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We study the spin-1/2 two- and three-dimensional orbital compass models relevant to the problem of orbital
ordering in transition metal oxides. We show that these systems display self-dualities and gauge-like discrete
sliding symmetries. An important and surprising consequence is that these models are hesnmngly
unrelated recently studied models gb+ip superconducting arrays. The duality transformations are con-
structed by means of a path-integral representation in discretized imaginary time and consid&rrspétisal
reflection symmetries and space-time discrete rotations, we obtain, in a transparent unified geometrical way,
several dualities. We also introduce an alternative construction of the duality transformations using operator
identities. We discuss the consequences of these dualities for the order parameters and phase transitions of the
orbital compass model and its generalizations, and apply these ideas to a number of related systems.
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[. INTRODUCTION Gauge-like symmetries appear in a number of condensed
matter systems. Exact local gauge symmetries are pervasive
Orbital compass models offer a simple and qualitative dein the quantum hydrodynamics of incompressible and com-
scription of the ordering of orbital degrees of freedom in apressible quantum Hall systems, as a direct expression of
number of complex oxides such as the titanaf€se degrees their quantum hydrodynamiésSimilarly, local gauge sym-
of freedom of these models describe the spatial orientation ahetries appear naturally in the context of strongly correlated
the orbital degrees of freedom. Jahn-Teller effects lead tsystems such as ttteJ model, quantum dimer models, and
anisotropic orbital compasslike interactions among the orbitother system$.Of particular interest for the problems dis-
als. When combined with the spin degrees of freedom, t@ussed in this paper are téding phasef arrays of Lut-
which the orbitals are coupled via superexchange in thestinger liquids® quantum Hall smecti¢stripe phases, DNA
system$ as well as by spin-orbit interactions, they lead tointercalates in lipid bilayer¥ as well as in some ring ex-
complex phase diagrams with phases that involve both spiobhange models of frustrated antiferromagriéfEhe discrete
and orbital orderingand disorder to various degrees. In- sliding symmetries we discuss here are a disci&teyersion
deed, these systems offer an interesting laboratory for thef the continuoussliding symmetries of the systems men-
study of interesting anisotropic quantum nematic phasegjoned above. The existence of sliding symmetries has pro-
with and without spin order, and are a simple example offound effects on their quantum phase transitions, whose be-
electronic liquid crystal phasés. havior only begun to be understood quite recéithnd still
Orbital compass models also exhibit unusual and so faremains largely unexplored.
not well-studied symmetries which play a big role in their ~ Among others, discrete sliding symmetries are present in
physical properties. In the current paper, we elucidate thepin®*> orbitall®2° and superconducting array
discrete “sliding” gauge-like symmetries present in the two-system$122 We further demonstrate that the planar orbital
and three-dimensional orbital compass models. In twaompass mod&l2°and the Xu-Moore modé}?? of two di-
dimensions, these symmetries involve flipping the orbital demensionalp+ip superconducting arrays are, in fact, one and
grees of freedom simultaneously along a single row or colthe same system, related by a simple duality transformation.
umn of the lattice. These discrete symmetry transformation¥iewed in that light, the discrete sliding symmetries which
stand in-between the global symmetries familiar from spinthe Hamiltonians describing superconducting arrays display
systems and the local symmetries of gauge theories. Alare natural. By applying our dualities, we find self-dualities
though these are not truly gauge symmetries in the sense thiatr the three-dimensional orbital compass model and several
they affect the boundary conditions, they are softer than thether systems. These dualities do not rely on operator
familiar global symmetries. In fact, for reasons discussedepresentatiod?*nor on standard combinatorial loop/bond
elsewhergthese discrete sliding symmetries are alike gaugeounting arguments or summation formufasRather, the
symmetries in that they cannot be spontaneously broken. Aualities that we report here appear as simple geometrical
direct consequence of the existence of these discrete slidimgflections between various spin and spatial axis. The duali-
symmetries is that their natural order parameterqiareatic  ties investigated in this paper map such trivial geometrical
which are invariant under discrete sliding symmetries. Heraeflection self-dualities in one model onto far less trivial
we give an explicit construction of the nematic order param-weak-strong coupling self-dualities in other systems. In a
eters and potential physical consequences are discussed. formal setting, our dualities correspond to different space-
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time cuts of a single classical action. Choosing a certain timénteractions are highly anisotropic-these interactions link the
and spin quantization axis, we find one spatial system whil@xternal lattice directions with the internal “spir'e., or-
choosing the time axis to lie along another direction inbital) orientations. We refer the interested reader to Ref. 27
space-time leads to a seemingly very differgmt dua) spa-  where the physics of orbital systems and the orbital only
tial model. Our purely geometric dualities further extend andmodels that we investigate is explored in depth.
complement, from a rather general perspective, the dualities The planar compass model is defined on the square lattice
generally derived via techniques such as those in, e.g., Refvhere at each site there is aS=1/2 operator denoted by
26. S, =(%/2)0,. The isotropic planar orbital model Hamiltonian
The plan to the paper is as follows. In Sec. Il, we intro-
duce the planar orbital compass model in both its isotropic
and anisotropic incarnations. We identify the many gauge-
like and single reflection symmetries of this mo¢tble latter
reflection symmetry will, as we will later find out, play the

role of self-duality. In the aftermath, we construct order pa- Where the nature of the interaction allows us toket0.>®

tem that possesses one dimensional gauge-like symmetrigdymmetry, the compass model Hamiltonian is not invariant
This system has been argued to embody the quintessentignder arbitrary global rotations of all spir{®hysically, the
physics of a square lattice array pfip superconducting !ack of this symmetry is the direct consequence of the cou-
grains. As we will show, this model is identical to the planarPling between the internal polarization directiofrbital
orbital compass model. sta}te$ and the external lattice directioni®@s much unlike

In Sec. IV, we discuss the three-dimensional orbital comSPins, the orbitals extend in real spagd Instead, this
pass system. This model has been considered to embody tA¥del possesses many nontrivial symmetries corresponding
prototypical features of orbital system Hamiltonian andt© Specific quantized angles of rotation of all spins on given
might be directly relevant to the so-called,;” systems rows/columns and a single additional rather trivial reflection
(such as the vanadates and mangapateparticular. We ~Symmetry (which upon mapping will enable us to find a
identify gauge-like symmetries in this system. As in the IO|a_nontr|V|aI weak to strong coupling self-duaht_y in gnother
nar case, we find nematic orders invariant the gauge-liké10de). As a consequence of these symmetries, this model
symmetries. This in turn suggests that orbital systems migH@arbors an infinite degeneracy of all states and of its ground
possess observable nematic orders. states in particular. Let us consider the system with open

In Sec. V, we employ simple geometrical reflections toPoundary conditions on ahxXL square lattice and let us
derive dualities for extended systerfmow residing in three  define an operator on an arbitrary horizontal lio€ordinate
dimensions The dualities of Xu and Moo?&?2(derived by ~ 2) O,=II-__, % and an operator on an arbitrary vertical line
Kramers-Wannier loop countingorm a subset of the de- (of horizontal intercepk) O,=I1%, &% It is readily verified
rived dualities. The central actor in our scheme is a geometrithat for all sitesi whosez component isr,=z, the product
cal inversion operator which allows us to set the imaginarys-1

X~ X Ha (12~ Z Qimi A i
. . : . L : 0,=—0; while O, 070,=o% Similarly, O, inverts thez
time axis along different external space-time directions Wlthcémaroéentgéf al s irz130:)nz aa\;ertical Iiniz \;(vhile leavi
similar ideas for choosing the internal spin quantization axis. P P : ' 09
ntouched. In the case of symmetric exchange constants for

These operations generate, in turn, many different dual moqgOnds alona the andz axis. as in the compass model under
els. With this geometrical understanding of the observed du- 9 ’ P

ality in hand, we return to the self-dual point of Refs. 21 22consideration herdwhere both exchange constants are equal
and make cémparisons to other systems " 77"""to J), we further have a single additiond) reflection sym-

In Sec. VI, we use an operator representation of the dualr-ne”y(ax_)az’az% a;)—a rotation byr about theﬂsymmet-

ity transformation to rederive the dualities for the orbital fic line (the 45 deg |il’z1€ in thexz plane, i.e., Ogefiection

compass model which we obtained via geometrical reflec=1Tr exi(m\2/4)(o%+0%)]. For each of these operations,

tions in_the previous sections. Sect.ion VIl is devoted tp theo;lHoa:H, This symmetryOgefiection IS @ Manifestation of
conclusions. In the Appendix we discuss the self-duality ofself-duality present in the model—we will explain the origin
“around the cube” models in transverse fields. of this comment later. Putting all of the pieces together, as a
consequence of these symmetries, each state is, at least,
O(2Y) degenerate. Formally, these symmetries constitute a
gauge-like symmetry which is intermediate between a local
gauge symmetrywhose volume scales as the system grea
We start with the planar compass model. The compasand a global gauge symmettwhose logarithmic volume is
models often serve as the simplest caricatures for the physigmintlike). These intermediate gauge symmetries suggest that
of 3d orbital systems wherein Jahn-Teller interactions as welhontrivialities may occur. As it turns out, such large discrete
as magnetic exchange processes are dictated by the oriensgammetries do not prohibit ordering in classical variants of
tion of the orbitals at the various lattice sites. In the orbitalthis model albeit complicating matters significaritly.®2°
compass models, the spin variables code for the orbitalhis ordering tendency may be expected to become fortified
states. As orbitals extend in real space, all orbital dependetty quantum fluctuation€'quantum order out of disordex?®

Hiso= =2 (0707, + of0Tsc), (L)

Il. QUANTUM PLANAR ORBITAL COMPASS MODELS:
SYMMETRIES
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As an aside, we note that the global nematic symmetriesompass model of Eq1). We note that the gauge like sym-

(the global rotation of all spins bym/2 withn=0,1,2,3 are  metries (encapsulated by the column/ro®,, generators
not independent symmetries on top of the gauge-like sympreserve the Hamiltonian also for arbitrady| # |J,|. A natu-
metries discussed above. Rather, there is only Gme ra| (smecticlik¢ order parameter in the orbital compass
— 0,,0,— 0y)—a rotation by about the symmetric line  model monitors the tendency of the spins to order along their
(the 45 deg line in thez plang additional symmetry sup- preferred directions
planting the gauge-like symmetries. To see this, first note that
the global inversion operatio,— —a, is a composite of the m= <0)r((frx+éx— Offff+éz>- (4)
row/column inversion symmetries: An inversion @f on all _ L : . S
rows followed by an inversion of, on all columns leads to [JUSt @S in smectic liquid crystals, having all spins point in
the global inversion operation. Next, note that by fusing thein€ €« direction or in the(-&,) direction is one and the same
global inversion symmetry with the globa reflection sym-  insofar as the above order parameter is concefngdis
metry, we may produce the four global nematic symmetr)ﬁemat'd'_ke order parameter is invariant under all gauge-like
operations(rotations byns/2). Thus, unlike what is sug- Symmetries. ,
gested by Ref. 20, the global nematic symmetries do not S|m.|lar to .thexy symmetric order parameter above, for
supplant the gauge-like symmetries and no less importantn€ anisotropic planar orbital compass mofaly [, > |3,)),
the quantum system possesses the above reported gauge-Iikg may consider the Ising like nematic-order parameter,
symmetries gmbodied by the operat@g,. _ mX:<g;<U;<+éx>, (5)
The classicallarge ) ground state sector of the orbital
compass model further possesses an additional continuougth a similar definition for the system witfd,| >|J,. These
[U(1)] symmetry not captured by the discréi&)?-*1 sym-  order parameters are invariant under the gauge-like symme-
metries[2" of these associated with horizontal, @&sociated tries of the system.
with vertical discrete spin flip symmetries, and dfyesym- The classical, larg&, rendition of this model, has similar
metry being the o,— o,,0,— o) reflection symmetrjde- nematiclike order parameters invariant under all gauge-like
tailed above. This continuous symmetry is made evident bypymmetries:’192°Here, and in fact for all spin§>1/2, the
noting that any constant spin field, =, is a ground state. order parameter can be localot a bond order parameter
First, we note that,—, {o'”']? is constant. Thus, up to an iNvolving two sping. All quantities Q,;=S"'S~(1/d)3,g,
irrelevant constant, the general Hamiltonian of Eb.is with a, B internal spin indices, and witd the dimension
(d=2 in the planar higher spin extensions of the orbital com-
Hel = 22[ (@) _ la) 2 @ pass modglare invariant under all gauge-like symmetries.
s0= 5 Op ~ O 15 The order parametgQ;,) is anticipated forJ,|>|J,| (and
' (Q,y for |3,/ >13,]). Similar quantities may be introduced for
which is obviously minimized when the spin field is con- higher dimensional(d>2) generalizations of the planar
stant. We emphasize that the continuous symmetries whicbompass model.
underscore these ground states are just symmetries of the
states anahot of the Hamiltonian itself. In common parlance,
these areemergent symmetriespecific only to the ground
state sector. Therefore, at least in the orbital-only models, we A Hamiltonian describing a square lattice pfip super-
are not in a setting where a Mermin-Wagner argument can bgonducting grainge.g., SsRuQ,) was recently suggest&e?
applied.
With an eye toward things to come, let us now introduce H=-K> ¢?d?c?c*-h), al. (6)
and examine the anisotropic planar compass model o r

Ill. p+ip SUPERCONDUCTING ARRAYS

« , Here, the four spin product is the product of all spins resid-
H=-32 O)r(ffméx -3, O'fo'r+éz' ) ing at the four vertices of a given plaquefié (not on its
' ' bonds as for gauge fieldsAs noted by Xu and Mooré&' the
It is readily verified that this more general Hamiltonian quantity
harbors all of the one-dimensional gauge-like symmetries en-

capsulated byD, ,. The only symmetry which does not per- Op = 1:[ ot (7

sist for arbitraryl,, J, is the reflection symmetrylnsofar as

its underlying physics is concerned, this anisotropic compaswith the string productalong “P”) extending over all spins

model emulates Jahn-Teller distortions on a strainedn a given row(r,=z) or a given column(r,=x), is con-

lattice?’) served. The discretégauge-like sliding symmetry of this
The two terms in the anisotropic compass model of Eqmodel is similar to that of the planar orbital compass model

(3), trivially compete. The first term favors ordering of the and we will indeed show that these two models are actually

spins parallel to the axis while the second favors an order- dual to each other.

ing of the spins parallel to the axis. Order becomes more  The central derivation in Refs. 21 and 22 was a self-

inhibited when the competition between the two terms beduality of the Hamiltonian in Eq(6) via a tour de force

comes the stronges$l, = +J,) as it indeed occurs within the Wannier Kramers loop counting arguments. The form of this
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self-duality is somewhat similafyet still very differenj to H=- _
the beautiful self-dualities of Ref. 31. Similar dualties were J E Oxar"e J 2 o ”ey 2 o ”ez ©
discussed in the ring exchange systems of Ref. 11. In these
models not only a relation among strong and weak couplingThe isotropic orbital compass model corresponds,tp,
is given by the self-duality but the self-duality further inter- =—J.) The anisotropic orbital compass model possesses all of
twines the various term®.g., largeh is related to smalK in the gauge-like symmetries of the isotropic orbital compass
the self-duality of Eq(6) and vice versa as found by Xu and model(planar rotations in the quantum model and more nu-
Moore]. merous single line inversions in the classical gaGearther,

We will shortly establish that the rather complicated look-if at least any two of the three exchange constddt$ are
ing weak coupling to strong coupling self-duality of )  identical the system possess a reflection symmetry.
derived by Refs. 21 and 22 immediately follows from a very  As in the planar orbital compass model, nematiclike order
simple purely geometridZ, reflection self-duality of the parameters may be constructed for both the isotropic and
planar orbital compass model. This self-duality may also benisotropic systems. Thus, we naturally predict the existence
related (albeit in a less general fashipto the trivial geo-  of observable nematic orbital orderstyy systems.
metrical self-duality of the planar orbital compass model via In what follows, we will also investigate a related system
the operator representations of Sec. VI. In the aftermath, thgoverned by the Hamiltonian
plaquette coefficienK in Eqg. (6) may be related to the ex-

change amplitudd, of Eq. (3) whereas the transverse mag- H=-J3, o{orx+éx - Jyz olraf+éy -3, of(rf+éz. (10
netic fieldh of Eq. (6) becomes trivially related td, of Eq. r r r
3).
® Note the similarity between th¢Y model of Eq.(10) and the
IV. SYMMETRIES OF THE THREE-DIMENSIONAL orbital compass model of E¢Q). In the limit J,=0, Eq.(10)
ORBITAL COMPASS MODEL trivially degenerates into the strained planar orbital compass
_ . . _ model of Eq.(3).
The canonical prototype of all orbital-simnd orbital- We will construct new “plaquette modelgin which the

orbital interactions is the orbital compass mo#elThe  spins reside on the lattice sites not on boruisal to Eq.(10)
model is defined on the cubic lattice where at each site which possess a self-duality and gauge-like symmetry, natu-
there is anS=1/2 operator denoted b$, (h12)a:. The or-  rally extending the results of Refs. 21 and 22.

bital model Hamiltonian

V. DUALITIES AND SELF-DUALITIES FOUND
X zZ Z
H= JE Tr+e, °¥°¥+éy+ TF0Fre)- ®) BY PLANAR REFLECTIONS

Let us define an operator on an arbitraay plane P (of We now transform the zero temperature quantum problem
- of Eg. (1) onto a classical problem ifd+ 1) dimensions. To

) this end, we work in a basis quantized alosnfj=+1). We
and Op,,. These operators may be recast as rotationsrby now consider the basis spanned by two spifso®) at the
about an axis orthogonal to the plane. For all sitesthe Xy same spatial site yet at two consecutive imaginary times
planeP whosez component isr,=z up to a multiplicative and (7+A7). The transfer matrices corresponding aeh”"
phase factor, the operat®@p,=exfi(m/2)op/f] with op (stemming, in the imaginary time formalism from a propa-

-3 z A-1 PXy~N —_ XYy : LT ’ .
=37.por.  The products Op,o7"/Op,=-07” while gatore™27 such a7 with h=hA7) angeJo'ZO'Z (or, with

OE;ler%OP;zZU%- Similarly, Op, inverts they and z compo-  space time coordinates explicitly instatedry. 7 ~ar) are the
nent of all spins on thgz p.Iane of intercepk while leaving 5 me provided  that tatiee®  (or  equivalently
oy untouched. These “string” operators spanning the entire U2

| h the Hamil he cl Sinh zh sinh 2= 1) and a@=(2 sinhJ)*<. Similarly, the non-
plane commute with the Hamiltoniaf 'OP ol= O The clas- vanishing eigenvalues of the transfer matrices
sical orbital compass model has an ex&zg]3L symmetry
(along each chain parallel to the culidX, y, or 2) axis, we exdKyo! 011,07 1p,0001.,] (11
may reflect thea spin componentS,— -S,, while keeping
all other spin components unchanges},.,— Sz.,). The and
quantum orbital compass model has a lower eiﬁ@ﬂ?"- _
gauge-like symmetryforming a subset of the largé?.,J*-* exf o7 041 ] (12)
symmetry present for classical spinéds alluded to above, ) ) e
the gauge like[Z,]3 symmetries of this quantur§=1/2  are equivalent once sinfkgsinh 23,=1.
case(as well as all representatiopbecome evident once we  In the standard imaginary time mapping of quantum sys-
rotate, with no change ensuing in the Hamiltonian, all spingems to classical actions, we identify,=J, A7 with the
in a plane orthogonal to the cubic lattice directiarby =  aforementioned\r the lattice spacing along the imaginary

interceptz) ép.Z:HFEPo§ with similar definitions forOp.
A ) r P;x

about the internaf, quantization axis. time direction.
As before, let us now introduce and examine the aniso- The generalized classical Euclidean action corresponding
tropic orbital compass model to Eq.(1) is
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imaginary time coordinate with the spatiaz coordinate, we
find that

H=- (sz S K, S ottt +h, o{>

Oexz Oeyz r

(15

is dual to the system given by the Hamiltonian of E40).
Let us now derive self-dualities of this extended three dimen-
| sional system(en passant, effortlessly proving the central
| result of Refs. 21 and 22

Expressing the action corresponding to the Hamiltonian
of Eg.(10) in a spin eigenbasis @ and inverting the spatial
X z andx coordinates of any site (a Z, operation, we obtain

NNV

FIG. 1. The classical Euclidean action corresponding to the g = [_tanh—l(e—ZJzAf) > gooo- A7),
Hamiltonian of Eq.(6) at zero temperature in a basis quantized

along thes? direction. The transverse field leads to bonds parallel to

the imaginary time axis while the four plaquette interactions be- X X oo-tanii(e?A) X UUO'(T}-
come replicated along the imaginary time axis. Taking an equal z direction Deyr plane

time slice of this system we find the four spin term of E@). and (16)
the on-site magnetic field term. If we interchangwith z, we find ) )

the anisotropic planar orbital compass model of @in the basis Looking at Egs(14) and(16), we see that if

uantized along the* direction.
a 9 (A 2 ogooo+B E go+C E 0'(70'0')

S=
Oexr plane z direction Oeyr plane

Oexr plane

S=- Kx 2 U?,T(Tf,ﬂAT(Tf+éX,TU?+éX,T‘+AT (17)

Oe(x7) plane

then
-(ADIY, 0 ve,. (13)
r

Sw=(A 3 ooor+B 5 oo

A schematic of this action in Euclidean space time is Hexr plane  direction
shown in Fig. 1. If we relabel the axes and replace the spatial +C E cooo). (18)
index x with the temporal index, we will immediately find Deyr plane

the classical action corresponding to the the Hamiltonian of _ _ _
Eq. (6) depictingp+ip superconducting grains in a square Here, A=—tanli(e”?), B=-J,, and C=-tanhi’(e™®).
grid. This trivially suggests that the anisotropic planar orbitalsimilarly, A=—tantt(e 2%), E:—J_X' and C=C. Eliminating
compass systerfEg. (3)] and the Xu-Moore Hamiltonian I we find that

[Eqg. (6)] are dual to each other. In Sec. VI, we sketch a™*#

detailed derivation of this duaIiFy by thg operator dualities of sinh 2A sinh 2B = 1,
Refs. 23 and 24. This classical action follows from the

equivalence of the transfer matrices corresponding to Egs.

(11) and (12) or, alternatively, from the equivalence of Eq. sinh 2Asinh B=1,
(3) to (6) (which will be proved in detail by operator repre-
sentations in Sec. Yland the relation between the transfer c=cC. (19

matrices corresponding & ande’" .

We find that the classical action corresponding to the Taken together, these relations imply that

model of Eq.(10) is sinh2AsinhB=1 (20)
is a self-dual line for any value df.
S=|-tanfi (&) > gooo- A7, This extends the dualities of Refs. 21 and 22 in a very
Oexr plane natural fashion to higher dimensions. Moreover, note in this

formalism the dualities just “fall into our lap”—no involved
calculations nor loop counting were necessary. The duality is
a trivial geometrical reflection.

X > go-tanfie®AD) Y goool.
z direction Oeyr plane
(14)
VI. OPERATOR DUALITY TRANSFORMATIONS
OF THE QUANTUM PLANAR ORBITAL COMPASS

Here and elsewhere;=+1 arec numbers and we omit the
MODELS ONTO QUANTUM ISING PLAQUETTE MODELS

(2) polarization superscripts.
We now extend the duality of self-duality of E@) to the A duality between the planar orbital compass mdds.
three-dimensional arena. First note that by interchanging the3)] and the Xu-Moore model of Ed6) is suggested by the
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FIG. 2. The lattice and a dual lattice sitmarked by an asterisk FIG. 3. A graphical representation of the string product of*
“*" at a plaquette centdr Here we illustrate the representationodf ~ on all vertical bonds from the boundary up to the dual lattice site.
as on a given dual plaquette site as the product*obperators
placed on all four bonds composing the plaquette of the original Hiso= JE < K48 X 4B 4B,

lattice.

: : : F ; ; ; ; +ET* *+@ +2 *+28 X+2 *+28 X+ 4
cubic point group operation interchangirgvith 7in Fig. 1. R, TR, 2R, Tk, 428, T e, 4R,
We now prove this duality at all temperatures. To this end,
we invoke a simple operator duality transformation followed X Ty _éx'r*_éxTi(*_éx'r* ) (23
by a summation over the horizontal bor{@gich amounts to z

a standard gauge Jixn the model that results. The upshot of
the up and coming discussion is that the quantum planal
compass model of Eq1l) can be mapped onto the Hamil-
tonian of Eq.(6) precisely at its zero temperature self-dual
point.

The salient feature of the Pauli matrice$and ¢ is that
they anticommute at a common site while commuting every-

where else. It is readily verifigé?* that these relations are *
preserved by the canonical duality relations on the dual lat-
tice

of = PP (21)

with the plaquette product of* on the right hand-side cor-
responding to the four spins surrounding the dual lattice site
r* (the center of the plaquette as shown in Fig. 2 bej@amd

=11 7xe, (22)

x<x" FIG. 4. The product of,c}0Y,; becomesls on a single ver-
tical bond on the right-hand side of the dual plaquette site corre-

. o sponding tar. The productl, 010r+e becomes in the dual represen-

the product ofr* placed along vertical bondéinking x and  tation the product of all operators forming the outer shell of a
x+8&,) along a horizontal line—see Fig. 3. The series of transvertical domino multiplied byl,. Putting all of the pieces together,
formations below leading to Eq24) may be vividly fol-  the Hamiltonian becomes the sumbfmultiplying a domino shell
lowed in Figs. 4 and 5. of 7 on bonds augmented kl; multiplying a single vertical bond

Inserting Egs(21) and(22) into Eqg. (1), we obtain on which 7 is placed.
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VII. CONCLUSIONS

In conclusion, we investigated several systems displaying
' ‘ discrete(gauge-like sliding symmetries and illustrated that
two such systems are dual to each other. The enhanced dis-
crete sliding symmetries in these systems go hand in hand
with a dimensional reduction that occurs in several limiting
‘ * H cases of these systerfesg., the system of E¢6) in the limit

of h=0 is none other than 1+1-dimensional version of the
one-dimensional Ising modelWe found nematic-order pa-
rameters invariant under these symmetries. This suggests the
specter of detectable orbital nematic orders;jrorbital sys-
tems.

The superconducting array model of Refs. 21 and 22 is
dual to the planar orbital compass model and as such has a
finite temperature transition for a largeincarnation at its
self-dual point.

We find that dual models may be derived by flipping the
spatial and imaginary time axiand/or quantization axisin
an upcoming work, we will elaborate on this approach to
dual models as different cuts of a higher dimensional

FIG. 5. Choosing a gauge in which=1 on all horizontal  theory®?
bonds, identifying the centers of the vertical bonds as sites, we find The nature of the quantum phase transitions in these sys-
that the Hamiltonian corresponds to the product of ietioperators  tems remains an open problem. A straightforward examina-

X

on the vertices of a plaquetfi<ss’,; s\, s - ] augmented  tion of the Xu-Moore model shows that the finite tempera-
by an external transverse field giving nsensf Here h=J,and ture transition from a high temperature disordered phase to a
K=J,. Thus, the planar orbital compass model is dual to the supedoW temperature phase in which the product of Ising spins on
conductlng array system of Refs. 21 and 22. pairs of sites belonging to different sublattices orders. This

classical transition is continuous, and in the universality class

The first term corresponds to an external transverse magnefft the two-dimensio_neﬂZD) classical Ising model. Although
field of strength) along thez axis acting on all vertical bonds the nature of ther=0 transition is not established at the
while the second term encapsulates the product of six bondd€Sent time, there are suggestions that it may actually be a

forming the outer shell of two plaquettes pasted togethefONtiNUOUS quantum phase transition. The presence of the
along thez axis. The bond common to the two plaquettesd'scrE’te sliding symmetry suggests that this is an unconven-

evaporated due to the relatiorjzl. The net result of Eq. tional quantum phase transition whose universal behavior is

(23) is shown in Fig. 4. worth understanding.
Next, we choose the longitudinal gauge wherein all hori-
zontal bonds have_zzl. This can be ac_hieved \_/ia explicit ACKNOWLEDGMENTS
gauge transformations or by simply noting that in the repre-
sentation with horizontal bonds witf=1, the duality rela- We are grateful to Marek Biskup, Lincoln Chayes, Joel

tions of Egs.(21) and (22) become identical to the duality Moore, and Jeroen van den Brink for many discussions on
relations in one-dimensional spin chaifyserformed inde- this problem. This work was supported in part by U.S. DOE
pendently for each horizontal rowvhich trivially satisfy the  via LDRD X1WX (Z.N.) and by the National Science Foun-
commutation of spin variables of different sites, the anticom-dation through the Grant No. DMR01-32990 at the Univer-
mutation of thex andz components of the spin on the same sity of lllinois (EF).

site and the square of each spin operator. In this longitudinal
gauge wheref*r*Jréx:l, the Hamiltonian now involves only

. . . - APPENDIX: SELF-DUALITY OF AROUND THE CUBE
vertlcally oriented bondgparallel to thez axis). Defining

: MODELS IN THE PRESENCE OF TRANSVERSE
spinss: =7+ e, FIELDS

In this appendix, we explicitly generalize the self-duality
- 3 that we obtained earlier for plaquette models with a trans-
Hiso= KE S e S hz s 29 verse field to cubic models with eight spin interactions aug-
mented by a transverse field. Such a duality was alluded to in
Refs. 21 and 22.
with the new parameteits=K being equal to the formel of Later, we derive this duality by going back and forth
Eg. (23). Thus the isotropic planar compass orbital modelfrom various quantum systems to corresponding
lies precisely on the zero temperature self-dual ek of (d+1)-dimensional classical actions when different spin
Eq. (24). This result is shown in Fig. 5. guantization and spatial lattice directions are chosen.
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To prove the self-duality of such cubic systems, first con-

sider the Hamiltonian

H=-K > %o

Oexy plane

>

bonds alongz axis

ddd -,

(A1)

If we write down the classical action in a spin basis quan-

tized along thes” axis, we find

>

cubes inxyr

g0.

>

bonds alongz axis

S =-K; ogooooooo —J,

(A2)

Here sinh X, sinh =1 with K=KA~, andJ,=JA7. Al-

ternatively, if we write down the classical action correspond-

ing to Eq.(Al) in a spin basis polarized along/, we find

> >

Oexy plane Oezr plane

S,=-K, ocooo—Jy, (A3)

g000.

Here, K,=KA7 and sinh 2,,sinh 2J,=1 with J,=J,A~.
Thus, we find that the classical actioBsandS, are dual to
each other. The classical acti® also corresponds to the
Hamiltonian

PHYSICAL REVIEW B71, 195120(2009

S Pt -h, S,

cubes inxyz r

chbe: - K.

(A4)

when written in a spin basis quantized alas® Thus,H¢pe
may be represented by the classical act®nPutting all of
the pieces together we find that

sinh X«A7rsinh K,=1,

sinh 2, A7 sinh2),=1. (A5)

Interchanging, in the actio8,,K —J,x—z,y— 7, we ob-
tain an actionS;) whose partition function is identically the
same. By the same steps outlined above, the classical action
S; correspondgvia duality transformationsto the Hamil-
tonian

wbe=—Ke > dEtdPotdtotdta ~hy D, o,
cubes inxyz r
(AB)
This establishes the duality betweklp,,c and ﬁcube
K. =hy,
h, =K. (A7)

Fusing these relations together, we find thatK, consti-
tutes a self-dual line ol pe
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