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Band structures and Bloch modes give a generalized description of light in infinite photonic crystals. We
show that the band structure and Bloch modes also contain the information necessary to find the amplitude and
phase of light reflected and transmitted from interfaces in systems made using finite and semi-infinite photonic
crystals. We obtain the equivalent of the Fresnel coefficients for photonic crystals. We use these coefficients to
derive the reflection of light from a photonic crystal of finite size and the resonant modes of photonic crystal
cavities and line defects. Results are given for ideal two-dimensional crystals, as well as crystals etched in
semiconductor slab waveguides.
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I. INTRODUCTION

Today there are two main ways of understanding the be-
havior of light in photonic crystals. Band structure1 describes
the allowed frequency bands in infinite photonic crystals.
The corresponding Bloch modes describe electromagnetic
field profiles in the crystals. Complex band structure2,3 pro-
vides decay constants for evanescent waves inside the stop
bands, in addition to the propagating wave vectors. On its
own, however, band structure does not predict the behavior
of crystals of finite size, especially near interfaces.

On the other hand, finite difference time domainsFDTDd
simulations4 are used to compute numerically the behavior of
light in finite crystals. These simulations make no assump-
tions about the crystal periodicity, which makes them appli-
cable to a wide range of structures; but, on their own do not
offer generalizable insights. As a result, numerical simula-
tions are mainly used for the design of finite photonic crystal
structures on a case-by-case basis. Transmission and reflec-
tion at photonic crystal interfaces can also be computed in a
variety of ways using transfer5 or scattering matrices.3 These
methods take into account the periodicity of the crystal, but
they are either unstable, when used with three-dimensional
structures, or are designed for very specific crystals. Defects
in photonic crystals have been computed using Wannier
functions,6 while sections of photonic crystal waveguide cir-
cuits and bends have been modeled using scattering
matrices.7 The response of slab waveguides with an infinite
periodic pattern to light coming from the top has been mod-
eled using scattering matrices8 and Green function
techniques.9

Notomi has derived a method to describe the refraction of
light entering a photonic crystal10 using equi-frequency sur-
faces computed from the band diagram and enforcing con-
servation of the lateral wavevector. However, the amplitude
and phase of the waves reflected and transmitted at the inter-
face are not determined.

Here we show that the photonic crystal bandstructure and
Bloch modes contain all of the information necessary to
compute the amplitude and phase of transmitted and re-
flected waves at interfaces between photonic crystals and ho-
mogeneous materials. While Notomi’s work has applied

Snell’s law to photonic crystals, we derive herein the equiva-
lent of complex-valued Fresnel coefficients in periodic struc-
tures. We use the complex band structure and Bloch modes,
giving us results that are valid both inside and outside the
stop bands. The complex band structure, together with Noto-
mi’s extension of Snell’s law and the new Fresnel coeffi-
cients, allow us to develop a rigorous treatment of light in
finite photonic crystals using a picture of propagation
through locally homogeneous effective media.

It is possible to consider finite-sized crystals using an en-
velope approximation:11,12 in such treatments, the fields at
each frequency are described as superpositions of Bloch
modes computed at other frequencies. In particular, evanes-
cent modes are expressed mathematically in terms of super-
positions of propagating modes. While this is justified by the
fact that a complete basis set is used, a large number of
modes is needed in the expansion for photonic band gap
materials in which light is strongly forbidden.

In fact, the behavior of photonic crystal-based devices is
conceptualized in terms of the propagation of light in certain
regions of the device, and the decay of the fields in other
regions. Herein we take the approach of expressing fields in
terms of Bloch modes—propagating or decaying, depending
on whether light is allowed or forbidden—as they are excited
by incident fields.

The transmittance and reflectance of light from a finite
photonic crystal has been modeled before using a plane-
wave expansion and boundary effects13 and a similar prob-
lem has been solved using Green functions14 for two-
dimensional crystals. However, both methods consider the
entire crystal at once and the computation becomes more
difficult as the size of the structure increases. The periodicity
of the crystal is not used to provide the salient properties of
band structure, such as propagation or decay. In contrast, we
use the periodicity of the crystal to obtain solutions valid for
any size and geometry of photonic crystal and we calculate
the boundary conditions explicitly.

We start by computing the complex band structure of pho-
tonic crystals, in order to produce results both inside and
outside photonic crystal stopbands. We then derive the
boundary conditions at the interface and use them to calcu-
late the reflectance at photonic crystal interfaces. As ex-
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amples, we use these results to compute the transmittance
and reflectance from finite-size crystals, where multiple re-
flections can occur between the two interfaces, and the reso-
nant states of two-dimensional cavities. We finish by com-
puting the resonant state in a line defect fabricated in a
semiconductor slab waveguide.

II. THE COMPLEX BAND STRUCTURE

To quantify reflection and transmission at the interface,
we require the band structure and Bloch modes for a given
frequency and wave vector parallel to the interface. We em-
ploy an extension of the plane-wave expansion method
sPWEMd.15 The PWEM solves for the allowed frequencies
as eigenvalues of

o
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2 − êG
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with the magnetic field modes given by
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whereG and G8 are reciprocal lattice vectors.hG−G8 con-
tains the Fourier components of the dielectric structure and
êG

l describes the polarizations of the plane waves. In the
usual application of the method, one chooses a vectork and
computes the corresponding frequency eigenvalues of the
matrix on the left-hand side.

A method has previously been proposed2 to compute the
complex band structure by replacingk with complex values.
This, however, gives rise to an extensive search, since for
many choices ofk there will only be complex frequency
eigenvalues.

Our approach is similar to that introduced for complex
Bloch modes in semiconductors.16 Complex Bloch modes
are of importance only near crystal edges, i.e., before they
decay to zero. For this reason, only the component of the
Bloch wave vector perpendicular to the edge should be com-
plex. We therefore manipulate Eq.s1d to treat this component
as the eigenvalue. We decompose the Bloch wave vector into
components parallel and perpendicular to the interface,k
=k i+ ẑkz, assuming that the interface is perpendicular to theẑ
direction. As with interfaces between homogeneous materi-
als,k i has to be conserved across the interface, whilekz does
not.10 We thus assume thatk i andv are known.

We separate Eq.s1d in the different orders ofkz and write
the result as a matrix equation:

kz
2M aA + kzM bA + M cA = 0, s3d

where M a, M b, and M c are independent ofkz. These are
square matrices of sizeN containing the coefficients from
Eq. s1d. M c contains the frequencyv. A is a column vector
containing the elementsAG

l . Equations3d can be written as
an eigenvalue equation forkz using a square matrix of size
2N,

F 0 I
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The above matrix is non-Hermitian; its eigenvalues are in
general complex. Real eigenvalues appear for propagating
modes in the allowed frequency regions. Modes with small
imaginary parts ofkz decay slowly and are the most impor-
tant in slices of photonic crystals.

As an example, Fig. 1 shows the real part of the band
structure as a plot of frequency versuskz for a square two-
dimensional crystal of silicon cylinders in air. The cylinders
have a radius of 0.3a with their axes oriented in theŷ direc-
tion. We consider the TM polarization, where the electric
field is parallel to the cylinders and find the modes with a
constantkx of 0.2p /a. 4096 plane waves are used in the
expansion. The plot compares the results with the original
PWEM used by the MIT Photonic Bands package, MPB.17

Figure 2 shows the lowest imaginary band of the same
structure. This describes the attenuation of a wave propagat-
ing in the stop band of the crystal. The computation was

FIG. 1. Real bands for a square lattice of silicon cylinders in air.
n=3.4,r =0.3a, kx=0.2p /a. The lines represent our data. The points
are calculated using MPB.

FIG. 2. Imaginary bands for a square lattice of silicon cylinders
in air. r =0.3a, kx=0. The line represents our data. The points are
calculated using FDTD.
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done usingkx=0. For comparison, the attenuation of the
crystals has been computed using FDTD, by simulating the
transmittance through crystals of various lengths and fitting
the results to an exponential decay. A fine grid of 32332
points per unit cell was used in the FDTD calculations to
minimize numerical dispersion.

III. PHOTONIC CRYSTAL BOUNDARY CONDITIONS

We now know the modes in which light is allowed to exist
in a photonic crystal, both in the stop band and outside. We
also know the modes of the structures surrounding the crys-
tal, usually plane waves. To find the reflection and transmis-
sion coefficients at a photonic crystal interface is to compute
the amplitude and phase of the modes excited by an incom-
ing wave. The incoming wave is a mode of either the pho-
tonic crystal or the surroundings and will excite modes in
both regions. We present a mode-matching technique to find
the excited modes.

At the interface the usual electromagnetic boundary con-
ditions of continuity of the tangential components of the
electric and magnetic fields must hold. This means that the
superposition of modes on the two sides of the interface must
have the same profile and periodicity. The periodicity of the
mode in the crystal is determined by the lattice. We decom-
pose the modes in the plane of the interface into two-
dimensional spatial Fourier series. The modes must be
matched for each spatial Fourier frequency independently.

To illustrate the concept, we assume an interface between
a homogeneous material on the left and a two- or three-
dimensional photonic crystal on the right. The interface is
perpendicular to thez direction, atz=0. Light is incident
from the left, as a plane wave with magnetic fieldH
=H+eik0·r . The input light will excite a set of real or complex
Bloch modes in the crystal, and a set of diffracted waves,
propagating or evanescent, in the homogeneous material, as
illustrated in Fig. 3.

On the left of the interface, the superposition is

Hh = H+eik0,i·reik0,zz + o
m

Hm
−eikm,i·re−ikm,zz. s5d

H+ andHm
− contain the amplitude and phase of the incident

and diffracted waves.km,i is the wave vector component par-
allel to the interface of themth diffracted wave. All the plane
waves must have lateral propagation vectors equal to Fourier

components of the photonic crystal modes,km,i=k0,i+Gm,i.
k0,i for the incident wave may lie in the first Brillouin zone
of the crystal or outside, depending on the angle of the inci-
dent wave.km,z=Îsvn/cd2−km,i

2 may be imaginary. In that
case the diffracted waves have a significant amplitude only
near the photonic crystal surface. The boundary conditions
for the magnetic field become

Hm,i
+ + Hm,i

− = o
j

CjH j ,m
C , s6d

where we have usedHm
+ =H+ for m=0 andHm

+ =0 otherwise.
j labels the photonic crystal modes andCj gives their com-
plex amplitude.H j ,m

C represents the tangential magnetic field
of the mth Fourier component of photonic crystal modej in
the plane of the interface. It can be obtained from the com-
plex PWEM described above or by other methods. Using Eq.
s2d we can write

H j ,m
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The first sum above is done over allG vectors with a fixed
Gm,i.

Enforcing the boundary conditions for electric field yields
a similar set of equations:

Em,i
+ + Em,i

− = o
j

CjE j ,m
C , s8d

where Em,i
± are the electric field components of the plane

waves in the homogeneous material.E j ,m
C is the tangential

electric field of themth Fourier component of photonic crys-
tal mode j in the plane of the interface. It can again be
written in terms of the plane wave expansion

E j ,m
C =

1
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where ec is the dielectric constant of the photonic crystal
background material.

Equationss6d and s8d can be solved to find the unknown
complex amplitudes of the modes excited in the crystal,Cj,
as well as the waves diffracted back to the left,Hm

− . A similar
set of equations is obtained for light incident from the pho-
tonic crystal onto the interface.

At frequencies with a single allowed Bloch mode, which
appear frequently in the first stop band of a crystal and below
it, the equations can be simplified further. We consider only
the Fourier component with the smallest spatial frequency,
m=0, and define nC= uH0,0

C u / uE0,0
C uÎm0/e0. Writing k0,z

=nh cossuhdv /c, wherenh and uh represent the index of re-
fraction of the homogeneous medium and the direction of the
incident wave, we obtain for a TM incident wave

rTM =
H0

−

H+ =
nC cossuhd − nh

nC cossuhd + nh
, s10d

and for a TE incident wave

FIG. 3. Waves considered at the boundary.H+ and H0
− are the

incident and reflected waves in the homogeneous material.H±1
− ,

H±2
− , . . . are the waves diffracted by the crystal. They may be propa-

gating or evanescent.Cj are the photonic crystal Bloch modes ex-
cited at the interface.
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rTE =
nC − nh cossuhd
nC + nh cossuhd

. s11d

These are the reflection coefficients of light from a photonic
crystal. They resemble the Fresnel equations for homoge-
neous media.nC represents an effective refractive index of
the crystal. Inside the stop bandnC becomes imaginary, pro-
ducing a reflection coefficient of unit magnitude.

In Fig. 4 we plot the phase and magnitude of the reflection
coefficientr for light reflected from a semi-infinite 2D pho-
tonic crystal. We use the same crystal as in Fig. 1. We con-
sider the TM polarization, i.e., the electric field vector is
parallel to the cylinders. The direction of the input beam is
perpendicular to the photonic crystal surface. The insert
shows a diagram of the structure. In the later examples we
also apply the boundary conditions for light incident at an
angle, and for the three-dimensional problem of a crystal
etched in a thin semiconductor slab.

In our calculations we keep within the extended Brillouin
zone representation of the band diagram and remain on the
same branch of the dispersion relation when traversing a stop
band.

The phase response in reflection. As shown in Fig. 4, the
reflection phase from photonic crystals changes from 0 to
180° when going from one stop band edge to the other one.
This can be explained in terms of the photonic crystal modes
at the two stop band edges. With the directions shown in Fig.
3, we assume that the incoming plane wave has the electric
field polarized along they direction and the magnetic field
alongx.

It is known that at the lower stop band edge of a crystal,
the electric field is predominantly concentrated in the high-
index region of each unit cell, while at the upper stop band
edge the opposite is true.18 The magnetic field acts in the
opposite manner from the electric field. In the case presented
here, the interface between the crystal and air is in a low-
index area of the photonic crystal unit cell. Hence, at the
lower stop band edge we expect a strong magnetic field at
the interface, while at the upper edge we expect a strong

electric field. Figure 5 shows the electric and magnetic fields
of the band-edge Bloch modes at the edges of the unit cells.
We use the same crystal and polarization as the one from
Fig. 4.

At the lower band edge the only nonzero field component
in the crystal isHx. Matching a superposition of an incoming
and a reflected plane wave to these fields, requires that theEy
components of the two plane waves cancel. As a result, re-
flection at this point is similar to that from a perfect electric
conductor. At the upper band edge the situation is reversed.
Hx is zero, which forces the magnetic field components of
the incoming and reflected waves to cancel. Reflection is like
that from a perfect magnetic conductor. At this band edge,
however, the crystal also has a nonzeroHz. Although this
component is not tangential to the interface and does not
appear in our boundary conditions, it must have a corre-
sponding field component on the other side of the interface.
This field component does not appear in the incoming or
reflected wave and must be matched to higher-order dif-
fracted waves of the crystal, denoted byH±1

− H±2
− , . . . inFig. 3.

In the case presented here, and in almost all cases of practical
interest for normal incidence, the diffracted waves are eva-
nescent, which means that they do not carry power, and only
influence the field distribution near the interface. Higher-
order diffraction is also required in order to satisfy the non-
uniform values ofHx andEz at the two band edges.

The phase response depends on the distribution of electric
and magnetic fields in the crystal. For an inverted crystal,
such as a crystal made by etching holes in a semiconductor,
the lower band edge will have the electric field near the
interface. The phase response in this crystal would be the
opposite. The reflection would be like that from a magnetic
conductor at the lower band edge, and like an electric con-
ductor at the upper edge.

FIG. 4. Magnitude and phase of the reflection coefficient from a
semi-infinite photonic crystal. The insert shows the geometry
considered.

FIG. 5. Electric and magnetic fields of the photonic crystal
Bloch modes at the edge of the unit cells, at the lowersad and upper
sbd edge of the first stop band.
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IV. TRANSMITTANCE THROUGH FINITE PHOTONIC
CRYSTALS

Knowledge of the transmission and reflection at the inter-
faces, combined with the propagation and decay inside the
crystal, allow us to understand photonic crystals of finite
size. All measurements of reflection or transmission of light
from photonic crystals are made using finite crystals in
which multiple reflections between the interfaces lead to
fringes in the spectrum outside the stop bands, similar to
Fabry–Perot fringes between two mirrors. The fringes have
been seen experimentally19 ever since thin high-quality pho-
tonic crystal films have been fabricated. The example struc-
ture considered here is shown in Fig. 6.

We compute the reflection spectrum of such a finite pho-
tonic crystal using Airy’s formulas20 to sum the multiple re-
flections at the two interfaces

r = r12 +
t12t21r23e

2if

1 − r21r23e
2if , s12d

where f is the product of the Bloch wave vector and the
thickness of the crystal.r ij andtij represent the reflection and
transmission coefficients from layeri into j obtained earlier.
The results are shown in Fig. 7. Figure 7sad contains the
magnitude of the reflection from the semi-infinite photonic

crystal, obtained earlier. In Fig. 7sbd we plot ssolid linesd the
magnitude of the reflection from the crystal; results of the
corresponding FDTD simulations are given by dashed lines.
Our model agrees with full simulations very well in magni-
tude and position of the fringes.

Using the complex bandstructure and Bloch modes in fi-
nite structures assumes that the modes of the infinite crystals
are excited. This approximation is usually good; however, in
photonic crystals with very few layers it loses its validity. If
the crystal from Fig. 7sbd is reduced to only two layers, there
will be an error of up to 8% in the reflection spectrum, since
the two layers do not have sufficient periods to manifest the
modes predicted within a band structure picture.

V. MODES OF TWO-DIMENSIONAL CAVITIES

Photonic crystals inhibit propagation of light in more than
one direction, enabling formation of high quality factor cavi-
ties in two-dimensional crystals.6 Such cavities have been
shown to be useful as high-finesse drop filters.21,22 Using
knowledge of the reflection phases at the interfaces, we de-
scribe the resonant states of the cavities such as the one
shown in Fig. 8.

The treatment is analogous with that of quantum-
mechanical states in quantum wires. Propagating waves in
the cavity are connected to decaying fields in the crystal
using the boundary conditions. The waves in the cavities
must interfere constructively with themselves upon succes-
sive round-trips, in order to produce a resonant state. This
resonance condition must be enforced in both directions in
the cavity. We useLx andLz for the dimensions of the cavity
andkx andkz for the propagation constants in the two direc-
tions. The effect of the photonic crystal is included through
the phase of the reflection coefficients,fxskz,vd and
fzskx,vd, computed earlier.fxskz,vd is the phase change
upon reflection from an interface parallel to thez direction. It
depends on frequency and also on the incident angle of the
incoming wave. This incident angle is determined bykz. In
the same manner,fz describes reflections at interfaces paral-
lel to the x direction and depends onkx and v. With these
definitions, the resonance conditions are

kxLx + fxskz,vd = lp, kzLz + fzskx,vd = mp, s13d

wherel andm are two integers.
In Fig. 9 we show the modes for square cavities with sizes

between one and five lattice constants, obtained by removing

FIG. 6. Finite-size photonic crystal used to compute reflectance
and transmittance.

FIG. 7. sad Magnitude of reflection coefficient from the semi-
infinite photonic crystal.sbd Magnitude of reflection from a finite
photonic crystal consisting of six periods, solid line is obtained
from the reflection and transmission of semi-infinite crystals,
dashed line is from FDTD.

FIG. 8. Schematic diagram of the resonant cavity considered.
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several cylinders from a square two-dimensional crystal of Si
cylinders in air. The cylinder radius is 0.2 times the lattice
constant and we consider again the TM polarization. When
comparing the resonant frequencies with full numerical
simulations, we obtain an agreement of 0.6% in frequency.

Once the resonant frequencies are found using Eq.s13d,
the mode profiles are readily obtained. Inside the cavity, the
modes are given by the superposition of plane waves, with
propagation constants ±kx and ±kz. Outside the cavity they
are given by the decaying Bloch modes computed by our
plane-wave expansion. The decay depends on frequency and
on the incident angle of the wave from the cavity onto the
crystal. It is given by the complex band structure. This can
be used to determine the effective mode volume in the cav-
ity.

VI. MODELING THREE-DIMENSIONAL STRUCTURES

The above-presented examples have used two-dimen-
sional structures in order to simplify the illustrations and to
allow rigorous comparisons with full simulations. The com-
plex band structure and boundary conditions can also be cal-
culated for devices with variations in three dimensions. Both
two-dimensional photonic crystals etched in a semiconductor
slab waveguide, as well as crystals periodic in all three di-
mensions can be considered.

In this section we model the resonant states of a line de-
fect formed in a photonic crystal of air holes etched in a thin
silicon membrane with air on both sides. The crystal is a
square lattice of air-holes etched in the membrane. A diagram
of the structure is shown in Fig. 10. We assume that light will
resonate in this structure in a direction perpendicular to the
defect. The lattice constant isa. The slab thickness ish
=0.5a and the hole radius is 0.3a. We find width of the line
defectW, required for a certain resonant frequency.

The decaying stop band modes of the photonic crystal are
found using a three-dimensional plane-wave expansion,

similar to the description in Sec. II. The line defect is inter-
preted as a thin unpatterned slab waveguide between two
photonic crystals. The reflection coefficients at the interface
between the waveguide and the crystal are computed in a
manner similar to the one described in the previous sections.
However, instead of matching the photonic crystal modes to
plane waves, we matched them to modes of the unpatterned
slab. The defect width versus resonant frequency are shown
in Fig. 11. We use modes with even symmetry in the plane of
the membrane, similar to TE modes of the corresponding
two-dimensional crystal.23 We compare our results with
MPB simulations at the points where the defect width is
equal to a multiple ofa. We obtain an agreement in the
position of the resonant states with respect to the stop band
edges of better than 2% of the stop band width. The structure
can also be employed as a photonic crystal waveguide. The
guided modes and dispersion relation can be found by re-
peating the above simulations using a propagation vector
along the guide.

VII. CONCLUSIONS

We have shown that the complex amplitude of transmitted
and reflected waves at photonic crystal boundaries can be
obtained from the complex Bloch modes and band structure
of the crystals. These results, combined with those of Ref.
10, provide complete information about the behavior of light
at photonic crystal interfaces. Together with the propagation
and decay constants from the complex band structure they
allow us to interpret photonic crystals as effective media
whose key properties are given by their respective band

FIG. 9. Resonant modes of square cavities vs cavity size. Crys-
tal has a square lattice of Si cylinders in air,r =0.2a. Points mark
the resonant frequencies; numbers represent the mode numbers by
counting the nulls in the mode in thex and z direction; curves
represent the part of the mode profile that lies inside the cavity, in
the two directions.

FIG. 10. Slab waveguide resonant structure, consisting of a sili-
con membrane with holes etched through it.

FIG. 11. Defect width required for a given resonance frequency
for a line defect in a photonic crystal etched in a silicon membrane.
Lines are our model, points are from MPB simulations.
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structures. Structures with variations in both two and three
dimensions can be considered. Since the reflection, transmis-
sion, and diffraction coefficients depend only on the photonic
crystal structure and surrounding medium, these can be com-
puted in advance for subsequent use. Many different devices
can then be simulated and optimized very quickly using
these data. This technique can be directly applied to the com-
putation of modes in photonic crystal waveguides24 and reso-
nant cavities, coupling of light from waveguides to photonic
crystals, as well as light traversing any number of photonic
crystals.

In combination with a multiple-scales method,25,26 this
approach could also be used to compute the response of fi-
nite photonic crystals including nonlinearities. The boundary
conditions would determine how light enters the crystal,
while propagation inside the crystal would be handled by the
multiple-scales equations. A similar method could be used
for the reflection and transmission coefficients from crystals
with fabrication imperfections, using the eigenmodes of the
perfect crystal, while considering the deviations from this in
a perturbative approach.
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