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We study the spin-1/2 two- and three-dimensional orbital compass models relevant to the problem of orbital
ordering in transition metal oxides. We show that these systems display self-dualities and gauge-like discrete
sliding symmetries. An important and surprising consequence is that these models are dual tosseemingly
unrelatedd recently studied models ofp+ ip superconducting arrays. The duality transformations are con-
structed by means of a path-integral representation in discretized imaginary time and considering itsZ2 spatial
reflection symmetries and space-time discrete rotations, we obtain, in a transparent unified geometrical way,
several dualities. We also introduce an alternative construction of the duality transformations using operator
identities. We discuss the consequences of these dualities for the order parameters and phase transitions of the
orbital compass model and its generalizations, and apply these ideas to a number of related systems.
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I. INTRODUCTION

Orbital compass models offer a simple and qualitative de-
scription of the ordering of orbital degrees of freedom in a
number of complex oxides such as the titanates.1 The degrees
of freedom of these models describe the spatial orientation of
the orbital degrees of freedom. Jahn-Teller effects lead to
anisotropic orbital compasslike interactions among the orbit-
als. When combined with the spin degrees of freedom, to
which the orbitals are coupled via superexchange in these
systems2 as well as by spin-orbit interactions, they lead to
complex phase diagrams with phases that involve both spin
and orbital orderingsand disorderd to various degrees. In-
deed, these systems offer an interesting laboratory for the
study of interesting anisotropic quantum nematic phases,
with and without spin order, and are a simple example of
electronic liquid crystal phases.3,4

Orbital compass models also exhibit unusual and so far
not well-studied symmetries which play a big role in their
physical properties. In the current paper, we elucidate the
discrete “sliding” gauge-like symmetries present in the two-
and three-dimensional orbital compass models. In two
dimensions, these symmetries involve flipping the orbital de-
grees of freedom simultaneously along a single row or col-
umn of the lattice. These discrete symmetry transformations
stand in-between the global symmetries familiar from spin
systems and the local symmetries of gauge theories. Al-
though these are not truly gauge symmetries in the sense that
they affect the boundary conditions, they are softer than the
familiar global symmetries. In fact, for reasons discussed
elsewhere5 these discrete sliding symmetries are alike gauge
symmetries in that they cannot be spontaneously broken. A
direct consequence of the existence of these discrete sliding
symmetries is that their natural order parameters arenematic,
which are invariant under discrete sliding symmetries. Here
we give an explicit construction of the nematic order param-
eters and potential physical consequences are discussed.

Gauge-like symmetries appear in a number of condensed
matter systems. Exact local gauge symmetries are pervasive
in the quantum hydrodynamics of incompressible and com-
pressible quantum Hall systems, as a direct expression of
their quantum hydrodynamics.6 Similarly, local gauge sym-
metries appear naturally in the context of strongly correlated
systems such as thet-J model, quantum dimer models, and
other systems.7 Of particular interest for the problems dis-
cussed in this paper are thesliding phasesof arrays of Lut-
tinger liquids,8 quantum Hall smecticsstriped phases,9 DNA
intercalates in lipid bilayers,10 as well as in some ring ex-
change models of frustrated antiferromagnets.11 The discrete
sliding symmetries we discuss here are a discrete,Z2, version
of the continuoussliding symmetries of the systems men-
tioned above. The existence of sliding symmetries has pro-
found effects on their quantum phase transitions, whose be-
havior only begun to be understood quite recently12 and still
remains largely unexplored.

Among others, discrete sliding symmetries are present in
spin,13–15 orbital,16–20 and superconducting array
systems.21,22 We further demonstrate that the planar orbital
compass model17,20 and the Xu-Moore model21,22 of two di-
mensionalp+ ip superconducting arrays are, in fact, one and
the same system, related by a simple duality transformation.
Viewed in that light, the discrete sliding symmetries which
the Hamiltonians describing superconducting arrays display
are natural. By applying our dualities, we find self-dualities
for the three-dimensional orbital compass model and several
other systems. These dualities do not rely on operator
representations23,24 nor on standard combinatorial loop/bond
counting arguments or summation formulas.25 Rather, the
dualities that we report here appear as simple geometrical
reflections between various spin and spatial axis. The duali-
ties investigated in this paper map such trivial geometrical
reflection self-dualities in one model onto far less trivial
weak-strong coupling self-dualities in other systems. In a
formal setting, our dualities correspond to different space-
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time cuts of a single classical action. Choosing a certain time
and spin quantization axis, we find one spatial system while
choosing the time axis to lie along another direction in
space-time leads to a seemingly very differentsyet duald spa-
tial model. Our purely geometric dualities further extend and
complement, from a rather general perspective, the dualities
generally derived via techniques such as those in, e.g., Ref.
26.

The plan to the paper is as follows. In Sec. II, we intro-
duce the planar orbital compass model in both its isotropic
and anisotropic incarnations. We identify the many gauge-
like and single reflection symmetries of this modelsthe latter
reflection symmetry will, as we will later find out, play the
role of self-dualityd. In the aftermath, we construct order pa-
rameters invariant under these symmetries.

In Sec. III, we discuss another two dimensionalXY sys-
tem that possesses one dimensional gauge-like symmetries.
This system has been argued to embody the quintessential
physics of a square lattice array ofp+ ip superconducting
grains. As we will show, this model is identical to the planar
orbital compass model.

In Sec. IV, we discuss the three-dimensional orbital com-
pass system. This model has been considered to embody the
prototypical features of orbital system Hamiltonian and
might be directly relevant to the so-called “t2g” systems
ssuch as the vanadates and manganatesd in particular. We
identify gauge-like symmetries in this system. As in the pla-
nar case, we find nematic orders invariant the gauge-like
symmetries. This in turn suggests that orbital systems might
possess observable nematic orders.

In Sec. V, we employ simple geometrical reflections to
derive dualities for extended systemssnow residing in three
dimensionsd. The dualities of Xu and Moore21,22 sderived by
Kramers-Wannier loop countingd form a subset of the de-
rived dualities. The central actor in our scheme is a geometri-
cal inversion operator which allows us to set the imaginary
time axis along different external space-time directions with
similar ideas for choosing the internal spin quantization axis.
These operations generate, in turn, many different dual mod-
els. With this geometrical understanding of the observed du-
ality in hand, we return to the self-dual point of Refs. 21,22
and make comparisons to other systems.

In Sec. VI, we use an operator representation of the dual-
ity transformation to rederive the dualities for the orbital
compass model which we obtained via geometrical reflec-
tions in the previous sections. Section VII is devoted to the
conclusions. In the Appendix we discuss the self-duality of
“around the cube” models in transverse fields.

II. QUANTUM PLANAR ORBITAL COMPASS MODELS:
SYMMETRIES

We start with the planar compass model. The compass
models often serve as the simplest caricatures for the physics
of 3d orbital systems wherein Jahn-Teller interactions as well
as magnetic exchange processes are dictated by the orienta-
tion of the orbitals at the various lattice sites. In the orbital
compass models, the spin variables code for the orbital
states. As orbitals extend in real space, all orbital dependent

interactions are highly anisotropic-these interactions link the
external lattice directions with the internal “spin”si.e., or-
bitald orientations. We refer the interested reader to Ref. 27
where the physics of orbital systems and the orbital only
models that we investigate is explored in depth.

The planar compass model is defined on the square lattice
where at each siter there is aS=1/2 operator denoted by
Sr =s" /2dsr . The isotropic planar orbital model Hamiltonian

Hiso = − Jo
r

ssr
xsr+êx

x + sr
zsr+ez

z d, s1d

where the nature of the interaction allows us to setJ.0.28

Unlike the more conventional nearest neighbor spin
Hamiltonians which posses a continous global rotational
symmetry, the compass model Hamiltonian is not invariant
under arbitrary global rotations of all spins.fPhysically, the
lack of this symmetry is the direct consequence of the cou-
pling between the internal polarization directionssorbital
statesd and the external lattice directionssas much unlike
spins, the orbitals extend in real spaced.27g Instead, this
model possesses many nontrivial symmetries corresponding
to specific quantized angles of rotation of all spins on given
rows/columns and a single additional rather trivial reflection
symmetry swhich upon mapping will enable us to find a
nontrivial weak to strong coupling self-duality in another
modeld. As a consequence of these symmetries, this model
harbors an infinite degeneracy of all states and of its ground
states in particular. Let us consider the system with open
boundary conditions on anL3L square lattice and let us
define an operator on an arbitrary horizontal linesof ordinate

zd Ôz=Px=−L
L sx

z and an operator on an arbitrary vertical line

sof horizontal interceptxd Ôx=Pz=−L
L sz

x. It is readily verified
that for all sitesrW whosez component isrz=z, the product

Ôz
−1srW

xÔz=−srW
x while Ôz

−1srW
zÔz=srW

z. Similarly, Ôx inverts thez
component of all spins on a vertical line, while leavingsx
untouched. In the case of symmetric exchange constants for
bonds along thex andz axis, as in the compass model under
consideration here,swhere both exchange constants are equal
to Jd, we further have a single additionalZ2 reflection sym-
metryssx→sz,sz→sxd—a rotation byp about the symmet-

ric line sthe 45 deg line in thexz planed, i.e., ÔReflection

=PrW expfispÎ2/4dssrW
x+srW

zdg. For each of these operations,

Ôa
−1HÔa=H. This symmetry,ÔReflection is a manifestation of

self-duality present in the model—we will explain the origin
of this comment later. Putting all of the pieces together, as a
consequence of these symmetries, each state is, at least,
Os2Ld degenerate. Formally, these symmetries constitute a
gauge-like symmetry which is intermediate between a local
gauge symmetryswhose volume scales as the system aread
and a global gauge symmetryswhose logarithmic volume is
pointliked. These intermediate gauge symmetries suggest that
nontrivialities may occur. As it turns out, such large discrete
symmetries do not prohibit ordering in classical variants of
this model albeit complicating matters significantly.17,19,20

This ordering tendency may be expected to become fortified
by quantum fluctuationss“quantum order out of disorder”d.29
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As an aside, we note that the global nematic symmetries
sthe global rotation of all spins bynp /2 with n=0,1,2,3d are
not independent symmetries on top of the gauge-like sym-
metries discussed above. Rather, there is only onessx

→sz,sz→sxd—a rotation byp about the symmetric line
sthe 45 deg line in thexz planed additional symmetry sup-
planting the gauge-like symmetries. To see this, first note that
the global inversion operation,sW →−sW , is a composite of the
row/column inversion symmetries: An inversion ofsx on all
rows followed by an inversion ofsz on all columns leads to
the global inversion operation. Next, note that by fusing the
global inversion symmetry with the globalZ2 reflection sym-
metry, we may produce the four global nematic symmetry
operationssrotations bynp /2d. Thus, unlike what is sug-
gested by Ref. 20, the global nematic symmetries do not
supplant the gauge-like symmetries and no less important,
the quantum system possesses the above reported gauge-like

symmetries embodied by the operatorsÔx,z.
The classicalslarge Sd ground state sector of the orbital

compass model further possesses an additional continuous
fUs1dg symmetry not captured by the discretesZ2d2L+1 sym-
metriesf2L of these associated with horizontal, 2L associated
with vertical discrete spin flip symmetries, and oneZ2 sym-
metry being thessx→sz,sz→sxd reflection symmetryg de-
tailed above. This continuous symmetry is made evident by
noting that any constant spin field,sr =s, is a ground state.
First, we note thatoa=x,zfsr

sadg2 is constant. Thus, up to an
irrelevant constant, the general Hamiltonian of Eq.s1d is

Hiso
cl =

J

2o
r,a

fsr
sad − sr+êa

sad g2, s2d

which is obviously minimized when the spin field is con-
stant. We emphasize that the continuous symmetries which
underscore these ground states are just symmetries of the
states andnot of the Hamiltonian itself. In common parlance,
these areemergent symmetriesspecific only to the ground
state sector. Therefore, at least in the orbital-only models, we
are not in a setting where a Mermin-Wagner argument can be
applied.

With an eye toward things to come, let us now introduce
and examine the anisotropic planar compass model

H = − Jxo
r

sr
xsr+êx

x − Jzo
r

sr
zsr+êz

z . s3d

It is readily verified that this more general Hamiltonian
harbors all of the one-dimensional gauge-like symmetries en-

capsulated byÔx,z. The only symmetry which does not per-
sist for arbitraryJx,Jz is the reflection symmetry.sInsofar as
its underlying physics is concerned, this anisotropic compass
model emulates Jahn-Teller distortions on a strained
lattice.27d

The two terms in the anisotropic compass model of Eq.
s3d, trivially compete. The first term favors ordering of the
spins parallel to thex axis while the second favors an order-
ing of the spins parallel to thez axis. Order becomes more
inhibited when the competition between the two terms be-
comes the strongestsJx= ±Jzd as it indeed occurs within the

compass model of Eq.s1d. We note that the gauge like sym-

metries sencapsulated by the column/rowÔx,z generatorsd
preserve the Hamiltonian also for arbitraryuJxuÞ uJzu. A natu-
ral ssmecticliked order parameter in the orbital compass
model monitors the tendency of the spins to order along their
preferred directions

m= ksr
xsr+êx

x − sr
zsr+êz

z l. s4d

fJust as in smectic liquid crystals, having all spins point in
the êa direction or in thes−êad direction is one and the same
insofar as the above order parameter is concerned.g This
nematiclike order parameter is invariant under all gauge-like
symmetries.

Similar to thexy symmetric order parameter above, for
the anisotropic planar orbital compass modelssay uJxu. uJzud,
we may consider the Ising like nematic-order parameter,

mx = ksr
xsr+êx

x l, s5d

with a similar definition for the system withuJzu. uJxu. These
order parameters are invariant under the gauge-like symme-
tries of the system.

The classical, largeS, rendition of this model, has similar
nematiclike order parameters invariant under all gauge-like
symmetries.17,19,20Here, and in fact for all spinsS.1/2, the
order parameter can be localsnot a bond order parameter
involving two spinsd. All quantities Qab=SaSb−s1/dddab,
with a ,b internal spin indices, and withd the dimension
sd=2 in the planar higher spin extensions of the orbital com-
pass modeld are invariant under all gauge-like symmetries.
The order parameterkQ11l is anticipated foruJxu. uJzu sand
kQ22l for uJzu. uJxud. Similar quantities may be introduced for
higher dimensionalsd.2d generalizations of the planar
compass model.

III. p+ ip SUPERCONDUCTING ARRAYS

A Hamiltonian describing a square lattice ofp+ ip super-
conducting grainsse.g., Sr2RuO4d was recently suggested21,22

H = − Ko
h

szszszsz − ho
r

sr
x. s6d

Here, the four spin product is the product of all spins resid-
ing at the four vertices of a given plaquetteh snot on its
bonds as for gauge fields!d. As noted by Xu and Moore,21 the
quantity

ÔP = p
r

sr
x, s7d

with the string productsalong “P” d extending over all spins
in a given row srz=zd or a given columnsrx=xd, is con-
served. The discretesgauge-liked sliding symmetry of this
model is similar to that of the planar orbital compass model
and we will indeed show that these two models are actually
dual to each other.

The central derivation in Refs. 21 and 22 was a self-
duality of the Hamiltonian in Eq.s6d via a tour de force
Wannier Kramers loop counting arguments. The form of this
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self-duality is somewhat similarsyet still very differentd to
the beautiful self-dualities of Ref. 31. Similar dualties were
discussed in the ring exchange systems of Ref. 11. In these
models not only a relation among strong and weak coupling
is given by the self-duality but the self-duality further inter-
twines the various termsfe.g., largeh is related to smallK in
the self-duality of Eq.s6d and vice versa as found by Xu and
Mooreg.

We will shortly establish that the rather complicated look-
ing weak coupling to strong coupling self-duality of Eq.s6d
derived by Refs. 21 and 22 immediately follows from a very
simple purely geometricsZ2 reflectiond self-duality of the
planar orbital compass model. This self-duality may also be
relatedsalbeit in a less general fashiond to the trivial geo-
metrical self-duality of the planar orbital compass model via
the operator representations of Sec. VI. In the aftermath, the
plaquette coefficientK in Eq. s6d may be related to the ex-
change amplitudeJx of Eq. s3d whereas the transverse mag-
netic fieldh of Eq. s6d becomes trivially related toJz of Eq.
s3d.

IV. SYMMETRIES OF THE THREE-DIMENSIONAL
ORBITAL COMPASS MODEL

The canonical prototype of all orbital-spin2 and orbital-
orbital interactions is the orbital compass model.30 The
model is defined on the cubic lattice where at each siterW

there is anS=1/2 operator denoted bySW rW=s" /2dsW rW. The or-
bital model Hamiltonian

H = Jo
rW

ssrW
xsrW+êx

x + srW
ysrW+êy

y + srW
zsrW+ez

z d. s8d

Let us define an operator on an arbitraryxy planeP sof

interceptzd ÔP;z=prWPPsrW
z with similar definitions forÔP;x

and ÔP;y. These operators may be recast as rotations byp
about an axis orthogonal to the plane. For all sitesrW in the xy
planeP whosez component isrz=z, up to a multiplicative

phase factor, the operatorÔP;z=expfisp /2dsP
z /"g with sP

z

=SrWPPsrW
z. The products ÔP;z

−1 srW
P;x,yÔP;z=−srW

x,y while

ÔP;z
−1 srW

zÔP;z=srW
z. Similarly, ÔP;x inverts they and z compo-

nent of all spins on theyz plane of interceptx while leaving
sx untouched. These “string” operators spanning the entire

plane commute with the Hamiltonian,fH ,ÔP;ag=0. The clas-

sical orbital compass model has an exactfZ2g3L2
symmetry

salong each chain parallel to the cubica sx, y, or zd axis, we
may reflect thea spin component,Sa→−Sa, while keeping
all other spin components unchanged,SbÞa→SbÞad. The
quantum orbital compass model has a lower exactfZ2g3L

gauge-like symmetrysforming a subset of the largerfZ2g3L2

symmetry present for classical spinsd. As alluded to above,
the gauge likefZ2g3L symmetries of this quantumS=1/2
casesas well as all representationsd, become evident once we
rotate, with no change ensuing in the Hamiltonian, all spins
in a plane orthogonal to the cubic lattice directiona by p
about the internalSa quantization axis.

As before, let us now introduce and examine the aniso-
tropic orbital compass model

H = − Jxo
r

sr
xsr+êx

x − Jyo
r

sr
ysr+êy

y − Jzo
r

sr
zsr+êz

z . s9d

sThe isotropic orbital compass model corresponds toJx,y,z
=−J.d The anisotropic orbital compass model possesses all of
the gauge-like symmetries of the isotropic orbital compass
model splanar rotations in the quantum model and more nu-
merous single line inversions in the classical cased. Further,
if at least any two of the three exchange constantshJaj are
identical the system possess a reflection symmetry.

As in the planar orbital compass model, nematiclike order
parameters may be constructed for both the isotropic and
anisotropic systems. Thus, we naturally predict the existence
of observable nematic orbital orders int2g systems.

In what follows, we will also investigate a related system
governed by the Hamiltonian

H = − Jxo
r

sr
xsr+êx

x − Jyo
r

sr
zsr+êy

z − Jzo
r

sr
zsr+êz

z . s10d

Note the similarity between theXY model of Eq.s10d and the
orbital compass model of Eq.s9d. In the limit Jz=0, Eq.s10d
trivially degenerates into the strained planar orbital compass
model of Eq.s3d.

We will construct new “plaquette models”sin which the
spins reside on the lattice sites not on bondsd dual to Eq.s10d
which possess a self-duality and gauge-like symmetry, natu-
rally extending the results of Refs. 21 and 22.

V. DUALITIES AND SELF-DUALITIES FOUND
BY PLANAR REFLECTIONS

We now transform the zero temperature quantum problem
of Eq. s1d onto a classical problem insd+1d dimensions. To
this end, we work in a basis quantized alongszs=±1d. We
now consider the basis spanned by two spinsssz,sz8d at the
same spatial siter yet at two consecutive imaginary timest

and st+Dtd. The transfer matrices corresponding toaeh̄sx

sstemming, in the imaginary time formalism from a propa-

gatore−HDt such asehsxDt with h̄;hDtd andeJ̄szsz8 sor, with

space time coordinates explicitly instated,eJ̄sr ,t
z

sr ,t+Dt
z

d are the

same provided that tanhh̄=e−2J̄ sor equivalently

sinh 2h̄ sinh 2J̄=1d and a=s2 sinhJ̄d1/2. Similarly, the non-
vanishing eigenvalues of the transfer matrices

expfKxsi,t
z si+1,t

z si,t+Dt
z si+1,t

z g s11d

and

expfJ̄xsi,t
x si+1,t

x g s12d

are equivalent once sinh 2Kx sinh 2J̄x=1.
In the standard imaginary time mapping of quantum sys-

tems to classical actions, we identifyJ̄a=JaDt with the
aforementionedDt the lattice spacing along the imaginary
time direction.

The generalized classical Euclidean action corresponding
to Eq. s1d is
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S= − Kx o
hPsxtd plane

sr ,t
z sr ,t+Dt

z sr+êx,t
z sr+êx,t+Dt

z

− sDtdJzo
r

sr
zsr+ez

z . s13d

A schematic of this action in Euclidean space time is
shown in Fig. 1. If we relabel the axes and replace the spatial
index x with the temporal indext, we will immediately find
the classical action corresponding to the the Hamiltonian of
Eq. s6d depicting p+ ip superconducting grains in a square
grid. This trivially suggests that the anisotropic planar orbital
compass systemfEq. s3dg and the Xu-Moore Hamiltonian
fEq. s6dg are dual to each other. In Sec. VI, we sketch a
detailed derivation of this duality by the operator dualities of
Refs. 23 and 24. This classical action follows from the
equivalence of the transfer matrices corresponding to Eqs.
s11d and s12d or, alternatively, from the equivalence of Eq.
s3d to s6d swhich will be proved in detail by operator repre-
sentations in Sec. VId and the relation between the transfer

matrices corresponding toeh̄sx
andeJ̄szsz8

.
We find that the classical action corresponding to the

model of Eq.s10d is

S= F− tanh−1se−2JxDtd o
hPxt plane

ssss − DtJz

3 o
z direction

ss − tanh−1se−2JyDtd o
hPyt plane

ssssG .

s14d

Here and elsewhere,s= ±1 arec numbers and we omit the
szd polarization superscripts.

We now extend the duality of self-duality of Eq.s6d to the
three-dimensional arena. First note that by interchanging the

imaginary time coordinatet with the spatialz coordinate, we
find that

H = − SKxz o
hPxz

szszszsz + Kyz o
hPyz

szszszsz + ho
r

sr
xD
s15d

is dual to the system given by the Hamiltonian of Eq.s10d.
Let us now derive self-dualities of this extended three dimen-
sional systemsen passant, effortlessly proving the central
result of Refs. 21 and 22d.

Expressing the action corresponding to the Hamiltonian
of Eq. s10d in a spin eigenbasis ofsx and inverting the spatial
z andx coordinates of any siter sa Z2 operationd, we obtain

Sdual= F− tanh−1se−2JzDtd o
hPxt plane

ssss − DtJx

3 o
z direction

ss − tanh−1se−2JyDtd o
hPyt plane

ssssG .

s16d

Looking at Eqs.s14d and s16d, we see that if

S= SA o
hPxt plane

ssss + B o
z direction

ss + C o
hPyt plane

ssssD
s17d

then

Sdual= SÃ o
hPxt plane

ssss + B̃ o
z direction

ss

+ C̃ o
hPyt plane

ssssD . s18d

Here, A=−tanh−1se−2J̄xd, B=−J̄z, and C=−tanh−1se−2J̄yd.
Similarly, Ã=−tanh−1se−2J̄zd, B̃=−J̄x, and C̃=C. Eliminating

J̄x,z, we find that

sinh 2Ã sinh 2B = 1,

sinh 2A sinh 2B̃ = 1,

C̃ = C. s19d

Taken together, these relations imply that

sinh 2A sinh 2B = 1 s20d

is a self-dual line for any value ofC.
This extends the dualities of Refs. 21 and 22 in a very

natural fashion to higher dimensions. Moreover, note in this
formalism the dualities just “fall into our lap”—no involved
calculations nor loop counting were necessary. The duality is
a trivial geometrical reflection.

VI. OPERATOR DUALITY TRANSFORMATIONS
OF THE QUANTUM PLANAR ORBITAL COMPASS

MODELS ONTO QUANTUM ISING PLAQUETTE MODELS

A duality between the planar orbital compass modelfEq.
s3dg and the Xu-Moore model of Eq.s6d is suggested by the

FIG. 1. The classical Euclidean action corresponding to the
Hamiltonian of Eq.s6d at zero temperature in a basis quantized
along thesz direction. The transverse field leads to bonds parallel to
the imaginary time axis while the four plaquette interactions be-
come replicated along the imaginary time axis. Taking an equal
time slice of this system we find the four spin term of Eq.s6d and
the on-site magnetic field term. If we interchanget with z, we find
the anisotropic planar orbital compass model of Eq.s3d in the basis
quantized along thesx direction.
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cubic point group operation interchangingx with t in Fig. 1.
We now prove this duality at all temperatures. To this end,
we invoke a simple operator duality transformation followed
by a summation over the horizontal bondsswhich amounts to
a standard gauge fixd in the model that results. The upshot of
the up and coming discussion is that the quantum planar
compass model of Eq.s1d can be mapped onto the Hamil-
tonian of Eq.s6d precisely at its zero temperature self-dual
point.

The salient feature of the Pauli matricessx andsz is that
they anticommute at a common site while commuting every-
where else. It is readily verified23,24 that these relations are
preserved by the canonical duality relations on the dual lat-
tice

sr
z = txtxtxtx s21d

with the plaquette product oftx on the right hand-side cor-
responding to the four spins surrounding the dual lattice site
r * sthe center of the plaquette as shown in Fig. 2 belowd, and

sr
x = p

xøx*

tx,x+êz

z , s22d

the product oftz placed along vertical bondsslinking x and
x+ êzd along a horizontal line—see Fig. 3. The series of trans-
formations below leading to Eq.s24d may be vividly fol-
lowed in Figs. 4 and 5.

Inserting Eqs.s21d and s22d into Eq. s1d, we obtain

Hiso = − Jo
r*
Stx*+êx,x

*+êx+êz

z

+ o
r*

tr * ,r *+êz

x tr *+2êz,r
*+2êz

x tr *+2êz,r
*+2êz−êx

x tr *+êz,r
*+êz−êx

x

3tr *+êz−êx,r
*−êx

x tr *−êx,r *
x D . s23d

FIG. 2. The lattice and a dual lattice sitesmarked by an asterisk
“*” at a plaquette centerd. Here we illustrate the representation ofsz

as on a given dual plaquette site as the product oftx operators
placed on all four bonds composing the plaquette of the original
lattice.

FIG. 3. A graphical representation ofsx the string product oftz

on all vertical bonds from the boundary up to the dual lattice site.

FIG. 4. The product ofJxsr
xsr+êx

x becomesJxt
z on a single ver-

tical bond on the right-hand side of the dual plaquette site corre-
sponding tor . The productJzsr

zsr+êz

z becomes in the dual represen-
tation the product of alltx operators forming the outer shell of a
vertical domino multiplied byJz. Putting all of the pieces together,
the Hamiltonian becomes the sum ofJz multiplying a domino shell
of tx on bonds augmented byJx multiplying a single vertical bond
on whichtz is placed.

Z. NUSSINOV AND E. FRADKIN PHYSICAL REVIEW B71, 195120s2005d

195120-6



The first term corresponds to an external transverse magnetic
field of strengthJ along thez axis acting on all vertical bonds
while the second term encapsulates the product of six bonds
forming the outer shell of two plaquettes pasted together
along thez axis. The bond common to the two plaquettes
evaporated due to the relationtx

2=1. The net result of Eq.
s23d is shown in Fig. 4.

Next, we choose the longitudinal gauge wherein all hori-
zontal bonds havetz=1. This can be achieved via explicit
gauge transformations or by simply noting that in the repre-
sentation with horizontal bonds withtz=1, the duality rela-
tions of Eqs.s21d and s22d become identical to the duality
relations in one-dimensional spin chainssperformed inde-
pendently for each horizontal rowd which trivially satisfy the
commutation of spin variables of different sites, the anticom-
mutation of thex andz components of the spin on the same
site and the square of each spin operator. In this longitudinal
gauge wheretr * r *+êx

x =1, the Hamiltonian now involves only
vertically oriented bondssparallel to thez axisd. Defining
spinssr*

a =tr * ,r *+êz

a ,

Hiso = − Ko
r*

sr *
x sr *+êz

x sr *+êz−êx

x sr *−êx

x − ho
r*

sr*
z , s24d

with the new parametersh=K being equal to the formerJ of
Eq. s23d. Thus the isotropic planar compass orbital model
lies precisely on the zero temperature self-dual lineh=k of
Eq. s24d. This result is shown in Fig. 5.

VII. CONCLUSIONS

In conclusion, we investigated several systems displaying
discretesgauge-liked sliding symmetries and illustrated that
two such systems are dual to each other. The enhanced dis-
crete sliding symmetries in these systems go hand in hand
with a dimensional reduction that occurs in several limiting
cases of these systemsfe.g., the system of Eq.s6d in the limit
of h=0 is none other than 1+1-dimensional version of the
one-dimensional Ising modelg. We found nematic-order pa-
rameters invariant under these symmetries. This suggests the
specter of detectable orbital nematic orders int2g orbital sys-
tems.

The superconducting array model of Refs. 21 and 22 is
dual to the planar orbital compass model and as such has a
finite temperature transition for a largeS incarnation at its
self-dual point.

We find that dual models may be derived by flipping the
spatial and imaginary time axissand/or quantization axisd. In
an upcoming work, we will elaborate on this approach to
dual models as different cuts of a higher dimensional
theory.32

The nature of the quantum phase transitions in these sys-
tems remains an open problem. A straightforward examina-
tion of the Xu-Moore model shows that the finite tempera-
ture transition from a high temperature disordered phase to a
low temperature phase in which the product of Ising spins on
pairs of sites belonging to different sublattices orders. This
classical transition is continuous, and in the universality class
of the two-dimensionals2Dd classical Ising model. Although
the nature of theT=0 transition is not established at the
present time, there are suggestions that it may actually be a
continuous quantum phase transition. The presence of the
discrete sliding symmetry suggests that this is an unconven-
tional quantum phase transition whose universal behavior is
worth understanding.
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APPENDIX: SELF-DUALITY OF AROUND THE CUBE
MODELS IN THE PRESENCE OF TRANSVERSE

FIELDS

In this appendix, we explicitly generalize the self-duality
that we obtained earlier for plaquette models with a trans-
verse field to cubic models with eight spin interactions aug-
mented by a transverse field. Such a duality was alluded to in
Refs. 21 and 22.

Later, we derive this duality by going back and forth
from various quantum systems to corresponding
sd+1d-dimensional classical actions when different spin
quantization and spatial lattice directions are chosen.

FIG. 5. Choosing a gauge in whichtx=1 on all horizontal
bonds, identifying the centers of the vertical bonds as sites, we find
that the Hamiltonian corresponds to the product of foursx operators
on the vertices of a plaquettefKsr *

x sr *+êz

x sr *+êz−êx

x sr *−êx

x g augmented

by an external transverse field giving rise tohsr *
z . Here,h=Jx and

K=Jy. Thus, the planar orbital compass model is dual to the super-
conducting array system of Refs. 21 and 22.
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To prove the self-duality of such cubic systems, first con-
sider the Hamiltonian

H = − K o
hPxy plane

sysysysy − Jz o
bonds alongz axis

szsz.

sA1d

If we write down the classical action in a spin basis quan-
tized along thesz axis, we find

S1 = − K1 o
cubes inxyt

ssssssss − Jz1 o
bonds alongz axis

ss.

sA2d

Here sinh 2K1 sinh 2K̄=1 with K̄;KDt, andJz1=JzDt. Al-
ternatively, if we write down the classical action correspond-
ing to Eq.sA1d in a spin basis polarized alongsy, we find

S2 = − K2 o
hPxy plane

ssss − Jz2 o
hPzt plane

ssss. sA3d

Here, K2=KDt and sinh 2Jz2 sinh 2J̄z=1 with J̄z=JzDt.
Thus, we find that the classical actionsS1 andS2 are dual to
each other. The classical actionS1 also corresponds to the
Hamiltonian

Hcube= − K* o
cubes inxyz

szszszszszszszsz − hz*o
r

sr
x,

sA4d

when written in a spin basis quantized alongsz. Thus,Hcube
may be represented by the classical actionS2. Putting all of
the pieces together we find that

sinh 2K*Dt sinh 2K2 = 1,

sinh 2hz*Dt sinh 2Jz2 = 1. sA5d

Interchanging, in the actionS2,K→J,x→z,y→t, we ob-
tain an actionsS3d whose partition function is identically the
same. By the same steps outlined above, the classical action
S3 correspondssvia duality transformationsd to the Hamil-
tonian

H̃cube= − K̃* o
cubes inxyz

szszszszszszszsz − h̃z*o
r

sr
x.

sA6d

This establishes the duality betweenHcube and H̃cube,

K̃* = hz* ,

h̃z* = K* . sA7d

Fusing these relations together, we find thath* =Kz* consti-
tutes a self-dual line ofHcube.
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