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The ab initio calculations of the electronic structures incorporating periodic boundary conditions allow to
bring the well-developed standard methods of molecular quantum chemistry into the realm of solid-state
physics and chemistry, especially important if the correlated treatment of the electronic structure is necessary.
In this paper, we consider the general electron-group functions formalism for the electronic structure calcula-
tions as applied to one-dimensional periodic systems. The method for polymers is implemented in a close
analogy with the recently proposed method for molecules. It allows us to calculate one-dimensional systems
with different distributions of orbitals and electrons among groups which are subject to the strong orthogonality
condition. The wave function is optimized both with respect to one- and two-electron density matrices for
electron groups as well as the structure of molecular orbitals forming their carrier spaces. The method is
applied to model systems: chains of hydrogen atoms, a linear hydrogen fluoride chain, and a lithium hydride
chain. The convergence of the energy with respect to the explicitly covered range of interactions and the
long-ranged Coulomb interactions is studied. It is shown that the local properties of one-electron states are very
important for the whole performance of the method. The flexibility of the wave function based on the choice
of electron groups is thoroughly analyzed.
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I. INTRODUCTION

The theoretical prediction of the electronic structure of
solids is a direct way to understand their physical properties
and their behavior in chemical processes. It is well known
that the proper description of many characteristics of mo-
lecular systemssincluding solidsd requires taking into ac-
count significant amount of electron correlations.1 The
density-functional methods have nowadays become the most
popular tool to find the electronic structure of solids. Al-
though these methods have shown a great potential in sys-
tematic studies of weakly correlated solids, they have signifi-
cant drawbacks inherent to one-electron approaches,
especially in the situations where a detailed account of elec-
tron correlation is necessarysfor example, they typically un-
derestimate band gaps in nonconducting solidsd. In addition,
a systematic improvement of density-functional approaches
is extremely difficult. The wave function-based methods are
also well known but they typically use model Hamiltonians
which make the results parameterization-dependent and can
lead to the necessity of reparameterization for each new
wave function.

The methods based on theab initio consideration of the
electronic structure using wave functions and “true” many-
body Hamiltonians seem to be more promising and also chal-
lenging since the account of electron correlation can and
must be performed in a controlled way.2 The methods of
quantum chemistry as applied to molecules provide high-
quality estimates for the electronic structure and physical and
chemical properties.3 It is desirable to bridge the gap be-
tween molecular and solid-state electronic structure calcula-
tions and bring the most successful methods of quantum
chemistry into the realm of the solid state.

The simplest way to do it is to approximate the solid by a
cluster of sufficient size. There are many problems on this
way. The first one is that the edge effects are typically not

small and the convergence of the estimated physical charac-
teristics with the size of the cluster is rather slow. Although
adsorption processes on many solids with well-localizable
electronic statessfor example, zeolitesd can be successfully
described by smallseven minimald clusters, the vast majority
of problems require very large clusters. The effective way to
decrease the necessary cluster size is to treat the infinite en-
vironment of the cluster by adding some effective potential
taking into account the long-range effectssembedding cluster
schemes; see, for example, Ref. 4, and references thereind.
The development of effective methods with linear scaling of
computational costs on the system size5,6 can further dimin-
ish the importance of this problem.

Another problem is how to define the boundary of the
cluster when the solid is covalently bound. A number of ap-
proaches were proposed for this purpose. We mention here
only three simple recipes: saturation of the cluster by hydro-
gen atoms,7 assumption of half an electron pair bond,8 and
partitioning based on the Adams-Gilbert theorem leading to a
localized set of equations.9 Although these methods can be
quite effective in some particular situations, quite generally,
the artificial boundary of the cluster introduces additional
errors into the calculations. The problems of choosing a clus-
ter, a proper definition of the boundary, and taking into ac-
count the environment eventually coincide with the problems
arising in hybrid quantum-mechanical/molecular-mechanical
schemes,10 where small part of a molecule is treated by a
rigorous quantum chemical method and the rest is described
in a more simple waysusually, by classical force fieldsd.

In contrast, the methods imposing periodic boundary con-
ditions on the electronic wave function are more promising
since they allow to avoid significant errors arising from edge
effects in the cluster. At the same time these methods require
significant modification of standard quantum-chemical tech-
niques and, as a consequence, special implementations. Most
methods are based on the Bloch orbitals.11 A fast multipole
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method for long-range interactions and transformation of ba-
sis Gaussian orbitals into crystalline ones is very promising
for bridging the gap between calculations of molecular and
infinite periodic systems.12 The methods based on the local
sWannierd orbitals spreading only over several lattice sites
deserve special attention because the correlation hole is local
in real space, and the local orbitals provide a natural basis for
treating electron correlation in solids.13 Wannier orbitals can
be obtaineda posteriori by preliminary solution of the
k-dependent SCF equations and Fourier transformation of the
Bloch orbitals. At the same time, there are innovative proce-
dures which allow to achieve the local orbitals directly in
real space.14,15It is done by formulating the SCF equations in
real space in the assumption of the locality and fastsexpo-
nentiald decay of one-electron states. The orthogonality of
orbitals belonging to neighboring unit cells is ensured by
adding a special orthogonalization potential to the one-
electron effective Hamiltonian.

The local character of electron correlations provides nu-
merous possibilities for going beyond the one-electron ap-
proximation. A series of different approximations is known
in the literature.16 Characteristic examples include the
second-order perturbation theory,17 the coupled-cluster
expansions,18 Green function formalism,19 and local incre-
ments based on the approximate transferability of local ef-
fective Hamiltonians.20 It is essential that most methods are
nonvariational and based on the one-determinant approxima-
tion to the reference electronic state. The methods based on
multiconfiguration reference electron states can be necessary
if static electron correlations are strong. In this context, the
MCSCF smulticonfiguration SCFd group function approach
for periodic systems21 provides a good example of incorpo-
rating electron correlation into the calculations of solids al-
though it uses a finite cluster based simulation of extended
periodic structure.

The group functions technique22 can serve in many ways
as a useful tool for treating the electronic structures of solids
because the wave function of a periodic system can be rep-
resented as an antisymmetrized product of identical wave
functions for unit cells which is naturally described by the
electron groups. The most well-known applications include
the analysis of the response of the rest of the crystal to the
defect region23 and theab initio model potential method for
treating defects in solids.24,25 The group functions technique
in its particular geminalstwo-electrond form was effectively
used to treat low-dimensional solids.26,27 More general elec-
tron groups where used to treat metallocene-based stacks.28

An essential result was obtained in Refs. 29 and 30, where
the application of delocalized and localized geminals to ex-
tended systems was studied. It was shown that the localized
geminals are superior than the delocalized ones, confirming
the preference of treating electron correlations in real space.

Systems with reduced dimensionality often serve as a
good example for the application of different approaches to
the electronic structure of infinite systems. It is mostly due to
a significant reduction of computational costs and the possi-
bility to treat a large part of interactions in a rigorous way.
There are many studies on infinite polymers within the
Hartree–Fock approach.31–33 Correlation treatments of poly-
mers have become very popular nowadays and many ap-

proaches were used to study ionic and covalent
systems.17,34–36 Most characteristics of electronic structure
calculation methods for polymers are inherent from the
analogous methods for three-dimensional systems.

In the present work, we pursue the goal of developing a
multiconfiguration variationalab initio approach for the
analysis of electronic structure and properties of one-
dimensional systems. We base our construction on the gen-
eral group functions technique because, if the wave function
of a polymer is given by an antisymmetrized product of
group functions representing the unit cells, the most natural
way to obtain consistentsindependent on the choice of unit
cellsd solution to the electronic structure problem is to treat
the unit cells in the same fashion as a polymer. Moreover,
group functions have a great potential in analysis and physi-
cally clear representation of the electronic structure of mo-
lecular systems because electron groups typically represent
well-defined structural blocks like chemical bonds, lone elec-
tron pairs and cores. Our present development is essentially
based on the previous study,37 where general group functions
were applied to the electronic structure of molecules; here,
however, we impose the periodic boundary conditions on the
wave function which makes the formalism more compli-
cated.

The paper is organized as follows. In the next section we
consider the general implementation of the group functions
technique for systems with one-dimensional periodicity.
Then we apply this technique to a series of model-like poly-
meric chains: metallic and semiconducting hydrogen chains
as well as charged linear hydrogen fluoride and lithium hy-
dride chains. These examples illustrate the general character-
istics of the method: convergence of the results, localization
properties of variationally optimized one-electron states and
dependence of results on the choice of electron groups. Fi-
nally, we draw several conclusions about the general perfor-
mance of the method and future perspectives of its develop-
ment.

II. METHOD

A. General outline

In this section we consider the necessary working formu-
las as well as our particular implementation of the wave
function which is based on the electron group functions with
periodic boundary condition for infinite polymers. The whole
construction of the method has a lot in common with that
proposed for the analysis of the electronic structure of
molecules37 although the translational symmetry leads to sig-
nificant modifications of the formalism. The trial wave func-
tion of a molecule can be written as an antisymmetrized
product of wave functions for the unit cells:

uCl = p
M=−`

+`

GM
+ u0l, s1d

whereGM
+ is a composite operator of creation of the wave

function for theMth unit cell. Due to the translational sym-
metry all these operators produce group functions with the
same quantum numbers but shifted in real space according to
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the translation vector. The unit cell wave functions also have
the structure of a product of group functions:

GM
+ = p

m

gMm
+ , s2d

where the specification of the electron groupsgMm
+ u0l deter-

mines the overall quality of the wave function. Until the
structure of these groups is not defined, the wave function
expression Eq.s2d is quite general. To make the formalism
feasible, we impose several important conditions on the
structure of the constituent groups.

The strong orthogonality condition38 swhich is equivalent
to expanding the electron groups in the mutually orthogonal
subspaces39 and physically corresponds to a hypothesis about
the importance of only one-electron exchange between elec-
tron groups40d is very important since it allows to avoid com-
plications due to nonorthogonality of one-electron states
smethods based on nonorthogonal group functions, however,
can be also proposed41,42d. This condition imposes serious
restrictions on the form of the wave function. In some cases
it leads to an insufficient flexibility of the wave function and,
therefore, to a relatively small coverage of correlation energy
and, also, inconsistencies in the description of chemical
bonding.43,44At the same time in many situations the strong
orthogonality condition is not very restrictive and the correct
choice of electron groups in combination with variational
determination of their carrier spaces provides a high quality
description of electronic structure of molecules.37

The second condition is that all the electron groups are
assumed to be singlets. By this we avoid the explicit consid-
eration of coupling schemes between different multiplets
since the presence of one nonsinglet electron group leads to
an infinite number of them because of the translational sym-
metry. The third condition specifies the structure of electron
groups. They are calculated on the full CI level. These con-
ditions are also applicable to calculations of molecules. By
this, the parameters defining electron groupsgm

+ aresbesides
the usual choice of basis setd only number of electrons and
number of orbitals for each electron group. Despite having
only a small number of parameters, the wave functions for
the unit cell cover a large range since virtualswithout elec-
tronsd electron groups are also allowed. We mention here
only a few examples of wave functions covered: the spin-
restricted Hartree-FocksRHFd, generalized valence bond
sGVBd, complete active space self-consistent field
sCASSCFd, and full CI wave functions.

The periodic boundary conditions lead to other limitations
on the structure of wave function. Since we work in real
space, the basis one-electron states forming carrier spaces for
electron groups should have goodspreferably exponentiald
decay properties. This leads to restrictions on the choice of
systems which can be considered. Moreover, the basis set
should be carefully chosen since the presence of very diffuse
functions will lead to instabilities in the scheme.45 For ex-
ample, if we have an infinite chain of atoms with translation
vector of lengtha, each of them has a Gaussian basis func-
tion of the form

fsrd = S2a

p
D1/4

e−ax2
, s3d

the overlap matrix between basis orbitals is a function of one
parameterb=aa2. If b is larger than 1, the application of the
symmetrical orthogonalization procedure toslocalizedd
atomic orbitals leads to well-localized orthogonal orbitals
with meaningful amplitudes only at several sites. Ifb has the
order of magnitude about 0.1, the orthogonalized states
spread over hundreds of sites that makes the whole proce-
dure of orthogonalization unsuitable. This behavior of the
procedure is a consequence of the quasilinear dependence of
the basis orbitals.

It is obvious that some cut-off parameters are necessary to
make the calculations possible. We introduce the parameter
Q sdelocalization lengthd characterizing the localitysdecay
propertiesd of carrier spaces for electron groups. By this each
one-electron state is assumed to be spread over 2Q+1 unit
cells sfrom −Q to Q if 0 specifies the unit cell to which the
electron group is assignedd. Another important parameter,R,
characterizes the range of interactions explicitly covered. By
this all molecular integrals within a cluster of lengthR+1
unit cells are calculated and fully used in the calculations
while all other interactions are either totally neglected or
covered approximately by summation of Coulomb interac-
tions between atomic charges.

In the following, we denote atomic orbitals asi, j , k, and
l, and molecular orbitals asa, b, c, d, ande. The complex
index for the arbitrary atomic orbitali is given by two num-
bers: the number of the unit cellsId and the number of the
orbital sid within the set of orbitals assigned to this unit cell.
Analogously, for molecular orbitalsa is equivalent toAa.
Matrix C then determines the transformation from the atomic
orbitals to the molecular ones:

as = o
I=−Q

Q

o
i

Ciais, s4d

wherea stands fora=0a. The set of all MOs is assumed to
be orthonormalizedsit is possible since we use full CI wave
functions for all electron groupsd. Theab initio Hamiltonian
in the basis of atomic orbitals can be written as

Ĥ = o
i,j

hij Êij +
1

2 o
i,j ,k,l

sij ukl dfÊij Êkl − Sjk
−1Êilg, s5d

whereÊij =osis
+j s is the elementary generator, and the stan-

dard convention for molecular integrals is used. Although
Eq. s5d is quite general, the practical calculations of the in-
tegrals in the basis of MOs imply restrictions on the summa-
tions defined by the parametersQ and R. For example, the
one-electron integrals are given by formula

h0ab = o
I,J=−Q

+Q

o
i,j

CiaCjbh0isB+J−Id j . s6d

The summation is over all unit cell indicesI and J which
satisfy the criteriauB+J− I uøR. The two-electron integrals
are calculated analogously. Significant simplifications in the
calculations are due to the symmetry of the molecular inte-
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grals with respect to an interchange of indices. As in the case
of molecular calculations,37 only a small part of two-electron
integrals in the basis of MOs is actually necessary due to the
specific choice of the wave function.

The group functions structure of the wave function Eqs.
s1d and s2d leads to a simple expression for the electronic
energy which is a sum of intragroup contributions and Cou-
lomb and exchange interactions between groups.22 In the
case of imposed periodic boundary conditions, the electronic
energy per unit cell can be written as

Eel = o
m
F o

a,bPm

h0a0bPab +
1

2 o
a,b,c,dPm

s0a0bu0c0ddGabcdG
+ o

Mù0
o
m,n

Mm.0n

o
a,bPm

c,dPn

fsMaMbu0c0dd

− 1
2sMa0du0cMbdgPabPcd, s7d

wherePab andGabcd denote intragroup elements of one- and
two-electron density matrices. The electronic energy Eq.s7d
is a function of two sets of parameters. The first one contains
elements of density matricessor amplitudes of different con-
figurations in the full CI expansions of electron group wave
functionsd, while the second reflects the structure of molecu-
lar orbitals given by the matrixC. We determine the param-
eters by a two-step iteration procedure.

B. Optimization of group wave functions

The first step in the two-step iteration procedure is the
determination of the density matrices by solving full CI
problems for electron groups in the effective field of other
groups. We assume that the current set of MOs as well as
intragroup elements of the one-electron density matrix in the
basis of MOs are known. The direct use of Eq.s7d for an
optimization of the density matrices is computationally de-
manding because it involves the calculation of the Coulomb
and exchange integrals in the basis of MOs for pairs of elec-
tron groups. A more effective way is to explore the basis of
atomic orbitals as much as possible.46 For this purpose, we
perform a transformation of the one-electron density matrix
from the basis of molecular orbitals to the basis of atomic
orbitals

P0i j = o
uMuøQ

uJ−MuøQ

o
m

o
a,bPm

C−MiaCsJ−Md jbPab. s8d

The Fock matrixsincluding interactions between electrons
within the same groupd in the basis of atomic orbitals is
constructed as

F0i j = h0i j + o
k,l

fs0i j ukl d − 1
2s0i l ukj dgP0ksL−Kdl , s9d

where the indicesJ, K, andL are restricted by a range given
by theR parametersJù0; J,K ,LøR; K ,LùJ−Rd. The ma-
trix elements with negative values ofJ can be easily obtained
due to symmetry of the Fock matrix with respect to an inter-
change of its indices. The transformation of the Fock matrix

to the basis of MOs is performed by theC matrix,

F0ab = o
I,J=−Q

+Q

o
i,j

CiaCjbF0isB+J−Id j . s10d

The construction of effective Hamiltonians for groups re-
quires only intragroup matrix elements of the Fock matrix.
The one-electron matrix elements of effective Hamiltonian
for orbitals a and b assigned with groupm sirrespective to
the unit celld are obtained by removing the intragroup Cou-
lomb interaction

hab
eff = F0a0b − o

c,dPm
fs0a0bu0c0dd − 1

2s0a0du0c0bdgPcd.

s11d

The effective electronic Hamiltonian for themth group can
be written as

Ĥm
eff = o

a,bPm

hab
effÊ0a0b +

1

2 o
a,b,c,dPm

s0a0bu0c0dd

3fÊ0a0bÊ0c0d − dbcÊ0a0dg. s12d

The full CI solutions for all electron groups are found by
using the Unitary Group Approach for the many-electron
correlation problem.47

The intragroup elements of the one- and two-electron den-
sity matrices are calculated with these wave functions as the
corresponding averages

Pab = kFmuÊ0a0buFml,

Gabcd= kFmuÊ0a0bÊ0c0d − dbcÊ0a0duFml. s13d

The electronic energy can be calculated as a sum over groups
since the interactions between them are included into effec-
tive one-electron matrix elements,

Eel =
1

2o
m

o
a,bPm

Fshab
eff + h0a0bdPab + o

c,dPm

s0a0bu0c0ddGabcdG .

s14d

C. Optimization of molecular orbitals

The second step in the iteration procedure is the optimi-
zation of carrier spaces for electron groups which corre-
sponds to the mixing of orbitals assigned to different groups
sthe mixing of orbitals within the same group does not
change the energyd. An arbitrary rotation that mixes two or-
bitals Aa and 0b from groupsm and n can be written as a
function of one parametere,

Ha8 = Î1 − e2a + eb

b8 = − ea + Î1 − e2b,
J s15d

if the orthonormality of the set of MOs is preserved.
The determination of the set of thee parameters is based

on the minimum condition for the total electronic energy
which can be written as a function ofe,
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Eel = E0
el + 2eH o

cPm

F0bAcPac − o
cPn

F0cAaPbc

− o
c,d,ePm

fs− Ab0cu0d0ed − 1
2s− Ab0eu0d0cdgPacPde

+ o
c,d,ePn

fsAa0cu0d0ed − 1
2sAa0eu0d0cdgPbcPde

+ 1
2 o

c,d,ePm

s− Ab0cu0d0edfGacde+ Gcadeg

− 1
2 o

c,d,ePn

sAa0cu0d0edfGbcde+ GcbdegJ + Ose2d. s16d

To calculate the gradient we only need a small part of the set
of the two-electron integrals in the basis of MOs, namely,
those of the formsa0cu0d0ed. To construct an efficient pro-
cedure for finding optimal values ofe parameters, the
second-order contribution to the energy with respect toe’s
should be used. At the same time its explicit calculation is
very time demanding. Therefore we consider only the diag-
onal part of the Hessian matrix and make approximation to
the second derivative with respect toe,37

1

2

]2Eel

]e2 = F0b0bPaa − o
cPm

F0a0cPac + F0a0aPbb − o
cPn

F0b0cPbc.

s17d

When the first and approximate second derivatives are
known, we obtain a vector of thee parameters by applying
the inverse Hessian matrix update procedure48 based on the
combination of variable-metric second order update schemes
and direct inversion in the iterative subspace.49 The matrixC
is updated and the iteration procedure returns to the step of
optimization of wave functions for electron groups with
given molecular orbitals.

III. RESULTS AND DISCUSSION

In this section we consider a series of illustrative applica-
tions of the method described above. For this purpose we
consider model systems and use minimalsSTO-6Gd basis set
to reveal the basic properties of the procedure. The results
for the real polymers and extended basis sets will be reported
elsewhere. In the present consideration, special attention is
paid to the convergence of the results, the choice of electron
groups and the structure of one-electron states forming car-
rier spaces for electron groups.

A. Hydrogen chains

A chain of hydrogen atoms can serve as a good model
system for the general analysis of characteristics of a new
approach. Its electronic structure and properties as a function
of structural characteristics have been studied in a series of
works.50–53 The correlation effects are thought to be impor-
tant in this system because in the case of an infinite metallic
hydrogen chain the Hartree-Fock theory accounts for only
about a half of the real cohesion.50 The important question in
application of the general group function formalism is how
to choose electron groups. In Ref. 37 this problem was stud-

ied in detail on the example of electronic structure calcula-
tions of diatomics, and it was shown that the results strongly
depend on this choice. When we have a chain of hydrogen
atoms only two possibilities exist within a given formalism
sand minimal basis setd: the first one is to take one electron
group per unit cell with 2 electrons and 2 orbitalssgeminal
approachd while the second one is to take two electron
groups—1 doubly-filled orbital and 1 vacant orbitalsSCF
approachd.

We consider two types of hydrogen chains depicted in
Fig. 1: the first onesad is a set of dihydrogen molecules with
bond length 0.74 Å and translation vector of length 1.74 Å;
the second chainsbd is an equidistantsmetallic typed one
with the same density as the chainsad. It is clear that these
chains should differ significantly in the localization of one-
electron states. The general instability of the metallic chain
with respect to dissociation on the molecules reveals itself in
the relative energies of these chains: the total energy of the
system of typesad is lower than that of the system of typesbd
for both SCF and geminal approaches.

The construction of the computational procedure includes
the cut-off parameterssQ and Rd. These parameters play
quite different roles in the determination of the energy per
unit cell. The parameterR defines the Hamiltoniansrange of
interactions calculated explicitlyd and, therefore, the physical
model. At the same time, the parameterQ controls the valid-
ity of the basic approximation—that of strong orthogonality
between electron groups. It seems natural to study depen-
dence of the results on the physical modelsRd in the limit of
large Q where the strong orthogonality approximation is
valid, while the dependence of the results on the parameterQ
does not provide physically meaningful information because
in the case of smallQ the model is broken. The hydrogen
chains are not charged and, therefore, the long-range Cou-
lomb interactions should not be significant. We studied the
dependence of the calculated energy per unit cell on theR
parameter for two hydrogen chainssad and sbd shere and in
the following studies we usedQ=15, which is more than
enough for validity of the strong orthogonality conditiond.
The results for the geminal model are given by Fig. 2, where
the relative energyswith zero level corresponding to the limit
of infinite Rd is plotted as a function of the rangeR of inter-
actions covered. In the case of the localized chainsad the
energy increases when theR parameter grows. It corresponds
to the generally repulsive character of interactions between
unit cells and has a direct relation with the instability of the
hydrogen chain with respect to a dissociation yielding dihy-
drogen molecules. The convergence is rather fast. For ex-
ample, forR=4 the calculated energy differs from its limit
only by 0.2 mH. The similar convergence properties can be
obtained within the cluster model. At the same time the
equivalentsaccording to the range of interactions coveredd

FIG. 1. Chains of hydrogen atoms:sad set of H2 molecules,sbd
equidistant chain with the same density.
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cluster procedure for the unit cell energy uses difference of
energies for H10 and H8 molecules, i.e., needs two indepen-
dent calculations. The computational costs in the case of the
present method are significantly smaller than those in the
case of cluster models because periodic boundary conditions
significantly diminish the number of variables to be opti-
mized. Moreover, calculations based on the periodic bound-
ary conditions allow to obtain more reliable approximations
to the structure of one-electron states than the equivalent
cluster procedures.

The convergence properties for the metallic hydrogen sys-
tem are more difficult. We can see a combination of two
factors: by increasingR we include new interactions between
further separated unit cells and this increases the energy just
like in the case of the chainsad. At the same time, by increas-
ing R we better treat the relatively large “tails” of the one-
electron states. The combination of these two counteracting
factors leads to a curve with a maximum atR=3. Moreover,
for R=2 these factors are almost compensated and the energy
is very close to its limit. Thus, surprisingly, the convergence
of the energy in the casesbd is better than in casesad.

Here we address the problem of choice of electron groups
for the case of periodic boundary conditions. The geminal
and SCF approaches lead to quite different results. For ex-
ample, the estimated equilibrium H-H distance in the equi-
distant chain is 0.970 and 0.942 Å for the geminal and the
SCF approach, respectively. These values can be compared
with previously reported value 0.974 Å, obtained in the
framework of the RHF method with extended basis set.54

Interesting examples of different choice of electron groups
can be obtained if we double the unit cell, i.e., consider pe-
riodically repeated system of 4 hydrogen atoms. In this case
we have three different possibilities: the first one is one
4-electron 4-orbital groupsfull CI approach for the unit celld,
the second one is two 2-electron 2-orbital groupssgeminal
approachd, and the third one is the SCF approach with 2
doubly-filled and 2 vacant orbitals. We can compare the en-
ergies per “H2” unit for different wave functions and differ-
ent geometries. In the case of the systemsad the correlation
energy covered is 13.58 and 15.93 mH for the geminal and
the full CI approach, respectively. In the case of the system

sbd these energies are 11.04 and 14.56 mH. The correlation
energy covered for the chainsad is larger than that for the
chainsbd since the correlation is a local phenomenon and the
electron states in the chainsbd are more delocalized than in
the chainsad. The different degree of delocalization also ex-
plains why the transition from 2- to 4-electron group func-
tion is more important for the chainsbd than for the chainsad.
Analogous conclusions can be drawn from consideration of
two parallel hydrogen chains where the unit cell contains 4
hydrogen atoms.

The structure of one-electron states is very important for
the whole performance of the method. Their fast decay can
significantly improve the convergence of the procedure with
respect to theR parameter. The “tails” of one-electron state
have two different origins. The first one is the orthogonality
requirement and the second one is true delocalization. To
make the correct comparison between the electronic struc-
tures of chainssad and sbd we single out the delocalization
“tails” of local orbitals. For this purpose, we express the
molecular orbitals in the basis of symmetrically orthogonal-
ized atomic orbitals. Thus defined amplitudes of molecular
orbitals on the atoms not belonging to the central unit cell
correspond to the orbital “tails” due to delocalization. Fig-
ures 3 and 4 represent the decay of the bonding and anti-
bonding orbitals in the hydrogen chains treated within the
geminal approach. The amplitudes corresponding to delocal-
ization “tails” are plotted against number of hydrogen atom
snumber 1 corresponds to the atom closest to the central unit
celld. These figures show the significant difference between
two chains: the states in the chainsad decay very fastsabso-
lute values of the amplitudes become less than 0.01 starting
from the fourth unit cell from the central oned while in the
case of the chainsbd the decay is more smoothsabsolute
values of the amplitudes become less than 0.01 starting from
the eighth unit cell from the central oned. The same conclu-
sion can be drawn from the total weights of tails for two
chains: in the case of the chainsad it is 0.050 while in the
case of the chainsbd it is already 0.116.

B. Charged chains: Hydrogen fluoride and lithium hydride

Because the atoms in the hydrogen chains are uncharged,
they are not suitable for studying the role of long-ranged

FIG. 2. Convergence of the energy per unit cell for hydrogen
chains as a function of the interaction cut-off parameter.

FIG. 3. Amplitudes of bonding orbital at atoms close to the
central unit cell.
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Coulomb interactions. We extend our analysis of the proper-
ties of the procedure proposed to two characteristic asym-
metric chains with non-zero total charges on the atoms: lin-
ear hydrogen fluoride and lithium hydridesFig. 5d.

The chain of hydrogen fluoride molecules is often used as
a characteristic example for studying properties of computa-
tional procedures.55–57It is important that the polar character
of hydrogen fluoride molecules makes it necessary to take
into account the long-ranged Coulomb interactions for ob-
taining high-precision results, and the hydrogen fluoride
chain is an appropriate model for studying effects of these
interactions.57,58 It is known that the correlation energy con-
verges fast in this polymersprecision is about 1mH per unit
cell if the range of 15 Å is taken into accountd.18 We consider
here a model chain of hydrogen fluoride molecules with
bond length 0.95 Å and the translation vector of length
2.49 Å.56 The electron groups are chosen in the following
way: three doubly-filled orbitals describe the core electrons
of the F atom and 2 lone pairs perpendicular to the chain
direction while the rest is treated as one group with 4 elec-
trons and 3 orbitals.

The estimated Mulliken charges in this chain are about
±0.26. Figure 6 illustrates the convergence of the energy in
this system as a function of theR parameter for two cases:
the first one corresponds to neglecting all interactions be-
tween unit cells with difference between their numbers more
than R, while the second one approximates theseslong-
rangedd interactions by converged sum of Coulomb interac-
tion between the Mulliken charges. The exchange interac-
tions are assumed to be short-ranged since it is known that
they decrease exponentially in the hydrogen fluoride chain.58

The figure shows that a simple inclusion of the Coulomb

interaction between charges significantly improves the con-
vergence of the procedure. The difference between two pro-
cedures remains rather large even forR=7.

Lithium hydride chain is also a very popular model one-
dimensional system mostly due to its simplicity. It is well
studied both on the Hartree-Fock level32,33 and with account
of electron correlations.34,35 It is known59,60 that the equilib-
rium structure of this chain corresponds to the equidistant
case with the hydrogen atom placed on the same distance
from two neighboring atoms. This is because the large elec-
tronegativity difference between Li and H points towards
ionic bonding which is bound to the condensed phase with
equal Li-H and H-Li bond lengths. Therefore, the only geo-
metric parameter is the lattice constant of the chain.

Three choices of group functions seem natural for this
polymer. The first possibility is one 4-electron 6-orbital
groupsfull CI approachd, the second one is one doubly-filled
orbital for the Li core and one 2-electron 5-orbital group
sgeminal approachd, and the third one is the SCF approach
with 2 doubly-filled and 4 vacant orbitals. This chain is ionic
and, therefore, proper account of long-range Coulomb inter-
actions is necessary. We performed calculations for all three
choices of electron groups in the limit of largeR and Q
parameters with correction to the energy due to Coulomb
interaction between atomic charges. The equilibrium geom-
etry obtained in the framework of the full CI and geminal
approach is almost the samesthe optimized values of the
lattice constant are 3.301 and 3.302 Å, respectivelyd. This is
not surprising since the core-valence separation is physically
well substantiated. In fact, the geminal approach covers more
than 99.4% of the correlation energysabout 14.7 mHd. In the
case of a covalently bonded LiH molecule the analogous
value is about 98.9%. The lattice constant obtained can be
compared with those optimized within the Hartree-Fock ap-
proachs3.521 and 3.428 Å for basis sets with 2 and 8 orbit-
als per unit cell33d.

In the case of the often studied asymmetric lithium hy-
dride chain with alternating bond lengths of 4.0 and
6.0 a.u.,32,35we calculated the correlation energy per unit cell

FIG. 4. Amplitudes of antibonding orbital at atoms close to the
central unit cell.

FIG. 5. Charged chains:sad hydrogen fluoride,sbd lithium
hydride.

FIG. 6. Convergence of the energy per unit cell for linear hy-
drogen fluoride chain as a function of the interaction cut-off
parameter.
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using five different basis sets. We estimated it to be equal
26.5, 27.4, 15.6, 19.0, and 18.0 mH for STO-4G, STO-6G,
Huzinaga’s split valence, 4-31G, and 6-31G basis sets, re-
spectively. These values are in a good correspondence with
the coupled-cluster estimates35 which, for different methods
and different basis sets, cover the range from 19 to 27 mH.
Finally, we present the structure of optimized one-electron
states in the basis of symmetrically orthogonalized atomic
orbitals. We consider the valence geminal obtained for sym-
metric LiH chain with the lattice constant 3.302 Å. Figure 7
shows the amplitudes of two mostly occupied natural orbitals
selectron densities 1.976 and 0.023, respectivelyd on the va-
lence s-orbitals s2s for Li and 1s for H; of course, some
density is also on the 2px-orbitals of Lid. The figure shows
that the decay of variationally optimized one-electron states
in this system is exponential and it is faster than in the case
of hydrogen chains which justifies the application of the
method proposed.

IV. CONCLUSIONS

In the present work we considered theab initio imple-
mentation of the general electron group functions approach

with periodic boundary conditions in the one-dimensional
case. The trial wave function was chosen as an antisymme-
trized product of identical electron groups representing unit
cells which are constructed as antisymmetrized products of
electron groups representing chemical bonds, lone pairs or
more general molecular building blocks. The strong orthogo-
nality condition imposed on the wave function allowed us to
write down a simple expression for the energy. The method
was constructed as a variational one, and the optimization of
two classes of parameterssdensity matrices and carrier
spaces for electron groupsd was effectively implemented as a
two-step iteration procedure. The calculations performed on
the model systems have shown that the convergence of the
procedure with respect to the range of interactions explicitly
taken into account was quite fast. Taking into account the
Coulomb interaction between charges behind this range can
significantly improve the convergence. Our calculations have
shown that for the systems considered, a geminal wave func-
tion covers significant part of the correlation energy and the
transition to more general electron groups is less important
than the transition from the one-electron approximation to
the geminal one. In the case of different hydrogen chains it
was shown that the decay properties of one-electron states
strongly depend on the molecular geometry. The method can
be applied to a wide range of one-dimensional systems. Fur-
ther development may include taking into account perturba-
tion corrections to the wave function, implementation of fast
procedure for geminal wave function avoiding transforma-
tion of integrals from the basis of atomic orbitals to the basis
of molecular orbitals, and bivariational construction allowing
for weakly overlapping electron groups.
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