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The effect of surface plasmon–LO-phonon excitations of the doped elements of heterostructures in the
electronic dynamics of quantum dots has been theoretically studied in a double heterostructure. It has been
found that, in contrast to a single heterostructure, critical points can arise in the surface plasmon–LO-phonon
density of states for layered structures. This results in enhanced quantum-dot intraband carrier relaxation as
compared with the single heterostructure. It has been shown that the relaxation rates and spectral positions of
relaxation windows strongly depend on the thickness of the layer containing the quantum dots. These effects of
the critical points of density of states have been demonstrated using a model n-GaAs/GaAs/air heterostructure
with an InAs quantum dot embedded in the GaAs layer.
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I. INTRODUCTION

The problem of energy and phase relaxation in quantum
dotssQDsd is of great interest not only for fundamental phys-
ics, but it also becomes increasingly important for nanoelec-
tronic applications. The creation of high-quality single-
electron transistors,1 logic elementssquantum bitsd,2 memory
cells,3 and lasers4 based on quantum-dot heterostructures re-
quires detailed information on the relaxation parameters of
the systems in question. This problem is especially important
because nanoelectronic devices should be incorporated into
large integral circuits with closely packed structural ele-
ments. Recent estimations allow one to expect that the char-
acteristic distances between the elements of the integral cir-
cuits will fall within the range of several tens of nanometers.
It is believed that the 22 nm logic technology will be used to
fabricate high-performance microprocessors and static ran-
dom access memorysSRAMd chips at the close of the de-
cade. That is why the questions as to the mutual influence of
the nanoelectronic devices and how they are affected by the
metallic and doped semiconductor components of the hetero-
structures and integral circuitssinterconnectors, contacts,
substrates, buffer layers, etc.d become topical. Therefore,
studies on the interactions with characteristic distances of
several tens of nanometers, which induce energy and phase
relaxation processes in QDs, are of great importance.

In recent years much attention in this field has been paid
to the relaxation processes caused by interactions with dif-
ferent elementary excitations localized inside a quantum dot
or at its interface. The effects of confined and interface op-
tical phonons5–10and plasmons11–13on the QD electronic dy-
namics have been investigated. Multiphonon mediated intra-
band relaxation processes involving longitudinal optical
sLOd and acoustic phonons have been studied.8,10,14,15 A
defect-assisted multiphonon emission mechanism16–18 has
been suggested to explain the fast carrier relaxation in quan-
tum dots. Important theoretical6,19 and experimental20 data

concerning energy relaxation have been obtained in studies
of the polaronlike states in QDs. In this case the energy
relaxation results from the crystal anharmonicity which de-
termines the finite lifetime of the optical phonons involved in
the polarons. The Auger-like process21,22 is considered as
another effective mechanism of intraband carrier relaxation.

Since actual QD-based devices are complicated hetero-
structures composed of many componentsse.g., the host ma-
trix, quantum wells and wires, capping, buffer, and wetting
layers, etc.d, several studies on the QD electronic dynamics
affected by interactions with the environmental elementary
excitations have been performed. The interaction between
the QD electronic subsystem and the barrier and/or matrix
optical and acoustical phonons7,8,23–25has been investigated.
The influence of the nearest surroundings on the QD dynam-
ics has been studied in some works. For example, the homo-
geneous broadening of optical transitions in self-assembled
quantum dots caused by the elastic Coulomb collisions be-
tween carriers in the wetting layer and in the dots26 has been
analyzed. The QD electronic dephasing caused by charge
fluctuations in the impurity state due to its recharging
through the free electron reservoir2 has been investigated. On
the other hand, not only the environmental free charges, but
also the plasmons and plasmon phonons, which reside in
doped heterostructure components, will interact with the QD
electronic subsystem. It is clear that the QD carriers will
strongly interact with environmental excitations accompa-
nied by the electric fields at close contact of the dots with the
doped components. These components, e.g., doped sub-
strates, are often located several tens of nanometers away
from the quantum dots. Even so, the QD electronic sub-
system can be strongly coupled with plasmons or plasmon
phonons of the doped substrate. This coupling results in new
intraband relaxation mechanisms in the QDs. This type of
relaxation process involving the bulk and surface
plasmon–LO phonons has been studied in some works.27,28It
has been shown that the QD intraband carrier relaxation with
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an emission of the substrate bulk and surface plasmon–LO-
phonon modes may be sufficiently effective even if the dis-
tance between the QD and the substrate is about 100 nm. If
the distance equals several tens of nanometers, then these
relaxation mechanisms can be dominant. Since the relaxation
rates and the spectral positions of the corresponding relax-
ation windows are determined by the dispersion of the
plasmon–LO-phonon modes, intuition suggests that the re-
laxation process with the bulk plasmon–LO phonons weakly
depends on the heterostructure design. On the other hand,
one would expect that the coupling between the QD elec-
tronic subsystem and the substrate surface plasmon–LO
phonons is strongly affected by the heterostructure’s archi-
tecture. The reason is that the dispersion of the surface
plasmon–LO-phonon modes depends on the heterostructure’s
arrangement as the polaritonic excitations do.29

In this work we study the influence of the heterostruc-
ture’s design on the surface plasmon–LO-phonon dispersion
and density of states. We show that critical points can arise in
the density of states for layered heterostructures. The exis-
tence of the critical points results in an enhancement of the
QD intraband carrier relaxation via interaction between the
carriers and the electric potential induced by the surface
plasmon–LO-phononsSPLPd modes in the doped elements
of heterostructures.

II. THE HYDRODYNAMIC MODEL OF THE SURFACE
PLASMON–LO-PHONON EXCITATIONS

In order to demonstrate the important role of the hetero-
structure’s design in the SPLP excitations and in the coupling
between the QD carriers and the SPLP modes let us consider
a simple model of a double heterostructuresFig. 1d. The
heterostructure is composed of a half space filled with a
doped semiconductor with a plane interface and an undoped
semiconductor layer with a thicknessb. The quantum dot is
located at a distancea from the doped material. We will find
the SPLP eigenmodes and the electric potential induced by
them at the dot position using an approach used earlier27,28

for the description of the plasmon–LO-phonon modes in a
single heterostructurese.g.,b→`d. The quantum dot is con-
sidered here as a probe for electric fields induced by the
SPLP, and therefore the dot and/or SPLP interaction does not
noticeably perturb the SPLP and QD energy spectra.

Our approach is based on the combination of the hydro-
dynamic model30,31 for plasmons and the local dielectric for-
malism for dispersionless optical phonons. Although the hy-
drodynamic model has well-known limitations in
quantitative analysis,32,33among which it is worth noting that
the presumption about a local statistical equilibrium in every
point of space and the long-wave limit of the kinetic equa-
tion, this macroscopic description of many-electron problems
offers some advantages over microscopic descriptions, e.g.,
random phase approximation, because it allows one to obtain
the simple and physically transparent qualitative results con-
cerning the spatially inhomogeneous systems. Particularly
the dispersion relation of the SPLP modes and electric field
induced by them can be easily calculated. The hydrodynamic
model is successfully applied to various kinetic
problems30–37 that allow us to compare our results and well-
known results30,31 by means of the consideration of corre-
sponding limiting cases.

The starting point for our consideration of the SPLP ex-
citations is the Bloch equations describing the hydrodynamic
motion of electron gas coupled with the electromagnetic and
LO-phonon fields,27,28
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wherensr ,td, psr ,td, andvsr ,td are the macroscopic density,
pressure, and velocity of the electron gas,m is the effective
mass of the free carriers,wsr ,td is the self-consistent electro-
static potential,N0 is the impurity density,usr ,td and r are
the relative displacement and reduced-mass density of the
ion pair, a=vTfs«0−«`dr /4pg1/2, vT is the frequency of
transversal optical phonons at the Brillouin-zone center, and
«0 and «` are the low- and high-frequency dielectric con-
stants, respectively. For simplicity’s sake, we neglect the re-
tardation effects and the dispersion of optical phonons. The
systems1d becomes complete when the state equation defin-
ing the connection betweennsr ,td, psr ,td, and temperature is
specified. In general, this connection for electron gas is im-
plicitly determined by the couple of equations,

n =
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,
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whereT and m are the temperature in energy units and the
chemical potential, respectively. In the cases of nondegener-

FIG. 1. The double heterostructure considered in the model.b is
the thickness of the undoped layer, anda is the distance between the
doped semiconductor and the quantum dot.
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ate and degenerate electron gas, the systems2d is reduced to
simple state equations,p=nT and p=s3p2d2/3"2n5/3/5m, re-
spectively. For a strong coupling between LO phonons and
plasmons, the closeness of their frequencies is necessary. We
restrict our consideration to the second case since the LO-
phonon and plasma frequencies are values of the same order
of magnitude at an electron concentration of about
1018 cm−3, when electron gas is degenerate as a rule. Then,
we suppose that the electron gas motion is laminar and can
be described by the velocity potentialcsr ,td according to
=c=−v. Then Eqs.s1d become
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whered=s3p2d2/3"2/2m. It is easily seen that the systems3d
is a set of the Euler equations for the following Lagrangian:
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Using the standard linearization procedure, which consists in
a series expansion ofn=n0+n1+n2+¯, c=c1+c2+¯, w
=w0+w1+w2+¯, andu=u1+u2+¯ in their deviations from
equilibrium values, we obtain the following linear system of
coupled equations:
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as a first approximation. Heren0 is the electron concentration
andb=s2dn0

2/3/3md1/2 is the speed of the propagation of the
hydrodynamic disturbance in the electron gas. The Hamil-
tonian corresponding to Eqs.s4d is given by
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Hereinafter the subscript 1 will be omitted for simplicity.
The solution of the systems4d with the appropriate

boundary conditions allows the finding of the SPLP
eigenmodes, their dispersion, and the self-consistent electric
potential induced by the modes. For the program to be
made, we considered Eqs.s4d in all regions of the
heterostructuresFig. 1d and solved them for the dopedsdd
and undopedsud parts of the heterostructure, as well as for
air sad. For matching the solutions, the following boundary
conditions were used: an equality to zero of the normal
component of hydrodynamic velocity, udcd/dzuz=0=0,
and a continuity of the self-consistent electric potential,
wdu z=0=wuu z=0, wuu z=b=wau z=b, as well as the normal
component of electric displacement,u«dsvddwd/dzuz=0

= u«usvddwu/dzuz=0, u«usvddwu/dzuz=b= udwa/dzuz=b, where
«isvd=«i`sv2−viL

2 d / sv2−viT
2 d for i =d or u, andviL are the

limiting frequencies of longitudinal optical phonons. Analy-
sis has shown that the SPLP modes occur near the interface
between doped and undoped materials if the following in-
equality is satisfied:

b2Gq
2 = vp

2 «d`

«dsvd
+ b2q2 − v2 . 0, s6d

where q is the two-dimensional wave vector of the SPLP
excitation andvp=Î4pn0e

2/«d`m is the plasma frequency.
Then we obtain that the SPLP modes have two branches,
"vs±sqd, of the dispersion relation determined by the equa-
tion

b2GqsGq + qd =
vp

2

2

«d`

«dsvd
2«svd

«svd + «dsvd
, s7d

where«svd=«usvdh−svd /h+svd,

h±svd = 1 ±
«usvd − 1

«usvd + 1
e−2qb. s8d

Figure 2sleft paneld illustrates the dispersion relation for the
case when both the doped and undoped parts of the hetero-
structure are filled with the same materialsGaAsd. One can
see that the branches"vs±sqd have minima at the nonzero
value of the wave vectorqd±. These minima result from the
availability of the second interfacesGaAs/aird between the
mediums with essentially different dielectric constants. The
depths,vs±s0d−vs±sqd±d, and positionsqd± of the minima
depend on the undoped layer thicknesssbd sFig. 3d. Such
points of the quasiparticle energy spectra, where
gradq vsqd=0, are called critical points. In the case consid-
ered, since the functionsvs±sqd are isotropic in theq space,
the critical points form circles with radiiqd±. The critical
points qd± in the energy spectra result in the appearance of
critical points"vd±="vs±sqd±d of the SPLP density of states,
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Gs±s"vd =E dq

s2pd2df"v − "vs±sqdg. s9d

It should be emphasized that the critical points of this type
are absent in the case of a single heterostructure.28 This can
be seen from Eq.s7d in the limiting case,b→`. The SPLP
density of statessDOSd corresponding to the dispersion
branches"vs±sqd plotted in Fig. 2sleft paneld is shown in the
right panel of Fig. 2. Performing a simple analysis of Eq.s9d,
one can see that the DOS diverges ass"v−"vd±d−1/2 at the
critical points"vd±. Although this behavior of the DOS is
typical of one-dimensional systems,38 our result obtained for

the two-dimensional problem is not surprising because the
isotropy of the SPLP dispersion reduces the dimension of the
system considered. The aforementioned characteristics of the
DOS should be expressed in the SPLP-assisted processes.

The use of the solution of the systems4d for the secondary
quantization of the fields involved in the Hamiltonians5d is
equivalent to an introduction of the SPLP excitations with
the creationsannihilationd operators,bq j

+ sbq jd, wherej =+ and
2. As a result, the Hamiltonians5d takes the form,

H = o
q j

"vsjsqdsbq j
+ bq j + 1/2d,

and the self-consistent electric potential induced by the SPLP
modes can be represented as
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wherex is the coordinate vector in the interface plain,
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In Eqs. s11d–s14d v equalsvs+sqd or vs−sqd and L2 is the
normalization area.

Obviously, the coupling between the SPLP modes and any
charged excitations, e.g., electrons and holes, can be ex-
pressed by the operatorewssr d. This type of interaction cor-
responds to the SPLP-assisted light absorption, lumines-
cence, and Raman scattering, as well as the intraband carrier
relaxation. As an example, the relaxation process developing
in the QD electronic subsystem will be considered in the
next section.

FIG. 2. Left: The dispersion branches"vs±sqd for the SPLP
modes in the double n-GaAs/GaAs heterostructuresFig. 1d. The
concentration of free electrons equalsn0=1018 cm−3. The thickness
of the undoped GaAs layer is 50 nm. Right: The density of states
sDOSd corresponding to the SPLP branches. The symbol` marks
the critical points in which the DOS diverges ass"v−"vd±d−1/2.

FIG. 3. Top: The depth of the minima in the highs1d and low
s2d energy dispersion branches"vs±sqd of the SPLP modes in the
doublen-GaAs/GaAs heterostructuresFig. 1d as a function of the
thicknesssbd of the undoped GaAs layer. Bottom: The position of
the minima as a function of the thicknesssbd of the undoped GaAs
layer. In both cases the concentration of free electrons equalsn0

=1018 cm−3.
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III. INTRABAND RELAXATION RATES
OF QUANTUM DOTS

The results described in the previous section allow one to
calculate the intraband relaxation rates of QD electrons or
holes due to the interaction with the doped part of the double
heterostructuresFig. 1d via the electric potentials10d induced
by the SPLP modes. This coupling gives rise to the transi-
tions between the initialsEid and finalsEfd states of the elec-
tron sholed upon emission or absorption of the SPLP quanta.
Supposing that the temperatures are relatively small,
vs±sqd /kBT@1, we can restrict our consideration to the re-
laxation processes with the emission of the SPLP modes.

The intraband relaxation rates can be calculated by differ-
ent methods, e.g., in the framework of the Wigner-Weisskopf
coupled-mode equation approach used for analysis of the
phonon bottleneck in quantum dots.6 Instead, for simplicity’s
sake, we employ the Fermi golden-rule-based method
which is commonly used for such types of
calculations.5,14,17,18,21,23–25

The rates of the intraband transitions as a function of the
intraband QD level spacingV=sEi −Efd /" are given by

Ws
sf,id =

2p

"2 o
q j

zki uewq jszdeiqxuflz2e−2qadfV − vsjsqdg,

s15d

where the origin of the coordinates is chosen at the QD po-
sition a. In the general case, the initial, final, or both QD
states are degenerate in some quantum numbers which will
be marked by primes in the equation below. To take into
account this degeneration in Eq.s15d, one should use the
operationAv f,i, implying averaging over the degenerate ini-
tial QD statesui , i8l and summation over the degenerate final
QD statesuf , f8l. As a result we obtain the following expres-
sion for the intraband relaxation rate:

Ws
sf,id =

2p

"2 o
q j

Fj
sf,idsqde−2qadfV − vsjsqdg, s16d

where the function

Fj
sf,idsqd = Av f,izki,i8uewq jszdeiqxuf, f8lz2 s17d

contains all information on QD parameters. Equations16d is
similar in its mathematical structure to the SPLP density of
statesfEq. s9dg; hence, the relaxation rate will diverge at the
DOS critical points. In order to avoid this problem, we re-
place thed function in Eq.s16d by the Lorentzian

dfV − vsjsqdg → 1

p

g

fV − vsjsqdg2 + g2 , s18d

whereg=1/2sgi +g f +gsd+gpd is the total dephasing rate of
the transition between the initial and final QD states,gi, g f,
and gs are the inverse lifetimes of electronsholed statessi
and fd and the SPLP excitationsssd, and gpd is the pure
dephasing rate. The phenomenological parameterg in Eq.
s18d is determined by the relaxation processes differing from
SPLP-assisted relaxation.

Further analysis of the intraband carrier relaxation is pos-
sible only for a particular QD model. Let us consider a cy-

lindrical quantum dotsFig. 4d frequently used for modeling
real QD systems.39–41We will restrict ourselves to the case of
the strong confinement regime, i.e., suppose that the height
shd and radiussr0d of the QD are smaller than the exciton
Bohr radius of QD bulk material. For definiteness’ sake, we
will consider the intraband hole relaxation. Similar results
can be obtained for the electronic relaxation. The energy
spectrum and wavefunctions of the hole states in a cylindri-
cal QD, provided there is an infinite potential barrier, are
given by

Cknlsr d =Î 2

phr0
2

Jlsjlnr/r0d
Jl+1sjlnd

sinSpk

h
zDeilw, s19d

Eknl =
"2

2mQD
Sp2k2

h2 +
jln

2

r0
2D , s20d

wherek=1,2,3, . . .,jlm is thenth zero of the Bessel function
of the lth order fJlsjlnd=0g, and mQD is the hole effective
mass. The use of Eqs.s19d ands20d for calculating the func-
tion Fj

sf,idsqd gives the following result:

Fj
sf,idsqd =

2e2wq
2Bsl fd

h+
2svd

fTkf

ki sqdIkf

ki sqdJl fnf

l ini sqdg2, s21d

whereBsl fd=1 for l f =0, andBsl fd=2 for other cases,

Tkf

ki sqd = „1 + s− 1dkf+kifh+svd − 1geqsh+2ad
…,

Ikf

ki sqd =
4p2qhf1 − s− 1dkf+kie−qhgkfki

fq2h2 + p2skf − kid2gfq2h2 + p2skf + kid2g
, s22d

Jl fnf

l ini sqd = 2E
0
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dxx
Jl f

sjl fnf
xdJli

sjl ini
xdJli−l f

sqr0xd

Jl f+1sjl fnf
dJli+1sjl ini

d
,

andv=vsjsqd. Finally, the intraband relaxation rate of holes
is given by

Ws
sf,id = o

j
E

0

` dq

p

Bsl fdmGqv

"n0s2Gq + qdsssvd
g

sV − vd2 + g2

3 F «d`

h+svdf«dsvd + «svdg
vp

2

v
G2

3 fTkf

ki sqdIkf

ki sqdJl fnf

l ini sqdg2e−2qa, s23d

where, as before,v=vsjsqd.
In real quantum dots based on III-V semiconductors the

hole energy spectra have complicated structures due to the

FIG. 4. The scheme of a cylindrical quantum dot. Several low
energy hole states for the strong confinement regime are shown.
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highly anisotropic valence band and the heavy and light hole
state mixing.42 Moreover the built-in strain resulting from
the lattice mismatch between the quantum dot and the matrix
materials can essentially modify the hole spectra.42 Since we
take an interest in the qualitative features of the relaxation
process we neglect these effects and use the simple quantum
dot model with single isotropic and parabolic valence bands
corresponding, e.g., the heavy holes.

For illustration of the peculiarities of the intraband hole
relaxation in the double heterostructuresFig. 1d let us con-
sider the InAs cylindrical QD with a fixed hight,h=5 nm,
and restrict ourselves to several low-energy hole states with
the quantum numberk=1: u1l= un=1,l =0l, u2l= un=1,l =1l,
u3l= un=1,l =2l, and u4l= un=2,l =0l ssee Fig. 4d. In all cal-
culations the effective masssmQD=0.41m0d of heavy holes
for the InAs QD has been used. The qualitatively same re-
sults are obtained if using the effective mass values in the
range of 0.43–0.35m0 that are reasonable for InAs.43 A re-
lation of r0=Î"sji

2−j j
2d / s2mQD

2 Vd swhere i =2,j =1 or i
=3,j =2 or i =4,j =2d between the QD radius andV was
employed for taking into account the variations of the level
spacing energy with the QD size. If the QD size is fixed and
the level spacing energy is varied by other means, e.g., by
the arbitrary changing ofV in the equations, the qualitatively
same spectra of the relaxation rates have been obtained. Fig-
ure 5 shows the hole relaxation ratesfEq. s23dg as a function
of the level spacingV for transitionsu2l→ u1l, u3l→ u2l, and
u4l→ u2l in the quantum dot embedded in the undoped GaAs
part of the heterostructure at a distancea=40 nm from its
doped GaAs part. One can see that two relaxation windows
corresponding to the highfvs+sqdg and low fvs−sqdg energy
dispersion branches of the SPLP modes are opened. The re-
laxation rates are sufficiently large and are of the same order
of magnitude for all three transitions. In calculations we as-
sume that the undoped layer thicknesssbd and the transition
dephasing ratessgd are equal to 50 nm and 0.05 meV, re-
spectively. Figure 6 shows the relaxation rate spectra for dif-
ferentb for the u2l→ u1l transition and the same spectrum for
a single heterostructure.

Three main distinctions between the double and single
heterostructures are clearly seen. The existence of the critical
points of the SPLP DOS for the double heterostructure re-
sults in a significant enhancement of the intraband relaxation
rates compared with the single heterostructure. Furthermore,
the narrowing of the spectral widths of the relaxation win-
dows takes place. Finally, the spectral positions of the relax-
ation windows are shifted toward higher energies with de-
creasing of the undoped layer thickness. Certainly, the
enhancement value strongly depends on the transition
dephasing ratesgd. Although the reliable data ong are lack-
ing, we can estimate the lower limit ofg. In accordance with
the results obtained by several research groups,44–48the elec-
tronic sholed dephasing rates in QDs at low temperatures
vary from severalmeV to several tens ofmeV. Therefore, in
our calculations, ag value of 50meV was used. On the other
hand, the inverse lifetimesgsd of the SPLP modes contributes
to g additively. Its value is unknowna priori. In order to

FIG. 7. Hole relaxation rates as a function of the level spacingV
of the intraband transitionu2l→ u1l for different dephasing rates
sgd: the solid lines,g=0.05 meV; the dashed lines,g=0.5 meV.
The symbols SH and DH indicate single and double heterostruc-
tures, respectively. In calculations the following parameters were
used:a=40 nm,b=50 nm, andn0=1018 cm−3.

FIG. 5. The hole relaxation rates as a function of the level spac-
ing V for three intraband transitions: the solid lines,u2l→ u1l; the
dotted lines,u3l→ u2l; and the dashed lines,u4l→ u2l ssee the textd.
In calculations the following parameters were used:a=40 nm, b
=50 nm,n0=1018 cm−3, andg=0.05 meV.

FIG. 6. The hole relaxation rates as a function of the level spac-
ing V of the intraband transitionu2l→ u1l for different undoped
layer thicknessessbd: the dotted lines,b=50 nm; the dashed lines,
b=80 nm; and the dash-dotted lines,b=120 nm. The solid lines
show the corresponding relaxation rates for a single heterostructure.
In calculations the following parameters were used:a=40 nm,n0

=1018 cm−3, andg=0.05 meV.

FEDOROVet al. PHYSICAL REVIEW B 71, 195310s2005d

195310-6



clarify this problem, we calculated the hole intraband relax-
ation rates with ag value of 500meV, assuming thatg was
determined bygs ssee Fig. 7d.

One can see that even for this case the enhancement of the
intraband relaxation rates in the double heterostructure is
about three times higher than in the single heterostructure.
Notwithstanding significant differences, the intraband relax-
ation rates in double heterostructures exhibit then0sad de-
pendence similar to that for a single heterostructure28 ssee
Fig. 8d. Figure 8 shows that the spectral positions of the
relaxation windows are changed withn0 and the relaxation
rates increase with decreasinga.

Our model proposes that the influence of the carriers gen-
erated in quantum dots on the SPLP spectrum of the doped

heterostructure is negligible. It takes place at a small number
of carriers inside the dot and the low concentration of the
dots embedded in the heterostructure. In the opposite limit,
the influence may result in a renormalization of the SPLP
spectrum. We did not also consider the effects which are
characteristic for real quantum dot heterostructures: the
shape and/or strain dependence of the quantum dot electronic
structure and the dipole momenta of the transitions. Although
these limitations do not affect the qualitative conclusions of
our work, they should be considered in the quantitative
analysis of the intraband relaxation rate in real quantum-dot
systems in doped heterostructures. Finally, the coupled
plasmon–acoustic-phonon modes can also take place in the
semiconductor system under study due to the piezoelectric
effect. Evidently their coupling with the quantum-dot carriers
is also possible via an interaction like that described above.
The study of this interesting problem is now in progress. It is
worth noting that relaxation processes caused by this mecha-
nism do not interfere with those considered in this paper
since energies of the plasmon–acoustic-phonon modes are in
other ranges than the SPLP ones.

IV. CONCLUSION

It has been shown that the SPLP density of states inherent
in a doped semiconductor is essentially modified when a
layer of undoped material of finite thickness is grown on the
semiconductor. Specifically, the critical points of the SPLP
DOS arise with their positions depending on the layer thick-
ness. The presence of the critical points results in the en-
hancement of the relaxation processes involving the SPLP in
the probe embedded in the undoped layer. Using the quan-
tum dot as a probe, we showed that the intraband relaxation
in QD is enhanced for the thin layer compared with that for
the macroscopic layer. In other words, a “dielectric confine-
ment” of the SPLP takes place in these kinds of layered
structures. The actual values of relaxation rates in real sys-
tems can differ from those calculated by us. This fact, how-
ever, does not affect our qualitative conclusions. Obviously,
these characteristic features of the SPLP DOS are important
for nanostructure-based applications, where the QD layer lo-
cated at distances of tens or several tens of nanometers from
the nspd-doped elements of heterostructures and covered
with a thin cup layer are widely used. The concentration,
distance, and layer thickness dependencies of the relaxation
rates offer wide opportunities for the manipulation of QD
electronic dynamics in doped heterostructures.
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