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Group functions for the analysis of the electronic structures of polymers
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The ab initio calculations of the electronic structures incorporating periodic boundary conditions allow to
bring the well-developed standard methods of molecular quantum chemistry into the realm of solid-state
physics and chemistry, especially important if the correlated treatment of the electronic structure is necessary.
In this paper, we consider the general electron-group functions formalism for the electronic structure calcula-
tions as applied to one-dimensional periodic systems. The method for polymers is implemented in a close
analogy with the recently proposed method for molecules. It allows us to calculate one-dimensional systems
with different distributions of orbitals and electrons among groups which are subject to the strong orthogonality
condition. The wave function is optimized both with respect to one- and two-electron density matrices for
electron groups as well as the structure of molecular orbitals forming their carrier spaces. The method is
applied to model systems: chains of hydrogen atoms, a linear hydrogen fluoride chain, and a lithium hydride
chain. The convergence of the energy with respect to the explicitly covered range of interactions and the
long-ranged Coulomb interactions is studied. It is shown that the local properties of one-electron states are very
important for the whole performance of the method. The flexibility of the wave function based on the choice
of electron groups is thoroughly analyzed.
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[. INTRODUCTION small and the convergence of the estimated physical charac-
steristics with the size of the cluster is rather slow. Although

The theoretical prediction of the electronic structure o . i ith I-localizabl
solids is a direct way to understand their physical propertie@dsorption processes on many solids with well-localizable
electronic stategfor example, zeolitescan be successfully

and their behavior in chemical processes. It is well known

that the proper description of many characteristics of modescribed by smalleven minimal clusters, the vast majority

lecular systemgincluding solid$ requires taking into ac- ©Of Problems require very large clusters. The effective way to
count significant amount of electron correlatidnghe decrease the necessary cluster size is to treat the infinite en-

density-functional methods have nowadays become the mo¥fronment of the cluster by adding some effective potential
popular tool to find the electronic structure of solids. Al- aking into account the long-range effesnbedding cluster

though these methods have shown a great potential in Sy§phemes; see, for example, Ref. 4, and references therein

tematic studies of weakly correlated solids, they have signifi- he development of effective methods with linear scaling of
eaxly  (N€y 9 computational costs on the system 8i&ean further dimin-
cant drawbacks inherent to one-electron approache

. . L . Ysh the importance of this problem.
especially in the situations where a detailed account of elec-" ppiner problem is how to define the boundary of the

tron correlation is necessaffor example, they typically un-  ¢j,ster when the solid is covalently bound. A number of ap-
derestimate band gaps in nonconducting spliflsaddition,  proaches were proposed for this purpose. We mention here
a systematic improvement of density-functional approachegnly three simple recipes: saturation of the cluster by hydro-
is extremely difficult. The wave function-based methods areyen atoms, assumption of half an electron pair bohdnd
also well known but they typically use model Hamiltonians partitioning based on the Adams-Gilbert theorem leading to a
which make the results parameterization-dependent and cagcalized set of equatiorfsAlthough these methods can be
lead to the necessity of reparameterization for each newuite effective in some particular situations, quite generally,
wave function. the artificial boundary of the cluster introduces additional
The methods based on tlad initio consideration of the errors into the calculations. The problems of choosing a clus-
electronic structure using wave functions and “true” many-ter, a proper definition of the boundary, and taking into ac-
body Hamiltonians seem to be more promising and also chakount the environment eventually coincide with the problems
lenging since the account of electron correlation can andrising in hybrid quantum-mechanical/molecular-mechanical
must be performed in a controlled waythe methods of schemed® where small part of a molecule is treated by a
quantum chemistry as applied to molecules provide highfigorous quantum chemical method and the rest is described
quality estimates for the electronic structure and physical anth a more simple wayusually, by classical force fielgls
chemical propertied.It is desirable to bridge the gap be-  In contrast, the methods imposing periodic boundary con-
tween molecular and solid-state electronic structure calculaditions on the electronic wave function are more promising
tions and bring the most successful methods of quantursince they allow to avoid significant errors arising from edge
chemistry into the realm of the solid state. effects in the cluster. At the same time these methods require
The simplest way to do it is to approximate the solid by asignificant modification of standard quantum-chemical tech-
cluster of sufficient size. There are many problems on thisiiques and, as a consequence, special implementations. Most
way. The first one is that the edge effects are typically nomethods are based on the Bloch orbifélé fast multipole
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method for long-range interactions and transformation of baproaches were used to study ionic and covalent
sis Gaussian orbitals into crystalline ones is very promisingystems.-34-36 Most characteristics of electronic structure
for bridging the gap between calculations of molecular anctalculation methods for polymers are inherent from the
infinite periodic systemlsz. The methods based on the local analogous methods for three-dimensional systems.
(Wanniep orbitals spreading only over several lattice sites |n the present work, we pursue the goal of developing a
deserve special attention because the correlation hole is locg{ylticonfiguration variationalab initio approach for the

in real space, and the local orbitals provide a natural basis fo§nalysis of electronic structure and properties of one-
treating electron correlation in soliddWannier orbitals can dimensional systems. We base our construction on the gen-

be obtaineda posteriori by preliminary solution of the o5 orqyp functions technique because, if the wave function
k-dependent SCF equations and Fourier transformation of th a polymer is given by an antisymmetrized product of

Bloch orbitals. At the same time, there are innovative proce-group functions representing the unit cells, the most natural

dures which allow to achieve the local orbitals directly in . . . :
real spacé®°It is done by formulating the SCF equations in way to obtain consister(independent on the choice of unit
cells) solution to the electronic structure problem is to treat

real space in the assumption of the locality and faspo- . : )
b b y fasp 11he unit cells in the same fashion as a polymer. Moreover,

nentia) decay of one-electron states. The orthogonality o X 0 : !
orbitals belonging to neighboring unit cells is ensured bydrouP functions have a great potential in analysis and physi-

adding a special orthogonalization potential to the onecally clear representation of the electronic structure of mo-
electron effective Hamiltonian. lecular systems because electron groups typically represent

The local character of electron correlations provides nuWvell-defined structural blocks like chemical bonds, lone elec-
merous possibilities for going beyond the one-electron aptfon pairs and cores. Our present development is essgntially
proximation. A series of different approximations is known based on the previous stu%viyhere general group functions
in the literature!® Characteristic examples include the Were applied to the electronic structure of molecules; here,
second-order perturbation thedfy, the coupled-cluster however, we impose the periodic boundary conditions on the
expansiond® Green function formalisi® and local incre- Wave function which makes the formalism more compli-
ments based on the approximate transferability of local efcated. _ _ .
fective Hamiltoniang? It is essential that most methods are ~ The paper is organized as follows. In the next section we
nonvariational and based on the one-determinant approxim&onsider the general implementation of the group functions
tion to the reference electronic state. The methods based dgchnique for systems with one-dimensional periodicity.
multiconfiguration reference electron states can be necessafy’en We apply this technique to a series of model-like poly-
if static electron correlations are strong. In this context, theMeric chains: metallic and semiconducting hydrogen chains
MCSCF (multiconfiguration SCF group function approach @S Well as charged linear hydrogen fluoride and lithium hy-
for periodic systen?d provides a good example of incorpo- er_de chains. These examples illustrate the general ch_ara<_:ter-
rating electron correlation into the calculations of solids al-iStics of the method: convergence of the results, localization
though it uses a finite cluster based simulation of extende@roperties of variationally optimized one-electron states and
periodic structure. dependence of results on the ph0|ce of electron groups. Fi-

The group functions techniqéfecan serve in many ways nally, we draw several conclusions about _the gen_eral perfor-
as a useful tool for treating the electronic structures of solidgnance of the method and future perspectives of its develop-

because the wave function of a periodic system can be repPent.
resented as an antisymmetrized product of identical wave
functions for unit cells which is naturally described by the II. METHOD
electron groups. The most well-known applications include
the analysis of the response of the rest of the crystal to the
defect regiof® and theab initio model potential method for In this section we consider the necessary working formu-
treating defects in solid¥:? The group functions technique las as well as our particular implementation of the wave
in its particular geminaltwo-electron form was effectively  function which is based on the electron group functions with
used to treat low-dimensional soliéfs?” More general elec- periodic boundary condition for infinite polymers. The whole
tron groups where used to treat metallocene-based stacksconstruction of the method has a lot in common with that
An essential result was obtained in Refs. 29 and 30, wherproposed for the analysis of the electronic structure of
the application of delocalized and localized geminals to exmoleculeg’ although the translational symmetry leads to sig-
tended systems was studied. It was shown that the localizegificant modifications of the formalism. The trial wave func-
geminals are superior than the delocalized ones, confirmingon of a molecule can be written as an antisymmetrized
the preference of treating electron correlations in real spacgroduct of wave functions for the unit cells:

Systems with reduced dimensionality often serve as a -
good example for the application of different approaches to +
the electronic structure of infinite systems. It is mostly due to W)= Ml_—!w Gul0), @)
a significant reduction of computational costs and the possi- B
bility to treat a large part of interactions in a rigorous way. where Gy, is a composite operator of creation of the wave
There are many studies on infinite polymers within thefunction for theMth unit cell. Due to the translational sym-
Hartree—Fock approach-32 Correlation treatments of poly- metry all these operators produce group functions with the
mers have become very popular nowadays and many agame quantum numbers but shifted in real space according to

A. General outline
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the translation vector. The unit cell wave functions also have 20\Y4
the structure of a product of group functions: ¢(r) = (?) g
. . the overlap matrix between basis orbitals is a function of one
Gy =11 g0m: (2)  parameteB=aa?. If Bis larger than 1, the application of the
m symmetrical orthogonalization procedure t@ocalized
atomic orbitals leads to well-localized orthogonal orbitals

where the specification of the electron grougjs |0) deter- with meaningfullamplitudes only at several sitesﬁl!has the
mines the overall quality of the wave function. Until the Order of magnitude about 0.1, the orthogonalized states
structure of these groups is not defined, the wave functiogPread over hundreds of sites that makes the whole proce-
expression Eq(2) is quite general. To make the formalism dure of ort_hogonallzatlon unsuitable. Thl_s behavior of the
feasible, we impose several important conditions on thdrocedure is a consequence of the quasilinear dependence of
structure of the constituent groups. the basis orbitals.

The strong orthogonality conditidh(which is equivalent It is obvious that some cut-off parameters are necessary to
to expanding the electron groups in the mutually orthogonafhake the calculations possible. We introduce the parameter
subspacé€ and physically corresponds to a hypothesis abouf (delocalization lengthcharacterizing the localitydecay
the importance of only one-electron exchange between ele®"operties of carrier spaces for electron groups. By this each
tron group4?) is very important since it allows to avoid com- One-électron state is assumed to be spread o@er12unit
plications due to nonorthogonality of one-electron state$ells (from —Q to Q if O specifies the unit cell to which the
(methods based on nonorthogonal group functions, howevef!€ctron group is assigngdnother important paramete,
can be also propos#d®. This condition imposes serious characterlzes the range of mtgrgchons explicitly covered. By
restrictions on the form of the wave function. In some casedhis all molecular integrals within a cluster of leng 1
it leads to an insufficient flexibility of the wave function and, Unit cells are calculated and fully used in the calculations
therefore, to a relatively small coverage of correlation energyVhile all other interactions are either totally neglected or
and, also, inconsistencies in the description of chemicafovered approximately by summation of Coulomb interac-
bonding?344 At the same time in many situations the strongtOns between atomic charges. . . o
orthogonality condition is not very restrictive and the correct !N the following, we denote atomic orbitals &9, k, and
choice of electron groups in combination with variational!» @nd molecular orbitals &, b, ¢, d, ande. The complex
determination of their carrier spaces provides a high qualityndex for the arbitrary atomic orbitalis given by two num-
description of electronic structure of molecufés. bers: the number of the unit cell) and the number of the

The second condition is that all the electron groups ar@rbital (i) within the set of orbitals assigned to this unit cell.
assumed to be singlets. By this we avoid the explicit considAnalogously, for molecular orbitala is equivalent toAa.
eration of coupling schemes between different multipletsMatrix C then determines the transformation from the atomic
since the presence of one nonsinglet electron group leads gbitals to the molecular ones:

an infinite number of them because of the translational sym- Q
metry. The third condition specifies the structure of electron a,= > > Ciig (4)
groups. They are calculated on the full Cl level. These con- 1=-Q i

ditions are also applicable to calculations of molecules. By _ .
this, the parameters defining electron grogpsare (besides wherea stands fora=0a. The set of all MOs is assumed to

the usual choice of basis $e&tnly number of electrons and be or_thonormalizecﬂit Is possible since we use fuII. cl wave

number of orbitals for each electron group. Despite having{unCtIonS f_or all eIecFron group)sTheab nitio Hamiltonian

only a small number of parameters, the wave functions fo n the basis of atomic orbitals can be written as

the unit cell cover a large range since virt@afthout elec- A ~ 1 . A oA P

trons electron groups are also allowed. We mention here H :Z hy Ej +§,E (ij |k|)[Eij B ~ Sk Eil, (5)

only a few examples of wave functions covered: the spin- H Lkl

restricted Hartree-FockRHF), generalized valence bond Whereéij =3,i*j,, is the elementary generator, and the stan-

(GVB), complete active space self-consistent fieldyarq convention for molecular integrals is used. Although

(CASSCBH, and full Cl wave functions. _ . . Eq.(5) is quite general, the practical calculations of the in-
The periodic boundary conditions lead to other I|m|tat|onstegra|S in the basis of MOs imply restrictions on the summa-

on the structure of wave function. Since we work in realijons defined by the paramete@sand R. For example, the
space, the basis one-electron states forming carrier spaces {gka_glectron integrals are given by formula

electron groups should have go@greferably exponential
deca ties. This leads to restricti the choice of 2

y properties. This leads to restrictions on the choice o B
systems which can be considered. Moreover, the basis set Noab = > 2 CiaCibhoi(g+a-nj - (6)

. . 1,1=-Q 1i,j

should be carefully chosen since the presence of very diffuse
functions will lead to instabilities in the scherfieFor ex-  The summation is over all unit cell indicdsand J which
ample, if we have an infinite chain of atoms with translationsatisfy the criteridB+J—I|<R. The two-electron integrals
vector of lengtha, each of them has a Gaussian basis func-are calculated analogously. Significant simplifications in the
tion of the form calculations are due to the symmetry of the molecular inte-
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grals with respect to an interchange of indices. As in the cas® the basis of MOs is performed by tiematrix,
of molecular calculationd’ only a small part of two-electron

+Q
integrals in the basis of MOs is actually necessary due to the _ P .
specific choice of the wave function. Foap = | EQE CiaCipFoi(ea-nj- (10

The group functions structure of the wave function Egs.
(1) and (2) leads to a simple expression for the electronicThe construction of effective Hamiltonians for groups re-
energy which is a sum of intragroup contributions and Cou-quires only intragroup matrix elements of the Fock matrix.
lomb and exchange interactions between grddps the  The one-electron matrix elements of effective Hamiltonian
case of imposed periodic boundary conditions, the electronifor orbitalsa andb assigned with groupn (irrespective to
energy per unit cell can be written as the unit cel) are obtained by removing the intragroup Cou-

lomb interaction

1
E®'= NoaobPab + = 0a0b|0cOd)I
% a,zm 0a0b" a0 za,b,c%em( | ) abed gg: I:OaOb_ dz [(0a0b|OCOd) - %(0a0d|OC0b)]PCd'
c,dem
+> > X [(MaMblocod) (12)
M=0 mn abem . . . .
Mm>0n cden The effective electronic Hamiltonian for theth group can
1 be written as
~ £(Ma0d|0cMb) |P,oPeq, (7)
~ - 1
whereP,, andT 4,4 denote intragroup elements of one- and HE = > helEgn+= > (0a0b|0cOd)
two-electron density matrices. The electronic energy (£ abem abcdem
is a function of two sets of parameters. The first one contains Y[E B _sE 12
elements of density matricésr amplitudes of different con- [EoaopEocod ~ SocEoanal- (12)

figurations in the full Cl expansions of electron group waveThe full Cl solutions for all electron groups are found by

functions, while the second reflects the structure of molecu-using the Unitary Group Approach for the many-electron

lar orbitals given by the matri€. We determine the param- correlation problen’

eters by a two-step iteration procedure. The intragroup elements of the one- and two-electron den-
sity matrices are calculated with these wave functions as the

B. Optimization of group wave functions corresponding averages

The first step in the two-step iteration procedure is the P = (D) Eoaon| P
determination of the density matrices by solving full ClI
problems for electron groups in the effective field of other _ ~ -
groups. We assume that the current set of MOs as well as Taboa= (Prm|EoaonEocod = SbcFoaod Prm- (13)
intragroup elements of the one-electron density matrix in therhe electronic energy can be calculated as a sum over groups
basis of MOs are known. The direct use of K@) for an  since the interactions between them are included into effec-
optimization of the density matrices is computationally de-tive one-electron matrix elements,
manding because it involves the calculation of the Coulomb 1
and exchange integrals in the basis of MOs for pairs of elecrel _ = eff
tron groups. A more effective way is to explore the basis ofE =52 2 | (0G+ Noeon)Pap 2, (080I0CON ey -
atomic orbitals as much as possiiteFor this purpose, we
perform a transformation of the one-electron density matrix
from the basis of molecular orbitals to the basis of atomic
orbitals

2 m abem c,dem

(14)

C. Optimization of molecular orbitals

Pij= 2 2 2 CoyiaCu-mjpPap- (8) The second step in the iteration procedure is the optimi-
[M[<Q m abem zation of carrier spaces for electron groups which corre-
|3-M|<Q sponds to the mixing of orbitals assigned to different groups

(the mixing of orbitals within the same group does not

change the energyAn arbitrary rotation that mixes two or-

bitals Aa and b from groupsm andn can be written as a

function of one parametet,

Foij = hojj + % [(0ij[kI) = 3(Cillkj) [Po—scr. (9) {a, —1-@a+ e

where the indiced, K, andL are restricted by a range given b'=-ca+V1-¢b,
by theR parametefJ=0; J,K,L<R; K,L=J-R). The ma- if the orthonormality of the set of MOs is preserved.

trix elements with negative values dtan be easily obtained The determination of the set of thkeparameters is based
due to symmetry of the Fock matrix with respect to an inter-on the minimum condition for the total electronic energy
change of its indices. The transformation of the Fock matrixwhich can be written as a function ef

The Fock matrix(including interactions between electrons
within the same groupin the basis of atomic orbitals is
constructed as

(15
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E®'=ES'+ 2¢] >, FopadPac— > Focad® @
0 {CEm ObAc™ ac = OcAa' bc - H—H----- H—H-------- H—H-------- H—H----
1 (b)
= 2 [(~Aboc|odoe) - 5(~ Ab0e|0dOc) |PacPye B 1 e T o n sl o R § REE]
c,deem
FIG. 1. Chains of hydrogen atom@&) set of H, molecules(b)
+ 2 [(AaOc|OdOe) - %(Aaoemdoc)]PbcPde equidistant chain with the same density.

c,d,een

+ % 2 (_ AbOC|Odoe)[Facde+ l_‘cade_l

c,d,eem

ied in detail on the example of electronic structure calcula-
tions of diatomics, and it was shown that the results strongly
depend on this choice. When we have a chain of hydrogen
-1 > (Aa0c|0d0e)[Tpege+ Fcbde]} +0(6»). (16  atoms only two possibilities exist within a given formalism
cdeen (and minimal basis sgtthe first one is to take one electron
roup per unit cell with 2 electrons and 2 orbitageminal
pproach while the second one is to take two electron
groups—1 doubly-filled orbital and 1 vacant orbit@CF

To calculate the gradient we only need a small part of the S%
of the two-electron integrals in the basis of MOs, namely,
those of the form{aOc|0dOe). To construct an efficient pro- approach

cedure for finding' op}imal values o€ parameters, the We consider two types of hydrogen chains depicted in
second-order contribution to the energy with respece$o g 1. the first onda) is a set of dihydrogen molecules with

should be used. At the same time its explicit calculation is, length 0.74 A and translation vector of length 1.74 A:
very time demanding. Therefore we consider only the diadine second chairfb) is an equidistan{metallic typ® one

onal part of the Hessian matrix and r7nake approximation tQuith the same density as the chd. It is clear that these
the second derivative with respect &g chains should differ significantly in the localization of one-

1 2E® electron states. The general instability of the metallic chain
202 FobobPaa— > FoaocPac* FoaoaPob— > FonocPbe:  With respect to dissociation on the molecules reveals itself in
cem cen the relative energies of these chains: the total energy of the

(17 system of typda) is lower than that of the system of ty|ie)
) : o for both SCF and geminal approaches.
When the first and approximate second derivatives aré rhq construction of the computational procedure includes

known, we obtain a vector of the parameters by applying he cyt-off parameter$Q and R). These parameters play
the inverse Hessian matrix update procefubased on the g jite different roles in the determination of the energy per

combination of variable-metric second order update schemesit cell. The parameteR defines the Hamiltoniafrange of

and direct inversion in the iterative subspa¢@he matrixC jyaractions calculated explicithand, therefore, the physical
is u_pdate'd and the |terat|0n_procedure returns to the stgp ®odel. At the same time, the paramegcontrols the valid-
optimization of wave functions for electron groups with ity of the basic approximation—that of strong orthogonality
given molecular orbitals. between electron groups. It seems natural to study depen-
dence of the results on the physical mo¢R®) in the limit of

1. RESULTS AND DISCUSSION large Q where the strong orthogonality approximation is
valid, while the dependence of the results on the paranigter
goes not provide physically meaningful information because
in the case of smalQ the model is broken. The hydrogen

In this section we consider a series of illustrative applica
tions of the method described above. For this purpose wi

consider model systems and use minif&lO-6QG basis set . h d and. theref he |
to reveal the basic properties of the procedure. The resul@ains are not charged and, therefore, the long-range Cou-
mb interactions should not be significant. We studied the

for the real polymers and extended basis sets will be reporte :
pendence of the calculated energy per unit cell onRhe

elsewhere. In the present consideration, special attention ‘ hvd hai 4(b) (h di
paid to the convergence of the results, the choice of ebctro%arameter_ or two hydrogen chaif@ and (b) (here and in
e following studies we use®=15, which is more than

groups and the structure of one-electron states forming caft L . :
rier spaces for electron groups. enough for validity of the strong orthogonality conditjon

The results for the geminal model are given by Fig. 2, where
the relative energywith zero level corresponding to the limit
of infinite R) is plotted as a function of the rangreof inter-

A chain of hydrogen atoms can serve as a good modedctions covered. In the case of the localized chainthe
system for the general analysis of characteristics of a newnergy increases when tRegparameter grows. It corresponds
approach. Its electronic structure and properties as a functioio the generally repulsive character of interactions between
of structural characteristics have been studied in a series afit cells and has a direct relation with the instability of the
works®%-53 The correlation effects are thought to be impor- hydrogen chain with respect to a dissociation yielding dihy-
tant in this system because in the case of an infinite metallidrogen molecules. The convergence is rather fast. For ex-
hydrogen chain the Hartree-Fock theory accounts for onlyample, forR=4 the calculated energy differs from its limit
about a half of the real cohesié%The important question in  only by 0.2 mH. The similar convergence properties can be
application of the general group function formalism is howobtained within the cluster model. At the same time the
to choose electron groups. In Ref. 37 this problem was studequivalent(according to the range of interactions covered

A. Hydrogen chains
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FIG. 2. Convergence of the energy per unit cell for hydrogen FIG. 3. Amplitudes of bonding orbital at atoms close to the
chains as a function of the interaction cut-off parameter. central unit cell.

cluster procedure for the unit cell energy uses difference ofb) these energies are 11.04 and 14.56 mH. The correlation
energies for Hy and H; molecules, i.e., needs two indepen- energy covered for the chai@) is larger than that for the
dent calculations. The computational costs in the case of thehain(b) since the correlation is a local phenomenon and the
present method are significantly smaller than those in thelectron states in the chaib) are more delocalized than in
case of cluster models because periodic boundary conditiortae chain(a). The different degree of delocalization also ex-
significantly diminish the number of variables to be opti- plains why the transition from 2- to 4-electron group func-
mized. Moreover, calculations based on the periodic boundton is more important for the chaii) than for the chaira).

ary conditions allow to obtain more reliable approximationsAnalogous conclusions can be drawn from consideration of
to the structure of one-electron states than the equivalerivo parallel hydrogen chains where the unit cell contains 4
cluster procedures. hydrogen atoms.

The convergence properties for the metallic hydrogen sys- The structure of one-electron states is very important for
tem are more difficult. We can see a combination of twothe whole performance of the method. Their fast decay can
factors: by increasing we include new interactions between significantly improve the convergence of the procedure with
further separated unit cells and this increases the energy juigSPect to thex parameter. The “tails” of one-electron state
like in the case of the chaifa). At the same time, by increas- have_ two different origins. The first oneis the orth_ogo_nallty
ing R we better treat the relatively large “tails” of the one- requirement and the secqnd one is true delocahza_tlon. To
electron states. The combination of these two counteractinffake the correct comparison between the electronic struc-
factors leads to a curve with a maximumRat 3. Moreover, res of chaing@) and (b) we single out the delocalization

for R=2 these factors are almost compensated and the energ&?ns of local orbitals. For this purpose, we express the

is very close 1o its limit. Thus. surorisinaly. the convergence olecular orbitals in the basis of symmetrically orthogonal-
y : - Nus, surp gy, 9 ized atomic orbitals. Thus defined amplitudes of molecular
of the energy in the cag®) is better than in case).

H dd h bl ¢ choi f ol orbitals on the atoms not belonging to the central unit cell
ere we address the problem of choice of electron grouDéorrespond to the orbital “tails” due to delocalization. Fig-

for the case of periodic boundar.y cqnditions. The geminal;;es 3 and 4 represent the decay of the bonding and anti-
and SCF approaches lead to quite different results. For eX;onding orbitals in the hydrogen chains treated within the
ample, the estimated equilibrium H-H distance in the equigeminal approach. The amplitudes corresponding to delocal-
distant chain is 0.970 and 0.942 A for the geminal and thgzation “tails” are plotted against number of hydrogen atom
SCF approach, respectively. These values can be comparg§umber 1 corresponds to the atom closest to the central unit
with previously reported value 0.974 A, obtained in thecell). These figures show the significant difference between
framework of the RHF method with extended basis®$et. two chains: the states in the chd@m decay very fastabso-
Interesting examples of different choice of electron groupdute values of the amplitudes become less than 0.01 starting
can be obtained if we double the unit cell, i.e., consider pefrom the fourth unit cell from the central onghile in the
riodically repeated system of 4 hydrogen atoms. In this casease of the chairib) the decay is more smootfabsolute

we have three different possibilities: the first one is onevalues of the amplitudes become less than 0.01 starting from
4-electron 4-orbital grouffull Cl approach for the unit cell  the eighth unit cell from the central onéerhe same conclu-
the second one is two 2-electron 2-orbital growgeminal  sion can be drawn from the total weights of tails for two
approach, and the third one is the SCF approach with 2chains: in the case of the chafgs) it is 0.050 while in the
doubly-filled and 2 vacant orbitals. We can compare the enease of the chaifb) it is already 0.116.

ergies per “H” unit for different wave functions and differ- ] ) o ]

ent geometries. In the case of the syst@nthe correlation B. Charged chains: Hydrogen fluoride and lithium hydride
energy covered is 13.58 and 15.93 mH for the geminal and Because the atoms in the hydrogen chains are uncharged,
the full Cl approach, respectively. In the case of the systenthey are not suitable for studying the role of long-ranged
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FIG. 4. Amplitudes of antibonding orbital at atoms close to the  FIG. 6. Convergence of the energy per unit cell for linear hy-

central unit cell. drogen fluoride chain as a function of the interaction cut-off
parameter.

Coulomb interactions. We extend our analysis of the proper-
ties of the procedure proposed to two characteristic asyminteraction between charges significantly improves the con-
metric chains with non-zero total charges on the atoms: linvergence of the procedure. The difference between two pro-
ear hydrogen fluoride and lithium hydridEig. 5). cedures remains rather large even Rs¥7.

The chain of hydrogen fluoride molecules is often used as Lithium hydride chain is also a very popular model one-
a characteristic example for studying properties of computadimensional system mostly due to its simplicity. It is well
tional procedure®>-57It is important that the polar character studied both on the Hartree-Fock le¥%e1® and with account
of hydrogen fluoride molecules makes it necessary to takef electron correlation®3 It is knowrP®®that the equilib-
into account the long-ranged Coulomb interactions for obrium structure of this chain corresponds to the equidistant
taining high-precision results, and the hydrogen fluoridecase with the hydrogen atom placed on the same distance
chain is an appropriate model for studying effects of thesérom two neighboring atoms. This is because the large elec-
interactionsX*8 1t is known that the correlation energy con- tronegativity difference between Li and H points towards
verges fast in this polymeprecision is about JuH per unit  jonic bonding which is bound to the condensed phase with
cell if the range of 15 A is taken into accolAt We consider equal Li-H and H-Li bond lengths. Therefore, the only geo-
here a model chain of hydrogen fluoride molecules withmetric parameter is the lattice constant of the chain.
bond length 0.95 A and the translation vector of length Three choices of group functions seem natural for this
2.49 A6 The electron groups are chosen in the followingpolymer. The first possibility is one 4-electron 6-orbital
way: three doubly-filled orbitals describe the core electrongyroup (full Cl approach, the second one is one doubly-filled
of the F atom and 2 lone pairs perpendicular to the chaimrbital for the Li core and one 2-electron 5-orbital group
direction while the rest is treated as one group with 4 elec{geminal approagh and the third one is the SCF approach
trons and 3 orbitals. with 2 doubly-filled and 4 vacant orbitals. This chain is ionic

The estimated Mulliken charges in this chain are aboutnd, therefore, proper account of long-range Coulomb inter-
+0.26. Figure 6 illustrates the convergence of the energy imctions is necessary. We performed calculations for all three
this system as a function of tHe parameter for two cases: choices of electron groups in the limit of large and Q
the first one corresponds to neglecting all interactions beparameters with correction to the energy due to Coulomb
tween unit cells with difference between their numbers morénteraction between atomic charges. The equilibrium geom-
than R, while the second one approximates thékeng-  etry obtained in the framework of the full Cl and geminal
ranged interactions by converged sum of Coulomb interac-approach is almost the santthe optimized values of the
tion between the Mulliken charges. The exchange interactattice constant are 3.301 and 3.302 A, respectivdliis is
tions are assumed to be short-ranged since it is known thaiot surprising since the core-valence separation is physically
they decrease exponentially in the hydrogen fluoride ctain. well substantiated. In fact, the geminal approach covers more
The figure shows that a simple inclusion of the Coulombthan 99.4% of the correlation energgbout 14.7 mB In the

case of a covalently bonded LiH molecule the analogous

(@) value is about 98.9%. The lattice constant obtained can be
o F—H- F—H----- F—H------ F—H—---  compared with those optimized within the Hartree-Fock ap-
(b) proach(3.521 and 3.428 A for basis sets with 2 and 8 orbit-
e jommnmnne Heeeemenes Ljeennennns Hoeeeeeees Ljennnnnnn- He--- als per unit cef).

In the case of the often studied asymmetric lithium hy-
FIG. 5. Charged chainsta) hydrogen fluoride,(b) lithium dride chain with alternating bond lengths of 4.0 and
hydride. 6.0 a.u323we calculated the correlation energy per unit cell
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08 - - - - - - S — with periodic boundary conditions in the one-dimensional
* natural orbital 2 - case. The trial wave function was chosen as an antisymme-

trized product of identical electron groups representing unit
cells which are constructed as antisymmetrized products of
electron groups representing chemical bonds, lone pairs or
more general molecular building blocks. The strong orthogo-

nality condition imposed on the wave function allowed us to
write down a simple expression for the energy. The method
was constructed as a variational one, and the optimization of

two classes of parameter@ensity matrices and carrier
S L spaces for electron groupaas effectively implemented as a

0z} . two-step iteration procedure. The calculations performed on
5 the model systems have shown that the convergence of the

04 s . L . i . . procedure with respect to the range of interactions explicitly
ko Hou L L Hoou taken into account was quite fast. Taking into account the
e Coulomb interaction between charges behind this range can

FIG. 7. Amplitudes of optimized natural orbitals for lithium significantly improve the convergence. Our calculations have
hydride at the valencge AOs for atoms close to the central unit cell. shown that for the systems considered, a geminal wave func-
] ] . ] ] ] tion covers significant part of the correlation energy and the
using five different basis sets. We estimated it to be equajansition to more general electron groups is less important
26.5, 27.4, 15.6, 19.0, and 18.0 mH for STO-4G, STO-6Ghan the transition from the one-electron approximation to
Huzinaga's split valence, 4-31G, and 6-31G basis Sets, r§ne geminal one. In the case of different hydrogen chains it
spectively. These values are in a good correspondence Wiflas"shown that the decay properties of one-electron states
the co_upled—clustgr estimaf@svhich, for different methods strongly depend on the molecular geometry. The method can
and different basis sets, cover the range from 19 to 27 mHye gpplied to a wide range of one-dimensional systems. Fur-
Finally, we present the structure of optimized one-electronper gevelopment may include taking into account perturba-

states in the basis of symmetrically orthogonalized atomigjon corrections to the wave function, implementation of fast
orbitals. We consider the valence geminal obtained for SYMprocedure for geminal wave function avoiding transforma-

metric LiH chain with the lattice constant 3.302 A. Figure 7 i of integrals from the basis of atomic orbitals to the basis

shows the amplitudes of two mostly occupied natural orbitalsyt molecular orbitals, and bivariational construction allowing
(electron densities 1.976 and 0.023, respectively the va- for weakly overlapping electron groups.

lence s-orbitals (2s for Li and 1s for H; of course, some

density is also on theg-orbitals of Li). The figure shows

that the decay of variationally optimized one-electron states ACKNOWLEDGMENTS

in this system is exponential and it is faster than in the case

of hydrogen chains which justifies the application of the A M.T. is grateful to the Alexander von Humboldt Foun-

method proposed. dation for financial support of his research in Germany and

to the group of Professor R. Dronskowski for their hospital-

ity during the stay of A.M.T. at RWTH Aachen. A.M.T.
In the present work we considered thb initio imple-  would also like to thank Professor A. L. Tchougréeff for

mentation of the general electron group functions approackaluable discussions.

086

04 -

amplitude
o
N
T

IV. CONCLUSIONS

*On leave from the Karpov Institute of Physical Chemistry, Mos- °A. B. Kunz and G. T. Surratt, Solid State Commug, 9 (1979.

cow, Russia. 10A, L. Tchougréeff and A. M. Tokmacheyv, iAdvanced Topics in
1p. Fulde, Electron Correlations in Molecules and Solids Theoretical Chemical Physicsedited by J. Maruani, R. Le-
(Springer, Berlin and Heidelberg, 1995 febvre, and E. Branda¥luwer, Dordrecht, 2008
2P. Fulde, Adv. Phys51, 909 (2002. 11C. Pisani, R. Dovesi, and C. Roetti, 8pringer Lecture Notes in
3J. A. Pople, Angew. Chem., Int. ER®S, 1894(1999. Chemistry(Springer, Berlin, 1988 Vol. 48.
4U. Gutdeutsch, U. Birkenheuer, S. Kriiger, and N. Résch, J1?K. N. Kudin and G. E. Scuseria, Chem. Phys. Le?89, 611
Chem. Phys.106, 6020(1997). (1998.
5S. Goedecker, Rev. Mod. Phyg1, 1085(1999. 13p, Reinhardt and J.-P. Malrieu, J. Chem. Phi@9, 7632(1998.
6S. Y. Wu and C. S. Jayanthi, Phys. Reg58, 1 (2002. 14A. Shukla, M. Dolg, P. Fulde, and H. Stoll, Phys. Rev5@, 1471
’B. Cartling, B. Roos, and U. Wahlgren, Chem. Phys. Létt, (1998.
380(1973. 15M. Albrecht, A. Shukla, M. Dolg, P. Fulde, and H. Stoll, Chem.
8R. F. Marshall, R. J. Blint, and A. B. Kunz, Phys. Rev. B, Phys. Lett.285 174 (1998.
3333(1976. 16J.-Q. Sun and R. J. Bartlett, Top. Curr. Che2@3, 121 (1999.

195202-8



GROUP FUNCTIONS FOR THE ANALYSIS OF THE

17p. V. Ayala, K. N. Kudin, and G. E. Scuseria, J. Chem. PHys,
9698(2001).

PHYSICAL REVIEW B 71, 195202(2005

London, Ser. A220, 446 (1953.
39T, Arai, J. Chem. Phys33, 95 (1960.

18s. Hirata, R. Podeszwa, M. Tobita, and R. J. Bartlett, J. Chem40s wjilson, J. Chem. Physs4, 1692(1976.

Phys. 120, 2581(2004).

19\M. Albrecht, Theor. Chem. Acc107, 71 (2002.

20). Grafenstein, H. Stoll, and P. Fulde, Phys. Rev5B 13 588
(1999.

21W. H. Fink, A. Banerjee, and J. Simons, J. Chem. P&.6104
(1983.

22R. McWeeny, Proc. R. Soc. London, Ser.253 242 (1959.

23|, N. Kantorovich, J. Phys. @1, 5041(1988.

247. Barandiaran and L. Seijo, J. Chem. Phg$, 5739(1988.

25|, Seijo and Z. Barandiaran, Int. J. Quantum Che6®, 617
(1996.

261, 1. Ukrainskii, Theor. Math. Phys32, 816(1977.

27V, A. Kuprievich, Phys. Rev. B40, 3882(1989.

28, L. Tchougréeff and I. A. Misurkin, Phys. Rev. B6,
(1992,

29p  Karadakov, O. Castafio, and J.-L. Calais, J. Chem.
3021(1990.

30p, Karadakov, O. Castafio, and J.-L. Calais, J. Chem.
3027(1990.

5357
PoB;s.
PoB;s.

313, M. André, D. P. Vercauteren, V. P. Bodart, and J. G. Fripiat, J.

Comput. Chem.5, 535(1984.

32H. Teramae, Theor. Chim. Act84, 311(1996.

33A. Shukla, M. Dolg, and H. Stoll, Phys. Rev. B3, 4325(1998.

34A. Abdurakhman, A. Shukla, and M. Dolg, J. Chem. Phy$2,
4801 (2000.

353, Hirata, |. Grabowski, M. Tobita, and R. J. Bartlett, Chem.
Phys. Lett. 345 475(2002.

36C. Willnauer and U. Birkenheuer, J. Chem. Phyi0, 11910
(2004.

87A. M. Tokmachev and R. Dronskowski, J. Comput. Chétn.be
published.

38A. C. Hurley, J. E. Lennard-Jones, and J. A. Pople, Proc. R. Soc.

41L. N. Kantorovich, Int. J. Quantum Chen76, 511 (2000.

42|, N. Kantorovich, Int. J. Quantum Chen78, 306 (2000.

43D. M. Silver, E. L. Mehler, and K. Ruedenberg, J. Chem. Phys.
52, 1174(1970.

44E. L. Mehler, K. Ruedenberg, and D. M. Silver, J. Chem. Phys.
52, 1181(1970.

45|, Kantorovich and O. Danyliv, J. Phys.: Condens. Matf;
2575(2004.

46\, A. Rassolov, J. Chem. Phyd4.17, 5978(2002.

47J. Paldus, inTheoretical Chemistry: Advances and Perspectives
edited by H. Eyring and D. Henders@Academic, New York,
1976.

48T. H. Fischer and J. Almléf, J. Phys. Cher®6, 9768(1992.

49p. Pulay, Chem. Phys. Leti3, 393(1980.

503, Suhai and J. Ladik, J. Phys. 5, 4327(1982.

51p, R. Surjan, I. Mayer, and M. Kertész, J. Chem. PH§&.2454
(1982.

52B. Champagne, J.-M. Andreé, and Y. Ohrn, Int. J. Quantum

Chem. 57, 811(1996.

53E. L. Gu, Y. Aoki, A. Imamura, D. M. Bishop, and B. Kirtman,
Mol. Phys. 101, 1487(2003.

54A. Karpfen, Chem. Phys. Lett61, 363(1979.

55S. Hirata and S. Iwata, J. Phys. Chem.1Q2 8426(1998.

56A. Karpfen and P. Schuster, Chem. Phys. Ld#, 459 (1976.

5D. Jacquemin, J. M. André, and B. Champagne, J. Chem. Phys.
111, 5324(1999.

58D, Jacquemin, J. G. Fripiat, and B. Champagne, Int. J. Quantum
Chem. 89, 452(2002.

59A. Karpfen, Theor. Chim. Acteb0, 49 (1978.

60J. Delhalle, L. Piela, J. L. Brédas, and J. M. André, Phys. Rev. B

22, 6254(1980.

195202-9



