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Coupled energy-drift and force-balance equations that contain a frictional force for the center-of-mass
motion of electrons are derived for hot-electron transport under a strong dc electric field. The frictional force
is found to be related to the net rate of phonon emission, which takes away the momentum of a phonon from
an electron during each phonon-emission event. The net rate of phonon emission is determined by the Boltz-
mann scattering equation, which depends on the distribution of electrons interacting with phonons. The work
done by the frictional force is included into the energy-drift equation for the electron-relative scattering motion
and is found to increase the thermal energy of the electrons. The importance of the hot-electron effect in the
energy-drift term under a strong dc field is demonstrated in reducing the field-dependent drift velocity and
mobility. The Doppler shift in the energy conservation of scattering electrons interacting with impurities and
phonons is found to lead to an anisotropic distribution of electrons in the momentum space along the field
direction. The importance of this anisotropic distribution is demonstrated through a comparison with the
isotropic energy-balance equation, from which we find that defining a state-independent electron temperature
becomes impossible. To the leading order, the energy-drift equation is linearized with a distribution function by
expanding it into a Fokker-Planck-type equation, along with the expansions of both the force-balance equation
and the Boltzmann scattering equation for hot phonons.
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I. INTRODUCTION

There have been many theories proposed over the years to
describe the transport of hot electrons through a solid when
the electric field being applied to the system is large, and the
current-voltage characteristics deviate from those of linear
response theory. The semiclassicalsregulard Boltzmann
transport equation, with momentum-drift included, seems to
be the only one of these early theories amenable to practical
use. However, even the regular Boltzmann transport equation
becomes laborious when the system goes beyond the linear-
field regime. Frölich and Paranjape1 used a displaced Max-
wellian distribution to describe the electron transport in in-
sulators and semiconductors at high temperatures. Later,
Arai2 used a similar model to describe electron transport in
metals at low temperatures, using a Fermi-Dirac distribution
instead to predict a finite electron temperature under an ap-
plied electric field, even when the lattice temperature went to
zero. Soon after that, Lei and Ting3 proposed coupled force-
balance and energy-balance equations to describe electrons
in semiconductors and metals at both low and high tempera-
tures by assuming an isotropic quasi-thermal-equilibrium
sFermi-Diracd distribution for hot electrons with a tempera-
ture different from the lattice temperature. Very recently,
Huanget al.4 used the Boltzmann scattering equation to re-
place the energy-balance equation, and then accurately deter-
mined the electron temperature.

It is well known that the drifting of electrons under a dc
field can be treated as a field-driven center-of-massscollec-
tived motion of many electrons.5 The scattering of electrons
by the lattice ions or impurities within the lattice can then be
considered as a relative motion within the center-of-mass
frame. A spatially-uniform external field will only couple to
the center-of-mass motion. The lattice ions and the ionized
impurity atoms within the semiconductor remain stationary

with respect to the moving center of mass. The center-of-
mass motion will couple to the relative scattering motion
through a Doppler shift in the electron energy along the field
direction. This can be modeled as a frictional force acting
between the drifting electrons and the stationary lattice and
impurity atoms.3 As a result, the motion of the electrons
under a dc field will be effectively opposed by this friction.
Even though this frictional force can be measured classically,
it is a quantum-statistical average of all the frictional forces
acting on all the electrons in the relative scattering motion,
and thus it depends on the distribution of electrons in differ-
ent quantum states. This distribution of electrons in the vari-
ous quantum states is determined by the Doppler-shift-
modified elastic and inelastic scattering of the electrons,
including phonon and impurity scattering.

The most straightforward and simplest way to treat a
steady-state distribution of electrons is by introducing a
state-independent electron temperature for use in a Fermi-
Dirac distribution of hot electrons. This electron temperature,
different from the lattice temperature, can be found by using
an isotropic energy-balance equation for the relative motion
of the electrons.3 However, this simple method cannot be
used when an external field is present, even in a steady state,
since in that case, the assumption of an isotropic Fermi-Dirac
distribution for hot electrons cannot be justified. Indeed, the
energy-balance equation itself cannot be justified when the
drift velocity is large, producing a Doppler shift that is com-
parable to the phonon energy. Finally, even though the
energy-balance equation can include the screening effect, it
excludes the effects of electron-electron scattering on elec-
tron transport. For these reasons, we introduce a more rigor-
ous method to describe the relative motion of hot electrons
undergoing anisotropic scattering that involves the use of the
Boltzmann scattering equation, with the addition of an
energy-drift term. When the dc electric field is very strong,
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the distribution of hot electrons is far from equilibrium, and
the definition of a state-independent electron temperature be-
comes impossible. Therefore, the approximate treatments3,6

of hot phonons are no longer valid.
The motivation of the current paper is as follows. It is

known that the regular Boltzmann transport equation in-
cludes carrier drift in momentum space, but does not apply to
hot-carrier transport under a strong dc field. On the other
hand, the energy-balance equation includes hot-carrier ef-
fects, but the isotropic carrier distribution that is assumed
does not include any anisotropic momentum dependence in
the carrier distribution along the field direction; the state-
independent electron temperature that is introduced becomes
unphysical when the dc field is very strong, and the condi-
tions are far from equilibrium. We propose coupled energy-
drift and force-balance equations that can be applied to hot-
carrier transport by including both the hot-carrier effects and
the anisotropic momentum dependence in the carrier distri-
bution along the field direction, without introducing a state-
independent electron temperature.

The energy-drift and force-balance equations proposed
here are based on the following physical considerations:

sid Transport of carriers under a dc field results from the
center-of-mass drifting motion. This slow motion can be
treated classically after a quantum-statistical average has
been taken.

sii d Interaction between moving carriers and static lattice
ions and static impurity atoms in a motion relative to the
center of mass is modified by a Doppler shift in the energy of
the moving carriers in the field direction. This couples the
center-of-mass motion with the relative motion.

siii d The relative scattering motion of the carriers becomes
anisotropic in the field direction due to the Doppler shift.
This contributes to a nonzero frictional force that resists the
dc-driving force. This frictional force contains contributions
from impurities and phonons. The phonon-emission process
will take the momentum of a phonon away from a carrier,
while the phonon-absorption process will add the momentum
of a phonon to a carrier.

sivd The classical center-of-mass motion can be described
by the force-balance equation including a frictional force,
while the relative motion is composed of many-particle
quantum-scattering events that can be described by the
energy-drift equation, including the work done by the fric-
tional forces to increase the thermal energy of the carriers.
The increased thermal energy of hot carriers is expected to
reduce the field-dependent carrier drift velocity and mobility.

In this paper, we have generalized our theory in Ref. 4 by
using the Boltzmann scattering equation with energy drift
included and by using momentum dissipation in the repre-
sentation of the phonon-induced frictional scattering forces.
This allows us to completely eliminate the need for any sort
of electron- and lattice-temperature definitions, and allows us
to describe events far from equilibrium. This approach also
brings the hot-electron transport formulation closer to that of
the semiconductor Bloch equations,7 which should allow the
coupling of these two formalisms to proceed without any
problems when coherent optical interactions are included in
the future.

The organization of the paper is as follows. In Sec. II, we
introduce our model and theory, and derive coupled energy-

drift and force-balance equations for hot-carrier transport un-
der a strong dc electric field. The numerical results are dis-
played in Sec. III for the calculated drift velocities and
mobilities as functions of the dc field, and they are explained
physically. The paper is concluded in Sec. IV along with
some remarks.

II. THEORY

The motion of many electrons inn-doped bulk semicon-
ductors can be separated into the center-of-mass and relative
scattering motions. The center-of-mass motion of electrons is
described by a Newton-like force-balance equation for the
drift velocity of the center of mass. The forces in this equa-
tion contain a driving force from a dc electric field and a
frictional force from both impurity and phonon scattering.
During the scattering of electrons with phonons, each
phonon-emission process takes away the momentum of a
phonon from an electron. Meanwhile, each phonon-
absorption process adds the momentum of a phonon to an
electron. The relative scattering motion of electrons should
be described by the energy-drift equation, i.e., the Boltzmann
scattering equation without momentum drift included, but
with energy drift included. The energy drift is due to the
work done by the frictional force against the center-of-mass
drift motion of the electrons. This work increases the internal
energysi.e., the thermal energyd of electrons, causes the dis-
tribution of electrons to deviate from an equilibrium one, and
reduces the mobility of hot electrons due to enhanced scat-
tering with phonons. When the dc field is weak, the phonons
are described by a distribution that is nearly in equilibrium.
However, when the dc field is strong, the phonons are de-
scribed by a nonequilibrium distribution. For this latter case,
many phonons must be generated to balance the strong dc-
driving force.

In order to make this paper self-contained, we will rewrite
some of the key equations from Ref. 4 in a slightly more
general form. In the presence of a spatially-uniform dc elec-

tric field EW dc, the Hamiltonian of manyinteractingelectrons
in bulk semiconductors can be written as

H =
1

2m* o
i

pŴ i
2 + o

i, j

e2

4pe0erurWi − rW ju
− eo

i

rWi ·EW dc

+ o
i,a

UimpsrWi − RW ad − o
i,,

uW, ·¹W rWi
UionsrWi − RW ,d, s1d

where i =1,2, . . . ,Ne is the index of Ne electrons, a
=1,2, . . . ,Na, is the index for Na impurity atoms, ,
=1,2, . . . ,N, is the index forN, lattice ions,rWi is the position

vector for theith electron,RW a andRW , are the position vectors
of impurity atoms and lattice ions,uW, represents the ion dis-
placement from the thermal equilibrium position,m* is the
effective mass of electrons,e0 is the dielectric constant in the
vacuum, ander is the relative dielectric constant of host
semiconductors. The single-electron momentum operator is

pŴ i =−i"¹W rWi
, and both the impurity potentialUimpsrWi −RW ad and

the ion potentialUionsrWi −RW ,d are included. We first define the
center-of-mass momentum and position vectors by
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PŴ c = o
i

pŴ i, RW c =
1

Ne
o

i

rWi , s2d

and those for the relative motion by

pŴ i8 = pŴ i −
1

Ne
PŴ c, rWi8 = rWi − RW c. s3d

By using the center-of-mass and relative momentum and po-
sition vectors defined in Eqs.s2d ands3d, we can separate the
total Hamiltonian, including the Hamiltonians of electrons
and phonons, into one center-of-mass HamiltonianHcm and

another relative HamiltonianĤrel, given by

Hcm =
sPŴ cd2

2Nem
* − NeeEW dc ·RW c, s4d

Ĥrel = o
kW,s

«kâkWs
† âkWs + o

qW,l

"Vqlb̂qWl
† b̂qWl

+
1

2 o
kW,kW8,s,s8

o
qW

e2

e0erq
2V âkW+qWs

† âkW8−qWs8
† âkW8s8âkWs

+ o
kW,s

o
qW,l

Cqlsb̂qWl + b̂−qWl
† deiqW·RW c

âkW+qWs
† âkWs

+ o
kW,s

o
qW,a

UisqdeiqW·sRW c−RW adâkW+qWs
† âkWs, s5d

whereV is the volume of the system,"Vql is the phonon
energy with wave numberq for mode l stotally three
modesd, «k="2k2/2m* is the kinetic energy of electrons with
wave numberk, and the indexs= ±1 is for the up-and down-
spin states of electrons. We useâkWs

† sâkWsd to represent the

creationsannihilationd operator of electrons andb̂qWl
† sb̂qWld to

denote the creationsannihilationd operator of phonons.Uisqd

is the Fourier transform of the impurity potentialUimpsrW8
+RW c−RW ad, andCql is the electron-phonon coupling constant
that will be given later in this section. The coupling of the

center-of-mass and relative motionsfthe factor expsiqW ·RW cdg
can be seen from the impurity and phonon parts of the rela-
tive Hamiltonian in Eq.s5d.

From the total Hamiltonian, we derive two Heisenberg
equations for the center-of-mass motion of electrons,

d

dt
PŴ c =

1

i"
fPŴ c,Hcm + Ĥrelg = NeeEW dc − io

qW,l

CqlqWeiqW·RW c

3sb̂qWl + b̂−qWl
† dr̂qW − io

qW,a

UisqdqWeiqW·sRW c−RW adr̂qW , s6d

uŴ =
d

dt
RW c =

1

i"
fRW c,Hcm + Ĥrelg =

PŴ c

Nem
* , s7d

wherer̂qW =okW,sâkW+qWs
† âkWs represents the density-wave operator

of electrons. Applying a quantum-statistical averagekk¯llav

to Eqs.s6d and s7d and defining the following quantities:

Nem
* d

dt
uW0 ;KK d

dt
PŴ cLL

av
, s8d

whereuW0;kkPŴ c/Nem
*llav is the drift velocity related to the

center-of-mass momentum, we obtain the following force-
balance equation:

Nem
* d

dt
uW0 = NeeEW dc + FW ifuW0g + FW pfuW0g. s9d

Here FW ifuW0g and FW pfuW0g are the frictional forces resulting
from impurity and phonon scattering, respectively.

For the relative motion of electrons, the energy-drift equa-
tion for electrons in a dc field can be derived as8

dnkW

dt
= po

qW
sqW ·uW0dNauUisqdu2ds«k+q − «k + "qW ·uW0d

]

]«k
snkW+qW − nkWd +

"

2o
qW,l

sqW ·uW0dHfNqWlsvqld + 1gH ]

]«k
J

fng
QkW,qWl

em − NqWlsvqld

3H ]

]«k
J

fng
QkW,qWl

absJ +
"

2o
qW

sqW ·uW0dHfNqWsvLOd + 1gH ]

]«k
J

fng
QkW,qW

em− NqWsvLOdH ]

]«k
J

fng
QkW,qW

absJ + WkW
sinds1 − nkWd − WkW

soutdnkW ,

s10d

where nkW is the electron-distribution function in thek

state, and the energy-drift term −s 1
2

df] /]«kgfnghsFW ifuW0g

+FW pfuW0gd ·uW0j, due to the work done by the frictional force
against the drift motion, has been included. The energy-drift
term physically represents the rate for increasing the thermal
energy of electrons in thekW state. The work done by the
frictional force was introduced in the energy-balance

equation3,8 to determine a macroscopicsstate-independentd
electron temperature. On the other hand, the work done by
the frictional force is introduced here to microscopically de-
termine the thermal effects on the electron distribution under
high electric fields, without having to define an electron tem-
perature, which is unphysical in the situation described here.
The introduction of this additional term in Eq.s10d is crucial
for the discussion of thermal effects on hot-electron trans-

COUPLED ENERGY-DRIFT AND FORCE-BALANCE… PHYSICAL REVIEW B 71, 195205s2005d

195205-3



port. In Eq.s10d, h] /]«kjfng indicates that the energy deriva-
tive only acts upon the occupation probabilitynkW or nkW±qW,
"qW ·uW0 is the Doppler shift in the energy of moving electrons
along the field direction,"vql is the energy of acoustic
phonons in thel mode with a wave vectorqW, "vLO is the
energy of the longitudinal-optical phonons,Uisqd
=Zce

2/ fe0ersq2+Qs
2dVg is the interaction between electrons

and impurities,Zc is the charge number of ionized donor
atoms,Qs

2=se2/e0erdsm* /p2"2ds3p2s3Dd1/3 for static screen-
ing, and s3D=Ne/V is the electron concentration in the
doped-host semiconductors.NqWlsvqld is the nonequilibrium
acoustic-phonon distribution which satisfies the following
Boltzmann scattering equation for hot phonons:

dNqWlsvqld

dt
= QqWl

emfNqWlsvqld + 1g − QqWl
absNqWlsvqld

−
NqWlsvqld − N0s"vql/kBTd

tqWl

, s11d

whereQqWl
em andQqWl

abs are the rates for acoustic-phonon emis-
sion and absorption, respectively,tqWl is the relaxation time
for acoustic phonons with wave vectorqW and in model,

N0sxd=fexpsxd−1g−1 is the Bose-Einstein function, andT is
the initial lattice temperature. For optical phonons, the non-
equilibrium distribution NqWsvLOd can be determined in a
similar way by the following equation:

dNqWsvLOd

dt
= QqW

emfNqWsvLOd + 1g − QqW
absNqWsvLOd

−
NqWsvLOd − N0s"vLO/kBTd

tqW
, s12d

whereQqW
em and QqW

abs are the rates for optical-phonon emis-
sion and absorption, respectively, andtqW is the relaxation
time for optical phonons with wave vectorqW. The lack of
dependence ofvLO on the wave numberq will alter the
momentum exchange between the electrons and the optical
phonons during a scattering process. We have introduced a
relaxation-time approximation in Eqs.s11d and s12d for ad-
ditional phonon scattering other than the electron-phonon
scattering. This additional phonon scattering includes both
phonon-phonon interaction and boundary scattering of
phonons.

The scattering-in rate for electrons in the finalk state is

WkW
sind = Na

2p

"
o
qW

uUisqdu2fnkW−qWds«k − «k−q + "qW ·uW0d + nkW+qWds«k − «k+q − "qW ·uW0dg +
2p

"
o
qW,l

uCqlu2hnkW−qWNqWlsvqldds«k − «k−q − "vql

+ "qW ·uW0d + nkW+qWfNqWlsvqld + 1gds«k − «k+q + "vql − "qW ·uW0dj +
2p

"
o
qW

uCqu2hnkW−qWNqWsvLOdds«k − «k−q − "vLO + "qW ·uW0d

+ nkW+qWfNqWsvLOd + 1gds«k − «k+q + "vLO − "qW ·uW0dj +
2p

"
o
kW8,qW

S e2

e0erq
2VD2

s1 − nkW8dnkW−qWnkW8+qWds«k + «k8 − «k−q − «k8+qd, s13d

where the last term in Eq.s13d is due to Coulomb scattering, and the scattering-out rate for electrons in the initialk state is

WkW
soutd = Na

2p

"
o
qW

uUisqdu2fs1 − nkW+qWdds«k+q − «k + "qW ·uW0d + s1 − nkW−qWdds«k−q − «k − "qW ·uW0dg +
2p

"
o
qW,l

uCqlu2hs1 − nkW+qWd

3NqWlsvqldds«k+q − «k − "vql + "qW ·uW0d + s1 − nkW−qWdfNqWlsvqld + 1gds«k−q − «k + "vql − "qW ·uW0dj +
2p

"
o
qW

uCqu2

3hs1 − nkW+qWdNqWsvLOdds«k+q − «k − "vLO + "qW ·uW0d + s1 − nkW−qWdfNqWsvLOd + 1gds«k−q − «k + "vLO − "qW ·uW0dj

+
2p

"
o
kW8,qW

S e2

e0erq
2VD2

nkW8s1 − nkW−qWds1 − nkW8+qWdds«k−q + «k8+q − «k − «k8d. s14d

For the scattering-in rate, the first term in Eq.s13d is dia-
grammatically represented by the top panel in Fig. 1. The
second and third terms in Eq.s13d are diagrammatically rep-

resented by the top panel in Fig. 2. On the other hand, the
first term in Eq.s14d for the scattering-out rate is diagram-
matically represented by the bottom panel in Fig. 1. The
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second and third terms in Eq.s14d are diagrammatically rep-
resented by the bottom panel in Fig. 2.

The emission rate for acoustic phonons in thel mode
with a wave vectorqW due to the interaction of phonons with
electrons is

QqWl
em; o

kW
QkW,qWl

em =
4p

"
uCqlu2o

kW
hnkW+qWs1 − nkWd

3ds«k − «k+q + "vql − "qW ·uW0d

+ nkWs1 − nkW−qWdds«k−q − «k + "vql − "qW ·uW0dj,

s15d

and the absorption rate for acoustic phonons in thel mode
with a wave vectorqW is

QqWl
abs; o

kW
QkW,qWl

abs =
4p

"
uCqlu2o

kW
hnkW−qWs1 − nkWd

3ds«k − «k−q − "vql + "qW ·uW0d

+ nkWs1 − nkW+qWdds«k+q − «k − "vql + "qW ·uW0dj.

s16d
For optical phonons, we have

QqW
em; o

kW
QkW,qW

em=
4p

"
uCqu2o

kW
hnkW+qWs1 − nkWd

3ds«k − «k+q + "vLO − "qW ·uW0d

+ nkWs1 − nkW−qWdds«k−q − «k + "vLO − "qW ·uW0dj,

s17d
and

QqW
abs; o

kW
QkW,qW

abs=
4p

"
uCqu2o

kW
hnkW−qWs1 − nkWd

3ds«k − «k−q − "vLO + "qW ·uW0d

+ nkWs1 − nkW+qWdds«k+q − «k − "vLO + "qW ·uW0dj.

s18d
For the phonon-emission rate in Eq.s15d, its diagrammatical
representation is shown by the top panel in Fig. 3. On the
other hand, the diagrammatical representation of the phonon-
absorption rate in Eq.s16d is displayed by the bottom panel
in Fig. 3. In Eqs.s13d–s18d, we have defined9

uCq,u2 =
"

2riVvq,
FD2q2 +

9

32
seh14d2GS q2

q2 + Qs
2D2

, s19d

uCqtu2 =
"

2riVvqt

13

64
seh14d2S q2

q2 + Qs
2D2

, s20d

for the couplings between the electrons and the longitudinal
sl=,d and transversesl= td acoustic phonons withvql

=qsl in the Debye model, wheresl is the sound velocity of
acoustic phonons in thel mode,ri is the ion-mass density,D
is the deformation potential, andh14 is the piezoelectric con-
stant. For optical phonons, we have1

FIG. 2. Diagrams for scattering-instop paneld and scattering-out
sbottom paneld rates of moving electrons with static-lattice ions.
The solid lines with arrows represent the electron states with wave
vectors indicated. The dashed lines with arrows represent the inter-
actions of carriers with phonons with the wave vectorqW. The circled
wave vectorkW of electrons denotes the initial state for the scattering-
out rate and the final state for the scattering-in rate.Vql=vql or
vLO denotes the phonon frequency andqW ·uW0 is the Doppler shift.

FIG. 3. Diagrams for phonon-emissionstop paneld and phonon-
absorptionsbottom paneld rates due to interaction of moving elec-
trons with static-lattice ions. The solid lines with arrows represent
the electron states with wave vectors indicated. The dashed lines
with arrows represent the interactions of carriers with phonons with
the wave vectorqW. Vql=vql or vLO denotes the phonon frequency
andqW ·uW0 is the Doppler shift.

FIG. 1. Diagrams for scattering-instop paneld and scattering-out
sbottom paneld rates of moving electrons with static-impurity at-
oms. The solid lines with arrows represent the electron states with
wave vectors indicated. The dashed lines with crosses represent the
interactions of electrons with impurities with the wave vectorqW.
The circled wave vectorkW of electrons denotes the initial state for
the scattering-out rate and the final state for the scattering-in rate.uW0

is the electron drift velocity with its direction indicated by a hollow
arrow in the dc-field direction. The conditions for energy conserva-
tion in each case are also shown among the electron kinetic energies
«k and«k±q, and the Doppler shift"qW ·uW0.

COUPLED ENERGY-DRIFT AND FORCE-BALANCE… PHYSICAL REVIEW B 71, 195205s2005d

195205-5



uCqu2 =
"vLO

2V S 1

e`

−
1

es
D e2

e0sq2 + Qs
2d

, s21d

wherees ande` are the static and high-frequency dielectric
constants of host semiconductors.

By assuming a dc electric field along thex direction, as
shown in Fig. 4, the force-balance equation for the center-of-
mass motion of transported electrons is cast into the form of

Nem
* du0

dt
= NeeEdc + Fxfu0g, s22d

where the quantum statistically averaged frictional force is
found to beFxfu0g=Fx

i fu0g+Fx
phfu0g with3,8

Fx
i fu0g = −

2p

"
o
kW,qW

"qxsnkW+qW − nkWdNiuUisqdu2

3ds«k+q − «k + "qxu0d, s23d

Fx
phfu0g = − o

kW,qW,l

"qxhQkW,qWl

em fNqWlsvqld + 1g − QkW,qWl

abs NqWlsvqldj

− o
kW,qW

"qxhQkW,qW
emfNqWsvLOd + 1g − QkW,qW

absNqWsvLOdj.

s24d

Fx
i fu0g and Fx

phfu0g are due to impurity and phonon scatter-
ing, respectively. Because of the Doppler shift in LO-phonon
energy, i.e.,vLO−"qW ·uW0 for phonon absorption and emission
rates in Eqs.s17d and s18d, the LO-phonon contribution to
the frictional force in Eq.s24d becomes nonzero. In addition,
Eq. s24d reduces to −Nem

*u0/tph in the leading order of
smallu0 under a weak electric field, wheretph can be viewed
as a momentum-relaxation time of electrons from phonon
scattering. The diagrammatical representation ofFx

phfu0g in
Eq. s24d can be seen from Fig. 5 for the phonon-emission
event sleft paneld and the phonon-absorption eventsright

paneld. The diagrammatical representation ofFx
i fu0g in Eq.

s23d can be found from Fig. 6.
When«k, «k±q@"qxu0, "vql is assumed for high densities

of electrons, we can expand the energy-drift equation up to
the second order by introducing a continuous distribution
function fs«k'

,«kx
d;rs«kdnkW =fs2m*d3/2s«kd1/2/ s2p2"3dgnkW,

with «k=«k'
+«kx

, «k'
="2k'

2 /2m* , «kx
="2kx

2/2m* , kW

=skx,kW'd, and qW =sqx,qW'd. When the acoustic-phonon fre-
quencysdominant phonon modes at low temperaturesd and
the Doppler shift are smaller than the plasma frequency of
electrons, the static-screening model can be justified. For
steady-state electron transport, the Coulomb scattering effect
can be approximated by a homogeneous level broadening
related to the lifetimes of quasiparticles. By using the above
assumptions, the energy-drift equation leads to the following
linearized Fokker-Planck-type equation, with respect to the
distribution function,

FIG. 6. Diagrams for changes of the electron momentum due to
scattering with impurities. For each scattering event, the electron
wave number is reduced from the initial valuekx to the final value
kx−qx in the field direction by the wave numberqx of an impurity
atom, as indicated by a hollow arrow at the bottom of the figure.uW0

is the electron drift velocity with its direction indicated by a hollow
arrow, andNauUisqdu2 represents the strength of impurity scattering.
nkWs1−nkW−qWd−nkW−qWs1−nkWd represents the phase-space filling effect
sPauli exclusiond when the electron statekW is the initial or final state
in two opposite scattering events. The total change of the electron
wave vector in the direction perpendicular to the field is zero, since
the individual contributions cancel each other.

FIG. 4. Illustration for orientations of electronskWd and phonon

sqWd wave vectors. The applied electric fieldEW dc and electron drift
velocity uW0 lie in the sxd direction. The electron wave vectorkW can
be decomposed as a parallel componentskxd sin thex directiond and
a perpendicular componentkW' sin the y direction due to rotational
symmetryd. The phonon wave vectorqW can also be decomposed in
the same way. The angle betweenqW' and they direction within the
y-z plane is denoted byf, and the angle betweenkW and thex
direction within thex-y plane is represented byu.

FIG. 5. Diagrams for changes of the electron momentum due to
phonon emissionsleft paneld and phonon absorptionsright paneld.
For each phonon-emission event with a rateQql

em and an occupation
factorNql+1, the electron wave number is reduced from the initial
valuekx to the final valuekx−qx in the field direction by the phonon
wave numberqx, as indicated by a hollow arrow in the left panel.
For each phonon-absorption event with a rateQql

abs and an occupa-
tion factor Nql, the electron wave number is increased from the
initial value kx to the final valuekx+qx in the field direction by the
phonon wave numberqx, as indicated by a hollow arrow in the right
panel. The total change of the electron wave vector in the direction
perpendicular to the field is zero, since the individual contributions
cancel each other.Vql denotes the phonon frequency andqW ·uW0 is
the Doppler shift.
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d

dt
fs«k'

,«kx
d = ATs«k'

,«kx
dfs«k'

,«kx
d − fVTs«k'

,«kx
d

+ VFs«k'
,«kx

dgF ]

]«k'

+
]

]«kx

G fs«k'
,«kx

d

+ fDTs«k'
,«kx

d + DFs«k'
,«kx

dg

3F ]2

]«k'

2 +
]2

]«kx

2 G fs«k'
,«kx

d, s25d

which is subjected to the conservation of the total number of
electrons,

s3D =
1

2p2E
0

+`

dk'k'E
−`

+`

dkxF fs«k'
,«kx

d

rs«k'
+ «kx

dG . s26d

The spontaneous phonon-emission rate is

ATs«k'
,«kx

d =
2p

"
o
qW,l

uCq,lu2fds«k − «k+q + "vql − "qxu0d

− ds«k − «k−q − "vql + "qxu0dg

+
2p

"
o
qW

uCqu2fds«k − «k+q + "vLO − "qxu0d

− ds«k − «k−q − "vLO + "qxu0dg. s27d

The thermal sTd-and dc-field sFd-induced energy transfer
rates are

VTs«k'
,«kx

d = − 2pNiu0o
qW

qxuUisqdu2fds«k − «k−q + "qxu0d

− ds«k − «k+q − "qxu0dg + 2po
qW,l

svql − qxu0d

3uCq,lu2hNqWlsvqldds«k − «k−q − "vql + "qxu0d

− fNqWlsvqld + 1gds«k − «k+q + "vql − "qxu0dj

+ 2po
qW

svLO − qxu0duCqu2hNqWsvLOd

3ds«k − «k−q − "vLO + "qxu0d − fNqWsvLOd + 1g

3ds«k − «k+q + "vLO − "qxu0dj, s28d

VFs«k'
,«kx

d = − 2pu0o
qW,l

qxuCq,lu2fds«k − «k+q + "vql − "qxu0d

+ ds«k−q − «k + "vql − "qxu0dg

− 2pu0o
qW

qxuCqu2fds«k − «k+q + "vLO − "qxu0d

+ ds«k−q − «k + "vLO − "qxu0dg. s29d

The thermalsTd-and dc-field sFd-induced energy-diffusion
rates are

DTs«k'
,«kx

d = pNi"u0
2o

qW
qx

2uUisqdu2fds«k − «k−q + "qxu0d

+ ds«k − «k+q − "qxu0dg

+ p"o
qW,l

svql − qxu0d2uCq,lu2hNqWlsvqld

3ds«k − «k−q − "vql + "qxu0d + fNqWlsvqld + 1g

3ds«k − «k+q + "vql − "qxu0dj

+ p"o
qW

svLO − qxu0d2uCqu2hNqWsvLOd

3ds«k − «k−q − "vLO + "qxu0d

+ fNqWsvLOd + 1gds«k − «k+q + "vLO − "qxu0dj,

s30d

DFs«k'
,«kx

d = − pNi"u0
2o

qW
qx

2uUisqdu2ds«k+q − «k + "qxu0d

− 2p"u0o
qW,l

qxuCqlu2hsqxu0 − vqld

3fNqWlsvqld + 1gds«k − «k+q + "vql

− "qxu0d − sqxu0 + vqldNqWlsvqld

3ds«k − «k+q − "vql − "qxu0dj

− 2p"u0o
qW

qxuCqu2hsqxu0 − vLOd

3fNqWsvLOd + 1gds«k − «k+q + "vLO − "qxu0d

− sqxu0 + vLOdNqWsvLOd

3ds«k − «k+q − "vLO − "qxu0dj. s31d
Similar to the second-order expansion of the energy-drift
equation, we can expand the frictional force up to the first
order,

Fxfu0g = 2p"o
kW,qW

1

rs«kd
Niqx

2u0uUisqdu2ds«k+q − «k + "qxu0d

3F ]

]«k'

+
]

]«kx

G fs«k'
,«kx

d

− 4po
qW,l

qxuCq,lu2o
kW

fs«k'
,«kx

d

rs«kd
fds«k − «k+q

+ "vql − "qxu0d + ds«k−q − «k + "vql − "qxu0dg

+ 4p"o
qW,l

qxuCq,lu2o
kW

1

rs«kd
hsqxu0 − vqldfNqWlsvqld

+ 1gds«k − «k+q + "vql − "qxu0d
+ sqxu0 + vqldNqWlsvqld

3ds«k − «k+q − "vql − "qxu0djF ]

]«k'

+
]

]«kx

G fs«k'
,«kx

d − 4po
qW

qxuCqu2o
kW

fs«k'
,«kx

d

rs«kd
3fds«k − «k+q + "vLO − "qxu0d + ds«k−q − «k + "vLO

− "qxu0dg

+ 4p"o
qW

qxuCqu2o
kW

1

rs«kd
hsqxu0 − vLOdfNqWsvLOd

+ 1gds«k − «k+q + "vLO − "qxu0d
+ sqxu0 + vLOdNqWsvLOdds«k − «k+q − "vLO − "qxu0dj

3F ]

]«k'

+
]

]«kx

G fs«k'
,«kx

d. s32d
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By using the same expansion technique, the emission and
absorption rates of acoustic phonons can be rewritten as

QqWl
em=

4p

"
uCqlu2o

kW

fs«k'
,«kx

d

rs«kd
fds«k − «k+q + "vql − "qxu0d

+ ds«k−q − «k + "vql − "qxu0dg + 4puCqlu2svql − qxu0d

3 o
kW

1

rs«kd
ds«k − «k+q + "vql − "qxu0d

3F ]

]«k'

+
]

]«kx

G fs«k'
,«kx

d, s33d

QqWl
abs=

4p

"
uCqlu2o

kW

fs«k'
,«kx

d

rs«kd
fds«k − «k−q − "vql + "qxu0d

+ ds«k+q − «k − "vql + "qxu0dg − 4puCqlu2svql − qxu0d

3 o
kW

1

rs«kd
ds«k − «k−q − "vql + "qxu0d

3F ]

]«k'

+
]

]«kx

G fs«k'
,«kx

d. s34d

For optical phonons, we have similar results,

QqW
em=

4p

"
uCqu2o

kW

fs«k'
,«kx

d

rs«kd
fds«k − «k+q + "vLO − "qxu0d

+ ds«k−q − «k + "vLO − "qxu0dg + 4puCqu2svLO − qxu0d

3 o
kW

1

rs«kd
ds«k − «k+q + "vLO − "qxu0d

3F ]

]«k'

+
]

]«kx

G fs«k'
,«kx

d, s35d

QqW
abs=

4p

"
uCqu2o

kW

fs«k'
,«kx

d

rs«kd
fds«k − «k−q − "vLO + "qxu0d

+ ds«k+q − «k − "vLO + "qxu0dg − 4puCqu2svLO − qxu0d

3 o
kW

1

rs«kd
ds«k − «k−q − "vLO + "qxu0d

3F ]

]«k'

+
]

]«kx

G fs«k'
,«kx

d. s36d

By defining the following three dimensionless functions after
the angle integration overf,

k±shk̄j,hq̄jd =E
0

2p df

2pH ḡ0/p

ḡ0
2 + fq̄x

2 ± 2k̄xq̄x + q̄'
2 ± 2k̄'q̄' cosf ± 2q̄xū0g2J , s37d

jl
±shk̄j,hq̄jd =E

0

2p df

2pH ḡ0/p

ḡ0
2 + fq̄x

2 ± 2k̄xq̄x + q̄'
2 ± 2k̄'q̄' cosf ± 2sq̄xū0 − q̄s̄ldg2J , s38d

c±shk̄j,hq̄jd =E
0

2p df

2pH ḡ0/p

ḡ0
2 + fq̄x

2 ± 2k̄xq̄x + q̄'
2 ± 2k̄'q̄' cosf ± 2sq̄xū0 − V̄dg2J , s39d

wherehk̄j=sk̄x, k̄'d, k̄'=k' /kf, k̄x=kx/kf, k̄=sk̄'
2 + k̄x

2d1/2, hq̄j
=sq̄x,q̄'d, q̄'=q' /kf, q̄x=qx/kf, q̄=sq̄'

2 + q̄x
2d1/2, ū0

=m*u0/"kf, s̄l=m*sl /"kf, V̄=m*VLO/ s"kf
2d, ḡ0=g0/« f, kf

=s3p2s3Dd1/3, « f ="2kf
2/2m* , and g0 is homogeneous level

broadening due to Coulomb scattering, the Fokker-Planck-
type equation can be cast into a dimensionless form,

d

dt̄
f̄s«̄k'

,«̄kx
d = ĀTs«̄k'

,«̄kx
d f̄s«̄k'

,«̄kx
d − fV̄Ts«̄k'

,«̄kx
d

+ V̄Fs«̄k'
,«̄kx

dgF ]

]«̄k'

+
]

]«̄kx

G f̄s«̄k'
,«̄kx

d

+ fD̄Ts«̄k'
,«̄kx

d + D̄Fs«̄k'
,«̄kx

dg

3F ]2

]«̄k'

2 +
]2

]«̄kx

2 G f̄s«̄k'
,«̄kx

d, s40d

which is subjected to the constraintfsee Eq.s26dg,

E
0

+`

dk̄'k̄'E
−`

+`

dk̄xsk̄'
2 + k̄x

2d−1/2f̄s«̄k'
,«̄kx

d =
1

3p2 , s41d

where t̄=« ft /", f̄s«̄k'
, «̄kx

d=s« f /3p2s3Ddfs«k'
,«kx

d=fs«̄k'

+ «̄kx
d1/2/2p2gnkW, «̄k'

=«k'
/« f, «̄kx

=«kx
/« f. The expansion co-

efficients in Eq.s40d can be found from Eqs.sA1d–sA5d in
Appendix. In a similar fashion, we can also express the dy-
namical equation for hot phonons into a dimensionless form
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dNqWls2q̄s̄ld

dt̄
= Q̄qWl

emfNqWls2q̄s̄ld + 1g − Q̄qWl
absNqWls2q̄s̄ld

−
NqWls2q̄s̄ld − N0s2q̄s̄l/T̄d

t̄qWl

, s42d

dNqWs2V̄d

dt̄
= Q̄qW

emfNqWs2V̄d + 1g − Q̄qW
absNqWs2V̄d

−
NqWls2V̄d − N0s2V̄/T̄d

t̄qW
, s43d

whereT̄=kBT/« f, t̄qWl=« ftqWl /" and t̄qW =« ftqW /". In Eqs.s42d

ands43d, the expansions for the dimensionless emission and
absorption rates of phonons are given by Eqs.sA9d–sA12d in
the Appendix. In addition, the force-balance equation can
also be cast into a dimensionless form,

dū0

dt̄
= Ēdc + F̄xfū0g, s44d

whereĒdc=eEdc/kf« f, and the dimensionless frictional force
takes the form of

F̄xfū0g ;
Fxfu0g
Ne« fkf

=
niū0

2ps3D
E

0

+`

dk̄'k̄'E
−`

+`

dk̄xsk̄'
2 + k̄x

2d−1/2E
0

+`

dq̄'q̄'E
−`

+`

dq̄xq̄x
2uŪisq̄du2k+shk̄j,hq̄jdF ]

]«̄k'

+
]

]«̄kx

G f̄s«̄k'
,«̄kx

d −
3p

2
E

0

+`

dk̄'k̄'E
−`

+`

dk̄xsk̄'
2 + k̄x

2d−1/2f̄s«̄k'
,«̄kx

do
l
E

0

+`

dq̄'q̄'E
−`

+`

dq̄xq̄xuC̄q̄lu2fjl
s+dshk̄j,hq̄jd

+ jl
s−dshk̄j,hq̄jdg + 3pE

0

+`

dk̄'k̄'E
−`

+`

dk̄xsk̄'
2 + k̄x

2d−1/2o
l
E

0

+`

dq̄'q̄'E
−`

+`

dq̄xq̄xsq̄xū0 − q̄s̄lduC̄q̄lu2 3 hfNqWls2q̄s̄ld

+ 1gjl
s+dshk̄j,hq̄jd + NqWls2q̄s̄ldjl

s−dshk̄j,hq̄jdjF ]

]«̄k'

+
]

]«̄kx

G f̄s«̄k'
,«̄kx

d −
3p

2
E

0

+`

dk̄'k̄'E
−`

+`

dk̄xsk̄'
2

+ k̄x
2d−1/2f̄s«̄k'

,«̄kx
dE

0

+`

dq̄'q̄'E
−`

+`

dq̄xq̄xuC̄q̄u2fcs+dshk̄j,hq̄jd + cs−dshk̄j,hq̄jdg + 3pE
0

+`

dk̄'k̄'E
−`

+`

dk̄xsk̄'
2

+ k̄x
2d−1/2E

0

+`

dq̄'q̄'E
−`

+`

dq̄xq̄xsq̄xū0 − V̄duC̄q̄u2hfNqWs2V̄d + 1gcs+dshk̄j,hq̄jd + NqWs2V̄dcs−dshk̄j,hq̄jdj

3F ]

]«̄k'

+
]

]«̄kx

G f̄s«̄k'
,«̄kx

d, s45d

where ni =Na/V, uC̄q̄lu2, uC̄q̄u2 can be found from Eqs.

sA6d–sA8d for l= t, ,, anduŪisq̄du2 can be found right below
Eq. sA5d.

III. NUMERICAL RESULTS

For our numerical calculations, we have chosen GaAs as
an example for the host semiconductor. For GaAs, we have
taken the following parameters:s3D=131018 cm−3, ni =1
31015 cm−3, m* /m0=0.067, Zc=1, es=13, e`=11, er =12,
s,=5.143105 cm/s, st=3.043105 cm/s, D=−9.3 eV, h14
=1.23107 V/cm, ri =5.3 g/cm3, g0=5 meV and tqW,=tqWt
=tqW =3.5 ps. The other parameters, lattice temperatureT and
electric fieldEdc, will be given in the figure captions. The
electric field is assumed to be in thex direction.

Figure 7 displays the time evolution of the calculated drift
velocity u0 as it gradually reaches a steady state. This time-
evolution method has been used previously8 to seek a stable
steady-state solution. In this case, the dc field is turned on
right aftert=0. From Fig. 7, the steady state is reached with
u0 on the order of 107 cm/s aftert.1.2 ps, whenT=30 K
andEdc=0.75 kV/cm.

In order to elucidate the physics, we show the calculated
distribution functions of electronss« f /kf

3dfs«k'
,«kx

d in Fig. 8
at T=30 K andEdc=0.75 kV/cm as functions of«kx

/« f with
k'=0 in Fig. 8sad and«k'

/« f with kx=0 in Fig. 8sbd. For the
purpose of comparison, the equilibrium Fermi-Dirac distri-
bution function is also shown in Fig. 8 by the dashed-dotted
curve with the symbolh. From Fig. 8sad it is easy to see that
electrons are moved fromkx.0 statessdashed curve with
the symbolnd to kx,0 statesssolid curve with the symbol
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sd in the field direction, which is in sharp contrast with the
assumption of an isotropic distribution of electrons in the
momentum space adopted by the energy-balance equation.3

Relatively cool electrons inkx.0 statesssharp tail at the
Fermi surfaced are found in comparison with hot electrons in
kx,0 statesssmooth tail at the Fermi surfaced. Moreover, we
see by comparing Fig. 8sbd with Fig. 8sad that the depen-
dence offs«k'

,«kx
d on k' andkx is also anisotropic, and the

electrons are relatively unheated or cooledsalmost identical
Fermi surfaced by the dc field in the direction perpendicular
to the field. This excludes the possibility of defining a state-
independent electron temperature as introduced by the
energy-balance equation.3

Figure 9 illustrates the field dependence of calculated drift
velocity u0 in Fig. 9sad and mobilitymc=u0/Edc in Fig. 9sbd
at T=30 K when the energy-drift term in Eq.s10d is included
ssolid curves with the symbolhd and excludedsdashed-
dotted curves with the symbolsd. In Fig. 9sad we can see
that the energy-drift effect heats the electrons in the field
direction and reduces the drift velocity whenEdc is strong
sgreater than 0.75 kV/cmd. The nonlinear relation between
the drift velocity and the applied dc fieldssolid curved can be
seen very clearly in the strong-field regime when the energy-
drift effect is included, which is an indication of the high-
field transport of hot electrons. Moreover, we find in Fig.
9sbd that the mobilitymc decreases withEdc, which has been
observed previously from numerical calculations,10 and the
energy-drift effect further reduces the mobility whenEdc is
higher than 0.75 kV/cm.

Finally, we conclude from Figs. 8 and 9 that the energy-
drift equation derived in this work does include the addi-
tional hot-electron effect in the high-field transport in com-
parison with the regular Boltzmann transport equation.
Furthermore, the energy-drift equation also includes the an-
isotropic distribution of electrons in momentum space along
and perpendicular to the field direction, due to the accelera-
tion of electrons by the dc electric field. This implies that the

isotropic assumption adopted by the energy-balance equation
cannot be justified under a strong dc electric field. On the
other hand, when the dc field is weak, our coupled energy-
drift and force-balance equations reduce to the same results
as those obtained from coupled energy-balance and force-
balance equations, as well as from the regular Boltzmann
transport equation, when only the linear-field terms are
kept.3,4

IV. CONCLUSIONS AND REMARKS

In conclusion, coupled energy-drift and force-balance
equations have been derived for high-field hot-electron trans-

FIG. 7. Time evolution of calculated drift velocityu0 as a func-
tion of time t at T=30 K andEdc=0.75 kV/cm for hot electrons.
The dc field is turned on right aftert=0. u0 linearly increases with
t initially, and a steady state is finally reached aftert.1.2 ps.

FIG. 8. Comparison of calculated dimensionless electron-

distribution functions f̄s«̄k'
, «̄kx

d=s« f /3p2s3Ddfs«k'
,«kx

d as func-
tions of «̄kx

=«kx
/« f and «̄k'

=«k'
/« f in sad and sbd at T=30 K and

Edc=0.75 kV/cm for hot and equilibrium electrons. The dashed-
dotted curves in bothsad and sbd with the symbolh represent the
results from the equilibrium electrons. Insad, k'=0 and the solid
and dashed curves with symbolss andn represent the results from
the hot electrons withkx,0 andkx.0, respectively. Insbd, kx=0,
and the solid curve with the symbols represents the result from the
hot electrons.
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port. The work done by the frictional force has been included
in the Boltzmann scattering equation for electron relative-
scattering motion and has been found to increase the thermal
energy of the electrons and to reduce the field-dependent
drift velocity and mobility of the electrons. The importance
of the hot-electron effect in the energy-drift term under a
strong dc field has been demonstrated. The Doppler shift in
the energy conservation of scattering electrons interacting
with impurities and phonons has been found to give rise to
the anisotropic electron distribution in momentum space
along the field direction. The importance of this anisotropic
distribution has been demonstrated through a comparison
with the isotropic energy-balance equation, from which the
possibility for defining a state-independent electron tempera-
ture has been excluded.

The proposed energy-drift and force-balance equations
can provide new physical insight in several areas. These in-
clude the study of current-injected hot-carrier energy relax-

ation in light-emitting diodes or quantum-well lasers,11 the
study of saturation drift velocities in different
semiconductors,12 the study of phonon-drag thermoelectric
power,9 and the study of the nonresonant interaction of car-
riers with terahertz radiation.13

By further incorporating the electric and magnetic poten-
tials into the proposed energy-drift and force-balance equa-
tions, we will be able to explain nonlinear miniband trans-
port in superlattices14 and the magneto-transport effect in a
two-dimensional electron gass2DEGd.15 Moreover, by in-
cluding the energy-drift term in the semiconductor Bloch
equations,7 we will be able to explain transport effects on
laser-induced optical coherence and vice versa.
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APPENDIX

By using the three dimensionless functions defined in
Eqs.s37d–s39d, we can express all the dimensionless expan-
sion coefficients of the Fokker-Planck-type equation as
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3 q̄xuŪisq̄du2fk−shk̄j,hq̄jd − k+shk̄j,hq̄jdg

−
1

p
o
l
E

0

+`

dq̄'q̄'E
−`

+`
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FIG. 9. Comparison of calculated drift velocitiesu0 and mobili-
tiesmc=u0/Edc as functions of the electric fieldEdc in sad andsbd at
T=30 K with ssolid curves with the symbolhd and withoutsdashed
curves with the symbolsd an energy-drift term in the energy-drift
equation.
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whereni =Na/V is the concentration of impurity atoms,«̄k'
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2=se2kf /e0er« fd / s2p2d. Moreover, we find the dimension-
less form for the electron-phonon coupling,
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whereD̄=D /« f, eh̄14=eh14/kf« f.
By using the dimensionless functions defined in Eqs.

s37d–s39d, we can express all the dimensionless emission
and absorption rates of the dynamical equation for hot
phonons as
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For optical phonons, we have similar results,
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