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In this paper, the magnetic-field dependence of low-lying spectra of a single-electron magnetic quantum ring
and dot, formed by inhomogeneous magnetic fields, are calculated using the numerical diagonalization scheme.
The effects of on-center acceptor and donor impurities are also considered. In the presence of an acceptor
impurity, transitions in the orbital angular momentum,L, are found for both the magnetic quantum ring and the
magnetic quantum dot when the magnetic field is varied.
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I. INTRODUCTION

In the past decade, the quantum dot was a subject of in-
tense theoretical and experimental interest in nanotechnology
areas1–9 since the fabrication of quasi-zero-dimensional
semiconductor heterostructures becomes reality to electri-
cally confine few electrons in all spatial dimensions. The
confining electrostatic potential of such quantum dots is well
described by a parabolic shape theoretically. In recent years,
owing to the potential uses in high density memory devices
or spintronic materials, the studies of two-dimensional elec-
tron gass2DEGd in the well-known magnetic quantum dot’s
and even the magnetic quantum ring’s systems, which are
different from the conventional quantum dot, address a lot of
attention.10–19 In case of the former one, the electrons are
confined magnetically and the confining potential is inher-
ently nonparabolic. Experimentally realistic examples for
several magnetic structures were also proposed, e.g., type II
superconducting materials deposited on conventional
structures,11 magnetic superlattices by the patterning of fer-
romagnetic materials integrated by semiconductors,12 and
nonplanar 2DEG systems by molecular beam epitaxy.13 In
Ref. 14, a chronological survey on the past experimental
studies on such areas was also reviewed. One of the simple
ways to experimentally realize the magnetic quantum dot or
ring is that the same shape of thin superconducting material
is placed on top of 2DEG. In this case, the magnetic fluxes
are expelled from the superconducting material, resulting in
inhomogeneous magnetic field profiles on 2DEG.

In the early theoretical studies, the magnetic quantum dot
and ring were modeled by setting the magnetic fieldB to be
zero within the dot and the ring regions, respectively, and
constantB elsewhere. For magnetic dots, Simet al.16 studied
the formation of the magnetic edge states along with the
corresponding classical trajectories. The classical trajectories
were obtained by using the general rule derived from the
energy and angular momentum conservation laws.20 Mallon
and Maksym17 generalized the above works to the case of
two interacting electrons and discussed their stability.
Reijnierset al.18 calculated single electron low-lying spectra
for two model systems in different magnetic profiles, with
and without magnetic overshoot, respectively, at the edge of
the dot. For the case of magnetic quantum rings, Kimet al.19

investigated these electron structures and magnetic edge
states, and found that the energy spectra critically depend on
the number of missing magnetic flux quanta rather than the
geometry of the structure or the field abruptness. Recently, in
Ref. 14, based on the above models of both magnetic quan-
tum dots and rings, Leeet al. modified the magnetic quan-
tum dot and ring formed by two different magnetic fields,
and analyzed interesting numerical results in great detail.
The probability currents of the states are also calculated us-
ing the derivative of eigenvalue wrt angular momentuml,
Inl=1/" ]Enl /]l. As a whole, the eigenvalues of the above
systems were found by a traditional method via the continu-
ity of the wave functions and their derivatives at the bound-
aries between regions of different magnetic fields. Note that
all the past studies of above systems only focus on the
impurity-free cases, and the impurities have to be considered
in a real situation since it will modify the energy levels of the
materials, and in turn largely affect their electronic and mag-
netic properties. To our knowledge, the magnetic dependence
of quantum magnetic dots and rings involving impurity dop-
ing was not studied in the past, which is the novel part of the
present work.

In the past decade, by using numerical diagonalization,
low-lying spectra of few-electron or exciton quantum dots
with and without impurity were calculated, for which elec-
trons or holes are confined electrostatically by parabolic po-
tentials in uniform magnetic fields.2–4,7–9 Qualitative results
for the ground state orbital and/or spin angular momenta
transitions were taken that are in good agreement with those
of experiments. In the present study, we apply the same com-
putational technique on those systems of the magnetic quan-
tum dot and ring. Here, starting from the Hamiltonian of the
single electron magnetic quantum ring system in the pres-
ence of an on-center Coulomb acceptor or donor impurity,
we rearrange the whole Hamiltonian and extract those terms
as the unperturbed one such that its eigenvector is exactly the
same as 2D harmonic product basis states in the model
space. Note that the system will become the case of the mag-
netic dot when the inner radius of the ring is zero. The low-
lying spectra of a single electron magnetic quantum ring and
dot are then found by using numerical diagonalization. The
magnetic moments are also found in order to get visible dis-
continuities at those points of orbital angular momentumL

PHYSICAL REVIEW B 71, 195305s2005d

1098-0121/2005/71s19d/195305s7d/$23.00 ©2005 The American Physical Society195305-1



transitions induced by magnetic fields. Finally, we compare
and analyze our overall numerical results for such a system
with and without acceptor or donor impurity.

II. THEORY

In the effective mass approximation, the Hamiltonian de-
scribing a single electron bound to an on-center Coulomb
impurity, either acceptor or donor, in a 2D magnetic quantum
ring subjected to a magnetic field, is given by

Ĥ =
1

2m
sPW + eAW d2 + h

e2

4per
, s1d

wherem is the effective mass of the electron,e is the abso-
lute value of the electron charge, ande is the dielectric con-
stant of the medium the electron is moving in. Note that the
electron-electron interactions are not considered for math-
ematical simplicity and the Zeeman energy for the coupling
of the electron spin and the magnetic field can therefore be
neglected without loss of physical significance. The last term
is the Coulomb interaction between the electron and the on-
center impurity. The parameterh is 1 for an acceptor impu-
rity and −1 for a donor impurity.

In a real situation for experiments, the magnetic quantum
ring is formed by inhomogeneous magnetic fields: the mag-
netic field perpendicular to thexy plane within the ring re-
gion is zero,B=0 for r01ø r ø r02, and constantB outside it,
B=Bêz, whereêz is the unit vector in thez direction, andr01
andr02 are the inner and the outer radii of the magnetic ring,
respectively. In the representation of a polar coordinate, the

corresponding vector potentialAW is then given by the
following:14,19

AW =5
B

2
êz 3 rW, for 0 ø r , r01,

Br01
2

2r2 êz 3 rW, for r01 ø r ø r02,

B„r2 − sr02
2 − r01

2 d…
2r2 êz 3 rW, for r . r02.

6
s2d

When the inner radiusr01 goes to zero, the resulting vector
potential can be reduced to the case of a magnetic dot with
the radiusr02. After rearrangement, Eq.s1d can be rewritten
as

Ĥ = Ĥ0 + V̂imp + V̂l−B. s3d

In order to calculate the eigenenergy of the whole system
by numerical diagonalization, the unperturbed Hamiltonian
can be extracted from Eq.s1d as

Ĥ0 =
1

2m
P2 +

mvc
2

8
r2 +

vc

2
L̂z, s4d

such that its eigenfunction can be chosen as the well-known
2D harmonic product basis stateskrW ufnll=s1/Î2pdeiluRnlsrd,
that is similar to the case of a parabolic quantum dot,2 where

n and l" denote the radial quantum number and the orbital

angular momentum, respectively. The symbolL̂z in Eq. s4d is
the orbital angular momentum operator in thez direction.
The radial functionRnlsrd is given by the following equation:

Rnlsrd = F 2n!

sn + ul ud!G1/2

r ul uLn
ul usr2de−r2/2, s5d

whereLn
ul usr2d is the associated Laguerre polynomial. For a

succinct representation,r ,r01, andr02, as measured from the
center of the magnetic ring, are all in units of the magnetic
length acs=Î" /mvcd with the cyclotron frequencyvc

=eB/m. Also hereafter the energies are in units of"vc.
The perturbed Hamiltonian, including the electron-

impurity Coulomb termV̂imp and the interaction term be-

tween the electron and the inhomogeneous fieldsV̂l−B, can be
expressed, respectively, in units of"vc, by

V̂imp = h
ac

aB

1

r
, s6d

V̂l−B =5
0, for 0ø r , r01,

− 1
2r2sr2 − r01

2 dl − 1
8r2sr4 − r01

4 d, for r01 ø r ø r02,

− 1
2r2sr02

2 − r01
2 dl − 1

8r2f2r2sr02
2 − r01

2 d − sr02
2 − r01

2 d2g,

for r . r02.
6
s7d

The matrix elements used for numerical diagonalization are
expressed by

kfnluĤ0ufn8l8l = Hn +
1

2
sul u + ld +

1

2
Jdn,n8dl,l8, s8d

kfnluV̂impufn8l8l = h
ac

aB
E

0

`

Rnlsrd
1

r
Rn8l8srdr dr dl,l8, s9d

kfnluV̂l−Bufn8l8l =E
0

`

RnlsrdV̂l−BRn8l8srdr dr dl,l8. s10d

One note worth mentioning here is that, in Eq.s8d, the un-
perturbed energies give discrete values corresponding to the
electron motion on thexy plane under a uniform field, and
such an energy value can be written as the non-negative in-
teger or Landau energy level index,Nr =n+ 1

2sul u+ ld. Finally,
the lowest three Landau levels of the single electron mag-
netic quantum dot and ring, with and without on-center Cou-
lomb impurity, are calculated for several lowest angular mo-
mentasl =0, ±1,… , ±5d as a function of the magnetic field.

III. DISCUSSION AND CONCLUSIONS

In what follows, in order to illustrate the magnetic-field
dependence of the low-lying spectra of the electron quantum
dot or ring, we set the square of magnetic lengthswhich is
inversely proportional toBd, as the independent variable for
the figures of this paper. Also, the natural units are used in all
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FIG. 1. Low-lying spectra of a magnetic quantum dot as a function of 1/ac
2s~Bd, sad no impurity, sbd acceptor, andscd donor. Note that

all states are labeled by the quantum numberssn, ld and the statesn=0, n=1, andn=2 are denoted by the curved solid, dashed, and dotted
lines, respectively. The lowest three Landau levelssNr =0, 1, 2d are denoted by solid straight lines.
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FIG. 2. Low-lying spectra of a magnetic quantum ring as a function of 1/ac
2s~Bd, sad no impurity, sbd acceptor, andscd donor. The

meanings of different line types are similar to those of Fig. 1.
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the figures of the present paper: the Bohr radiussaB

="2/mad as the magnetic length unit andEB=ma2/"2 as the
energy unit, wherea=e2/4pe.21 In our actual numerical di-
agonalization, the rate of convergence depends on the
strength of the magnetic field. At sufficiently low or zero
magnetic fields, the electron wave function is very extended,
leading to the extremely slow convergence, and very large
basis space is required to get reliable numerical results.
Therefore, we calculate the eigenenergies of the systems
starting from the magnetic fieldaB

2 /ac
2=0.4, without affecting

our discussion on the qualitative aspect of the magnetic dot
or ring. In the present numerical work, ten basis states for
each angular momentuml" are included, since the ratio of
the difference in eigenenergy is less than 0.001% for the
further increase of number of basis states. With better views,
hereafter, we discuss the qualitative aspects of the energy
spectra in Figs. 1 and 2 only for the lowest Landau level,
since the same argument can be applied for higher ones.

First of all, let us consider the low-lying spectra of an
electron magnetic quantum dot with and without on-center
acceptor and donor impurity as presented in Fig. 1. In Fig.
1sad, in the case of the impurity-free system, the eigenener-
gies deviate more significantly from the bulk Landau level as
the magnetic field increases. Note that, when the magnetic
field is weak, the radii of the orbits are large and the electron
essentially moves around in a uniform magnetic field outside
of the dot. As the magnetic field strength increases, the orbits
contract toward the center of the dot and the effect of an
inhomogeneous magnetic field becomes more evident. On
the other hand, the smaller the quantum valuess2n+ ul ud, the
more significant the eigenenergies deviate from the bulk
Landau level. It can be physically explained by the follow-
ing. As is well known, a single electron eigenstatekrW ufnll
=s1/Î2pdeiluRnlsrd can be qualitatively regarded as the cir-
cular motion of the electron about the center with orbital
angular momentuml", and the mean square orbit radiusr
can be expressed by2

kfnlur2ufnll ~ 2n + ul u + 1 = 2Nr − l + 1. s11d

The smaller the quantum value of 2n+ ul u, the closer the elec-
tron is to the magnetic edge near the center of the dot. Since

the interaction energyV̂l−B is more negative,s0,0d is left as
the ground state regardless of the magnetic field strength.
And for our present calculation of angular momenta up tol
=−5, the state labeled bys0, −5d is closer to the bulk Landau
level since the electron is far from the magnetic edge and
moves with an analogy to that in a uniform field. The above
argument is also applied for the rings. For convenience of
presentation, all perturbed or excited states are labeled simi-
larly to those of the unperturbed one.

In Fig. 1sbd, in the presence of on-center acceptor impu-
rity, there is a clear-cut ground stateL transition ataB

2 /ac
2

<1.38. At fixed magnetic fields, the eigenstates in the in-
creasing sequence are just in opposition between magnetic
fields lower and higher than about such anaB

2 /ac
2 value, and

the eigenenergies for magnetic fieldsaB
2 /ac

2=0.4 and 2, for
example, are listed in Table I for comparison since the en-
ergy difference is very small belowaB

2 /ac
2<1.38. At mag-

netic fields below this transition point, thes0,0d state has no
centrifugal barrier and the electron is closer to the center of
the acceptor impurity comparing with other angular momen-
tum states. The electron becomes most unstable and thes0,0d
state has the highest energy for the lowest Landau level,
while s0,−5d is left as the ground state. At magnetic fields
higher thanaB

2 /ac
2<1.38, the magnetic confinement, how-

ever, becomes more dominant than the effect of on-center
acceptor impurity, and the sequence of the states will return
to those cases without impurity. As a whole, all states shift to
higher eigenenergies at nonzero magnetic fields owing to the
net small repulsion between the electron and the on-center
acceptor impurity. In the case of on-center donor impurity
shown in Fig. 1scd, using the same argument of a Coulomb
effect, the electron-donor attraction brings the electron much
closer to the center of the dot. The states have the same
sequence as those of the impurity-free case and the eigenen-
ergies shift to lower values, and that of thes0,0d state is even
negative for magnetic fields up toaB

2 /ac
2=8.

In the case of magnetic quantum ring shown in Fig. 2, the
qualitative aspects of low lying spectra is completely differ-
ent from those of the magnetic quantum dot. In Fig. 2sad, it
can be clearly seen that, for the impurity-free system, there
are L ground state transitions in the sequences0,0d→ s0,
−1d→ s0,−2d→ s0,−3d→ s0,−4d¯ as the magnetic field in-
creases, which is consistent with the results of Ref. 14. It can
be explained physically by the following: For weak magnetic
fields, the states with angular momental ,0 is far away from
the magnetic edge or the center of the ring, and the electron
moves with an analogy to that in a uniform field, and the
states therefore resemble the bulk Landau level. As the mag-
netic field increases, the field confinement brings the states
much closer to the ring region, and the electron moves in the
absence of a magnetic field, leading to deviation from the
bulk Landau level. A further increase in the magnetic field
brings the electron much closer or approaches the center of
the ring, and the electron returns to move in a uniform mag-
netic field. In other words, the eigenenergy for each angular
momentum state starts to deviate from the bulk Landau level
and then approaches it, leading to theL ground state transi-
tions. It is worth noting here that, in conventional electro-
statically confined quantum dots, different from those of a
single electron magnetic quantum ring, there are ground state
transitions only for the cases of more than one electron2 or

TABLE I. Numerical results of the magnetic quantum dot with on-center acceptor impurity.

State s0,0d s0,−1d s0,−2d s0,−3d s0,−4d s0,−5d

EigenenergysEBd at aB
2 =0.4ac

2 0.785 71 0.726 75 0.702 95 0.679 03 0.657 24 0.638 89

EigenenergysEBd at aB
2 =2ac

2 1.314 27 1.492 79 1.808 11 2.061 99 2.217 03 2.296 58
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one electron with on-center acceptor impurity,8 but no tran-
sitions for those systems with only one electron.

For the case of on-center acceptor impurity, shown in Fig.
2sbd, the low spectra are in general the same as those of
impurity-free cases, except for very weak magnetic fields.
Similar to the case of the magnetic quantum dotsFig. 1sbdd,
s0, −5d becomes the ground state for very weak magnetic
fields. Furthermore, apart from the argument for the
impurity-free case, there is another reason to explain suchL
ground state transitions: As the magnetic field increases, the
magnetic confinement strength brings the states close to the
position near the on-center acceptor impurity and the elec-
tron in turn has to jump to the orbit with higher states in
order to avoid the increase of electron-acceptor repulsion.
Hence, all ground state transitions shift to lower magnetic
fields, comparing with those of the impurity-free case. In
Fig. 2scd, for an on-center donor impurity magnetic ring,
owing to the electron-donor attraction, the electron with the
s0,0d state tends to localize near the position of the on-center
donor impurity to minimize its interaction energy, ands0,0d
is therefore left as the ground state for the magnetic fields up
to aB

2 /ac
2=8. For the neighboring higher states, there are still

L ground state transitions, in the sequences0,−1d→ s0,−2d
→ s0,−3d→ s0,−4d¯, with all transition points shifting to
higher magnetic fields.

The magnetic moment can be defined by the derivative of
the lowest ground state eigenenergy with respect to the mag-
netic field, −]Egrounds1d /]B at the absolute zero of
temperature.22 In order to get the visible discontinuities or
spikes at the corresponding orbital angular momentumL
ground state transitions for the overall results of Figs. 1 and
2, the magnetic moments of the electron magnetic quantum
dot and ring with and without impurity are plotted in Fig. 3,
and clearly shows that there is ground stateL transition at
aB

2 /ac
2<1.38 for a magnetic quantum dot with acceptor im-

purity. In the case of a magnetic quantum ring, regardless of
the presence of acceptor impurity, both have ground stateL
transitions and the transition points all shift slightly to lower
magnetic fields for those with acceptor impurity.

In summary, the magnetic-field dependence of low-lying
spectra of an electron magnetic quantum dot and ring are
calculated by using numerical diagonalization. The present
interesting numerical results motivate us to further study not
only on the effect of off-center impurity both inside and out-

side the magnetic quantum dot or ring, but also on those
systems of few electrons without neglecting both electron-
electron and spin-spin interactions.
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