\(At>—Z(m')
kinetic propagation/localization regimes at long time> 1

and low scatteringrT<<1, when the electron has undergone At )

many scatterings and thus has thermalized, but the probabil- +J d(At")e*™t vk+;(At)_;\(M)], (8)
ity of a scattering event during one period of the applied ac 0

field is low.

As in the study of dynamic localization in the absence of

relaxation(see Ref. 2J, we separate the applied field into a scatteringaT<<1. Under conditior(7) the electron evolution

constant dc component and a time-periodic oB€)=E, o . .
+E(t). The governing parameter is composed of the magnip(alongs then to the periodic dynamic regifitD) (cf. Ref.

tude of the constant compone and the frequency (or 27). The PD ac response is provided by the integral in the

. S . first term of Eq.(8) and is not small in relaxatior-(aT)P.
periodT) of the oscillating parE(t). Indeed E, determines 7 : i
the average growth rate kft), which entersy, ), periodic in The dc response: in the maffirsy) term of Eq.(8) the elec

. ) . ) ~~_  trons are typically delocalized and propagate with the aver-
the reciprocal lattice, whiles characterizes the periodicity, age velocity

imposed by the external field. The interrelation of these two
periodicities determines the evolutionkift) in the Brillouin (W) = 1 f dk (o) T
T

ation, Egs.(2) and (3), studied previously??” are repro- {1 _e—amTfT
X

0

wherev,, is determined in Eq(2).
First we consider the short time caa¢<<1 with slow-

zone: periodic, commensurate, or incommensurate. Equiva- dWViceaw ©)

lently, the governing parameter characterizes the gain of the

vector potential during the period of the fieldA=—cE,T,  with superimposed periodic oscillations. The leading term of
compared to vectors of the reciprocal lattiQe Yet another the PD diffusion coefficient follows from either E¢3) or
interpretation of the governing parameter is the relation of6), and also typically corresponds to delocalizatipnopa-
two characteristic frequencies,/ w: frequency of Bloch os- gation:

VBZ 0

cillations wy=2meEy/%Q, whereE, is the projection ofg, T 2
upon the considered ax{@, and frequencyo of the periodic D= t f dkM EJ dt' Vi o
field. 2d Vez | TSy~ Y

In the subsequent consideration we will incorpolate the 1 Re . (0) [T ¢
coefficiente/Ac into the vector potential for brevityA(t) +— J dk —kke= dt’vk+;(t,>——<<v>>2.
=(elfic)A (D). dr Vez Jo 20N

- (10
A. Periodic case

The periodic case takes place, whepand T satisfy ei- Thus the leading terms of all the PD responses are not
ther one of the following equivaient equations with somesmaII in the relaxation rate. In the relaxation-free formulation

(2) and (3), these equations are valid in the entire time do-

integer w:
geru main. The diffusion coefficientl0) is always positive, and
ET=- i Q or Wo _ 1 @ the dc velocity(9) is typically nonzero even in the absence of
0 e'u w the dc component in the applied field. However, in some

H . i fth . | latti cases the average velocit9), summed over symmetrign
ereQ is some vectof2m-intege) of the reciprocal lattice. 1y panq filling, vanishes. It happens if the field satisfies the
The quantum evolution of the electronic system during thefollowing equation:

period of the external field drives it back to the same states in
k space it occupied before. However, in position space the T
electron may shift during that time. Equati@i) signifies f
that the gain of the wavevectark during the period of the
field T is an integer multiple of some vector of the reciprocal for all sitesn with nonzero overlapil’.. A sufficient(but not
lattice Q, or the projection of the “vector” Bloch frequency necessarycondition for it is provided, for example, by the
wy=€Ey/h upon Q is an integer multiple of the field fre- time-inversion symmetry of the field at some tirge

guencyw. B B
In the periodic regime the electron wavepacket velocity at E(to+At) =E(to - At),  Alto) =0. (12)

arbitrary timet=mT+At (wherem is integer, and €At Of importancd’-283%s another case of antisymmetry with
<T) can be obtained by presenting the time integral in Edrespect to a time shift by/2:
(5) as a sum ofm integrals over period, and summing up

the resultant serieg:28 E(t)=- E(t + I) A<I) =0. (13
(v(t=mT+ At)) 2 2

dtsifA()n]=0 (12)
0

However, the vanishing of the average current does not

= g a(mT+aY j dkpkL(o)kag(m) necessarily mean localization, as the wavepacket still may
Vez spread due to diffusion or propagate in parts simultaneously
in opposite directions. The criterion of localization demands

+ aNee_“Atj dkf(e(k)) that the mean-square displacement remains boufidedif-
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fusion coefficient vanishes or the average velocity of Additionally, the second term in Eq18) becomes zero
each k mode in the Brillouin zone vanishes under exceptional localization for all fields, possessing shift

independently®-2326.27 antisymmetry, Eq(13).
_ B In conjunction with Eqs(9) and (18) we would like to
{(VisA @) =0. (14) note the following. Discussing the average velocity we can
The latter is an equation for the parameters of the applie@doPt €ither one of the definitions—as an average of the
field, which holds under the condition of E€L1) and velocity over the period for time, or as the average dis-

placement during timg divided byt. In the second case the
T ~ result will incorporate contributions from all the electron dis-
f dtcogA(t)n]=0 (15 placements prior td. For our discussion with the electric
current in mind the first definition is more in place. The
for all sitesn with nonzero 0Ver|ap"éor)1 (Ref. 27 (lattices  second one might also be suitable for the discussion of spa-
with inversion symmetry This localization is in this case an tial aspects of localization. Both calculations, though, can be
exception(a rather rare occasipand is typically called “dy- performed easily in analytic form. The leading terms of the
namic” localizationt®-23.26.27 short-time and long-time expansions in both cases coincide.
Here we would like to note the following. With the ac-  The PD ac response is not sensitive to exceptional local-
count of distant neighbors the electrons get localized undégzation.

more general conditions Next we consider the low scatteringT<1 long time
T at>1 periodic kinetic regimgPK) [Eqg. (7)]. In the long-
nH(O)J dtsiA(t)n]= 0, time limit the influence of initial cohgrent oscillations is Iost_
; On 0 "A(n] completely, and the electron evolution becomes notably dif-

ferent from the purely coherent quantum cfEgs.(2), (3),
T ~ and(9)]. The localization/propagation of the electrons can be
2 an%)f dt cos{A(t)n] =0, (16) studied in transparent analytic form for slow relaxation, and
n 0 coherent effects are most pronounced in this limit.

. N The leading term of the electron wavepacket velocity at
instead of Eqs(11) and(15). The parameters of the field in long timet=mT+At, ms (aT)" stems from the second term

these solutions, which are not simultaneously solutions t%f Eq. (8):
Egs.(11) and(15), are dependent upon the electron disper- g. ()
sion or the overlap integraldgog. We will not consider such N T
. . ) e ' ~ ~
“model-specific” solutions here, but concentrate on the cases (V(t=mT+At))=— f dkf(k)f dt'Viaan-Ad)
0

(11) and (15), when localization is a consequence of time- T

symmetry of the field and spatial symmetry of the system. (19

Within the tight-binding approximation the equatio(is5) ) )

obviously reduce t¢11) and(15). plus higher order terms inT. _ o
Under the conditiong11) and (15) the diffusion coeffi- Clearly, the kinetic low-scattering velocity EQL9) is dif-

cient (10) vanishes, which signifies exceptional localization. férent from the coherent one, E(), which came from the
In the presence of relaxation the localization, however, idir'st term of Eq.(8). It is periodic in time with periodT, 0
never absolute and is weakly destroyed by higher order terms At<T, and in the main term is independent of the scatter-

in «T<1, which stem from Eq(6). The corresponding non- ing ratea, like Eq.(Q). Thus the.ac response in regime PK is
vanishing term is of order-aT: typically nonzero with the leading term (aT)C. After aver-

aging over the period of the fieldf any time dependenge
N S O , the main term of the direct current obtained from EtQ),
D'OC‘E— Vezlo dtvisa | AEVieR@)Net' =Pk(Oth however, vanishes identically. Thus, in the low-scattering
long-time regime there is no average drift of the wavepacket,
17) independent of the scattering radg in contrast to the dy-

where for brevity we assume®, ;(0)=0. namic relaxation-free cad®).

The PD dc respons@®) under the conditiongl1) and(15) ~_AS before, the zero value of the averaged velociy
also vanishes, i.e., it is sensitive to localization. Allowing for diréct current derived from Eq,(19) for any field does not

slow relaxation we find that localization at short tina@ necessarily mean localization. Indeed, in the kinetic regime
<1 is weakly destroyed by terms of the next orddr, stem- under consideration the diffusion coefficient obtained from

ming from Eq.(8): Eq. (6),
T 2
<<V>>IOC__?Jdk—VBZ . dt tViaq odT ) Vgy| ], VA0 | (20

0

the fast diffusive spreading of the electron wavepacket for
low scattering(large mean free pathand, correspondingly,
(18 typical delocalization. We note here also that the kinetic ex-

o, T is not only nonzero, but in fact is big; (aT)™™. This signifies
+ T dkf(k) | dt| dt'viam-aw)-
0 0
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pression(20) cannot reproduce the dynamic zero-scattering aN, t

caseaT=0, when the electron propagates ballisticdlg. (V(t=mT+At))oc = fdkf(k)(Tf dt' Vi Aan-Act)
(3)]. However, the stated divergenBe~ (aT)™! “feels” that

transition foraT—0 correctly. On a qualitative level, ran- T

dom scattering averages out the velocity, but contributes to + f dt't'Vk+/1(At>—/1(t’))- (23

the diffusion coefficient.
The time-averaged velocity assumes typically nonzero An important question is the diffusional spreading of the
values in the next orderaT in contrast to Eq(19): wavepacket under localization. Interestingly, in the periodic
kinetic regime we find localization again, as it was in the
dynamic case. In fact, both leading terms of the diffusion
aNg L coefficient, ~(aT)™* [Eq. (20)], and the next one;-(aT)°,
T2 fdkf(k) Tfo dtfo dt'VieAm-a) vanish under localization conditiorid1) and (15). The re-
sulting diffusion coefficient, derived from Ed6), is small

T T ~aT:
+ f dtf dt’ (t, - t)vkhi(t)—;(t’)) . (21)
0 0

aN [ dk

Equation(21) is nonzero either in the presence of the dc loc FJ V_BZ|:
component of the applied field, or if the left-right symmetry
is violated otherwise, like, for example, in a bichromatic 1 (T B 2
field E(t)=E, cogwt)+E, cog 2wt + ¢).2° i f dt Vica

After the above statement of substantial differences be-
tween the dynamic and the kinetic regimes it is interesting torhjs fact justifies the use of the term localization in the low-
note that the exceptional localization in the IOW'Scatteringscattering periodic kinetic reg"T?éA" the quantities of in_
|0ng'time domain St|” eXiStS eXaCtly Under the same Condi‘terest(ac and dC response, diffusion CoefﬁcibrEVea| sen-
tions (11) and (15), as in the dynamic casef. Ref. 20.  sitjvity to exceptional localization.
However, the manifestations of the effect now are different: Thys, in the periodic case the electron evolution in the
whereas in the dynamic case we have vanishing direct Cukhort-time dynamic and in the long-time kinetic regimes are
rent with ac oscillations remaining nonzero, in the kineticdrastically different. However, field-induced coherent local-
regime we have vanishing leading term of the alternatingzation exists in both regimes under exactly the same condi-
current~(aT)° for any At [Eq. (19)], and a somewhat more tions upon the parameters of the applied field. The typical
complicated situation with the direct current. Namely, theeffect of localization is to decrease the corresponding quan-
second term in the direct currentaT [Eq. (21)], under lo- tities by an order in the small parametef <1. Exceptions
calization conditiong11) and (15) vanishes identically. For are the kinetic diffusion coefficient, when the decrease is two
the first one to vanish, however, the additional shift-orders inaT, and the kinetic direct current, when additional

antisymmetry of the field13) is required, or it remains typi-  shift-antisymmetry of the field is required.
cally nonzero otherwise. Thus, localization tends to decrease

the direct current by an order in the small parameterT

and does that exactly in the additional presence of shift-
antisymmetry of the field, which is rather common. Then the Next we pass over to the commensurate case. It takes
leading nonzero term of the long-time kinetic current be-place when the field parameters satisfy the following equa-

()=

T t
J dtvk+:&(t)f dt,(t/ _t)Vk_,_;(tr)

0 0

(24)
0

B. Commensurate case

comes the next one (aT)% tion with some integerge, u':
h_w 1) o
&N T EoT=-0Q,; or =] 7 (25
Whoe=~"7° f dkf(k)(T f dt f dt'(t = ' WysA-Ac) _ _
0 0 After u' periods of the external field the quantum evolu-
T T tion of the electronic system takes it back to the same states
+f dttf dt’t’vk+,1(t)_;\(t,)), (220 in k space, as before. Equivalently, the gain of the wave
0 0 vector Ak during the period of the field is commensurate

with some vector of the reciprocal latti€® or the projection

of the vector Bloch frequencwgy=€eEy/# in the constant
which corresponds to a weaker delocalization, as comparecbmponent of the fieléE, uponQ is commensurate with the
to Eqg. (21). In the absence of shift-antisymmetry, the directfrequencyw of the time-periodic component.
current typically retains its order aT, and is provided by In the commensurate regime the electron wavepacket ve-
the first term in Eq(21). locity [see Eq(5)] at arbitrary time=mu’'T+At (wheremis

The leading ac responsd9 under localization condi- an integer, and &At<u'T) can be calculated as in the

tions (11) and (15 vanishes. Then the nonzero alternatingperiodic case by presenting the integral over time in (g.
current is provided in next orderaT by Eq. (21) without  as a sum ofn integrals overu’ periods each, and summing
averaging ovet—smaller than without localization: up the corresponding series:
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(V(t=mu'T+At))

/ 0
=g ey J a2y 5,
VBZ

+ aNge @t f dkf(e(k))

1 _e_am'u’TJ‘/J',T ! ’
X | — d(At)e@rw TAy 2o T e
( 1_eaw'T ), (At") k+A(AD-A(AL')

At
+ f d(At’)eaAt,Vk+;(At)—:\(At’)) : (26)

0
At short timeau't<1 in the mainfirst in Eq.(26)] term
the electron evolves in the commensurate dynai@io) re-
gime with average velocity:

1
sin(—,uQn>
(y=-- : f ak 2605 o 12

T o,n 1
K sin<—ﬂ,Qn>
2p

VBZ n

T r_
xf dtsin[kn +An+E 1ﬂ,Qn] (27)
0 2 p

In this section and in the next one we consider lattices

with inversion symmetry. The indefiniteness of the t)gom
Eq. (27) we eliminate by adding an infinitesima to
%(,u/,u’)Qn and then passing to the limit— 0.

Within the tight-binding approximatioiTBA) and under

the condition(25), Eq. (27) results in a strict overall local-

ization for any periodic electric fieldcf. Refs. 21 and 27

The introduction of overlap beyond the first coordination
sphere, however, produces typically weak delocalization due
to neighborsN, situated on “resonant” equidistant planes,

satisfying

QN =27u'v (28)

with any integerv and withQ and u’ the same as in Eq.

PHYSICAL REVIEW B 71, 195311(2005

2t

P (0) (0) fT . ~ 2
D= dk— NH dt kN + A(t)N
dh2T2 f Vay (% ON . sinl (ON]

2 Rk k(o) (0) Jﬁr . ~
-— k—————> NH kN + A(t)N
T f d Ve, % on ) dt sin (HN]

t 2
2
where((v)) is provided in Eq(29). Obviously, the short-time
diffusion coefficient, like the short-time direct current, is not
small inax'T, but is small inHEY,, and it grows in time~t,
which corresponds to propagation.

Exceptional induced localization for an arbitrary wave-
packet with the account of distant neighbors takes place, if
the field satisfies the same E@$1) and(15). In fact, for the
direct current(29) and the diffusion coefficient30) to van-
ish, it is sufficient for these conditions to hold for “resonant”
neighborsN, determined by Eq(28) only, for sites with
nonzero overlap.

Under exceptional localization in the CD regime the elec-
tron is weakly delocalized by the next order terharu’ T of
Eq. (26). This term is equivalent to E¢18) with the substi-
tution T— u/T. With localization conditiong11) and (15)
imposed for all sitesn, this term is formed by both “reso-
nant” and “nonresonant” neighbors:

(30)

2a (0)
(o= 5 | kP NHE, costkn)
BZ N

;
X f dtt siMA(H)N]
0

2aNe

_ Ffdkf(k); nHY, cogkn)

T t
><J dtf dt’ sifA(n-A(t)n], (31
0 0

where we assumed symmetric initial band filling (O)
=p_«(0). [If we restrict the localization conditions to
“resonant” sites only, two more terms in E@1), coming
from “nonresonant” contributions, would appddarhe dc re-

(25).27?In 1d, for example, these are neighbors at distancesponse(31) under localization becomes small in the param-
multiple of u’. The overlap with all the other “nonresonant” eter au'T, in contrast to Eq(29).

sites produces oscillations only. Thus, due to neighbbtise

Away from localization there are four terms more to Eq.

electron is weakly delocalized with wavepacket velocity (31), Coming from both “resonant” and “nonresonant” neigh_

27):

2 [ . PO 0 [ ~
— [ k== NHR, | dtsinfkN + A(HN],

N\ AT Vez N ' fo

(29)

which is small due to the small values Idf)o,)\,.

Similarly, the leading term of the short-time CD diffusion

coefficient (3) (au'T<1,at<1) is formed by “resonant”
neighbors(28) only:

bors. In some practical cases without localization this second
term ~au'T of the direct current may be even bigger due to
“nonresonant” contributions than the main ter{au’'T)?
coming from distant “resonant” sites onllizq. (29)].

The nonvanishing diffusion coefficierd,,. is of order
~au'T and can be obtained from E@L7) by substitution
T—u'T.

In reality it is rather hard to meet the requirements for
exceptional localization beyond the tight-bindifag nearest-
neighboj approximationTBA) rigorously, except for a rect-
angular step-wise alternating fie(dee examples belowor
finite-radius-overlap approximations.
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Within TBA the asymptotics, formed solely by contributions from “resonant” distant neighf2®s vanish. Then the
dynamic direct current in any field without exceptional localization becomes first ordes ', in contrast to Eq(29):

0 T ~
V) 1pa=— 2 sin‘1<wﬂ,> E nHE)OE1 f dkm cos(kn)f dt cos{ Trﬂ, —A(t)n]
f M/ nTBA ' Va2 0 M

T T
_ale < nHY) f dkf(k)cos(kn){co((wﬂ,) f dt f dt’ cogA(t)n —A(t')n]
AT nteA ' m/Jo 0

T t
+2f dtf dt’ sir{l(t)n—/&(t')n]] (32
0 0

This can be viewed as overdli.e., in any field(25)] localization in comparison to the periodic regime and to the
commensurate one with long-range overlap.

Under localization conditionél1) and(15) the first two terms in Eq(32) vanish, but the last one does not. This signifies
the considerable decrea&@gorously—elimination of the effect of exceptional localization within the commensurate tight-
binding approximation in comparison to the regimes PD and long-range-overlap CD.

Thus the reduction of the overlap radius to TBA in the CD regime increases overall localization. On this background the
direct current loses sensitivity to exceptional localization. The CD alternating curienti’T)°, provided by the first term in
Eq. (26), is qualitatively unaffected by neither TBA nor by exceptional localization.

The commensurate kinet{€K) regime takes place under the condition of EZp) at long time,at> 1. The main term of
the velocity derived from Eq26) at long timet=mu’T+At (with m an integer and 8. At<u'T) in the low-scattering limit
au'T<1 is given by

.
(V(t=mp'T+At) = - Zﬁ—'\T'EE NH f dk f(k)cogkN) J dt’ sifA(ADN — A(t")N]. (33
N 0

Only “resonant” neighborsl [Eq. (28)] contribute to Eq(33), like it was in the CD regim¢Eq. (29)]. However, this time
it is for the alternating currer(imain term—Egq. (33) is periodic in time, whereas in the CD regime, considered previously, it
was for the direct current. Both cited quantities—the leading kinetic ac(3y. and dynamic dc, Eq29), responses for the
commensurate case are thus smaller than those for the periodic regime, as they are provided by overlap willtidistant
neighbors only. However, these main terms are not small in the relaxatios taje’ T)°. The period of the alternating current
in Eq. (33) is u'T, i.e., the basic frequency in the responseistimes lower than that of the input field.

The time average of the leading term of the velod®p) is zero, so that there is no constant drift, independent of the
scattering rater. The nonvanishing direct current is produced in the next ordep’'T of Eq. (26) [it can also be obtained
from Eq. (21) with the substitutionT — «’'T and some subsequent manipulatipns

T t
y=- 22‘:‘9[ dkf(k)(E nHY) cos(kn)f dtJ dt’ sifA(tn - A(t')n]
n 0 0

1 A T T - -
+ 52 n’HY, cos(kn’)c0(<1-r’u—,>f dtf dt’ cogA(t)n’ = A(t')n’]
n’ ' M 0 0

T T
- %2 NH, cogkN) f tat f dt’ sifA(t)N —Z\(t')N]), (34)
N 0 0

where byn’ we denote the “nonresonant” neighbors, for whigh’ =27\ # 27ru’ v. In contrast to the leading ac respohEg.
(33)] it comprises contributions from all the sites, not only “resonant” ones. Thus it is not smfhg?)h]nand in some cases it
may exceed the amplitude of the leading alternating cur@3)t The leading CK direct current without exceptional localiza-
tion is of the same order; au'T, as the one in PK regime.

The main term of the long-time CK diffusion coefficightu’ T<1,at> 1) is formed by “resonant” neighbor&8) only, as
in the short-time casé30):
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2N, 012 T - 2 In the expression of the direct currgi@4) under localiza-
D= WZ (NHgn f dtcodA(t)N] tion the third and the second terms in figure brackets vanish,
N 0

but the first one does not. Thus, despite the existence of
T ~ 2 exceptional localization in this case, manifested through the
+ (f dtsir[A(t)N]) ] (35  diffusion coefficient, the direct current does not vanigh
0 qualitatively “insensitiveJ. This remaining dc response com-

and, consequently, diffusion is slow(H®)2. HoweverD is prises contributions from all the neighbors, both “resonant”
: d y N : and “nonresonant” and thus is not small +ri—|g°,)\,. [If we

. . ~ ’ -1 . . s . . . . )
big in ~(eu'T)™, as it was in the periodic case- dlffusm_n limit localization conditions to “resonant” neighbors, Eq.
tends to be fast due to long mean-free path, but in fact mlgh(tzg) only the third term vanishels
belslow duetto iﬁn?'trr?ng? c()jverl?p;hwnh resonant n((ajlghllt)ors The question whether the exceptional localization can be
only. Ve note that the study of Ine mean-square dISplacespqaryeq in practice in the commensurate regime or not de-

?em based ton Ed6) (;7 the Iong-ttl)me ddomzlér:jls \@I'ld for pends, as noted above, on the relative magnitude of the ex-
igh temperatures and/or narrow bands, whed — V. nsion terms ine'T and inHE,/HO.

. . X . a
| V\I/.'th che ?'itam loverlap dtak?hn Into accoug%g;;ep%onap From the provided consideration we deduce that typically
ocalization takes place under theé same condi an the localization criteria for the leading terms of the current

(19 for all sitesn. Then the leading term of the diffusion and diffusion coefficient in the long-range-overlap commen-

coegf!?ent i35r)1 \llgr]ysh“es. In fat(,ft' It |rs1bsuffé0|enlt fqr ;[rr]\ese surate regime are provided by Eq$1) and (15) for “reso-
lcon tons to OI or ‘resonan r;elg O@ )t(r):'] y_(lnt € I nant” sites only. The next order terms may be “not sensitive”
ong-range-overlap commensurate regime this is typica exceptional localization.

the case for the leading terms of expansions that involve The situation changes in the tight-binding approximation

single integration over the ran@@,,u’_T)—cf. Eqs. (_29)' (TBA). If we reduce the overlap radius to nearest neighbors,
(30), and(33)). Moreover, under exceptional localization not then the asymptoticé33) and (35), formed solely by “reso-

only one, but two leading terms @ vanish. The resulting e gistant siteg28), vanish, like it was in the CD case
diffusion coefficient is of the order of aT, as in regime PK,  ahye The kinetic alternating current without exceptional

0

Eq. (24): localization becomes first orderau’T in contrast to
Dl . T ~(au'T)% in Eq. (33):
_ Ne 0) ZJ f 7 A4’ N (+!
Die=— 5= NH tdt | t'dt’ cogA(t")N
- ﬁszz{§( S A (V(t=mu'T+AD)res
- —ow [ aNe 0
“AON]+TS (MHO)2 [ dt| dt'(t-t) =—= > nHY) | dkf(k)cogkn)
n “Jo Jo n(TBA
At _ _
xco§A(n—A(t')n] 7. (36) X 2f dt’ sifA(t')n - A(At)n]
0
T ~ ~
Contrary to the leading terit85), it comprises contributions - sin‘1< Wﬂ,)f dt’ cos(A(t’)n - A(At)n - 774) ,
from both “resonant” and “nonresonant” sites. M/ Jo H
Under localization the leading term of the long-time ac (38)

response~(au'T)°, Eq. (33), vanishes as well. Conditions

(12) and(15) for “resonant” neighbor¢28) suffice. The van- where summation runs over nearest neighbors. Under local-
ishing of the ac response is in analogy to PK regid® and  ization conditiong(11) and (15) the second term in Eq38)

in contrast to the CD regime. Under induced localization thevanishes, but the first one does not. Thus within TBA in our
ac response-au'T is formed by all sites, not only by “reso- terminology the ac response becomes “not sensitive” to ex-

nant” neighbors: ceptional localization.
The kinetic direct current within TBA retains its order
(vt=mu'T+ Ab))oc ~au'T, like in the long-range-overlap CK regime. It is pro-
20N vided by the same E¢34) with the following modifications:
= —92 [\1|-|g)0,>\l J dkf(k)cogkN) the third term vanishes, summation runs over nearest neigh-
AT °N ’ bors, and\=1. Under localization condition§l1) and (15)
T the second term of E@34) vanishes as well, but the first one
xf t'dt’ sifA(t")N - A(A)N] does not[shift antisymmetry is not compatible with Eq.
0 (25)]. Thus the CK TBA direct current is qualitatively insen-
20N sitive to exceptional localization, like the long-range-overlap
+=—=> nHY f dkf(k)cogkn) direct current(34) was.
hooq ' The CK diffusion coefficient decreases under TBA to or-
At der ~au'T in contrast to Eq(35). The expression of it can
xf dt’ sifA(t')n - A(At)n]. (37)  be obtained from Eq(24) by the substitutionT — x'T and
0 some subsequent manipulations:
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T T
> (nHY) {T sin‘2(wﬂ,>f dtJ dt’ cogA(tHn - A(t')n]
M 0 0

DTBA
2ﬁ2dTn(TBA)

T T T t
+2co~<wﬂ,)f dtJ dt’(t—t’)sir{/&(t)n—Z(t')n]—4f dtf dt'(t-t")cogA(tn —A(t')n] |. (39)
M 0 0 0 0

Under exceptional localization the first two integrals in periodic regime can be viewed as a particular case of the
Eg. (39 vanish, but the last one does not. Thilsgs is  commensurate one withw'=1 (all sites are “resonant’
qualitatively insensitive to exceptional localization, namely,However, the periodic case is much more simple and trans-
retains the same orderau’T. The reduction of the overlap parent. Besides, within the commonly used tight-binding ap-
radius to TBA in the commensurate kinetic regime increaseproximation these regimes differ drastically. For these rea-
the overall localization and, rigorously speaking, eliminatessons we considered them separately.
the effect of exceptional localizatiofil) and (15), at least
within the high-temperature approximation for diffusion.

In short, the commensurate regime typically exhibits
stronger overall localization than the periodic one—either in  The incommensurate regime takes place when Egs.
smaller overlap, or extra order i’ T within TBA. With and (25) do not hold, or, in other words, when there is no
long-range overlap, the exceptional localization is mani+eciprocal lattice vecto®, parallel toE,, or the magnitudes
fested qualitatively similar to the periodic cag@art from  of all Q and wyT are incommensurate. Then the electron
the factorH ) while in the tight-binding approximation it wavepacket velocity at arbitrary tintemT+At (wherem is
is pract|cally ellmlnated an integer, and € At<T) can be calculated in analogy to

Most formulas for the commensurate regime can be obthe previous cases by presenting the integral over time in Eq.
tained from those for the periodic case with the substitution(5) as a sum ofn integrals over the field period each, and
T—u'T and some subsequent manipulations. In fact, thesumming up the corresponding series:

C. Incommensurate case

(v(t=mT+ At))

0
f g Pl )vk+2\<m>-mwor + aNge f dkf(k)<[1 - 26" cogwoTn) + 7]
BZ

.
At m- - ~
Xf d(At)e™ ™ [€ ™V, 4 (a0-A(At)- ~me,T € ma(m 1)TVk+A(At)—A(At/)—(m+1)w0T
0

At

+ € Vi AAD-AM)-wgT ~ Vi AA-Aar)] + J d(At')e! Vk+/1(m)-/1(mr)) , (40)

0

where we made use of the symmetrymf,(0) andf(k) in  Contrary to the regimes PD and CD, the velocity Etl) is
k. Equation(40) is valid for lattices with inversion symme- not periodic in time, even in the “quasistationary” limit of
try. slow relaxation. Hence there is no natural time period of
In the low-scatteringaT<1, short-timeat<1 incom-  evolution for averaging to calculate the “dc” response—in
mensurate dynamic regin(éD) the leading term of the ve- contrast toT in the periodic andu'T in the commensurate
locity is case. To obtain the average short-time response we use the
short-time expansiofdl) and calculate the average over an
(V(t=mT+At)) = fdkpk K )Vk+Z\(At) g (41) infinite time range(0,mT), m—o>oc. The resulting leading
BZ term of the dc response (aT)” becomes zero always, as
m— o, in contrast to regimes P[Dypical propagation in
Obviously, the short-time ac respon@d) is nonzero, like it  order ~(aT)°] and long-range-overlap CRypically weak
was in both periodic and commensurate dynamic regimesielocalization due to distant “resonant” neighberéaT)?],
The calculation of the dc response requires some commentsut similar to the tight-binding CD case.
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The nonvanishing incommensurate dynamic direct currentero under exceptional localization, in contrast to the corre-
appears in next order aT, like it was in the CD TBA re- sponding results for regimes PKL9) and long-range CK

ime: (33), and in analogy to CK TBA, Eq.38).
g ay
N The incommensurate kinetic direct current is of the same
{vy) = &92 an”% J dkf(k)cogkn) order~aT, as the ID dc response, and as the dc response in
AT 3 regimes PK and CK:

T T
X {sin‘leonn)J dtf dt’ cos(ﬂ(t)n ~A(t)n
0 0

1 T _ _ ()= —%En) nHY, f dkf(k)cogkn)
——wOTn> —2] dtf dt’ sir[A(t)n—A(t’)n]}.
0 0

2 Tt 5 3
X ZJ dtf dt’ sifA(t)n—A(t")n]
(42) { o Jo
Under localization conditionél1) and(15) the first term 1 T T , ~ -~
in figure brackets of Eq(42) vanishes, but the second one —Co Eonn J dtf dt’ cogA(t)n —A(t')n] |.
does not, in similarity with the CD TBA direct curre(82). o 70
Shift antisymmetry(13) is incompatible with the incommen- (44)

surability condition.

The leading term of the short-time diffusion coefficient
~(aT)? vanishes exactly. Thus, in the ID regime the elec-
trons are more localizeoverall localization in any field,
satisfying incommensurability conditipthan in PD and CD
with long-range overlap, when the electrons typically drift in
order ~(aT)°. However, the ID behavior is qualitatively
similar to overall localization in CD TBA. Within the
relaxation-free formulation Eq3) the mean-square displace-
ment has no components, growing with tirfith in short-
time and long-time limits

In the incommensurate kinetic reginfk) for low scat- p = @Ne > nHY

Under conditiong11) and(15) the second integral in the
expression of the direct current E@4) vanishes, while the
first one does not. Thus the IK direct current, as well as the
ac response, is qualitatively not sensitive to exceptional lo-
calization.

The leading term~(aT)? of the long-time IK diffusion
coefficient vanishes exactly in any field. Nonvanishing is the
next term~aT:

tering aT<1 the main term of the ac velocity in the long- 20A°T
time limit at>1 is of the orderaT: 1 - -
(v(t=mT+ Ab) X lT sin‘z(—onn>f dtf dt’ cogA(t)n —A(t")n]
2 0 0
__oNe ) 1 T T _ _
) 2 NHon | dkf(kjcodkn) -2 co(EmOTn)f dtf dt'(t - t")sifA(tn - At')n]
At ~ ~ ] : 0 0
% 2J0 dt' sifA(An -~ A(t')n] —4[ dtf dt'(t-t')codA(Hn —K(t')n]], (45)
0 0

T

—f dt’[sir’{A(At)n —A(t")n]+ cogA(At)n

0 which is much smaller than the corresponding result in re-
~ 1 gimes PK ~(aT)™%, and long-range CK~(aT)™%, but is
~A(t")n]cot SewoTn | | (43 qualitatively analogous to CK TBA-aT. Under localization

conditions(11) and(15) the first two terms in figure brackets

which is smaller than the corresponding typical responsesf Eq. (45) vanish, but the last one does not. Thus, Egs.

~(aT)%in PK and long-range CK regimes, and qualitatively (43)—(45) suggest that there is no rigorous exceptional local-
similar to CK TBA Eq.(38). Obviously, the absence of reso- ization in regime IK—contrary to regimes PK, E@0), and
nance between the field and the electron evolution in théong-range CK, Eq(35), but in analogy to CK TBA, Eq.

band decreases the oscillations. (39—at least in the approximation of uniform band filling,
In contrast to the incommensurate dynamic case abovésg. (6).
the kinetic long-time velocity43) is time periodic with pe- In short, the incommensurate regime typically exhibits

riod T and reveals no dependence wnThe external field, stronger overall localization, on a qualitative level similar to
together with relaxation, imposes its periodicity on electronthe commensurate tight-binding case, with no rigorous ex-
evolution, though coherent effects are still there. Under lo-ceptional localization above this background.

calization conditions(11) and (15) the second integral in Apart from “pure” regimes, “mixed” cases are possible,
figure brackets of the ac response, EtB), vanishes, but the when along different axes different types of evolution take
first one does not. Thus the IK ac response does not beconpdace.
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D. Examples

| | | | () = - 42Aw . f dkpk,k(o)z H(()O%
Below we provide some particular examples, for simplic- AT(wp~ Aw) Vez “n
ity in one dimension, which illustrate the mentioned regimes. AwTn
(1) First we consider the ac harmonic field with phase XCOE{kn)|:1—(— pmn cos(—)] (49
shift ¢: E(t)=E sin(wt+ ¢), which always belongs to the pe- 2
riodic case. In the low-scatteringT <1, short-timeat<1
dynamic regime(PD) the electron is typically delocalized where Aw=eEi™1. Exceptional localization condition&1)
(cf. Ref. 19: and (15 with the account of all sitegincluding distant
neighbor$ are fulfilled, if the field parameters satisfy either

one of the following conditions for, whereAwT=2m7:

2 0
()y== f dkpkL() > nHY, cogkn)Jy(en)sin(en cose),
h VBz n>0 for u — eveny — any even integer, except= u,or

eE for w - odd,7— any odd integer,excepi=pu. (50)

e= P (46)

For »=u the direct curreni49) vanishes as well, but the
] ) ) ) diffusion coefficient does not.
Here J, is the Bessel function. The direct current vanishes | the periodic kinetic long-time low-scattering regime
for ¢=7/2 (cosine field and fore=mv/cosp, wherevisan (4151 4T<1) the leading term~(aT)™t of the diffusion
arbitrary integer. However, typically the average velocity . atficient is
(46) is nonzero, when Eqg11) and(15) are not fulfilled—
due to the initial-field-value effect in the absence of

relaxatior?® Exceptional localization is possible only in the _ 16N A w? 2 (H(©)2
tight-binding approximation(TBA) under the condition adh?TA(w3 - Aw?)? 5~ 0"
Jo(S)ZO.]‘g

In the low-scatteringaT<1, long-time at>1 periodic % {1 — (= 1)mn COS(M)] _ (51)
kinetic regime(PK) the leading term~(aT)°? of the ac re- 2

sponse is typically nonzero: Under exceptional localization, E§50), it vanishes en-

tirely. In contrast to that, in the leading term of the average

2N velocity ~aT,
<mm=—7ffdkﬂw2anaﬁmwdm)
n>0
AdrauN
xsinen cogwt + ¢)]. (47) ()= WQZZ) J dkf(k)% H{) cogkn)

The dc response is identically zero—both the average of
Eq. (47) and the typically nonvanishing next terif21). X{l _ {1 — (= Co< Aanﬂ
There is no constant kinetic drift in the absence of dc field or

in the absence of left-right symmetry violatigfike in a 39A 2

bichromatic field®). The kinetic diffusion coefficient is X—————— 1, 52
(0~ Aw?)’n’T? (52

Dzﬂezz [NHO Jo(en) 2. (48)  under the condition(50) only the second term in figure

ad fi”12o ’ brackets vanishes. The dc respofis8), however, does be-

come zero with the additional shift-antisymmetiit3),
which in this case is equivalent to the requiremgntO (ab-
sence of the dc componeRy in the applied field

Next we consider the commensurate regimeu'T

The long-time diffusion coefficien#8) is independent of
phasep; averaged kineti¢in contrast to dynamijcquantities
are time invariant. Exceptional localization is possible within

20 — . . .
TBA only,* Jo(¢)=0. Then the ac velocity47) vanishes in =27u. The dynamic direct current resembles E4P), with

. N 0 | i - _ C _
the main t%rlm (aT)", along with the diffusion coefficient e gifference that it is formed by “resonant” neighb(28)
(48) ~(aT)™". Under localization the nonvanishing term of only [note also the absence pf in the exponent of-1)]:
the diffusion coefficient, Eq(24), summed over the band

filling k, is positive and independent gfas well. A ©

(2) Next let us consider the alternating step-wise rectan- __ w f PrK (0) /
gular field with a dc componery+E and periodT.1° First () ﬁ-r(wg_ Aw?) dk Vg 2 HO#,Vcos(k,u V)
we address the periodic regime,T=2m7u. In the low- )
scatteringaT<1, short-timeat<1 periodic dynamic case x| 1-(=1)m co< AoTu 1/) (59
the average velocity is 2 '

v

195311-12



CONTROL OF FIELD-INDUCED LOCALIZATION IN... PHYSICAL REVIEW B 71, 195311(2005

Exceptional localization with the account of distant neigh-increases in passing from the periodic through commensurate
bors takes place under the conditidb0) with Awu'T  to the incommensurate regime, though in a manner different

=27. from the dynamic casfypical dc response retains its order
The commensurate kinetiat>1,aT<1) diffusion co-  ~aT, diffusion coefficient decreases from(aT) ! to ~aT,
efficient in the leading term-(aT)™* ac response decreases froniaT)? to ~aT]. Under excep-
5 tional localization the kinetic responses typically retain their
_ 16N Aw D (H(O), )2 order in passing from the periodic through commensurate to
adhT(w) - Aw?)? S O the incommensurate regintexcept for the additional reduc-

(54) requirement of shift-antisymmetry in the periodic case
Thus, upon the background of the increasing overall local-
ization, the exceptional localization becomes manifested less
(qualitatively vanishesin passing from the periodic re-

AwTu'
x[l—(—l“”cos(%}

is also formed by “resonant” neighbors onN=u'v, v are
all positive integers. It vanishes under exceptional localiza ) )
tion Eq. (50) with Awu' T=277 as well. The CK direct cur- spons?(o.zT)z !nstead OTN. aT, ac regponseaT msteadlof
rent ~au'T under exceptional localization does not vanish, ~(@T)", diffusion coefficient ~aT instead of ~(aT)™]
Within the tight-binding approximation the CK diffusion through commensurate to the incommensurate regidoe
coefficient is of higher order~au'T and is qualitatively T€SPOnse~aT, ac response-aT and diffusion coefficient
insensitive to exceptional localization. The same is true for~@T—all irrespective of exceptional localizatipriVe note
the CK TBA direct current. We do not provide the corre- _that Iocahzatl_on did not affect _qualltat!vely the ac response
sponding rather lengthy expressions, which can be deducdB the dynamic case but does in the kinetic.
from Egs.(39) and (34). Similar conclusions are also valid !N the commensurate regime with the account of long-
for the incommensurate kinetic regime, E¢$4) and (45). range-overlap between the sites, some of the resp¢pees

Thus, the alternating stepwise rectangular field provides ¥ided by the leading terms of the expansions of velocity and

>] tion of the dc current by one order &l with the additional

rare example, when exceptional localization is rigorouslymean-square displacemgratre formed not by all sites, but
possible with the account of long-range overlap. by “resonant” neighbor8l [Eq. (28)] solely. These responses
are different in the dynamic caseirect current and diffusion

IV. CONCLUSIONS coefficien) and in the kinetic ondalternating current and

diffusion coefficient. The reduction of the overlap radius

In summary, we have considered analytically the field-down to the tight-binding approximatioffBA) decreases
induced localization and response of electrons in a one-bangiese asymptotics at least by one ordewj’ T. In general,
model conductor and the effect of relaxation in the nearlythe commensurate regime with long-range overlap has quali-
coherent regime. All the provided expansions are exactatively much in common with the periodic one. The com-
within the adopted constant-relaxation-time approximationmensurate tight-binding regime, on the contrary, resembles
Egs.(5) and(6). By discussing localization/delocalization we the incommensurate one:
always imply the leading term of the corresponding expan- « In the periodic and long-range-commensurate dynamic
sion in slow relaxatiorT. Besides, there are always higher- regimes the exceptional localization decreases the diffusion
order weakly delocalized terms. coefficient from big (corresponding to propagatipn

For low scattering at short time the pure coheréy- ~t(aT)?, to small,~aT, and the dc response from(aT)?
namig quantum evolution is reproduced. In the dynamicto ~aT, as compared to the delocalized case. The ac dy-
case the overall localization increases in passing from th@amic response remains unaffected. In the periodic and long-
periodic through commensurate to the incommensurate reange-commensurate kinetic regimes the exceptional local-
gime [typical dc response decreases froniaT)? to ~aT,  ization decreases the diffusion coefficient by two orders from
diffusion coefficient from~t(aT)° to ~aT, ac response re- big, ~(aT)™%, to small, ~aT, and the ac response by one
tains its order~(aT)?]. Under exceptional localization the order in oT, as compared to the delocalized case. The dc
responses, in passing from the periodic through the commerkinetic response typically remains qualitatively unaffected.
surate to the incommensurate regime, retain their order. o In the tight-binding-commensurate and incommensurate
However, on the background of the increasing overall localregimes, both dynamic and kinetic, the exceptional localiza-
ization, the exceptional localization becomes lesstion does not change the order of either the diffusion coeffi-
pronounced—from the periodic regiméc response~aT  cient, dc or ac.
instead of~(aT)?) to the incommensurate oridc response The periodic regime, as compared to the long-range com-
~aT irrespective of exceptional localizatipnLocalization  mensurate one, however, has one additional aspect: in the
in the dynamic regime is manifested by oscillatory evolutionformer case the field can additionally possess shift antisym-
with no shift and no diffusive dispersion of the electron metry, and then the PK direct current vanishes under excep-
wavepacket on average, in contrast to typical coherent propdional localization, while to the latter regime that does not
gation in the periodic and in the long-range-overlap com-apply.
mensurate regimes. Dynamic ac response under localization, Thus, in general, the field-induced localization “survives”
however, exists unaffected. the introduction of slow relaxation, though in a modified

The low-scattering long-time kinetic regimes differ con- form. Two distinct types of localization might be considered:
siderably from the dynamic ones. The overall localizationoverall localization based solely on commensurability of
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field frequency and Bloch frequency, and more subtle and The situation will be different for such a choice of basic
rare exceptional localization, which requires particular val-frequency, when there are no periodic-regime frequencies in
ues of amplitudes, frequencies, and phases of field compdhe vicinity. Even more to it, if the nearest-neighbor overlap
nents to satisfy two simple integral equations or some sym¢or TBA) applies, then there will be no delocalized contribu-
metry properties. Both the overall and exceptionaltion from the commensurate regime as well. In such a case
localization are manifested differently through the ac and dahe response will be governed entirely by the incommensu-
responses and diffusion in the dynamishort-time or rate results, with little sensitivity of the response to excep-
relaxation-fre¢ and kinetic(long-time) regimes, as discussed tional localization(neither parameter vanishes

above. Another point is that the delocalized regimes are pretty

The stated qualitative differences between the dynamicare, and in fact have an infinitesimal weight as compared to
and kinetic regimes signify that the straightforward substituthe incommensurate one. If the signal is assumed to scan
tion of the quantum kinetic problemwith scattering/ some frequency range, it may be considered to populate the
relaxation includef by a coherent relaxation-free formula- neighboring frequencies equally, and that greatly diminishes
tion is inadequate, except for the very short-time regimethe weight of the periodic and commensurate contributions,
Because of that, the long-time kinetic results cannot everepending on the rate of interfrequency transitions. That also
reproduce the long-time coherefir dynamig case as a works for the prevailing influence of the incommensurate
limit for aT=0, and vice versa. However, some indirectregime.
analogies between these cases are still present—between theYet another point is that the frequency-mixing processes
relaxation-free dc response and the kinetic ac response, foliscussed above will take place in the intermediate time
example. range, and thus should bear some more resemblance to the

From the point of view of mathematics, the equations andlynamic short-time case. That would mean the faster spread-
their solutions in the dynamic and kinetic regimes differ con-ing due to propagation in the delocalized regimes and their
siderably. However, the qualitative aspects of field-inducedncreased contribution.
localization/delocalization in both regimes have much in The situation will be different—much more simple and
common, while the conditions for localization exactly coin- transparent—in the case when the sample is electrostatically
cide for slow relaxation. shielded. Then the dc component is exactly zero and the pure

The mathematical reasons for the cited differences beperiodic regime of evolution takes place, with only the ac
tween the dynamic and the kinetic regimes are the exponerinput component fluctuating. Then the provided results for
tial damping of the kinetic velocity and the additional inte- the periodic regime can be applied directly, with all the var-
gral over time in Eqs(5) and (6), which accounts for the ied opportunities for coherent control of localization and re-
implicit averaging over scattering events. The reason for theponse.
similarity lies, however, in the same integral over time pe- We believe the stated mechanisms can be used for the
riod. In fact, similar averages appear in the calculations ofonstruction of sensors and novel devices for information
average dynamic velocitydc response at short-timend  processing, based on superlattices in the low-temperature
momentary values of kinetic velocitiac response at long nearly coherent regime. The necessary conditions might be
time), the latter averaged over scattering during the period ofichievable, for example, on the outer surface of spaceships
the field. This is exactly the reason for the interrelation ofin dark.
these two effectddynamic and kinetiz which otherwise We will expand this study in future publications by intro-
could be entirely different. Another necessary ingredient forducing frequency fluctuations and different diagonal and
that similarity is the slow-relaxation limit. Not only did it nondiagonal relaxation rates, and by lifting the limitation to
allow the simple complete analytical study of the problem. Ithigh temperaturegor uniform equilibrium band filling for
also enabled the expansion of damping exponentials, whicthe long-time kinetic diffusion coefficient. The latter ap-
otherwise would enter the kinetic localization criteria, ren-proximation is not only logically unsatisfactory for the
dering these criteria, as well as the resulting formulas differnearly coherent regime, but is expected to affect the corre-
ent from the dynamicor pure coherentcase. sponding long-time asymptotics.

The condition for the observation of either dynamic or  The localization/delocalization propertiédc response, ac
kinetic results is determined by the time of observation: atresponse, diffusion coefficienfor all the regimes at low
short time, comparable to interscattering time the first onescatteringaT<1 are summarized in Table |I.
takes place, while for long times, exceeding the inverse re- Due to the fast decrease of overlap integtﬂg with n,
laxation rate, the second one should be observed. the effect of exceptional localization in superlattices might

Obviously, the response in the periodic, commensuratehe qualitatively well observable in many cases when it holds
and incommensurate regimes is considerably different. In refor nearest-neighbor sites only.
ality, however, due to the fluctuations of the field frequency Finally let us address the question of observability of the
the response should be produced by some weighted averagensidered effects in experiments on GaAs/GaAlAs semi-
of these routes with frequencies in tt@ose vicinity. Then  conductor superlattices. The relaxation timie* we assume
the typically delocalized regimdgeriodic in the first place  ~1 ps (Ref. 10 atT=10 K, Ref. 26. To meet the slow-
should provide the major escape chan(ulocalization. In scattering conditioreT<1, the laser frequency should be
such a case the effect of exceptional localization can be usdtlgh enoughy=w/27=1/T> «=1 THz, in our case. On the
to control response and electron localization by the field paether hand, for the one-band approximation to be valid, the
rameters. laser photon energy should be smaller than the bandgap
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TABLE |. Systematization of regimes of intraband evolution for electrons in a one-band model in a time-periodic electric fielteBy
mark formulas with modifications, cited in the text. By we mark equations that require additional shift-antisymmetry for exceptional
localization. By T we mark quantities qualitatively insensitive to exceptional localization and-byotally insensitive ones.

Dynamic (short time,at<1) Kinetic (long time, at>1)

Periodic,wy/ o= (typically delocalization

dc not small~(aT)?, Eq.(9)
ac always not smah-(aT)°, Egs.(2) and(8) "
Diffusion coefficient bigD ~t(aT)°, Eq. (10)

dc small~aT, Eq. (21)
ac not small~(aT)°, Eq. (19
Diffusion coefficient big~(aT)™%, Eq. (20)

Exceptional localization

dc small~aT, Eq. (18)
ac always not smah-(aT)?, Egs.(2) and(8) ™*
Diffusion coefficient smalkaT, Eq. (17)

dc smaller~(aT)? ©, Eq.(22)
ac small~aT, Eq. (23
Diffusion coefficient smalk-aT, Eq. (24)

Commensuratepy/ w=pu/ pn' (typically weak delocalization, TBA—localization

dc not small~(au'T)?, but small inHg y,
Eq. (29
[~au'T within TBA, Eq. (32)]
ac always not smat-(au'T), Eq.(26)
[same within TBA
Diffusion coefficient bigD ~t(au'T)°, but small inHg
Eq. (30)
[~au'T within TBA]

dc small~au'T, Eq. (34)

[~au'T within TBA, Eq. (34) "]
ac not small~(au'T)?, but small~Hg y Eq. (33
[~au'T within TBA, Eq. (39)]
Diffusion coefficient big~(au'T)™%, but small inHo N,
Eq. (35)
[~au'T within TBA, Eg. (39)]

Exceptional localization

dc small~au'T, Eqg. (31)
[same order-au'T within TBA, Eq. (32) "]
ac always not smah-(au'T)°, Eq.(26) ™*
[same within TBA ¥]
Diffusion coefficient smalk~au'T, Eq. (17) *

dc small~au'T, Eq. (34 1

[~au'T within TBA, Eq. (34) "]
ac small~au'T, Eq. (37)

[~au'T within TBA, Eq. (38) "]
Diffusion coefficient smalk~au'T, Eq. (36)

[~au'T within TBA, Eq. (39) "]

Incommensuratewy/ w # w/ 1’ (localization

dc small~aT, Eq. (42
ac always not smat-(aT)?, Eq. (41)
Diffusion coefficient small~aT

dc small~aT, Eq. (44)
ac small~aT, Eq. (43
Diffusion coefficient small~aT, Eq. (45)

Exceptional localization—all parameters qualitatively insensitive

v<<A/h. For the bandgap to be bigger, the superlattice GaAs In optical superlattices the relaxation processes are much
wells should be narrow enough and the spacer GaAlAs layslower, so that the conditions for the observation of the con-
ers should be thick enough. For example, in Ref. 50 they arsidered effects are more favorable. For example, the apparent
5.5 and 32.5 nm, respectively, so that the bandgap isleviation from the constant velocity at short time in the inset
152 meV. For the interband transitions to be negligible, weof Fig. 2 of Ref. 44 obviously is due to the stated difference
assume the upper limiting frequeneylO THz, correspond- between the short-time and long-time response.

ing to photon energy~40 meV. Thus there should be a  The study of the dynamishort-timg regime in semicon-
rather narrow range for the laser frequency inbetweel? 10 ductor superlattices requires subpicosecond measurements.
and 163 Hz, where our results for the coherent control of For all-optical response it is accessible, though such mea-
induced localization through intraband evolution should besurements of transient currents pose more probfetfig34°
valid. The manufacture of bigger-bandgap superlattices within contrast to that, optical lattices require the time scale of
longer relaxation time(lower-temperature measurements only ~1-10us (Refs. 43 and 4% which should be quite
should increase the range of its applicability. accessible. In any case, the provided theoretical consider-
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ation of the short-time dynamic regime we hope will servestruction of novel sensors and ultrafast information-
for the clarification of the nontrivial time evolution of the processing devices.
response and coherent control in superlattices.
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