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We consider ad-dimensional conductorsa semiconductor/optical superlattice, quantum/molecular wired with
arbitrary electron dispersion within the independent-electron one-band approach. Its nonperturbative nonsta-
tionary response to arbitrary time-periodic electric fields is studiedsad in the quantum coherent “dynamic”sor
short-timed regime andsbd in the “kinetic” sor long-timed regime under the influence of weak scattering. We
provide a classification and analysis of field-induced dynamic localization and response through the dc/ac
current and mean square displacement of electrons. We demonstrate that the overall localization increases in
passing from the periodic regime through the commensurate to the incommensurate onesgoverned by the
relation of field period and Bloch frequencyd both in the dynamic and kinetic cases. Simultaneously, excep-
tional localizationsfor some particular values of field parameters or symmetriesd typically retains its order in
the small relaxation rate, but on the background of increasing overall localization becomes less pronounced,
both in dynamic and kinetic regimes. In the dynamic regime exceptional localization is manifested through
diffusion and dc response, in the kinetic—through diffusion and ac response. In the commensurate case with
long-range overlap the leading responses are formed by “resonant” neighbors only; within nearest-neighbor
approximation the commensurate regime becomes qualitatively analogous to the incommensurate one. Ways of
controlling localization/response by the applied field and the reasons for the similarity/difference of dynamic
and kinetic regimes are discussed.
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I. INTRODUCTION

For several years experimental and theoretical studies of
electron kinetics in semiconductor superlattices have at-
tracted considerable attention.1–6 More than three decades
ago Esaki and Tsu7 suggested that electrons in a constant
electric field, undergoing Bloch oscillations,8 should produce
terahertz radiation. However, in experiments, coherence ef-
fects in superlattices have been observed only recently.9–11

Electronic properties of crystalline conductors in the ki-
netic regime under the action of an electric field have been
studied extensively using various approaches, including band
theory, the Boltzmann kinetic equation, BBGKY hierarchy
for the density matrix with various truncation schemes,
Wannier-Stark hopping, sequential tunneling, diagrammatic
methods for linear response, nonequilibrium Green’s func-
tion technique, etc.ssee Refs. 2, 5–8, and 12–16 and refer-
ences thereind. However, the investigation of the nearly co-
herent electron dynamics in band conductors with slow
scattering in strong and nonstationary electric fields is not
complete yet, except for Bloch oscillations and some other
particular cases.5–8,17–29The Wannier-Stark ladder states in a
constant electric field have been considered in Refs. 6–8, 17,
and 21–26. The effect of dynamic localization under the ac-
tion of a harmonic field has been found19 and studied within
various approaches.23–28,31–33,35–37Electron dynamics in a dc
and ac field and a rectangular alternating field have been
considered.19,21,22 A classification of localized/delocalized

states in arbitrary time-periodic electric fields has been
presented.27,28 In Ref. 31 it has been shown that dynamic
localization persists in a nonlinear system. General aspects of
the theory of electronic properties in multi-band superlattices
have been addressed.24,32 The quasienergy spectrum and its
relation to dynamic localization has been considered in Refs.
23 and 32. A first-principles treatment of the motion of a
quantum particle in a crystal interacting with a thermostat,
followed by destruction of coherence effects, has been pro-
vided in Ref. 15. The effect of relaxation processes on dy-
namic localization in an ac field has been investigated.18,20,28

Multiphoton absorption in a superlattice in the presence of a
static electric field has been studied.24 Coherent electronic
and excitonic Bloch oscillations in the Stark ladder have
been analyzed and compared to the semiclassical results.25

Terahertz emission and four-wave-mixing signals from
Bloch oscillations in a semiconductor superlattice have been
computed, and the effect of Coulomb interactions upon dy-
namic localization, and of the latter upon the effective di-
mensionality of excitons, has been considered.26 Coherent
time-dependent transport, dynamic localization effect, and
linear absorption spectra of multiband semiconductor super-
lattices in THz field have been analyzed with the help of the
density matrix and nonequilibrium Green functions.32 The
validity of different theories for inelastic quantum transport
in superlattices, including the Boltzmann equation approach,
has been investigated on the basis of Keldysh diagram
technique.34 Degenerate four-wave-mixing signals from dc-
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and ac-driven semiconductor superlattices, and their relation
to dynamic localization, have been analyzed.35 The relation
of linear optical properties of superlattices and dynamic lo-
calization has been discussed.36 The delocalization transition
in coupled minibands as function of ac field parameters has
been studied.37 Optical absorption and sideband generation
in quantum wells driven by a terahertz electric field has been
calculated.38 Nonperturbative dynamic electro-optical effects
in semiconductor quantum wires under the action of a strong
THz field have been considered.39 A new phasorlike interpre-
tation of electronic motion in constant and time-periodic
electric fields and of dynamic localization has been
constructed.40 Electron transport in a tight-binding model of
a field-driven molecular wire within Floquet approach has
been considered.41 Nonlinear optical properties of semicon-
ductors under an intense terahertz field have been studied by
diagrammatic methods on the basis of Floquet states.42

Qualitatively analogous coherent effects are also revealed
by cold atoms in optical lattices.11,43,44

Another interesting and promising field of research is co-
herent control of properties of matter with the help of spe-
cially tailored laser pulses.2,4,14,30,45–53In solid state systems
typically it implies control over the magnitude and direction
of the electric current through phase relationships of the ap-
plied coherent ac fields. Most often a laser fieldv and its
generated second harmonic 2v with some phase shiftw are
used, without any dc field component. Changing the phasew
and the amplitudes of the componentsE1 and E2, one con-
trols the magnitude and even the polarity of the produced
direct current. Many aspects of the effect have been studied
lately for semiconductors, superlattices, optical lattices, and
molecular and quantum wires—both theoretically and
experimentally.2,5,13,14,26–30,43–53Phase-coherent control of
the direct current, generated in shallow-level doped semicon-
ductors by multi-frequency laser excitation, has been consid-
ered in Ref. 49. Coherent control through the carrier photo-
excitation from the ground state in the quantum well of a
superlattice up to the continuum has been studied for the
interpretation of the performed experiment in Ref. 50. Cal-
culations of phase-controlled interband transitions in bulk
semiconductors have been performed in Ref. 51. Rectifica-
tion of the harmonic-mixing field in a single-band tight-
binding system with quantum dissipation in the sequential
tunneling regime has been studied in Ref. 52. Laser-assisted
conductance of molecular wires and the switching effect
have been considered.53 The space-time symmetry aspects of
the directed diffusion and direct current in ac fields, both in
the classical and quantum framework, have been investigated
in Ref. 30.

In our previous paper29 ssee also Ref. 55d we demon-
strated that phasescoherentd control of electric currents is
possible within the one-band model of a semiconductor su-
perlattice in the nearly coherent regimesslow relaxation, low
temperaturesd. In the present paper our goal is to demonstrate
and to study in detail the possibility of coherent control of
electron localization within the same model—through field
effect upon intraband evolution. We provide a classification
of localized/delocalized behavior and response of electrons
in arbitrary time-periodic electric fields, and analyze the ef-
fect of scattering in the nearly coherent regime.

II. MODEL AND GENERAL SOLUTION

We consider ad-dimensional crystalline conductor within
an independent-electron one-band approach. The lattice
structure is arbitraryspossibly anisotropicd, so that the elec-
tron dispersionHs0dskd is of general type, and the overlap
between all sites may be taken into account. The basis set in
the real-space lattice we denote byai, the basis in the recip-
rocal lattice byb j. Site positions aren=niai, while the wave
vector in the reciprocal space isk =kjb

j with orthonormality
condition aib

j =di
j. The system is exposed to an arbitrary

time-periodic speriod T, basic frequencyv=2p /Td space-
homogeneous electric fieldEstd=Ejstdb j, which may be
strong. In the Wannier basis the quantum Hamiltonian reads

Hstd = o Hn,n8
s0d unlkn8u + eEstd o nunlknu. s1d

The matrix Hn,n8
s0d is translationally invariant, and in some

cases we will consider lattices with inversion symmetry,
when additionally H0,n

s0d =H0,−n
s0d . The sign of the electron

charge is incorporated in the equations here and below, so
that e is its modulus.

The field-induced localization and the nonlinear nonsta-
tionary electric properties of the model are characterized by
the evolution of the electron average and mean-square dis-
placements kRstdl=onrn,nstd, DkRstdl=kRstdl−kRs0dl,
kR2stdl=on2rn,nstd−Ne

−1fonrn,nstdg2, DkR2stdl=kR2stdl
−kR2s0dl sr is the density matrix,Ne is the number of elec-
trons, and Trsrd=Ned, the induced polarizationDdstd
=−eDkRstdl, and the electric currentj std=sd/dtdDdstd. By
localization we mean an electron evolution such that the
changes of both the average displacement and the mean-
square displacement are bounded in timesfor any initial con-
ditionsd, when the wavepacket breathes and/or oscillates
without propagation. We will not address directly the spatial
radius of localization hereswhich would require the specifi-
cation of particular initial conditionsd, but rely on the defini-
tion through the electric current and diffusion coefficient, or
through the changesDkRstdl, DkR2stdl. The angular brackets
here and below denote quantum averaging in the coherent
relaxation-free case, while in the kinetic regime averaging
with the density operator over scattering and fluctuations is
implied. Double angular brackets denote additional time-
average over the period.

The electron wavepacket velocity and the diffusion coef-
ficient are defined in the usual way:kvl=sd/dtdDkRstdl and
D=s1/2dtdDkR2stdl, whered in the second expression de-
notes dimension. In the following discussions we speak in-
terchangeably of the electric current or of the wavepacket
velocity, summed over the band filling. Clearly, these quan-
tities are proportional to each other with coefficient −e.

The Schrödinger equation of the system without relax-
ation s1d can be solved exactly to givesRef. 27, generaliza-
tion of Ref. 19d

DkRstdl =E dk
rk,ks0d

VBZ
E

0

t

dt8vkst8d,
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vkstd =
1

"
¹kHs0dsk„td…, kstd = k +

e

"c
Astd, s2d

DkR2stdl =E dk
rk,ks0d

VBZ
SE

0

t

dt8vkst8dD2

+E dk
2Rk,ks0d

VBZ
E

0

t

dt8vkst8d −
1

Ne
kRstdl2. s3d

Here Astd=−ce0
t dtEstd is the vector potential, so thatAs0d

=0. The scalar potential is identically zero.Hs0dskd is the
electron dispersion in the absence of the field,rk,ks0d—the
initial density matrix with the normVBZ

−1erk,kdk =Ne, and
Rk,ks0d=on,n8rn,n8s0dfsn+n8d /2g expf−iksn−n8dg is the
Fourier component of the initial average displacement.VBZ is
the volume of the Brillouin zone. We take the intersite dis-
tancea as length unit throughout.

Scattering by phonons within the stochastic Liouville
equation is introduced by imposing dephasing of the wave
function srelaxation of nondiagonal elements of the density
matrix rn,n8d at a constant ratea.54 Besides, relaxation of site
populationssdiagonal elementsrn,nd to the thermal equilib-
rium distribution functionf(«skd) at ratea is introduced.20

Diagonal relaxation is required as in its absencefor for equi-
librium distribution, independent of wave vectork, f(«skd)
=VBZ

−1g the distribution functionr would relax to uniform
band filling rk,k =Ne sequivalent to high-temperature ap-
proximationd, which is both logically unsatisfactory and
leads to the long-time current vanishing identically in any
field.20,27,28This is discussed in more detail in Ref. 20. The
formal equation for the density matrixrstd in the mixedn
−k representation then takes the form

i"
]

]t
rn,n8std = fHs0d,rstdgn,n8 + eEstdsn − n8drn,n8std

− ia"s1 − dn,n8drn,n8std

− ia"dn,n8Srn,n8std −
Ne

Ns
VBZf„«skd…D . s4d

The density matrix is normalized to the total number of
electronsorn,nstd=Ne, andNs is the number of sites in the
lattice. The equilibrium distribution function is normalized as
ef(«skd)dk =1 and is assumed symmetric in ±k.

In the solution of Eq.s4d we follow Ref. 20. The resulting
expressions for the average displacement and the mean-
square displacement are

DkRstdl =E dk
rk,ks0d

VBZ
E

0

t

dt8e−at8vk+se/"cdAst8d

+ aNeE dk f„«skd…E
0

t

dt8e−at8

3E
0

t8
dt9eat9vk+se/"cdAst8d−se/"cdAst9d, s5d

DkR2stdl = 2E dk
1

VBZ
E

0

t

dt8e−at8vk+se/"cdAst8dSRk,ks0d

+E
0

t8
dt9vk+se/"cdAst9dfrk,ks0d + Neseat9 − 1dgD

−
1

Ne
kRstdl2. s6d

Despite the different appearance, Eqs.s6d and s5d are in
fact generalizations of Eqs.s2.20d ands4.5d of Ref. 20 to the
case of arbitrary lattice structure, long-distance overlap, and
arbitrary initial conditions. Another point is that the defini-
tion of the density matrix in Refs. 19 and 20 differs from the
conventional one by taking a complex conjugate of it. The
form of Eqs.s2d–s6d presented here is more convenient for
analytical analysis, and it makes the relation to conventional
formulas of solid-state theory more transparent. As in Ref.
20, Eq.s6d has been obtained in the high-temperature limit or
uniform equilibrium band filling. Equations5d is equivalent
to the solution of the kinetic Boltzmann equation. Equations
s2d, s3d, s5d, and s6d form the starting point of the present
analysis.

The first term in Eq.s5d characterizes the quantum evolu-
tion of the electron, exponentially damped by relaxation
from the initial coherent oscillations. At low scatteringaT
!1 sT is the period of the field, as defined aboved and short
time at!1 the first term governs the evolution—it is inde-
pendent ofa, while the second one is small withaT. This
limit in the main term is equivalent to the coherent
relaxation-free cases2d and s3d. The second term describes
the kinetic regime plus the transition process: a small frac-
tion aNe of the electrons is scattered, relaxes towards the
equilibrium distribution f(«skd), and then again evolves
quantum mechanically in the field. This term becomes domi-
nant at long timeat@1, when the first term fades. The first
regime we call dynamicsshort timed, the second one kinetic
slong timed. Note that the dynamicseither short time or
purely coherentd regime cannot be obtained from the long-
time kinetic one even in the limit of vanishing scattering.
Indeed, by going to the long-time limit first at whatever
small but finite damping we imply that the electron during
that time has suffered many scatterings. This precludes us
from going back to the purely coherentsdynamic, relaxation-
freed regime of electron evolution by subsequent transition
aT→0.

III. FIELD-INDUCED LOCALIZATION

Let us analyze the electron propagation/localization in the
applied field with the account of relaxation.

First, we note that strong scatteringaT@1 leads to the
conventional kinetic regime, which at present is not of inter-
est to us.

For the study of coherence effects and induced localiza-
tion the limiting case of slow scatteringaT!1 snearly co-
herent regimed is of major interest, and it will be addressed in
the rest of the paper. At short timeat!1 and for low scat-
tering the purely coherentsdynamicd results with no relax-
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ation, Eqs.s2d and s3d, studied previously,19,27 are repro-
duced. The most interesting results, however, deal with the
kinetic propagation/localization regimes at long timeat@1
and low scatteringaT!1, when the electron has undergone
many scatterings and thus has thermalized, but the probabil-
ity of a scattering event during one period of the applied ac
field is low.

As in the study of dynamic localization in the absence of
relaxationssee Ref. 27d, we separate the applied field into a
constant dc component and a time-periodic one:Estd=E0

+Epstd. The governing parameter is composed of the magni-
tude of the constant componentE0 and the frequencyv sor
periodTd of the oscillating partEpstd. Indeed,E0 determines
the average growth rate ofkstd, which entersvkstd, periodic in
the reciprocal lattice, whilev characterizes the periodicity,
imposed by the external field. The interrelation of these two
periodicities determines the evolution ofkstd in the Brillouin
zone: periodic, commensurate, or incommensurate. Equiva-
lently, the governing parameter characterizes the gain of the
vector potential during the period of the fieldDA =−cE0T,
compared to vectors of the reciprocal latticeQ. Yet another
interpretation of the governing parameter is the relation of
two characteristic frequenciesv0/v: frequency of Bloch os-
cillations v0=2peE0/"Q, whereE0 is the projection ofE0
upon the considered axisQ, and frequencyv of the periodic
field.

In the subsequent consideration we will incorporate the

coefficient e/"c into the vector potential for brevity:Ãstd
=se/"cdAstd.

A. Periodic case

The periodic case takes place, whenE0 andT satisfy ei-
ther one of the following equivalent equations with some
integerm:

E0T = −
"

e
mQ or

v0

v
= umu. s7d

HereQ is some vectors2p-integerd of the reciprocal lattice.
The quantum evolution of the electronic system during the
period of the external field drives it back to the same states in
k space it occupied before. However, in position space the
electron may shift during that time. Equations7d signifies
that the gain of the wavevectorDk during the period of the
field T is an integer multiple of some vector of the reciprocal
lattice Q, or the projection of the “vector” Bloch frequency
v0=eE0/" upon Q is an integer multiple of the field fre-
quencyv.

In the periodic regime the electron wavepacket velocity at
arbitrary time t=mT+Dt swhere m is integer, and 0,Dt
,Td can be obtained by presenting the time integral in Eq.
s5d as a sum ofm integrals over periodT, and summing up
the resultant series:27,28

kvst = mT+ Dtdl

= e−asmT+Dtd E dk
rk,ks0d

VBZ
vk+ÃsDtd

+ aNee
−aDtE dk f„«skd…

3 F1 − e−amT

1 − e−aT E
0

T

dsDt8de−asT−Dt8dvk+ÃsDtd−ÃsDt8d

+E
0

Dt

dsDt8deaDt8vk+ÃsDtd−ÃsDt8dG , s8d

wherevkstd is determined in Eq.s2d.
First we consider the short time caseat!1 with slow-

scatteringaT!1. Under conditions7d the electron evolution
belongs then to the periodic dynamic regimesPDd scf. Ref.
27d. The PD ac response is provided by the integral in the
first term of Eq.s8d and is not small in relaxation,saTd0.
The dc response: in the mainsfirstd term of Eq.s8d the elec-
trons are typically delocalized and propagate with the aver-
age velocity

Škvl‹ =
1

T
E dk

rk,ks0d
VBZ

E
0

T

dtvk+Ãstd s9d

with superimposed periodic oscillations. The leading term of
the PD diffusion coefficient follows from either Eq.s3d or
s6d, and also typically corresponds to delocalizationspropa-
gationd:

D =
t

2d
E dk

rk,ks0d
VBZ

F 1

T
E

0

T

dt8vk+Ãst8dG2

+
1

dT
E dk

Rk,ks0d
VBZ

E
0

T

dt8vk+Ãst8d −
t

2dNe
kkvll2.

s10d

Thus the leading terms of all the PD responses are not
small in the relaxation rate. In the relaxation-free formulation
s2d and s3d, these equations are valid in the entire time do-
main. The diffusion coefficients10d is always positive, and
the dc velocitys9d is typically nonzero even in the absence of
the dc component in the applied field. However, in some
cases the average velocitys9d, summed over symmetricsin
±kd band filling, vanishes. It happens if the field satisfies the
following equation:

E
0

T

dt sinfÃstdng = 0 s11d

for all sitesn with nonzero overlapH0,n
s0d . A sufficientsbut not

necessaryd condition for it is provided, for example, by the
time-inversion symmetry of the field at some timet0:

Est0 + Dtd = Est0 − Dtd, Ast0d = 0. s12d

Of importance27,28,30is another case of antisymmetry with
respect to a time shift byT/2:

Estd = − ESt +
T

2
D, AST

2
D = 0. s13d

However, the vanishing of the average current does not
necessarily mean localization, as the wavepacket still may
spread due to diffusion or propagate in parts simultaneously
in opposite directions. The criterion of localization demands
that the mean-square displacement remains boundedsthe dif-
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fusion coefficient vanishesd, or the average velocity of
each k mode in the Brillouin zone vanishes
independently:19–23,26,27

Škvk+Ãstdl‹ = 0. s14d

The latter is an equation for the parameters of the applied
field, which holds under the condition of Eq.s11d and

E
0

T

dt cosfÃstdng = 0 s15d

for all sitesn with nonzero overlapH0,n
s0d sRef. 27d slattices

with inversion symmetryd. This localization is in this case an
exceptionsa rather rare occasiond and is typically called “dy-
namic” localization.19–23,26,27

Here we would like to note the following. With the ac-
count of distant neighbors the electrons get localized under
more general conditions

o
n

nH0,n
s0dE

0

T

dt sinfÃstdng = 0,

o
n

nH0,n
s0dE

0

T

dt cosfÃstdng = 0, s16d

instead of Eqs.s11d and s15d. The parameters of the field in
these solutions, which are not simultaneously solutions to
Eqs. s11d and s15d, are dependent upon the electron disper-
sion or the overlap integralsH0,n

s0d . We will not consider such
“model-specific” solutions here, but concentrate on the cases
s11d and s15d, when localization is a consequence of time-
symmetry of the field and spatial symmetry of the system.
Within the tight-binding approximation the equationss16d
obviously reduce tos11d and s15d.

Under the conditionss11d and s15d the diffusion coeffi-
cient s10d vanishes, which signifies exceptional localization.
In the presence of relaxation the localization, however, is
never absolute and is weakly destroyed by higher order terms
in aT!1, which stem from Eq.s6d. The corresponding non-
vanishing term is of order,aT:

Dloc =
a

dT
E dk

VBZ
E

0

T

dtvk+ÃstdE
0

t

dt8vk+Ãst8dfNet8 − rk,ks0dtg,

s17d

where for brevity we assumedRk,ks0d=0.
The PD dc responses9d under the conditionss11d ands15d

also vanishes, i.e., it is sensitive to localization. Allowing for
slow relaxation we find that localization at short timeat
!1 is weakly destroyed by terms of the next orderaT, stem-
ming from Eq.s8d:

Škvl‹loc = −
a

T
E dk

rk,ks0d
VBZ

E
0

T

dt tvk+Ãstd

+
aNe

T
E dk fskdE

0

T

dtE
0

t

dt8vk+Ãstd−Ãst8d.

s18d

Additionally, the second term in Eq.s18d becomes zero
under exceptional localization for all fields, possessing shift
antisymmetry, Eq.s13d.

In conjunction with Eqs.s9d and s18d we would like to
note the following. Discussing the average velocity we can
adopt either one of the definitions—as an average of the
velocity over the period for timet, or as the average dis-
placement during timet, divided byt. In the second case the
result will incorporate contributions from all the electron dis-
placements prior tot. For our discussion with the electric
current in mind the first definition is more in place. The
second one might also be suitable for the discussion of spa-
tial aspects of localization. Both calculations, though, can be
performed easily in analytic form. The leading terms of the
short-time and long-time expansions in both cases coincide.

The PD ac response is not sensitive to exceptional local-
ization.

Next we consider the low scatteringaT!1 long time
at@1 periodic kinetic regimesPKd fEq. s7dg. In the long-
time limit the influence of initial coherent oscillations is lost
completely, and the electron evolution becomes notably dif-
ferent from the purely coherent quantum casefEqs.s2d, s3d,
ands9dg. The localization/propagation of the electrons can be
studied in transparent analytic form for slow relaxation, and
coherent effects are most pronounced in this limit.

The leading term of the electron wavepacket velocity at
long timet=mT+Dt, m@ saTd−1 stems from the second term
of Eq. s8d:

kvst = mT+ Dtdl =
Ne

T
E dk fskdE

0

T

dt8vk+ÃsDtd−Ãst8d,

s19d

plus higher order terms inaT.
Clearly, the kinetic low-scattering velocity Eq.s19d is dif-

ferent from the coherent one, Eq.s9d, which came from the
first term of Eq.s8d. It is periodic in time with periodT, 0
,Dt,T, and in the main term is independent of the scatter-
ing ratea, like Eq. s9d. Thus the ac response in regime PK is
typically nonzero with the leading term,saTd0. After aver-
aging over the period of the fieldsof any time dependenced,
the main term of the direct current obtained from Eq.s19d,
however, vanishes identically. Thus, in the low-scattering
long-time regime there is no average drift of the wavepacket,
independent of the scattering ratea, in contrast to the dy-
namic relaxation-free cases9d.

As before, the zero value of the averaged velocitysor
direct currentd derived from Eq.s19d for any field does not
necessarily mean localization. Indeed, in the kinetic regime
under consideration the diffusion coefficient obtained from
Eq. s6d,

D =
Ne

adT2 E dk

VBZ
FE

0

T

dtvk+ÃstdG2

, s20d

is not only nonzero, but in fact is big,,saTd−1. This signifies
the fast diffusive spreading of the electron wavepacket for
low scatteringslarge mean free pathd, and, correspondingly,
typical delocalization. We note here also that the kinetic ex-

CONTROL OF FIELD-INDUCED LOCALIZATION IN… PHYSICAL REVIEW B 71, 195311s2005d

195311-5



pressions20d cannot reproduce the dynamic zero-scattering
caseaT=0, when the electron propagates ballisticallyfEq.
s3dg. However, the stated divergenceD,saTd−1 “feels” that
transition foraT→0 correctly. On a qualitative level, ran-
dom scattering averages out the velocity, but contributes to
the diffusion coefficient.

The time-averaged velocity assumes typically nonzero
values in the next order,aT in contrast to Eq.s19d:

Škvl‹ =
aNe

T2 E dk fskdSTE
0

T

dtE
0

t

dt8vk+Ãstd−Ãst8d

+E
0

T

dtE
0

T

dt8st8 − tdvk+Ãstd−Ãst8dD . s21d

Equations21d is nonzero either in the presence of the dc
component of the applied field, or if the left-right symmetry
is violated otherwise, like, for example, in a bichromatic
field Estd=E1 cossvtd+E2 coss2vt+wd.29

After the above statement of substantial differences be-
tween the dynamic and the kinetic regimes it is interesting to
note that the exceptional localization in the low-scattering
long-time domain still exists exactly under the same condi-
tions s11d and s15d, as in the dynamic casescf. Ref. 20d.
However, the manifestations of the effect now are different:
whereas in the dynamic case we have vanishing direct cur-
rent with ac oscillations remaining nonzero, in the kinetic
regime we have vanishing leading term of the alternating
current,saTd0 for any Dt fEq. s19dg, and a somewhat more
complicated situation with the direct current. Namely, the
second term in the direct current,aT fEq. s21dg, under lo-
calization conditionss11d and s15d vanishes identically. For
the first one to vanish, however, the additional shift-
antisymmetry of the fields13d is required, or it remains typi-
cally nonzero otherwise. Thus, localization tends to decrease
the direct current by an order in the small parameter,aT
and does that exactly in the additional presence of shift-
antisymmetry of the field, which is rather common. Then the
leading nonzero term of the long-time kinetic current be-
comes the next one,saTd2:

Škvl‹loc = −
a2Ne

T2 E dk fskdSTE
0

T

dtE
0

t

dt8st − t8dvk+Ãstd−Ãst8d

+E
0

T

dttE
0

T

dt8t8vk+Ãstd−Ãst8dD , s22d

which corresponds to a weaker delocalization, as compared
to Eq. s21d. In the absence of shift-antisymmetry, the direct
current typically retains its order,aT, and is provided by
the first term in Eq.s21d.

The leading ac responses19d under localization condi-
tions s11d and s15d vanishes. Then the nonzero alternating
current is provided in next order,aT by Eq. s21d without
averaging overt—smaller than without localization:

kvst = mT+ Dtdlloc =
aNe

T
E dk fskdSTE

0

t

dt8vk+ÃsDtd−Ãst8d

+E
0

T

dt8t8vk+ÃsDtd−Ãst8dD . s23d

An important question is the diffusional spreading of the
wavepacket under localization. Interestingly, in the periodic
kinetic regime we find localization again, as it was in the
dynamic case. In fact, both leading terms of the diffusion
coefficient,,saTd−1 fEq. s20dg, and the next one,,saTd0,
vanish under localization conditionss11d and s15d. The re-
sulting diffusion coefficient, derived from Eq.s6d, is small
,aT:

Dloc =
aNe

dT
E dk

VBZ
FE

0

T

dtvk+ÃstdE
0

t

dt8st8 − tdvk+Ãst8d

−
1

TSE0

T

dt tvk+ÃstdD2G . s24d

This fact justifies the use of the term localization in the low-
scattering periodic kinetic regime.20 All the quantities of in-
terestsac and dc response, diffusion coefficientd reveal sen-
sitivity to exceptional localization.

Thus, in the periodic case the electron evolution in the
short-time dynamic and in the long-time kinetic regimes are
drastically different. However, field-induced coherent local-
ization exists in both regimes under exactly the same condi-
tions upon the parameters of the applied field. The typical
effect of localization is to decrease the corresponding quan-
tities by an order in the small parameteraT!1. Exceptions
are the kinetic diffusion coefficient, when the decrease is two
orders inaT, and the kinetic direct current, when additional
shift-antisymmetry of the field is required.

B. Commensurate case

Next we pass over to the commensurate case. It takes
place when the field parameters satisfy the following equa-
tion with some integersm ,m8:

E0T = −
"

e
Q

m

m8
or

v0

v
= U m

m8
U . s25d

After m8 periods of the external field the quantum evolu-
tion of the electronic system takes it back to the same states
in k space, as before. Equivalently, the gain of the wave
vectorDk during the period of the fieldT is commensurate
with some vector of the reciprocal latticeQ, or the projection
of the vector Bloch frequencyv0=eE0/" in the constant
component of the fieldE0 uponQ is commensurate with the
frequencyv of the time-periodic component.

In the commensurate regime the electron wavepacket ve-
locity fsee Eq.s5dg at arbitrary timet=mm8T+Dt swherem is
an integer, and 0,Dt,m8Td can be calculated as in the
periodic case by presenting the integral over time in Eq.s5d
as a sum ofm integrals overm8 periods each, and summing
up the corresponding series:
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kvst = mm8T + Dtdl

= e−asmm8T+Dtd E dk
rk,ks0d

VBZ
vk+ÃsDtd

+ aNee
−aDtE dk f„«skd…

3 S1 − e−amm8T

1 − e−am8T
E

0

m8T

dsDt8de−asm8T−Dt8dvk+ÃsDtd−ÃsDt8d

+E
0

Dt

dsDt8deaDt8vk+ÃsDtd−ÃsDt8dD . s26d

At short timeam8t!1 in the mainffirst in Eq.s26dg term
the electron evolves in the commensurate dynamicsCDd re-
gime with average velocity:

Škvl‹ = −
2

"m8T
E dk

rk,ks0d
VBZ

o
n

nH0,n
s0d

sinS1

2
mQnD

sinS1

2

m

m8
QnD

3E
0

T

dt sinFkn + Ãstdn +
m8 − 1

2

m

m8
QnG . s27d

In this section and in the next one we consider lattices
with inversion symmetry. The indefiniteness of the type0

0 in
Eq. s27d we eliminate by adding an infinitesimal« to
1
2sm /m8dQn and then passing to the limit«→0.

Within the tight-binding approximationsTBAd and under
the conditions25d, Eq. s27d results in a strict overall local-
ization for any periodic electric fieldscf. Refs. 21 and 27d.
The introduction of overlap beyond the first coordination
sphere, however, produces typically weak delocalization due
to neighborsN, situated on “resonant” equidistant planes,
satisfying

QN = 2pm8n s28d

with any integern and with Q and m8 the same as in Eq.
s25d.27,28 In 1d, for example, these are neighbors at distances
multiple of m8. The overlap with all the other “nonresonant”
sites produces oscillations only. Thus, due to neighborsN the
electron is weakly delocalized with wavepacket velocity
s27d:

Škvl‹ = −
2

"T
E dk

rk,ks0d
VBZ

o
N

NH0,N
s0d E

0

T

dt sinfkN + ÃstdNg,

s29d

which is small due to the small values ofH0,N
s0d .

Similarly, the leading term of the short-time CD diffusion
coefficient s3d sam8T!1,at!1d is formed by “resonant”
neighborss28d only:

D =
2t

d"2T2 E dk
rk,ks0d

VBZ
So

N
NH0,N

s0d E
0

T

dt sinfkN + ÃstdNgD2

−
2

d"T
E dk

Rk,ks0d
VBZ

o
N

NH0,N
s0d E

0

T

dt sinfkN + ÃstdNg

−
t

2dNe
Škvl‹2, s30d

wherekkvll is provided in Eq.s29d. Obviously, the short-time
diffusion coefficient, like the short-time direct current, is not
small inam8T, but is small inH0,N

s0d , and it grows in time,t,
which corresponds to propagation.

Exceptional induced localization for an arbitrary wave-
packet with the account of distant neighbors takes place, if
the field satisfies the same Eqs.s11d ands15d. In fact, for the
direct currents29d and the diffusion coefficients30d to van-
ish, it is sufficient for these conditions to hold for “resonant”
neighborsN, determined by Eq.s28d only, for sites with
nonzero overlap.

Under exceptional localization in the CD regime the elec-
tron is weakly delocalized by the next order term,am8T of
Eq. s26d. This term is equivalent to Eq.s18d with the substi-
tution T→m8T. With localization conditionss11d and s15d
imposed for all sitesn, this term is formed by both “reso-
nant” and “nonresonant” neighbors:

Škvl‹loc =
2a

"T
E dk

rk,ks0d
VBZ

o
N

NH0,N
s0d cosskNd

3E
0

T

dtt sinfÃstdNg

−
2aNe

"T
E dk fskdo

n
nH0,n

s0d cossknd

3E
0

T

dtE
0

t

dt8 sinfÃstdn − Ãst8dng, s31d

where we assumed symmetric initial band fillingrk,ks0d
=r−k,−ks0d. fIf we restrict the localization conditions to
“resonant” sites only, two more terms in Eq.s31d, coming
from “nonresonant” contributions, would appear.g The dc re-
sponses31d under localization becomes small in the param-
eteram8T, in contrast to Eq.s29d.

Away from localization there are four terms more to Eq.
s31d, coming from both “resonant” and “nonresonant” neigh-
bors. In some practical cases without localization this second
term,am8T of the direct current may be even bigger due to
“nonresonant” contributions than the main term,sam8Td0

coming from distant “resonant” sites onlyfEq. s29dg.
The nonvanishing diffusion coefficientDloc is of order

,am8T and can be obtained from Eq.s17d by substitution
T→m8T.

In reality it is rather hard to meet the requirements for
exceptional localization beyond the tight-bindingsor nearest-
neighbord approximationsTBAd rigorously, except for a rect-
angular step-wise alternating fieldssee examples belowd or
finite-radius-overlap approximations.
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Within TBA the asymptotics, formed solely by contributions from “resonant” distant neighborss28d, vanish. Then the
dynamic direct current in any field without exceptional localization becomes first order inam8T, in contrast to Eq.s29d:

Škvl‹TBA= −
a

"
sin−1Sp

m

m8
D o

nsTBAd
nH0,n

s0d E dk
rk,ks0d

VBZ
cosskndE

0

T

dt cosFp
m

m8
− ÃstdnG

−
aNe

"T
o

nsTBAd
nH0,n

s0d E dk fskdcosskndFcotSp
m

m8
DE

0

T

dtE
0

T

dt8 cosfÃstdn − Ãst8dng

+ 2E
0

T

dtE
0

t

dt8 sinfÃstdn − Ãst8dngG . s32d

This can be viewed as overallfi.e., in any field s25dg localization in comparison to the periodic regime and to the
commensurate one with long-range overlap.

Under localization conditionss11d ands15d the first two terms in Eq.s32d vanish, but the last one does not. This signifies
the considerable decreasesrigorously—eliminationd of the effect of exceptional localization within the commensurate tight-
binding approximation in comparison to the regimes PD and long-range-overlap CD.

Thus the reduction of the overlap radius to TBA in the CD regime increases overall localization. On this background the
direct current loses sensitivity to exceptional localization. The CD alternating current,sam8Td0, provided by the first term in
Eq. s26d, is qualitatively unaffected by neither TBA nor by exceptional localization.

The commensurate kineticsCKd regime takes place under the condition of Eq.s25d at long time,at@1. The main term of
the velocity derived from Eq.s26d at long timet=mm8T+Dt swith m an integer and 0,Dt,m8Td in the low-scattering limit
am8T!1 is given by

kvst = mm8T + Dtdl = −
2Ne

"T
o
N

NH0,N
s0d E dk fskdcosskNdE

0

T

dt8 sinfÃsDtdN − Ãst8dNg. s33d

Only “resonant” neighborsN fEq. s28dg contribute to Eq.s33d, like it was in the CD regimefEq. s29dg. However, this time
it is for the alternating currentsmain termd—Eq. s33d is periodic in time, whereas in the CD regime, considered previously, it
was for the direct current. Both cited quantities—the leading kinetic ac, Eq.s33d, and dynamic dc, Eq.s29d, responses for the
commensurate case are thus smaller than those for the periodic regime, as they are provided by overlap with distantNth
neighbors only. However, these main terms are not small in the relaxation rate,sam8Td0. The period of the alternating current
in Eq. s33d is m8T, i.e., the basic frequency in the response ism8 times lower than that of the input field.

The time average of the leading term of the velocitys33d is zero, so that there is no constant drift, independent of the
scattering ratea. The nonvanishing direct current is produced in the next order,am8T of Eq. s26d fit can also be obtained
from Eq. s21d with the substitutionT→m8T and some subsequent manipulationsg:

Škvl‹ = −
2aNe

"T
E dk fskdSo

n
nH0,n

s0d cosskndE
0

T

dtE
0

t

dt8 sinfÃstdn − Ãst8dng

+
1

2o
n8

n8H0,n8
s0d cosskn8dcotSp

ml

m8
DE

0

T

dtE
0

T

dt8 cosfÃstdn8 − Ãst8dn8g

−
2

T
o
N

NH0,N
s0d cosskNdE

0

T

tdtE
0

T

dt8 sinfÃstdN − Ãst8dNgD , s34d

where byn8 we denote the “nonresonant” neighbors, for whichQn8=2plÞ2pm8n. In contrast to the leading ac responsefEq.
s33dg it comprises contributions from all the sites, not only “resonant” ones. Thus it is not small inH0,N

s0d , and in some cases it
may exceed the amplitude of the leading alternating currents33d. The leading CK direct current without exceptional localiza-
tion is of the same order,,am8T, as the one in PK regime.

The main term of the long-time CK diffusion coefficientsam8T!1,at@1d is formed by “resonant” neighborss28d only, as
in the short-time cases30d:
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D =
2Ne

ads"Td2o
N

sNH0,N
s0d d2FSE

0

T

dt cosfÃstdNgD2

+ SE
0

T

dt sinfÃstdNgD2G , s35d

and, consequently, diffusion is slow,sH0,N
s0d d2. However,D is

big in ,sam8Td−1, as it was in the periodic case—diffusion
tends to be fast due to long mean-free path, but in fact might
be slow due to long-range overlap with “resonant” neighbors
only. We note that the study of the mean-square displace-
ment, based on Eq.s6d in the long-time domain is valid for
high temperatures and/or narrow bands, whenfskd→VBZ

−1.
With the distant overlap taken into account, exceptional

localization takes place under the same conditionss11d and
s15d for all sitesn. Then the leading term of the diffusion
coefficient s35d vanishes. In fact, it is sufficient for these
conditions to hold for “resonant” neighborss28d only sin the
long-range-overlap commensurate regime this is typically
the case for the leading terms of expansions that involved
single integration over the ranges0,m8Td—cf. Eqs. s29d,
s30d, ands33dd. Moreover, under exceptional localization not
only one, but two leading terms ofD vanish. The resulting
diffusion coefficient is of the order of,aT, as in regime PK,
Eq. s24d:

Dloc = −
2aNe

"2dT2Ho
N

sNH0,N
s0d d2E

0

T

tdtE
0

T

t8dt8 cosfÃst8dN

− ÃstdNg + To
n

snH̄0,n
s0d d2E

0

T

dtE
0

t

dt8st − t8d

3cosfÃstdn − Ãst8dngJ . s36d

Contrary to the leading terms35d, it comprises contributions
from both “resonant” and “nonresonant” sites.

Under localization the leading term of the long-time ac
response,sam8Td0, Eq. s33d, vanishes as well. Conditions
s11d ands15d for “resonant” neighborss28d suffice. The van-
ishing of the ac response is in analogy to PK regimes19d and
in contrast to the CD regime. Under induced localization the
ac response,am8T is formed by all sites, not only by “reso-
nant” neighbors:

kvst = mm8T + Dtdlloc

=
2aNe

"T
o
N

NH0,N
s0d E dk fskdcosskNd

3E
0

T

t8dt8 sinfÃst8dN − ÃsDtdNg

+
2aNe

"
o
n

nH0,n
s0d E dk fskdcossknd

3E
0

Dt

dt8 sinfÃst8dn − ÃsDtdng. s37d

In the expression of the direct currents34d under localiza-
tion the third and the second terms in figure brackets vanish,
but the first one does not. Thus, despite the existence of
exceptional localization in this case, manifested through the
diffusion coefficient, the direct current does not vanishsis
qualitatively “insensitive”d. This remaining dc response com-
prises contributions from all the neighbors, both “resonant”
and “nonresonant” and thus is not small in,H0,N

s0d . fIf we
limit localization conditions to “resonant” neighbors, Eq.
s28d, only the third term vanishes.g

The question whether the exceptional localization can be
observed in practice in the commensurate regime or not de-
pends, as noted above, on the relative magnitude of the ex-
pansion terms inam8T and inH0,N

s0d /H0,1
s0d.

From the provided consideration we deduce that typically
the localization criteria for the leading terms of the current
and diffusion coefficient in the long-range-overlap commen-
surate regime are provided by Eqs.s11d and s15d for “reso-
nant” sites only. The next order terms may be “not sensitive”
to exceptional localization.

The situation changes in the tight-binding approximation
sTBAd. If we reduce the overlap radius to nearest neighbors,
then the asymptoticss33d and s35d, formed solely by “reso-
nant” distant sitess28d, vanish, like it was in the CD case
above. The kinetic alternating current without exceptional
localization becomes first order,am8T in contrast to
,sam8Td0 in Eq. s33d:

kvst = mm8T + DtdlTBA

=
aNe

"
o

nsTBAd
nH0,n

s0d E dk fskdcossknd

3 F2E
0

Dt

dt8 sinfÃst8dn − ÃsDtdng

− sin−1Sp
m

m8
DE

0

T

dt8 cosSÃst8dn − ÃsDtdn − p
m

m8
DG ,

s38d

where summation runs over nearest neighbors. Under local-
ization conditionss11d and s15d the second term in Eq.s38d
vanishes, but the first one does not. Thus within TBA in our
terminology the ac response becomes “not sensitive” to ex-
ceptional localization.

The kinetic direct current within TBA retains its order
,am8T, like in the long-range-overlap CK regime. It is pro-
vided by the same Eq.s34d with the following modifications:
the third term vanishes, summation runs over nearest neigh-
bors, andl=1. Under localization conditionss11d and s15d
the second term of Eq.s34d vanishes as well, but the first one
does notfshift antisymmetry is not compatible with Eq.
s25dg. Thus the CK TBA direct current is qualitatively insen-
sitive to exceptional localization, like the long-range-overlap
direct currents34d was.

The CK diffusion coefficient decreases under TBA to or-
der ,am8T in contrast to Eq.s35d. The expression of it can
be obtained from Eq.s24d by the substitutionT→m8T and
some subsequent manipulations:
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DTBA=
aNe

2"2dT
o

nsTBAd
snH0,n

s0d d2FT sin−2Sp
m

m8
DE

0

T

dtE
0

T

dt8 cosfÃstdn − Ãst8dng

+ 2 cotSp
m

m8
DE

0

T

dtE
0

T

dt8st − t8dsinfÃstdn − Ãst8dng − 4E
0

T

dtE
0

t

dt8st − t8dcosfÃstdn − Ãst8dngG . s39d

Under exceptional localization the first two integrals in
Eq. s39d vanish, but the last one does not. Thus,DTBA is
qualitatively insensitive to exceptional localization, namely,
retains the same order,am8T. The reduction of the overlap
radius to TBA in the commensurate kinetic regime increases
the overall localization and, rigorously speaking, eliminates
the effect of exceptional localizations11d and s15d, at least
within the high-temperature approximation for diffusion.

In short, the commensurate regime typically exhibits
stronger overall localization than the periodic one—either in
smaller overlap, or extra order inam8T within TBA. With
long-range overlap, the exceptional localization is mani-
fested qualitatively similar to the periodic casesapart from
the factorH0,N

s0d d, while in the tight-binding approximation it
is practically eliminated.

Most formulas for the commensurate regime can be ob-
tained from those for the periodic case with the substitution
T→m8T and some subsequent manipulations. In fact, the

periodic regime can be viewed as a particular case of the
commensurate one withm8=1 sall sites are “resonant”d.
However, the periodic case is much more simple and trans-
parent. Besides, within the commonly used tight-binding ap-
proximation these regimes differ drastically. For these rea-
sons we considered them separately.

C. Incommensurate case

The incommensurate regime takes place when Eqs.s7d
and s25d do not hold, or, in other words, when there is no
reciprocal lattice vectorQ, parallel toE0, or the magnitudes
of all Q and v0T are incommensurate. Then the electron
wavepacket velocity at arbitrary timet=mT+Dt swherem is
an integer, and 0,Dt,Td can be calculated in analogy to
the previous cases by presenting the integral over time in Eq.
s5d as a sum ofm integrals over the field period each, and
summing up the corresponding series:

kvst = mT+ Dtdl

= e−atE dk
rk,ks0d

VBZ
vk+ÃsDtd−mv0T + aNee

−aDtE dk fskdSf1 − 2eaT cossv0Tnd + e2aTg−1

3E
0

T

dsDt8deaDt8fe−amTvk+ÃsDtd−ÃsDt8d−mv0T − e−asm−1dTvk+ÃsDtd−ÃsDt8d−sm+1dv0T

+ eaTvk+ÃsDtd−ÃsDt8d−v0T − vk+ÃsDtd−ÃsDt8dg +E
0

Dt

dsDt8deaDt8vk+ÃsDtd−ÃsDt8dD , s40d

where we made use of the symmetry ofrk,ks0d and fskd in
±k. Equations40d is valid for lattices with inversion symme-
try.

In the low-scatteringaT!1, short-timeat!1 incom-
mensurate dynamic regimesIDd the leading term of the ve-
locity is

kvst = mT+ Dtdl =E dk
rk,ks0d

VBZ
vk+ÃsDtd−mv0T. s41d

Obviously, the short-time ac responses41d is nonzero, like it
was in both periodic and commensurate dynamic regimes.
The calculation of the dc response requires some comments.

Contrary to the regimes PD and CD, the velocity Eq.s41d is
not periodic in time, even in the “quasistationary” limit of
slow relaxation. Hence there is no natural time period of
evolution for averaging to calculate the “dc” response—in
contrast toT in the periodic andm8T in the commensurate
case. To obtain the average short-time response we use the
short-time expansions41d and calculate the average over an
infinite time ranges0,mTd, m→`. The resulting leading
term of the dc response,saTd0 becomes zero always, as
m→`, in contrast to regimes PDftypical propagation in
order ,saTd0g and long-range-overlap CDftypically weak
delocalization due to distant “resonant” neighbors,saTd0g,
but similar to the tight-binding CD case.
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The nonvanishing incommensurate dynamic direct current
appears in next order,aT, like it was in the CD TBA re-
gime:

Škvl‹ =
aNe

"T
o
n

nH0,n
s0d E dk fskdcossknd

3 Fsin−1S1

2
v0TnDE

0

T

dtE
0

T

dt8 cosSÃstdn − Ãst8dn

−
1

2
v0TnD − 2E

0

T

dtE
0

t

dt8 sinfÃstdn − Ãst8dngG .

s42d

Under localization conditionss11d and s15d the first term
in figure brackets of Eq.s42d vanishes, but the second one
does not, in similarity with the CD TBA direct currents32d.
Shift antisymmetrys13d is incompatible with the incommen-
surability condition.

The leading term of the short-time diffusion coefficient
,saTd0 vanishes exactly. Thus, in the ID regime the elec-
trons are more localizedsoverall localization in any field,
satisfying incommensurability conditiond than in PD and CD
with long-range overlap, when the electrons typically drift in
order ,saTd0. However, the ID behavior is qualitatively
similar to overall localization in CD TBA. Within the
relaxation-free formulation Eq.s3d the mean-square displace-
ment has no components, growing with timesboth in short-
time and long-time limitsd.

In the incommensurate kinetic regimesIK d for low scat-
tering aT!1 the main term of the ac velocity in the long-
time limit at@1 is of the orderaT:

kvst = mT+ Dtdl

= −
aNe

"
o
n

nH0,n
s0d E dk fskdcossknd

3H2E
0

Dt

dt8 sinfÃsDtdn − Ãst8dng

−E
0

T

dt8FsinfÃsDtdn − Ãst8dng + cosfÃsDtdn

− Ãst8dngcotS1

2
v0TnDGJ , s43d

which is smaller than the corresponding typical responses
,saTd0 in PK and long-range CK regimes, and qualitatively
similar to CK TBA Eq.s38d. Obviously, the absence of reso-
nance between the field and the electron evolution in the
band decreases the oscillations.

In contrast to the incommensurate dynamic case above,
the kinetic long-time velocitys43d is time periodic with pe-
riod T and reveals no dependence onm. The external field,
together with relaxation, imposes its periodicity on electron
evolution, though coherent effects are still there. Under lo-
calization conditionss11d and s15d the second integral in
figure brackets of the ac response, Eq.s43d, vanishes, but the
first one does not. Thus the IK ac response does not become

zero under exceptional localization, in contrast to the corre-
sponding results for regimes PKs19d and long-range CK
s33d, and in analogy to CK TBA, Eq.s38d.

The incommensurate kinetic direct current is of the same
order,aT, as the ID dc response, and as the dc response in
regimes PK and CK:

Škvll = −
aNe

"T
o
n

nH0,n
s0d E dk fskdcossknd

3F2E
0

T

dtE
0

t

dt8 sinfÃstdn − Ãst8dng

− cotS1

2
v0TnDE

0

T

dtE
0

T

dt8 cosfÃstdn − Ãst8dngG .

s44d

Under conditionss11d and s15d the second integral in the
expression of the direct current Eq.s44d vanishes, while the
first one does not. Thus the IK direct current, as well as the
ac response, is qualitatively not sensitive to exceptional lo-
calization.

The leading term,saTd0 of the long-time IK diffusion
coefficient vanishes exactly in any field. Nonvanishing is the
next term,aT:

D =
aNe

2d"2T
o
n

nH0,n
s0d

3FT sin−2S1

2
v0TnDE

0

T

dtE
0

T

dt8 cosfÃstdn − Ãst8dng

− 2 cotS1

2
v0TnDE

0

T

dtE
0

T

dt8st − t8dsinfÃstdn − Ãst8dng

− 4E
0

T

dtE
0

t

dt8st − t8dcosfÃstdn − Ãst8dngG , s45d

which is much smaller than the corresponding result in re-
gimes PK ,saTd−1, and long-range CK,saTd−1, but is
qualitatively analogous to CK TBA,aT. Under localization
conditionss11d ands15d the first two terms in figure brackets
of Eq. s45d vanish, but the last one does not. Thus, Eqs.
s43d–s45d suggest that there is no rigorous exceptional local-
ization in regime IK—contrary to regimes PK, Eq.s20d, and
long-range CK, Eq.s35d, but in analogy to CK TBA, Eq.
s39d—at least in the approximation of uniform band filling,
Eq. s6d.

In short, the incommensurate regime typically exhibits
stronger overall localization, on a qualitative level similar to
the commensurate tight-binding case, with no rigorous ex-
ceptional localization above this background.

Apart from “pure” regimes, “mixed” cases are possible,
when along different axes different types of evolution take
place.
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D. Examples

Below we provide some particular examples, for simplic-
ity in one dimension, which illustrate the mentioned regimes.

s1d First we consider the ac harmonic field with phase
shift w: Estd=E sinsvt+wd, which always belongs to the pe-
riodic case. In the low-scatteringaT!1, short-timeat!1
dynamic regimesPDd the electron is typically delocalized
scf. Ref. 19d:

kkvll =
2

"
E dk

rk,ks0d
VBZ

o
n.0

nH0,n
s0d cosskndJ0s«ndsins«n coswd,

« =
eE

"v
. s46d

Here J0 is the Bessel function. The direct current vanishes
for w=p /2 scosine fieldd and for«=pn /cosw, wheren is an
arbitrary integer. However, typically the average velocity
s46d is nonzero, when Eqs.s11d and s15d are not fulfilled—
due to the initial-field-value effect in the absence of
relaxation.29 Exceptional localization is possible only in the
tight-binding approximationsTBAd under the condition
J0s«d=0.19

In the low-scatteringaT!1, long-time at@1 periodic
kinetic regimesPKd the leading term,saTd0 of the ac re-
sponse is typically nonzero:

kvstdl = −
2Ne

"
E dk fskdo

n.0
nH0,n

s0d cosskndJ0s«nd

3sinf«n cossvt + wdg. s47d

The dc response is identically zero—both the average of
Eq. s47d and the typically nonvanishing next terms21d.
There is no constant kinetic drift in the absence of dc field or
in the absence of left-right symmetry violationslike in a
bichromatic field29d. The kinetic diffusion coefficient is

D =
2Ne

ad "2 o
n.0

fnH0,n
s0dJ0s«ndg2. s48d

The long-time diffusion coefficients48d is independent of
phasew; averaged kineticsin contrast to dynamicd quantities
are time invariant. Exceptional localization is possible within
TBA only,20 J0s«d=0. Then the ac velocitys47d vanishes in
the main term,saTd0, along with the diffusion coefficient
s48d ,saTd−1. Under localization the nonvanishing term of
the diffusion coefficient, Eq.s24d, summed over the band
filling k, is positive and independent ofw as well.

s2d Next let us consider the alternating step-wise rectan-
gular field with a dc componentE0±E and periodT.19 First
we address the periodic regimev0T=2pm. In the low-
scatteringaT!1, short-timeat!1 periodic dynamic case
the average velocity is

Škvl‹ = −
4Dv

"Tsv0
2 − Dv2d E dk

rk,ks0d
VBZ

o
n

H0,n
s0d

3cosskndF1 − s− 1dmn cosSDvTn

2
DG , s49d

where Dv=eE"−1. Exceptional localization conditionss11d
and s15d with the account of all sitessincluding distant
neighborsd are fulfilled, if the field parameters satisfy either
one of the following conditions forh, whereDvT=2ph:

for m − even,h − any even integer,excepth = m,or

for m − odd,h − any odd integer,excepth = m. s50d

For h=m the direct currents49d vanishes as well, but the
diffusion coefficient does not.

In the periodic kinetic long-time low-scattering regime
sat@1,aT!1d the leading term,saTd−1 of the diffusion
coefficient is

D =
16NeDv2

ad"2T2sv0
2 − Dv2d2o

n

sH0,n
s0dd2

3F1 − s− 1dmn cosSDvTn

2
DG . s51d

Under exceptional localization, Eq.s50d, it vanishes en-
tirely. In contrast to that, in the leading term of the average
velocity ,aT,

kkvll =
4pamNe

"Tsv0
2 − Dv2d E dkfskdo

n

H0,n
s0d cossknd

3H1 −F1 − s− 1dmn cosSDvTn

2
DG

3
32Dv2

sv0
2 − Dv2d2n2T2J , s52d

under the conditions50d only the second term in figure
brackets vanishes. The dc responses52d, however, does be-
come zero with the additional shift-antisymmetrys13d,
which in this case is equivalent to the requirementm=0 sab-
sence of the dc componentE0 in the applied fieldd.

Next we consider the commensurate regime,v0m8T
=2pm. The dynamic direct current resembles Eq.s49d, with
the difference that it is formed by “resonant” neighborss28d
only fnote also the absence ofm8 in the exponent ofs−1dg:

kkvll = −
4Dv

"Tsv0
2 − Dv2d E dk

rk,ks0d
VBZ

o
n

H0,m8n
s0d cosskm8nd

3F1 − s− 1dmn cosSDvTm8n

2
DG . s53d
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Exceptional localization with the account of distant neigh-
bors takes place under the conditions50d with Dvm8T
=2ph.

The commensurate kineticsat@1,aT!1d diffusion co-
efficient in the leading term,saTd−1

D =
16NeDv2

ad"2T2sv0
2 − Dv2d2o

n

sH0,m8n
s0d d2

3F1 − s− 1dmn cosSDvTm8n

2
DG , s54d

is also formed by “resonant” neighbors only;N=m8n, n are
all positive integers. It vanishes under exceptional localiza-
tion Eq. s50d with Dvm8T=2ph as well. The CK direct cur-
rent ,am8T under exceptional localization does not vanish.

Within the tight-binding approximation the CK diffusion
coefficient is of higher order,am8T and is qualitatively
insensitive to exceptional localization. The same is true for
the CK TBA direct current. We do not provide the corre-
sponding rather lengthy expressions, which can be deduced
from Eqs.s39d and s34d. Similar conclusions are also valid
for the incommensurate kinetic regime, Eqs.s44d and s45d.

Thus, the alternating stepwise rectangular field provides a
rare example, when exceptional localization is rigorously
possible with the account of long-range overlap.

IV. CONCLUSIONS

In summary, we have considered analytically the field-
induced localization and response of electrons in a one-band
model conductor and the effect of relaxation in the nearly
coherent regime. All the provided expansions are exact
within the adopted constant-relaxation-time approximation,
Eqs.s5d ands6d. By discussing localization/delocalization we
always imply the leading term of the corresponding expan-
sion in slow relaxationaT. Besides, there are always higher-
order weakly delocalized terms.

For low scattering at short time the pure coherentsdy-
namicd quantum evolution is reproduced. In the dynamic
case the overall localization increases in passing from the
periodic through commensurate to the incommensurate re-
gime ftypical dc response decreases from,saTd0 to ,aT,
diffusion coefficient from,tsaTd0 to ,aT, ac response re-
tains its order,saTd0g. Under exceptional localization the
responses, in passing from the periodic through the commen-
surate to the incommensurate regime, retain their order.
However, on the background of the increasing overall local-
ization, the exceptional localization becomes less
pronounced—from the periodic regimesdc response,aT
instead of,saTd0d to the incommensurate onesdc response
,aT irrespective of exceptional localizationd. Localization
in the dynamic regime is manifested by oscillatory evolution
with no shift and no diffusive dispersion of the electron
wavepacket on average, in contrast to typical coherent propa-
gation in the periodic and in the long-range-overlap com-
mensurate regimes. Dynamic ac response under localization,
however, exists unaffected.

The low-scattering long-time kinetic regimes differ con-
siderably from the dynamic ones. The overall localization

increases in passing from the periodic through commensurate
to the incommensurate regime, though in a manner different
from the dynamic caseftypical dc response retains its order
,aT, diffusion coefficient decreases from,saTd−1 to ,aT,
ac response decreases from,saTd0 to ,aTg. Under excep-
tional localization the kinetic responses typically retain their
order in passing from the periodic through commensurate to
the incommensurate regimesexcept for the additional reduc-
tion of the dc current by one order inaT with the additional
requirement of shift-antisymmetry in the periodic cased.
Thus, upon the background of the increasing overall local-
ization, the exceptional localization becomes manifested less
squalitatively vanishesd in passing from the periodicfdc re-
sponse,saTd2 instead of,aT, ac response,aT instead of
,saTd0, diffusion coefficient ,aT instead of ,saTd−1g
through commensurate to the incommensurate regimesdc
response,aT, ac response,aT and diffusion coefficient
,aT—all irrespective of exceptional localizationd. We note
that localization did not affect qualitatively the ac response
in the dynamic case but does in the kinetic.

In the commensurate regime with the account of long-
range-overlap between the sites, some of the responsesspro-
vided by the leading terms of the expansions of velocity and
mean-square displacementd are formed not by all sites, but
by “resonant” neighborsN fEq. s28dg solely. These responses
are different in the dynamic casesdirect current and diffusion
coefficientd and in the kinetic onesalternating current and
diffusion coefficientd. The reduction of the overlap radius
down to the tight-binding approximationsTBAd decreases
these asymptotics at least by one order inam8T. In general,
the commensurate regime with long-range overlap has quali-
tatively much in common with the periodic one. The com-
mensurate tight-binding regime, on the contrary, resembles
the incommensurate one:

• In the periodic and long-range-commensurate dynamic
regimes the exceptional localization decreases the diffusion
coefficient from big scorresponding to propagationd,
,tsaTd0, to small,,aT, and the dc response from,saTd0

to ,aT, as compared to the delocalized case. The ac dy-
namic response remains unaffected. In the periodic and long-
range-commensurate kinetic regimes the exceptional local-
ization decreases the diffusion coefficient by two orders from
big, ,saTd−1, to small, ,aT, and the ac response by one
order in aT, as compared to the delocalized case. The dc
kinetic response typically remains qualitatively unaffected.

• In the tight-binding-commensurate and incommensurate
regimes, both dynamic and kinetic, the exceptional localiza-
tion does not change the order of either the diffusion coeffi-
cient, dc or ac.

The periodic regime, as compared to the long-range com-
mensurate one, however, has one additional aspect: in the
former case the field can additionally possess shift antisym-
metry, and then the PK direct current vanishes under excep-
tional localization, while to the latter regime that does not
apply.

Thus, in general, the field-induced localization “survives”
the introduction of slow relaxation, though in a modified
form. Two distinct types of localization might be considered:
overall localization based solely on commensurability of
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field frequency and Bloch frequency, and more subtle and
rare exceptional localization, which requires particular val-
ues of amplitudes, frequencies, and phases of field compo-
nents to satisfy two simple integral equations or some sym-
metry properties. Both the overall and exceptional
localization are manifested differently through the ac and dc
responses and diffusion in the dynamicsshort-time or
relaxation-freed and kineticslong-timed regimes, as discussed
above.

The stated qualitative differences between the dynamic
and kinetic regimes signify that the straightforward substitu-
tion of the quantum kinetic problemswith scattering/
relaxation includedd by a coherent relaxation-free formula-
tion is inadequate, except for the very short-time regime.
Because of that, the long-time kinetic results cannot even
reproduce the long-time coherentsor dynamicd case as a
limit for aT=0, and vice versa. However, some indirect
analogies between these cases are still present—between the
relaxation-free dc response and the kinetic ac response, for
example.

From the point of view of mathematics, the equations and
their solutions in the dynamic and kinetic regimes differ con-
siderably. However, the qualitative aspects of field-induced
localization/delocalization in both regimes have much in
common, while the conditions for localization exactly coin-
cide for slow relaxation.

The mathematical reasons for the cited differences be-
tween the dynamic and the kinetic regimes are the exponen-
tial damping of the kinetic velocity and the additional inte-
gral over time in Eqs.s5d and s6d, which accounts for the
implicit averaging over scattering events. The reason for the
similarity lies, however, in the same integral over time pe-
riod. In fact, similar averages appear in the calculations of
average dynamic velocitysdc response at short-timed and
momentary values of kinetic velocitysac response at long
timed, the latter averaged over scattering during the period of
the field. This is exactly the reason for the interrelation of
these two effectssdynamic and kineticd, which otherwise
could be entirely different. Another necessary ingredient for
that similarity is the slow-relaxation limit. Not only did it
allow the simple complete analytical study of the problem. It
also enabled the expansion of damping exponentials, which
otherwise would enter the kinetic localization criteria, ren-
dering these criteria, as well as the resulting formulas differ-
ent from the dynamicsor pure coherentd case.

The condition for the observation of either dynamic or
kinetic results is determined by the time of observation: at
short time, comparable to interscattering time the first one
takes place, while for long times, exceeding the inverse re-
laxation rate, the second one should be observed.

Obviously, the response in the periodic, commensurate,
and incommensurate regimes is considerably different. In re-
ality, however, due to the fluctuations of the field frequency
the response should be produced by some weighted average
of these routes with frequencies in thesclosed vicinity. Then
the typically delocalized regimessperiodic in the first placed
should provide the major escape channelsdelocalizationd. In
such a case the effect of exceptional localization can be used
to control response and electron localization by the field pa-
rameters.

The situation will be different for such a choice of basic
frequency, when there are no periodic-regime frequencies in
the vicinity. Even more to it, if the nearest-neighbor overlap
sor TBAd applies, then there will be no delocalized contribu-
tion from the commensurate regime as well. In such a case
the response will be governed entirely by the incommensu-
rate results, with little sensitivity of the response to excep-
tional localizationsneither parameter vanishesd.

Another point is that the delocalized regimes are pretty
rare, and in fact have an infinitesimal weight as compared to
the incommensurate one. If the signal is assumed to scan
some frequency range, it may be considered to populate the
neighboring frequencies equally, and that greatly diminishes
the weight of the periodic and commensurate contributions,
depending on the rate of interfrequency transitions. That also
works for the prevailing influence of the incommensurate
regime.

Yet another point is that the frequency-mixing processes
discussed above will take place in the intermediate time
range, and thus should bear some more resemblance to the
dynamic short-time case. That would mean the faster spread-
ing due to propagation in the delocalized regimes and their
increased contribution.

The situation will be different—much more simple and
transparent—in the case when the sample is electrostatically
shielded. Then the dc component is exactly zero and the pure
periodic regime of evolution takes place, with only the ac
input component fluctuating. Then the provided results for
the periodic regime can be applied directly, with all the var-
ied opportunities for coherent control of localization and re-
sponse.

We believe the stated mechanisms can be used for the
construction of sensors and novel devices for information
processing, based on superlattices in the low-temperature
nearly coherent regime. The necessary conditions might be
achievable, for example, on the outer surface of spaceships
in dark.

We will expand this study in future publications by intro-
ducing frequency fluctuations and different diagonal and
nondiagonal relaxation rates, and by lifting the limitation to
high temperaturessor uniform equilibrium band fillingd for
the long-time kinetic diffusion coefficient. The latter ap-
proximation is not only logically unsatisfactory for the
nearly coherent regime, but is expected to affect the corre-
sponding long-time asymptotics.

The localization/delocalization propertiessdc response, ac
response, diffusion coefficientd for all the regimes at low
scatteringaT!1 are summarized in Table I.

Due to the fast decrease of overlap integralsH0,n
s0d with n,

the effect of exceptional localization in superlattices might
be qualitatively well observable in many cases when it holds
for nearest-neighbor sites only.

Finally let us address the question of observability of the
considered effects in experiments on GaAs/GaAlAs semi-
conductor superlattices. The relaxation timea−1 we assume
,1 ps sRef. 10 atT=10 K, Ref. 26d. To meet the slow-
scattering conditionaT!1, the laser frequency should be
high enough,n=v /2p=1/T@a=1 THz, in our case. On the
other hand, for the one-band approximation to be valid, the
laser photon energy should be smaller than the bandgapD,
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n!D /h. For the bandgap to be bigger, the superlattice GaAs
wells should be narrow enough and the spacer GaAlAs lay-
ers should be thick enough. For example, in Ref. 50 they are
5.5 and 32.5 nm, respectively, so that the bandgap is
152 meV. For the interband transitions to be negligible, we
assume the upper limiting frequency,10 THz, correspond-
ing to photon energy,40 meV. Thus there should be a
rather narrow range for the laser frequency inbetween 1012

and 1013 Hz, where our results for the coherent control of
induced localization through intraband evolution should be
valid. The manufacture of bigger-bandgap superlattices with
longer relaxation timeslower-temperature measurementsd
should increase the range of its applicability.

In optical superlattices the relaxation processes are much
slower, so that the conditions for the observation of the con-
sidered effects are more favorable. For example, the apparent
deviation from the constant velocity at short time in the inset
of Fig. 2 of Ref. 44 obviously is due to the stated difference
between the short-time and long-time response.

The study of the dynamicsshort-timed regime in semicon-
ductor superlattices requires subpicosecond measurements.
For all-optical response it is accessible, though such mea-
surements of transient currents pose more problems.2,5,6,13,45

In contrast to that, optical lattices require the time scale of
only ,1–10ms sRefs. 43 and 44d, which should be quite
accessible. In any case, the provided theoretical consider-

TABLE I. Systematization of regimes of intraband evolution for electrons in a one-band model in a time-periodic electric field. By* we
mark formulas with modifications, cited in the text. ByL we mark equations that require additional shift-antisymmetry for exceptional
localization. By † we mark quantities qualitatively insensitive to exceptional localization and by‡—totally insensitive ones.

Dynamic sshort time,at!1d Kinetic slong time,at@1d

Periodic,v0/v=m stypically delocalizationd

dc not small,saTd0, Eq. s9d dc small,aT, Eq. s21d
ac always not small,saTd0, Eqs.s2d and s8d * ac not small,saTd0, Eq. s19d
Diffusion coefficient bigD, tsaTd0, Eq. s10d Diffusion coefficient big,saTd−1, Eq. s20d

Exceptional localization

dc small,aT, Eq. s18d dc smaller,saTd2 L, Eq. s22d
ac always not small,saTd0, Eqs.s2d and s8d *‡ ac small,aT, Eq. s23d
Diffusion coefficient small,aT, Eq. s17d Diffusion coefficient small,aT, Eq. s24d

Commensurate,v0/v=m /m8 stypically weak delocalization, TBA—localizationd

dc not small,sam8Td0, but small inH0,N,
Eq. s29d

dc small,am8T, Eq. s34d

f,am8T within TBA, Eq. s32dg f,am8T within TBA, Eq. s34d *g
ac always not small,sam8Td0, Eq. s26d * ac not small,sam8Td0, but small,H0,N Eq. s33d

fsame within TBAg f,am8T within TBA, Eq. s38dg
Diffusion coefficient bigD, tsam8Td0, but small inH0,N
Eq. s30d

Diffusion coefficient big,sam8Td−1, but small inH0,N,
Eq. s35d

f,am8T within TBAg f,am8T within TBA, Eq. s39dg

Exceptional localization

dc small,am8T, Eq. s31d dc small,am8T, Eq. s34d *†

fsame order,am8T within TBA, Eq. s32d *g f,am8T within TBA, Eq. s34d *†g
ac always not small,sam8Td0, Eq. s26d *‡ ac small,am8T, Eq. s37d

fsame within TBA ‡g f,am8T within TBA, Eq. s38d *†g
Diffusion coefficient small,am8T, Eq. s17d * Diffusion coefficient small,am8T, Eq. s36d

f,am8T within TBA, Eq. s39d *†g

Incommensurate,v0/vÞm /m8 slocalizationd

dc small,aT, Eq. s42d dc small,aT, Eq. s44d
ac always not small,saTd0, Eq. s41d ac small,aT, Eq. s43d
Diffusion coefficient small,aT Diffusion coefficient small,aT, Eq. s45d

Exceptional localization—all parameters qualitatively insensitive
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ation of the short-time dynamic regime we hope will serve
for the clarification of the nontrivial time evolution of the
response and coherent control in superlattices.

We believe that the field-induced localization effects, ex-
ercised through intraband evolution, can be observed at low
temperatures in the electromagnetic response of high-quality
semiconductor superlattices, quantum wires, and dot arrays
in the mid-THz range, along with optical lattices. We hope
that the mechanisms discussed here could serve for the con-

struction of novel sensors and ultrafast information-
processing devices.
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