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Behavior of light at photonic crystal interfaces
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Band structures and Bloch modes give a generalized description of light in infinite photonic crystals. We
show that the band structure and Bloch modes also contain the information necessary to find the amplitude and
phase of light reflected and transmitted from interfaces in systems made using finite and semi-infinite photonic
crystals. We obtain the equivalent of the Fresnel coefficients for photonic crystals. We use these coefficients to
derive the reflection of light from a photonic crystal of finite size and the resonant modes of photonic crystal
cavities and line defects. Results are given for ideal two-dimensional crystals, as well as crystals etched in
semiconductor slab waveguides.
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I. INTRODUCTION Snell’'s law to photonic crystals, we derive herein the equiva-

Today there are two main ways of understanding the pelent of complex-valued Fresnel coefficients in periodic struc-
havior of light in photonic crystals. Band structbiescribes ~ tures. We use the complex band structure and Bloch modes,
the allowed frequency bands in infinite photonic crystals.91Ving us results that are valid both inside and outside the
The corresponding Bloch modes describe electromagnetiOP Pands. The complex band structure, together with Noto-

field profiles in the crystals. Complex band structrpro- ~ ™'S exte"nsmn of SneIIT law and the new Fresnefl I_c:oheffl—

vides decay constants for evanescent waves inside the st _ﬁnts, allow us to develop a rigorous treatment of light in

bands, in addition to the propagating wave vectors. On itd"it€ photonic crystals using a picture of propagation

own, however, band structure does not predict the behavidf"ough locally homogeneous effective media.
of crystals of finite size, especially near interfaces. It is possible to consider finite-sized crystals using an en-

imatioht12 i i
On the other hand, finite difference time domé&tDTD) velope approximatioft*? in such treatments, the fields at

. . . k each frequency are described as superpositions of Bloch
sllmul.atlc.)n_é are used to compute numencally the behavior Ofmodes computed at other frequencies. In particular, evanes-
light in finite crystals. These simulations make no assUMPgent modes are expressed mathematically in terms of super-
tions about the crystal periodicity, which makes them appli-yqsitions of propagating modes. While this is justified by the

cable to a wide range of structures; but, on their own do Notact that a complete basis set is used, a large number of

offer generalizable insights. As a result, numerical simulamodes is needed in the expansion for photonic band gap
tions are mainly used for the design of finite photonic crystaimaterials in which light is strongly forbidden.

structures on a case-by-case basis. Transmission and reflec-In fact, the behavior of photonic crystal-based devices is
tion at photonic crystal interfaces can also be computed in @onceptualized in terms of the propagation of light in certain
variety of ways using transfeor scattering matricesThese  regions of the device, and the decay of the fields in other
methods take into account the periodicity of the crystal, buregions. Herein we take the approach of expressing fields in
they are either unstable, when used with three-dimensionaérms of Bloch modes—propagating or decaying, depending
structures, or are designed for very specific crystals. Defectsn whether light is allowed or forbidden—as they are excited
in photonic crystals have been computed using Wannieby incident fields.

functions® while sections of photonic crystal waveguide cir-  The transmittance and reflectance of light from a finite
cuits and bends have been modeled using scatteringhotonic crystal has been modeled before using a plane-
matrices! The response of slab waveguides with an infinitewave expansion and boundary efféétand a similar prob-
periodic pattern to light coming from the top has been modiem has been solved using Green functidnfor two-

eled using scattering matridesand Green function dimensional crystals. However, both methods consider the
techniques. entire crystal at once and the computation becomes more

Notomi has derived a method to describe the refraction oflifficult as the size of the structure increases. The periodicity
light entering a photonic cryst&lusing equi-frequency sur- of the crystal is not used to provide the salient properties of
faces computed from the band diagram and enforcing corband structure, such as propagation or decay. In contrast, we
servation of the lateral wavevector. However, the amplitudeuse the periodicity of the crystal to obtain solutions valid for
and phase of the waves reflected and transmitted at the intesny size and geometry of photonic crystal and we calculate
face are not determined. the boundary conditions explicitly.

Here we show that the photonic crystal bandstructure and We start by computing the complex band structure of pho-
Bloch modes contain all of the information necessary totonic crystals, in order to produce results both inside and
compute the amplitude and phase of transmitted and resutside photonic crystal stopbands. We then derive the
flected waves at interfaces between photonic crystals and htboundary conditions at the interface and use them to calcu-
mogeneous materials. While Notomi's work has appliediate the reflectance at photonic crystal interfaces. As ex-
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amples, we use these results to compute the transmittanc 045
and reflectance from finite-size crystals, where multiple re- 0.43
flections can occur between the two interfaces, and the resc
nant states of two-dimensional cavities. We finish by com-- 035 |
puting the resonant state in a line defect fabricated in ag
semiconductor slab waveguide. 2 03T
é 0.25 |
Il. THE COMPLEX BAND STRUCTURE % 0zl
g .
To quantify reflection and transmission at the interface,§
we require the band structure and Bloch modes for a giver 0.15 1
frequency and wave vector parallel to the interface. We em- 01 L
ploy an extension of the plane-wave expansion method

(PWEM).'® The PWEM solves for the allowed frequencies 0.05

. 0 005 01 015 02 025 03 035 04 045 05
as eigenvalues of

Bloch wavevector along z (units of 2x/a)

&8, -&-&, )\ (A
2 K+G'[2 G "~ G "~ G’ FIG. 1. Real bands for a square lattice of silicon cylinders in air.
| | [/eRel —al .2 al .l A2 n=3.4,r=0.3, k,=0.27/a. The lines represent our data. The points

G’ G Cc’ G " Cor G’

are calculated using MPB.

w? [ AG
=§< ) (1) 0 | A A
v, -, k) TRl @
with the magnetic field modes given by a’¢ a

RGN The above matrix is non-Hermitian; its eigenvalues are in
H=> > |k +G|AGe}ée'( ", (2) general complex. Real eigenvalues appear for propagating
G =12 modes in the allowed frequency regions. Modes with small

where G and G’ are reciprocal lattice vectorsys_g: con- imag_inary parts ok, degay slowly and are the most impor-
tains the Fourier components of the dielectric structure andnt in slices of photonic crystals.

&\ describes the polarizations of the plane waves. In the AS an example, Fig. 1 shows the real part of the band
usual application of the method, one chooses a vdctnd ~ Structure as a plot of frequency versiysfor a square two-
computes the corresponding frequency eigenvalues of th@mensmne_ll crystal of_ S|I|cor_1 cyllnder_s in air. Thg cyllnders
matrix on the left-hand side. have a radius of 088with their axes oriented in the direc-

A method has previously been propo&éd compute the tion. We consider the TM polar|zat|o_n, where the elelctrlc
complex band structure by replacikgwith complex values. field is parallel to the cylinders and find the modes ywth a
This, however, gives rise to an extensive search, since fdronstantk, of 0.2w/a. 4096 plane waves are used in the
many choices ok there will only be complex frequency €Xpansion. The plot compares Fhe results with the original
eigenvalues. PWI_EM used by the MIT Photonlc B_ands package, MPB.

Our approach is similar to that introduced for complex Figure 2 shows the lowest imaginary band of the same
Bloch modes in semiconductof$.Complex Bloch modes Structure. This describes the attenuation of a wave propagat-
are of importance only near crystal edges, i.e., before thelfd in the stop band of the crystal. The computation was
decay to zero. For this reason, only the component of the
Bloch wave vector perpendicular to the edge should be com:
plex. We therefore manipulate E() to treat this component 03 |
as the eigenvalue. We decompose the Bloch wave vector int
components parallel and perpendicular to the interf&ce, ¥ o2s
=k, +2k,, assuming that the interface is perpendicular tazthe
direction. As with interfaces between homogeneous materi-€ 0.26 |

0.32

als,k; has to be conserved across the interface, Whittbes <
not% We thus assume that and w are known. g 024r

We separate Ed1) in the different orders ok, and write ;', 0z |
the result as a matrix equation: e

K2M A +kMpA+MA=0, (3) 02

where M, N.Ib’ and N.IC are indppendent Ok,. .T.hese are 018 0 o.loz o.lo4 o.los o.loa ol.1 o.l12 0.14
square matrices of sizH containing the coefficients from Imaginary Bloch wavevector along Z (units of 2r/a)
Eqg. (1). M, contains the frequency. A is a column vector
containing the elementa. Equation(3) can be written as FIG. 2. Imaginary bands for a square lattice of silicon cylinders
an eigenvalue equation fdg, using a square matrix of size in air. r=0.3a, k,=0. The line represents our data. The points are
2N, calculated using FDTD.
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H- H, components of the photonic crystal modks, =k ;+Gp,.
+ \Q ko for the incident wave may lie in the first Brillouin zone
- 00000 : . L
Hy 5060 O Co of the crystal or outS|de,2degend|ng on the angle of the inci
___~[00000--- > dent wave kp,,=/(wn/c) kmII may be imaginary. In that
H* 00000 case the diffracted waves have a significant amplitude only
O0000 1 z . -
Y near the photonic crystal surface. The boundary conditions
H, for the magnetic field become

FIG. 3. Waves considered at the boundaty. andH;, are the
incident and reflected waves in the homogeneous matéetig|,
H,,,... are the waves diffracted by the crystal. They may be propa-
gating or evanescen€; are the photonic crystal Bloch modes ex- \yhere we have useld* H* for m=0 andH™ * =0 otherwise.

cited at the interface. j labels the photonlc crystal modes aﬁgglves their com-
plex amphtudeH represents the tangential magnetic field

done usingk,=0. For comparison, the attenuation of the of the mth Fourier component of photonic crystal mogi

crystals has been computed using FDTD, by simulating théhe plane of the interface. It can be obtained from the com-

transmittance through crystals of various lengths and fittingplex PWEM described above or by other methods. Using Eq.
the results to an exponential decay. A fine grid o322 (2) we can write

points per unit cell was used in the FDTD calculations to
minimize numerical dispersion. Hfm:( S Sk +G|A(x;éz(\3) _ 7)
GlGm) I

H+ Hy = 2 GiHE (6)
J

lil. PHOTONIC CRYSTAL BOUNDARY CONDITIONS The first sum above is done over &l vectors with a fixed

We now know the modes in which light is allowed to exist Gm-
in a photonic crystal, both in the stop band and outside. We Enforcing the boundary conditions for electric field yields
also know the modes of the structures surrounding the crys2 similar set of equations:
tal, usually plane waves. To find the reflection and transmis-
sion coefficients at a photonic crystal interface is to compute E+m,H +En = > C,-ch,m, (8)
the amplitude and phase of the modes excited by an incom- i
ing wave. The incoming wave is a mode of either the pho-
tonic crystal or the surroundings and will excite modes inW where E; m are the electric field components of the plane
both regions. We present a mode-matching technique to finy@ves in the homogeneous materiif;,, is the tangential
the excited modes. electric field of themth Fourier component of photonic crys-
At the interface the usual electromagnetic boundary cont@! modej in the plane of the interface. It can again be
ditions of continuity of the tangential components of the Written in terms of the plane wave expansion
electric and magnetic fields must hold. This means that the
superposition of modes on the two sides of the interface must = —( > > |k + G|(k +G) Ae (9)
have the same profile and periodicity. The periodicity of the J c\G[Gy A
mode in the crystal is determined by the lattice. We decom- '
pose the modes in the plane of the interface into twowhere €. is the dielectric constant of the photonic crystal
dimensional spatial Fourier series. The modes must bbackground material.
matched for each spatial Fourier frequency independently.  Equations(6) and(8) can be solved to find the unknown
To illustrate the concept, we assume an interface betweegomplex amplitudes of the modes excited in the crysgal,
a homogeneous material on the left and a two- or threeas well as the waves diffracted back to the Ieff,. A similar
dimensional photonic crystal on the right. The interface isset of equations is obtained for light incident from the pho-
perpendicular to the direction, atz=0. Light is incident tonic crystal onto the interface.
from the left, as a plane wave with magnetic fiekl At frequencies with a single allowed Bloch mode, which
=H*&*o", The input light will excite a set of real or complex appear frequently in the first stop band of a crystal and below
Bloch modes in the crystal, and a set of diffracted wavesit, the equations can be simplified further. We consider only
propagating or evanescent, in the homogeneous material, #se Fourier component with the smallest spatial frequency,

illustrated in Fig. 3. m=0, and define nc=|H§ /|ES o Viol €. Writing ko,
On the left of the interface, the superposition is =n, cod 6,)w/c, wheren,, and 6, represent the index of re-
ket ke ik fraction of the homogeneous medium and the direction of the
Hp=H"e%oi"e"o7 + Emz H e mi" e ma, () incident wave, we obtain for a TM incident wave
H* andH_, contain the amplitude and phase of the incident _Hg _ nccog ) —ny (10)
and diffracted wavesk, is the wave vector component par- Frm = HY nccog ) +ny,’

allel to the interface of thenth diffracted wave. All the plane
waves must have lateral propagation vectors equal to Fouriend for a TE incident wave
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FIG. 4. Magnitude and phase of the reflection coefficient from a §
semi-infinite photonic crystal. The insert shows the geometry*

considered. Ey ..........
X
Hz s
= Ne — N, cos 6,) (1) Position
TET . - . .
Nc + Ny, cod 6) FIG. 5. Electric and magnetic fields of the photonic crystal

Bloch modes at the edge of the unit cells, at the lo@eand upper
These are the reflection coefficients of light from a photonic(b) edge of the first stop band.
crystal. They resemble the Fresnel equations for homoge-
neous medianc represents an effective refractive index of electric field. Figure 5 shows the electric and magnetic fields
the crystal. Inside the stop bang becomes imaginary, pro- of the band-edge Bloch modes at the edges of the unit cells.
ducing a reflection coefficient of unit magnitude. We use the same crystal and polarization as the one from
In Fig. 4 we plot the phase and magnitude of the reflectiorFig. 4.
coefficientr for light reflected from a semi-infinite 2D pho- At the lower band edge the only nonzero field component
tonic crystal. We use the same crystal as in Fig. 1. We conin the crystal isH,. Matching a superposition of an incoming
sider the TM polarization, i.e., the electric field vector is and a reflected plane wave to these fields, requires th&,the
parallel to the cylinders. The direction of the input beam iscomponents of the two plane waves cancel. As a result, re-
perpendicular to the photonic crystal surface. The inserflection at this point is similar to that from a perfect electric
shows a diagram of the structure. In the later examples weonductor. At the upper band edge the situation is reversed.
also apply the boundary conditions for light incident at anH, is zero, which forces the magnetic field components of
angle, and for the three-dimensional problem of a crystathe incoming and reflected waves to cancel. Reflection is like
etched in a thin semiconductor slab. that from a perfect magnetic conductor. At this band edge,
In our calculations we keep within the extended Brillouin however, the crystal also has a nonzétp Although this
zone representation of the band diagram and remain on th@dmponent is not tangential to the interface and does not
same branch of the dispersion relation when traversing a stogppear in our boundary conditions, it must have a corre-
band. sponding field component on the other side of the interface.
The phase response in reflectigks shown in Fig. 4, the This field component does not appear in the incoming or
reflection phase from photonic crystals changes from O toeflected wave and must be matched to higher-order dif-
180° when going from one stop band edge to the other ondracted waves of the crystal, denotedy;H,, ... inFig. 3.
This can be explained in terms of the photonic crystal moden the case presented here, and in almost all cases of practical
at the two stop band edges. With the directions shown in Figinterest for normal incidence, the diffracted waves are eva-
3, we assume that the incoming plane wave has the electrigescent, which means that they do not carry power, and only
field polarized along the direction and the magnetic field influence the field distribution near the interface. Higher-
alongx. order diffraction is also required in order to satisfy the non-
It is known that at the lower stop band edge of a crystaluniform values ofH, andE, at the two band edges.
the electric field is predominantly concentrated in the high- The phase response depends on the distribution of electric
index region of each unit cell, while at the upper stop bandand magnetic fields in the crystal. For an inverted crystal,
edge the opposite is trd8.The magnetic field acts in the such as a crystal made by etching holes in a semiconductor,
opposite manner from the electric field. In the case presenteghe lower band edge will have the electric field near the
here, the interface between the crystal and air is in a lowinterface. The phase response in this crystal would be the
index area of the photonic crystal unit cell. Hence, at theopposite. The reflection would be like that from a magnetic
lower stop band edge we expect a strong magnetic field ajonductor at the lower band edge, and like an electric con-
the interface, while at the upper edge we expect a stronductor at the upper edge.
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Knowledge of the transmission and reflection at the inter- P

faces, combined with the propagation and decay inside the
crystal, allow us to understand photonic crystals of finite FIG. 8. Schematic diagram of the resonant cavity considered.
size. All measurements of reflection or transmission of light

from photo_nlc crystal_s are made using finite crystals INcrystal, obtained earlier. In Fig([%) we plot(solid lineg the
which multiple reflections between the interfaces lead tanagnitude of the reflection from the crystal; results of the
fringes in the spectrum outside the stop bands, similar tQqrresponding FDTD simulations are given by dashed lines.
Fabry—Perot fringes between two mirrors. The fringes havgyyr model agrees with full simulations very well in magni-
been seen experimentdifyever since thin high-quality pho- ,de and position of the fringes.
tonic crystal films have been fabricated. The example struc- Using the complex bandstructure and Bloch modes in fi-
ture considered here is shown in Fig. 6. o nite structures assumes that the modes of the infinite crystals
We compute the reflection spectrum of such a finite phoyre excited. This approximation is usually good; however, in
tonic crystal using Airy’s formula to sum the multiple re-  photonic crystals with very few layers it loses its validity. If
flections at the two interfaces the crystal from Fig. () is reduced to only two layers, there
tytol 2562 will be an error of up to 8% in the reflection spectrum, since
r=rp+ =" —o, (12)  the two layers do not have sufficient periods to manifest the
1=l modes predicted within a band structure picture.

WhereqS is the product of the Bloch wave vector _and the V. MODES OF TWO-DIMENSIONAL CAVITIES

thickness of the crystat;; andt;; represent the reflection and

transmission coefficients from layeinto j obtained earlier. Photonic crystals inhibit propagation of light in more than

The results are shown in Fig. 7. Figuréay contains the one direction, enabling formation of high quality factor cavi-

magnitude of the reflection from the semi-infinite photonicties in two-dimensional crystafsSuch cavities have been
shown to be useful as high-finesse drop filtér& Using

knowledge of the reflection phases at the interfaces, we de-
(@ scribe the resonant states of the cavities such as the one
o shown in Fig. 8.
z 0% The treatment is analogous with that of quantum-
g 06 mechanical states in quantum wires. Propagating waves in
£ the cavity are connected to decaying fields in the crystal
S 04 using the boundary conditions. The waves in the cavities
5 must interfere constructively with themselves upon succes-
0.2 sive round-trips, in order to produce a resonant state. This
resonance condition must be enforced in both directions in
b) his work ___ : ’ ; ‘ ’ 1 the cavity. We usé, andL, for the dimensions of the cavity
" andk, andk, for the propagation constants in the two direc-
2 os tions. The effect of the photonic crystal is included through
= 06 the phase of the reflection coefficientg(k,,») and
; ' ¢k, w), computed earlierg,(k,, w) is the phase change
5 04 upon reflection from an interface parallel to thdirection. It
5 depends on frequency and also on the incident angle of the
0.2 . . LT . .
! incoming wave. This incident angle is determinedigyIn
o Y N ) s M YA the same manned, describes reflections at interfaces paral-
6 005 01 015 02 025 03 03 04 lel to the x direction and depends dk and w. With these
Frequency (units of c/a) definitions, the resonance conditions are
FIG. 7. (a) Magnitude of reflection coefficient from the semi- kL, + oy (Kyw) =17, KL, + ¢y (k,w)=mm, (13)

infinite photonic crystal(b) Magnitude of reflection from a finite

photonic crystal consisting of six periods, solid line is obtainedwherel andm are two integers.

from the reflection and transmission of semi-infinite crystals, In Fig. 9 we show the modes for square cavities with sizes
dashed line is from FDTD. between one and five lattice constants, obtained by removing
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042 é (04)y ] | oo o =lsYs)
> 0IF> (23) ;& ”1' =
g o4r ©.2)+ _
§ 0,00+ (0.1)+ } (1.3)+ % FIG. 10. Slab waveguide resonant structure, consisting of a sili-
g 0%y ’ /{ | ] con membrane with holes etched through it.
2 ) 10+ 02+ 22t ?3
>
& o036t 4\ ' 1
s > O3+ % similar to the description in Sec. Il. The line defect is inter-
L 034} 0.2+ ] preted as a thin unpatterned slab waveguide between two
% ’ photonic crystals. The reflection coefficients at the interface
032 oSos & (1,2)+} I between the waveguide and the crystal are computed in a
©1 )+ manner similar to the one described in the previous sections.
03 . . . . : . . ;
0 1 2 3 4 5 6 However, instead of matching the photonic crystal modes to
Cavity size (units of a) plane waves, we matched them to modes of the unpatterned

slab. The defect width versus resonant frequency are shown

FIG. 9. Resonant modes of square cavities vs cavity size. Crysp, Fig. 11. We use modes with even symmetry in the plane of
tal has a square lattice of Si cylinders in air;0.2a. Points mark he membrane, similar to TE modes of the corresponding
the resonant frequencies; numbers represent the mode numbersﬁw !

. . : L o-dimensional crystaf We compare our results with
counting the nulls in the mode in the and z direction; curves MPB simulations at the points where the defect width is
represent the part of the mode profile that lies inside the cavity, ine ual to a multiole ofa \F/JVe obtain an agreement in the
the two directions. qua P ) - 9

position of the resonant states with respect to the stop band

. . ) edges of better than 2% of the stop band width. The structure

several cylinders from a square two-dimensional crystal of Sap also be employed as a photonic crystal waveguide. The

cylinders in air. The cylinder radius is 0.2 times the Iattlceguided modes and dispersion relation can be found by re-

constant and we consider again the TM polarization. Whetheating the above simulations using a propagation vector
comparing the resonant frequencies with full numencalmong the guide.

simulations, we obtain an agreement of 0.6% in frequency.
Once the resonant frequencies are found using(Esg),
the mode profiles are readily obtained. Inside the cavity, the
modes are given by the superposition of plane waves, with
propagation constantsktand 1k,. Outside the cavity they We have shown that the complex amplitude of transmitted
are given by the decaying Bloch modes computed by ougnd reflected waves at photonic crystal boundaries can be
plane-wave expansion. The decay depends on frequency anéitained from the complex Bloch modes and band structure
on the incident angle of the wave from the cavity onto theof the crystals. These results, combined with those of Ref.
crystal. It is given by the complex band structure. This canlO, provide complete information about the behavior of light
be used to determine the effective mode volume in the cavat photonic crystal interfaces. Together with the propagation

VII. CONCLUSIONS

ity. and decay constants from the complex band structure they
allow us to interpret photonic crystals as effective media
VI. MODELING THREE-DIMENSIONAL STRUCTURES whose key properties are given by their respective band

The above-presented examples have used two-dimen- ;5
sional structures in order to simplify the illustrations and to
allow rigorous comparisons with full simulations. The com-
plex band structure and boundary conditions can also be cal
culated for devices with variations in three dimensions. Both:_f
two-dimensional photonic crystals etched in a semiconductolg
slab waveguide, as well as crystals periodic in all three di-3
mensions can be considered. 3

In this section we model the resonant states of a line de-g
fect formed in a photonic crystal of air holes etched in a thin $
silicon membrane with air on both sides. The crystal is a
square lattice of air-holes etched in the membrane. A diagran
of the structure is shown in Fig. 10. We assume that light will
resonate in this structure in a direction perpendicular to the
defect. The lattice constant & The slab thickness i
=0.5a and the hole radius is (a3We find width of the line
defectW, required for a certain resonant frequency. FIG. 11. Defect width required for a given resonance frequency

The decaying stop band modes of the photonic crystal aréor a line defect in a photonic crystal etched in a silicon membrane.
found using a three-dimensional plane-wave expansioriines are our model, points are from MPB simulations.

idth (u

“0.22 0.23 0.24 0.25 0.26 027 0.28 0.29
Frequency (units of c/a)
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structures. Structures with variations in both two and three In combination with a multiple-scales meth&t£® this
dimensions can be considered. Since the reflection, transmiapproach could also be used to compute the response of fi-
sion, and diffraction coefficients depend only on the photonigite photonic crystals including nonlinearities. The boundary
crystal structure and surrounding medium, these can be congpngitions would determine how light enters the crystal,
puted in advance for subsequent use. Many different devicgghile propagation inside the crystal would be handled by the

can then be simulated and optimized very quickly USIngmultiple—scales equations. A similar method could be used

these data. This technique can be directly applied to the COMor the reflection and transmission coefficients from crystals
putation of modes in photonic crystal waveguifesnd reso- . SO . . : y
with fabrication imperfections, using the eigenmodes of the

nant cavities, coupling of light from waveguides to photonic ! S Y L
crystals, as well as light traversing any number of photonicperfec" crystal, while considering the deviations from this in

crystals. a perturbative approach.
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