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Theory of hybrid state in a metal with a small Fermi surface and strong collective excitations
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We develop a theory of a hybrid state, where quasiparticles coexist with strong collective modes, taking as
a starting point a model of infinitely many one-dimensional Mott insulators weakly coupled by interchain
tunneling. This state exists at an intermediate temperature range and undergoes an antiferromagnetic phase
transition at temperatures much smaller than the Mott-Hubbard gap. The most peculiar feature of the hybrid
state is that its Fermi surface volume is unrelated to the electron density. We present a self-consistent derivation
of the low-energy effective action for our model.
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I. INTRODUCTION

__ 2 d
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The presence of strong collective modes interacting with
quasiparticles is a distinctive feature of many strongly interWhen the Green’s function has zeros, the Fermi surface con-
acting systems such as “bad” metals, weakly doped Motstitutes only a part of this surface, namely, the one where
insulators(such as the cupratesand heavy fermion materi- G(0,k)—c. Hence Luttinger's theorenfl) does not even
als. This interaction is believed to result in a variety of un-require the existence of a Fermi surface; the Green's function
usual phenomena observed in these systems, such as the vipay have only zeros and no poles, as is the case for
lation of the Mott-Regel limit in the temperature dependencesul?ercc’”d'v'c'“’?Sand certain one-dimensional systems, in
of the electrical resistivity of bad metals or the absence ofVhich the spectral gap is generated dynamicalor the
quasiparticle peaks in the spectral function of the cupratedatter case a general proof is outlined in Rej. 8. ,
The lack of nonperturbative techniques in dimensions highey  Metallic state with a small FS would necessarily be

than one makes a detailed theoretical description of thes%ssouated with a Green_s function that has both poles and
Zeros atw=0. In our previous workwe suggested a model

Egg:odrgegﬁ qgét% crgl]letr)lgll(rcl)g. gnﬁmsulf:;:nessfl:jl 2Egrntzjach :ﬂ)sr such a state based on the quasi-one-dimensional Hubbard
velop y ~hubukov, schmaliian, an Vi W(fnodel at half filling. The transverse hopping was treated in a

have_ studied_ the so—c_alled spin-fermion mOP'e' put forwarg, 4o m phase approximatidgRPA). In order to understand
by Pines: This model is semiphenomenological and postu-ie conditions of stability of such an exotic metal, one has to

lates the existence of a strong, coherent, collective modgy, peyond RPA, which is the main subject of the present
which interacts with quasiparticles located in the vicinity of apaper.” Experimental indications of the existence of the SFS
Fermi surface. This model is reviewed comprehensively instates come from angle-resolved photoemission spectroscopy
Ref. 2 and has proven quite successful in explaining VariOU@ARPES measurements in underdoped Cupr%_mw from
properties of the cuprates. However, a derivation from a mithe Hall-effect measurements in heavy fermion matetfls.
croscopic Hamiltonian is lacking. Before turning to the calculations, we shall give a quali-
In this paper we provide a microscopic derivation of atative account of the physics we are after. Our starting point
model in the same class as the spin-fermion models of Pinds an ensemble of uncoupled, Mott insulating chains. The
and Chubukovet al. Namely, we continue to develop a relevant energy scale is the one-dimensidd#fl) Mott gap
theory of a hybrid state combining the features of a Landaum. We consider finite temperatur@ssuch thatT<m. The
Fermi liquid and a Mott insulator suggested in Ref. 3. Thisphysics is purely one dimensional.
state is characterized by the coexistence of well-developed We then turn on a small long-range interchain tunneling
collective modes with quasiparticles. The latter ones have ¥ith characteristic energy scate. Clearly, at zero tempera-
small Fermi surfacéSF9, the volume of which is unrelated ture the hopping_betwe_en chains will be essential, and it will
to the total number of electrons. By definition, the Fermiinduce a three-dimensioné8D) ordered state. On the other
surface(FS) is small if its volume is less than the maximum hand, in the window,
volume allowed by Luttinger’s theorefni’ The existence of
such a state does not contradict Luttinger’s theorem, since
the latter, contrary to popular belief, does not fix the volumewe will recover the physics of 1D Mott-insulating chains.
of the FS. Instead the theorem states that the electron densityere, (k) denotes the Fourier transform of the interchain
n is proportional to the volume of phase space enclosed byunneling. Furthermore, &< m we may, to a good approxi-
the surface where the single-electron Green’s functiormation, work with zero-temperature quantities in many in-
changes its sign, stances.

t, <TI (k)<m, (2
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nitude of this gap is much smaller than the bandwidth

~4t. In our previous papérthe transverse hopping was
crossover treated in a random phase approximat{&PA). In order to
suppress corrections to the RR& least in some temperature

g‘\“ intervaly we assume that the transverse hopping is long
§\\§ ranged(see below.
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A. Uncoupled, Mott-insulating chains

Let us briefly discuss the low-energy physics for un-
coupled chains. In order to ease notations we suppress the
chain index(l). Keeping only the low-energy modes around
the two Fermi points kg, the electron annihilation operators

are decomposed as
Cno = Vag EXPIKEX)R, (X) + exp— ikex)L,(X)],

FIG. 1. Cartoon-phase diagram fdr<m for weakly coupled wherea, is the lattice spacingt=ja,, andke=m/2a, The
fermionic creation operators for left and right moving Fermi-

3D AFM order

o

©)

[hopping between chains] t 1

1D Mott insulators, wheren is the 1D Mott gap.
ons are bosonized, using the following conventions:
The crucial point is that whilé, remains much smaller . it
than the Mott gan, the Fourier transform, (k) can become L;(x) = Z—Leifﬁ/“ exp(— é@) exp(— %’@) ,
20

comparable tan in a region of the Brillouin zone, i.e., we
may have a situation where
~ - i if,
t, <T<¥0)~m. (3) RI(X) = 2 glf o4 exp(—¢c> eXP(_¢s> : (6)
N2 2 2

In this case an interesting “hybrid” state combining 1DW

features with 3D features develops. In particular, the low- _ _ _
energy sector corresponds to a 3D metal with a small Fermfi;=1, f,=—1. The chiral boson fieldg, and ¢, fulfill the

surface and quasiparticles interacting with well-developedollowing commutation relations:
(7)

here 5, are the Klein factors witk»,, ,} =25,, and where

collective modes. The existence of the regifBgis ensured — )
by making the interchain tunneling long ranged. [Pa(X), da(y)] =27, a=c,s.
The dimensional crossover from a quasl-one-d|menS|on_qln terms of the chiral fields, andga we define the canoni-
cal Bose fieldsb, and their dual field®, by

Mott insulator to an anisotropic 3D Fermi liquid, as a func

tion of the strengthi, of the interchain hopping, is sketched
in Fig. 1. D.=db.+d. O.=d —b.. )
The purpose of the present work is to derive an effective a= ¢ . Pa ° ¢f‘ P . ( .)
theory for the low-energy degrees of freedom in the “1DThe_ low-energy effecpve Hamll_tonlan density for a single
Mott insulator/3D Fermi liquid hybrid” regime and to ana- chain takes the following bosonic form:
lyze its instabilities towards 3D order at sufficiently low tem- v .
peratures. He= —[(0,09%+ (3, Pg)?]—gd - J,
16
Il. THE MODEL v _
He= f[(&xc)z + (&xq)c)z] +gl 1. 9
T

The model we study is the Hubbard model with a strongly
anisotropic hopping,
H= —tz [C;|'0.Cn+1,|‘a_+ HC] + UE njmn“,l

Herel® and1® (J« and?‘) are the chiral components of the
SWU(2) pseudospirispin currents,

nl,o nl
1 _
zZ— _ + 7 77,L i
+ 2 tFnECI’LO.Cp'm’U. (4) 1*= 47_[_07x¢cv "= 20 €re,
I,m,n,p,o
For definiteness we consider the chain direction ta,bgo 1 _
F=-—dg, I= i%ﬂe“ﬁs. (10)
T a

that 1=(ly,ly), m=(m,,m) label Hubbard chains, and, p

label the sites along a given chain.
As we have mentioned before, the hopping integrals in th&'he current-current interaction in the spin sector(9f is

transverse directions are supposed to be small in comparisanarginally irrelevant, and we will ignore it in what follows.
to t. In the limit t, =0 and at half filling the model has a We note that doing so enhances the symmetry in the spin

Mott-Hubbard gagm. We work in a regime where the mag- sector from SU(2) (spin rotational symmetjyto SU2)
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X SU(2) (rotational symmetry of the left and right sectors ag

(Gap(109}0,0) = 8050py =5 (16)
1. Single-particle Green’s function b 7 ° ﬁyZ\r’vz7’2+ X2
The single-particle Green’s function for the half-filled
Hubbard model was obtained in the framework of the form-ysing (15) one can easily calculate the multipoint correlation
factor approach in Refs. 3 and 11. In particular, when theynctions ofg.

charge and spin velocities are equal we have The action(9) describing the collective spin excitations
on each chain is equivalent to tH&U,(2) Wess-Zumino-

Z m
Go(w, £ ke +q) =+ = T | Novikov-Witten (WZNW) model once we drop the margin-
iw ¥ vQ VP + w? + (vQ)

ally irrelevant interaction of spin currents. The WZWN ac-
(11)  tion for the matrix fieldg(,x) is given by

where Zy=0.921 862. In order to obtain the above expres-

sion for Gy we took into account only processes involving 1

the emission of a single, massive holon and a cascade of Wgl=— f d?x Tr[o?“gTaMg]
gapless spinons. 16m

2. Spin sector . igﬁ B Trg'#ggta'agidrgl,  (17)
The spin operatorS;*:%cgyaagbcn,b are expressed in terms B
of the left and right moving Fermi fields by

B 4 wherex;=v, X,=X, d,=d/ x*, B is a three-dimensional half
S =(- 1)’3[Ra(X)Uab|-b(X) +H.c] space(xz=<0) whose boundary at;=0 coincides with the
two-dimensionalv 7,x) plane, andy is an arbitrary extrapo-
A0 Sty lation of the function defined on the two-dimensional space
¥ Z[R ()05bRe() +R— L] x3=0, which approaches 1 a— —w. The action(17) is
= ag (- DIn%(x) + 3%X)]. (12) invariant underSU2) x SU(2) transformationsg— UgU".

The marginally irrelevant interactions of spin currents breaks
The bosonized expressions for the staggered components gfis symmetry down to the diagonal spin-rotational
the spin operators are SU(2) g—UgU'. The form (17) of the action for the spin
1 i degrees of freedom is significantly more complicated than
RI(X) o2 Lp(X) = —— exp(—(bc)tr(gga), (13)  the free boson representati¢®). The latter is very conve-
i\ 28y 2 nient for calculations in one dimension, but may be less use-

where we have replaced the product of the Klein factors b);ul when one considers interchain coupling due to the fact

their expectation values, that the_dual field®g is nonlocaj with respect tabg. The
formulation in terms of the matrix field has the advantage
(mpm) =1, (14)  of the fundamental field being the order parameter itself. In
and where the matrix field is expressed in terms of the spin factt-],c Wal is th? Ginzburg-Landau action for a 1D spﬁn-
bosond, and its dual field® by antirerromagnet.
exp(i—(b ) i exp(— i_@ ) 3. Three-point function
_ Jag 2 °° 2°°
9= 2 i i : (15 Some important ingredients in our analysis are the three-
i exp<—®5> exp(— 5<I>S) point functions of the forn‘(Tr[g(z)a“]R;(zl)Lb(zz)>. The

large-distance asymptotics of these correlators can be evalu-
At T=0 we have ated by using the results '8f

(920 RI(2L, (2) = -1 (Ti{g(2) e 2 g2 (i

~ij <7]2 Ui ><Tr[g(2) o_+]e—(i/2) ¢S(Zl)e(i/2)$s(zz)>szlvaOeSi 77/4K0(mr12)
T r

= Z(n, n)Ko(Mr)(THg(2)o* T g(z.)0 D, (18)
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where 21’2=(T112,X1‘2), r12=|21_22| and Z+=[(T1+ Tz)/z,(xl @ @
+X,)/2]. The constank is related to the normalizatiaf, of I
the single-particle Green’s function By

FIG. 2. The fermion-spinon interaction generated by fusion

~ ZO m (20)
Z=-—5\—. 1
Ve (19

The calculation we have just carried out can be summarized W=m~ [t (0)]=[.(Q)|>T.(pL). (25
by the following approximate relations, Here W=4t and m are the bandwidth and Mott gap for un-

R coupled chains, respectively, atgl, a, |,|(p, -Q)a,|> «o.

R(21) 05Lb(2Z2) — iIZKo(mr) Trg(z,) 0], The small parametek, characterizes the support df(k ;)

in momentum space. The precise form of the momentum
L;(Zl)a'gbRb(Zz) - iﬁKo(mrlz)Tr[g(L)cr"]. (20) dgpendence df, is supposedl_y unimportant, but in order to
simplify the concrete calculations we shall use the following
The approximatior(20) fails at small distances. In order to model:
remove the logarithmic singularity df, one needs to in-
clude terms corresponding to the multiple production of soli- T, (k,)=- b
tons and antisolitons. At energies much smaller than the Mott S 1+ |kLaL\2K52'
gap, the fusion(20) gives rise to the spin-fermion vertex
depicted in Fig. 2.

k,a,|<1. (26

Within the model(26) the integration over the transverse
wave vectors may be replaced by integration ouer

. . . Etl(kL)v
B. Long-range interchain hopping
, d%k, Kito (0 dt
In order to have a small parameter in our theory we con- a2 f(t) ~ —— SO +f(-p]. (27
sider the interchain hopping to be long ranged, such that the 4 4w rgfan? b

Fourier transform of the hopping matrix elements strongly

depends on the wave vector. This is a well-known tfiege, Som_e readers may find that our _appro_ach iS. similar to dy-
for example, Ref. 1pand results in a controlled “loop” ex- namical mean field theory in anfinitely dimensionaspace.

pansion, where every integration over the transverse mQ'_I'h|s is not the case; the difference comes from the fact that

menta leads to a small fact@ﬁ in three dimensions. where N our model the transverse density of states is constant on
Ko is the inverse range of the interchain tunneling. The interiN€ zone boundary. This feature strengthens the influence of

chain hopping may be taken long ranged both along an(éermionic <_:ohere_nt r_nodes and utterly changes the physics
perpendicular to the chain direction. In order to simplify the see the discussion in Sec. Yl

calculations, we will constrain our discussion to the case

where tfrﬁzt(l—m)ﬁn,p, i.e., the interchain hopping has no IIl. PERTURBATION THEORY IN THE INTERCHAIN
component along the chain direction and depends only on the TUNNELING

distance between chains. The Fourier transform of the inter-

chain tunneling is then given by As we have already mentioned, the perturbation theory in

the interchain tunneling can be reorganized in terms of a loop
~ _ e expansion. Every integration over the transverse momenta
tky) % tim explik . - (1 =m)a, ]. 21 generates a small fact@ﬁ. We will refer to the leading order
O(Kg) in this expansion as random phase approximation
In the following we choose the interchain hopping such thafrpa).
it respects the particle-hole symmetry: The RPA expression for the single-particle Green’s func-
tion G was derived in Ref. 3 and is given b
Cot > (= DM (22) gen by

nl,o!

Go(w, ke + Q)
1-T,(k,)Go(w, ke +0) .

Lk +Q)=-1t,(k), (23) Here G, is the single-particle Green’s function for an indi-
vidual chain(11). In a purely one-dimensional Mott insulator
the electron is a composite particle, and, as a result, the spec-

T tral function is incoherent. Coherent electronic excitations

Q= <_ _> (24) reappear as soon as the interchain tunneling is turned on.

They can be understood as antiholon-spinon bound states,
is the antiferromagnetic wave vector in the direction trans-and they occur at energidselow the Mott gap. Whert |
verse to the chains. It is straightforward to generalize ouexceeds a certain critical value, the dispersion of the coherent
following analysis to non-particle-hole symmetric cases. Thanode crosses the chemical potential, and a Fermi surface is
basic assumptions underlying our model are then summdermed. As a consequence of particle-hole symmetry, at half-
rized in the following inequalities: filling this Fermi surface consists of electronlike and holelike

which implies that Glw, tke+q,k )= (298

where

a 'a,

195116-4



THEORY OF HYBRID STATE IN A METAL WITH A... PHYSICAL REVIEW B 71, 195116(2005

ey ®o- e -@e- @0
A v

b v v 0 (m)
j y

FIG. 5. (Color) Real-space diagrams that contribute to the two-
point function of staggered magnetizations between ch@nand

(m).

S S

A. The spin sector in RPA

'
K In the RPA, the spin sector remains one-dimensional and
ke kg | - . ;
critical. This can be seen as follows. Let us consider the
FIG. 3. (Colon) The Brillouin zone with the electrotred ovaly ~ real-space correlator between the staggered components of
and holelike(blue semiovalsFermi pockets of a two-dimensional spins on different chainsandm,
lattice. The noninteracting Fermi surface is shown as a dashed line. . _
(N} 1Oy ;,(0)). (32)

pockets of equal volume. A sketch of such a Fermi surface iW . . . . . .
. X ithin perturbation theory in the interchain hopping, we
shown in Fig. 3. A convenient measure for the strength of theﬁeed atpleast one right-m())/ving and left-moving fgrpmign op-

interchain coupling is given by the quantity, erator each on chairlsand m in order to obtain a nonzero
Zsto expectation value in the spin sector. The only ways to
Z=—, (290  achieve this are shown in Fig. 5. Here the dashed lines de-
m note the bare interchain hopping, the ellipses enclosing two

where t; is defined in(26). The RPA form(28) for the black (white) circlgs represent .the purely 1D Green’s. func-
n of right-moving (left moving electrons on a given

Green's function features a pole corresponding to a cohere 8$ain and the ellipses enclosing two circles and a hexagon
uasiparticle mode. This mode crosses the chemical potenti ' ; . .
d b P stand for the three-point functiofi8). Clearly all such dia-

when Z exceeds the critical value, ; . .
grams involve at least one integration over the transverse
2,=3.33019..., (30)  momentum. Hence, within the RPA, the spin-spin correlation
functions remain entirely one-dimensional and spins on dif-
and a Fermi surface is present for &> Z,. ferent chains remain uncorrelated.
Having in hand the expression for the chain single-
particle Green'’s function, we may use it to define a dressed B. Excitation spectrum in RPA

interchain hoppingT'RyL(w,q,kl) by summing the diagrams

shown in Fig. 4. This results in From the discussion above it is clear that for sufficiently

strong interchain hopping > Z; the RPA leads to two types
T,k ) of gapless excitations:

— L , (31) (i) fermionic particle and hole excitations over the Fermi
1-1(k,)Go(w, ke +q) surface with anisotropic 3D dispersions.
(ii) collective excitations of the spin degrees of freedom.

where the+ sign corresponds t&® and the— sign 0L,  Thege are of a purely 1D nature and do not have a dispersion
respectively. We note that the dressed interchain hopping is, the direction transverse to the chains.

equal to the propagator of the Hubbard-Stratonovich field
that can be introduced to decouple the interchain hopping.

TR,L(w!q! kL) =

q'+q/2

TR( msqs k) t L(k)

Gr
+ @D G- > @

FIG. 6. (Colon Leading-orderO(KS) contribution to the inter-
FIG. 4. The dressed interchain hopping. chain exchange.
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If one goes beyond the RPA, the interactions betweertherefore important to estimate the corresponding corrections
these two types of excitations will be generated. In the fol-to RPA and their temperature dependence. As the first step in
lowing we determine the form of these interactions and studyaking into account corrections to RPA we have to estimate
their effects. To go beyond the RPA in principle requiresthe interchain Ruderman-Kittel-Kasuya-Yosi@KKY) in-
knowledge of the two-particle Green’s function of uncoupledteraction. As we have shown in Sec. Il A 3, there is a three-
Mott-insulating chains. However, if one restricts one’s atten-point “vertex” that couples the spin degrees of freedom to
tion to the regime of energies that are small compared to théhe fermionic quasiparticles. In the second-order perturbation
Mott gap, the three-point functio(l8) (which corresponds theory in this interaction, an interchain exchange interaction
to a particular limit of the two-particle Green’s functiosuf-  between the spin degrees of freedom is generated. The cor-

fices. responding action is given by
2
IV. INTERCHAIN EXCHANGE AND ESTIMATE OF THE S = H dridy; 2 Jim(Xg = Xo, 71 = T)
TRANSITION TEMPERATURE =1 I#m
X THQ (71, X)Gh(72,X5)] (33)

Although it is obvious that corrections to RPA are of
higher order in the small parameteg, they will diverge at  The Fourier transform of the leading-ordén «,) exchange
small temperatures. Therefore RPA works only at finite tem-matrix element is given by the “bubble” diagram shown in
peratures, and for its consistency the transition temperaturig. 6, where the doubles lines are the dressed interchain
(below which the system is three-dimensionally ordéred hoppings for left-moving and right-moving fermions and the
must be much smaller than the Mott-Hubbard gaplt is  squares denote the elements of the matrix field. The result is

~ . [ dw'dq v 2 ( ® . q )
— 72 2 2 Iy =+ 2
J(wuqlqj_)_z (277_)2 alfd kJ_|:m2+w/2+(qu)21| TR o + 21q +21kJ_
w
xTL<w’—E,q’—g,qi—kl). (39

To make the calculations easier, we use khdependence Z—3.33019. The exchange at momentum tran&fés

(26) so that the sum over the transverse wave vectors is 1+2G
replaced by integration overaccording ta(27). Sincet(k | ) n{+—(s)}
is peaked near zero ar@, there are two interesting wave 3(0,00) = - ﬁ wdss 1-2G(s) | ol
vectors:gq, =0 andg, =Q. 0Q) = 2/, (1+9)°G(s) Q-1
A. Case 1: Z< Z, (38)

In this case the coherent electron modes still have a gawhereag varies between 0 fog=0 and 3.07 forz— Z...
and no Fermi surface is formed in the RPA. Usi@y) to
carry out the summation over the transverse momenta we B. Case 2:Z> Z,

obtain . . .
In this case a Fermi surface in the form of electron and

~ * arctaf ZG(s)] hole pockets is present. The presence of zero-energy modes
J(0,0,0) = le dsm =aC1, (35  does not really affect the exchange at zero-momentum trans-

0 fer, which is given by
where Z=Zyto/mis defined in(29) and

~ * sf(s)
i 2 J(0,00) =, f ds———— = a{Cy, (39)
C1= ZngtOL = @m, (36) o (145G
mZ ™8 where
and f(s) = 2 arctahé&(s) ZG(s)] — arctai ZG(s)],
—_ 1 _ 1
eo=s {1 e 1] | 87 £9) = min(1[ ZG(9]™. (40)

As expected, this interaction is of the order aft,. The  We find thatay starts at 1.405 fo2— 3.33 019, then goes
numerical factore, ranges between 0 faE=0 and 2.81 for through a maximum of approximately 1.48 arourgl
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~4.18, and then diminishes slowly. Hence the exchange at

wave number zero plays a subdominant role.
Let us now turn to the exchange at wave num@eWe
find that there is a logarithmic divergence (84), which is

PHYSICAL REVIEW B 71, 195116(2005

3(0,0Q) = - 61(3.071 +1.318§2 - Z, In{?} ) .

(47)

related to the Fermi-surface formation and will be discussed Haying determined the exchange constant, we are now in
later in more detail. We regularize the divergence by temy nosition to estimate the temperature at which a magnetic

perature. This may be done by replacing theintegral in

instability develops. In the absence of interchain hopping the

(34) by a sum over Matsubara frequencies and substitutingqrelation functions of the matrix field @=0 are given by

the finite-temperature Green'’s function for th€# 0 analogs

in the dressed interchain hoppinﬁgL in (34). At low tem-
peratures the single-particle Green’s function is giveh by

XAR(X! q)

iw,— X

A( )_ ZO Z_m m 3/2
R@G T 4r*m NV T | |o-vq
— (1 i&®-vg?-nP 1
xR v—zs(—J%,—). (41)
4 2 2nTlw-vq| "2

The singular piece oﬁs"‘g(0,0,Q) diverges logarithmically
with temperature and is estimated as

GR(wnvq):f d

i m| (% G
J"90,0Q) = -C;iIn| = d , 42
100Qr=-6 ”[ T] P W
wheres, are solutions to the equation,
1-Z2G(s,) = 0. (43)

In order to establish the exchange at nonzero valuesarid

q we have caIcuIatea(w,q,Q) numerically at small tem-
peratures. Rather than using the finlteGreen’s function
(41) we work with theT=0 expressiorill) and replacev by

the discrete Matsubara frequencies. For small temperatur

this is a reasonable approximation. We find tE‘(itu,q,Q)|
is largest atw=0=q.

In addition to the singular piec@?) there also is a regu-
lar contribution to the exchange. As long as we are close to

the transition, i.e.,

(44)

we may estimate the regular contribution to the exchange b

its value at the critical strengti, of the interchain tunnel-
ing. The latter is given by38)
J°90,0,Q) ~ - 3.07L;. (45)

In the regime(44),
'jsing(O,O’Q) ~-1.318/Z2- 2, In{$} . (46)

The total exchange constant at wave numBes then esti-
mated as

(16). At T>0 we have
wTaglv
T 1
Siﬂ?’(w—[x+ ivr]) ‘
v
(48)

if we neglect the marginally irrelevant current-current inter-
action in the spin-sector of Hamiltonia®), describing the

1D Mott insulating chains. If one takes it into account in
renormalization-group-improved perturbation theory one

obtaing4
[ 1A
In ? WTaOU_l
T 1
Siﬂ)’(w—[x+ivﬂ)‘
v

whereA is a high-energy cutoff, which we may take to be of
the order of the hopping integral along the chain direction.
Carrying out an analogous calculation for the dimerization

operator we find
A -3/2
(In T ) mTag !

Siﬂl‘(ﬂ[x+ ivr]) ‘ |
v

<gaB( T,X)g;(;(O, 0)> = 5&55,87
2

(tr(gatr(g'o?)) = 8,5 (49

(tr(g)tr(g") = 8.5 (50)

e(fpon Fourier transformation and analytical continuation one

finds the following result for the dynamical magnetic suscep-
tibility of the uncoupled chain systef:

Alpli_@-va| |1 _.o+vq
\/In 7 F[“ " 4aT }F{“ |477T}

2T - +ouq |
F{f‘iw—quFF _iw_l)qJ
47T 47T
(51)

¥he dimerization susceptibility is equal t61) apart from

the prefactor, in which \In[A/T] is replaced by
(IN[A/T])~%2. Hence the staggered spin susceptibility is al-
ways more singular than the dimerization susceptibility, and
as a result the dominant instability of the spin sector is to-
wards the Néel order. The enhancement of the spin suscep-
tibility as compared to the dimerization susceptibility is
caused by the leading irrelevant operator in the Hamiltonian,
namely the interaction of the spin currents. If we were to add
an interaction to the underlying lattice Hamiltonian in order
to eliminate this interaction, the symmetry between the
dimerization and the staggered components of the spins

de(waQ) ==
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would be broken by some other irrelevant operator. The dy- zg
namical susceptibility of the coupled chains system can be Jni =
determined by an expansion in the interchain coupling of the
type discussed in Refs. 16 and 17. The leading term is givemhis part of the action plays the role of the sigma model in
by the random phase approximation, the spin-fermion model by Chubukov, Pines, and Schmalian
(see Ref. 2 and references thejeifiaken in isolation, this
X1d(®,9) _ (52) model has an instability at some temperatligghat can be
1- ﬁ(w!qapL)de(qu) estimated from the RPA expression for the dynamical mag-
) ) ) o netic susceptibility in complete analogy with our calculation
Given the expressiob2) for the dynamical susceptibility, iy Sec. IV B. Since the coherent fermions are low-energy
we may obtain an estimate for the transition temperafigre  excitations, they cannot be simply integrated out, but their
below which the three-dimensional magnetic-long-range Orinteraction with theg field should be added to the action. The
der developsT, is defined as the temperature at which a zerorermj surface of the coherent fermions is determined by the
frequency pole develops irysq. Given that x;140,q9) is equation,

peaked ag=0 andJ is peaked ag=0 andp=Q, we obtain

Zma (58)

XSd(waqvpL) =

the following condition-fixingT,: Go(0.0t, (k1) =1, (59)
~ and it consists of four pockettwvo electronlike ones and two
1-23)(0,0,Q)x14(0,0 =0. (53)  holelike one} as is shown in Fig. 3. Let us consider the

situation where the scale of the interchain hopping very
slightly larger than the minimal valug, required for the
formation of a Fermi surface,

T 2 A e B _ 11+55m
E~2.887K0\/|n ok <1+0.429¢Z—chn{?c]). =T+ = / d \ "a 60)
0

54

9 The electron and hole pockets are then shallow and aniso-
Let us consider the two limiting cases in which either thetropic, and the Fermi surface is determined by the equation,
regular(45) or the singular part46) of the exchange domi-

Replacingﬁ(o ,0,Q) by (47) we arrive at the following equa-
tion determining the transition temperaturg

nates and drives the transition. The first case occurs if we are E(q.k,) =0, (61)
very close to the point where the Fermi pockets are firstyhere
formed andZ—Zc<[In(K3)]‘2. Then the transition tempera- 5 5

(9—-do) k. a,|

ture is roughly equal to E(g,k ) =Am > —+Am———-E;, (62
K

o 0
Te 2.8873+/In AZ . (55) -
m MkG 1+45

1/2
E,~0.352 X0 { } ~1.27202,
The second case occursdf- Z.>[In(«3)]72 and then, m 2

T / A 1 A= 0.543, A, =1.27202. 63

L= 1_239{%5 In| —~ |I’]|:T:|, (56) ! - 63

m Moo K0 The electron pockets are formed @&:-+q,k ) and (—kg

wheres=\Z-Z,. -q,k ), whereas the hole pockets are Iocatec{kat—qu
+k ) and (-kg+q,Q+k ), whereq andk , are determined

V. EFFECTIVE THEORY AT LOW ENERGIES; THE from (61). Let us denote the annihilation operator of the

RESIDUAL INTERACTIONS coherent fermions bW (r,q,k ). The soft modes occur in

the vicinity of the electron and hole pockets and it is conve-
nient to decompos&’(r,q,k ) accordingly. We denote by
Be(7,0.p.) andL¢(7,q,p, ) the annihilation operators in the

Now we are in the position of writing the low-energy
effective action for the metallic state. This effective action
describes the interactions of the low-energy modes, i.e., thee' "’ . >
coherent fermions and the order-parameter figid In Sec.  Vicinity of the electron pockets an@,p.,) is the deviation
IV we calculated the interchain coupling for tiefield. 1t~ from (+kg,0). Similarly we denote byRi(7,q,p,) and
contains a part coming from states far from the chemicaln(7:d.p ) the annihilation operators in the vicinity of the
potential and a part with logarithmic divergences cominghole pockets, andq,p ) is the deviation fron(zkg, Q).
from the states close to the Fermi surface. We can isolate the From Eq.(62) we determine that the particle density as-
first piece and include it into the effective actiongf sociated with a single pocket is

n= 0.027%qok3(Z — Z.)%2. (64)

= +2,J drdx Tr] X)g'(7,%)],
S % W] % m'J [On(7:x)gi(7:)] The liquid of quasiparticles becomes degenerate at tempera-
tures of the order oE,. Comparing them with the transition

(57 temperaturef(54) and(56)] we conclude that the degenerate
where to first approximation, metallic state exists only at

195116-8
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Z-Z.> K(Z), (65)

corresponding tma? >0.02%yk3. Close to the Fermi sur-

face the Green’s functio(28) can be approximated as

Z;

G 1ik !k %.—’ 66
(0, 2K+ 0,k ) io—-E(xq,k)) ©9
Glo, theak, +Q = ———2—— (67

o, TKe+,K iw+E(xqk,)’

where
2,~ UthO ~0.352. (68)
0

The expressiong67) exhibit the particle-hole symmetry

characteristic of our model at half filling. As usual, we in-
clude the residu& in the coupling constant and replace the
fermionic action by the action of the four components of free

PHYSICAL REVIEW B 71, 195116(2009
Ling=ym| 2R, (K)La sk )gup(k —K') = {R; (K)Lp4(K")
a

R (K)Le (k) gupk —K' = Q)} +H.c. (74)

The value of the coupling constaitcan be extracted from
Egs.(42) and(76) by noting that it is this interaction which
gives rise to the logarithmic singularity iQ),

“Jsin — @ ﬂ
J"90,0,Q) = - 2y°m? o |n{T] (75)

Here p(0) is the density of states per species at the Fermi
surface of coherent fermions,

. dk | 1
p(0)=1jinoaoj(2—7ﬂg,{—;|m G(wlkF+qvkL):|

2 1/2
_ & Kp| ot
0.539(27)2 » [to] . (76)

fermions. The effective action describing the fermions is then]-he result is that close to the transition we have

given by

drd®k . .
s=af f 23 BT L0 = SO R () + L (K0

X[d,— E5(K)]Lao(7,K)}, (69)
wherek=(q,k ), «=1,], a=e,h, and
ERL(K) =E(xq,k,), ERK) =-E(¥qk,). (70

The fermion-spin vertex is described by the action,

4 [ drd*kd%k’
Sne=aj Wﬁim, (71)
where
Lin=lkxr 2 R o(1K)Lap(m.K)Gup(rk — k')

a=eh
+ |k,Q+k'R;a(T,k)'—h,ﬁ(ﬂk')gaﬁ(ﬂk -Q-k’)
+1grkk Ry o TK)Le p(T.K ) Gap(1.k + Q = K') + H.c.,

vZZ
L = Zw?zfl(k)h(k’). (72)

All wave vectors in the above formulas lie close to the non-

t
Yy« \/; (77)

wheret>mis the hopping along the chains, and the constant
of proportionality is of order 1. Thougly is never small, the
small parametekg appears every time one integrates it over
the transverse momentum. Hence the magnitudgisfot a
problem. The effective action describing the metallic side of
the Mott-insulator to metal transition is given by E¢S7),
(69), and(74). We find it instructive to write it down also in
position space,

S= f drd®> W (7,x)

l 7 61}
X1 (e N+ (e P E°+2M|,+2ML Ws(7,%),

Sni = %n j d~rd3x\I’Z((7-,x)({7-+ ® [exp(— 2igex™)
= 7exp(—iQ - X ) [}9,p(7,X) + H.C)W4(7,X).
(78)

Here we have taken the continuum limit in the directions
perpendicular to the chains and introduced a fidl]

(Dt + + x4+ _ f
interacting Fermi surface, and therefore their longitudinal™(? Rea @Rnar $leqr & Li ), Whereg=expligox). We em-
components are small in comparison 4o |g| <ma,. The ploy a tensor-product notation, where the first space is asso-
entire approach is valid only when the volumes inside of theiated with the “right and/or left” index and the second space
Fermi surfaces are small. One then can neglect the momeMth the “e and/or h” index. The Fermi surfaces of electrons
tum dependence of the exchange constant in(Z2). The and holes are shifted to the origin and superimposed. The
sign of the exchange constant depends on the “pocket indexéPin actionSg] is given by Eq.(57). Alternatively, one may
a,b, use the Abelian representation given by E®), with g de-

fined by (15).
) 1) , (73)

Marginal Fermi liquid
-1 1 g q

lap = 'ym(
As we shall now demonstrate, at temperatures higher than
wherey is a constant. The interaction can be cast in the fornthe Néel temperaturd@, this metal is, in fact a marginal
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0, '—H consistency is required. The contribution from the diagram in
S Ao v Fig. 7(a) contains the correlation function,
a) > - - z > b) I N A ]\2 o
4 } } Inf = wTv
<<e(i/2)®(rl)e—(i/2)®(72)>) ~ . ) (80)
A [sin(7 T 7y = 7))

The contribution of the diagram in Fig.(& to the self-

' ' . ' energy is then

0) e o) — o —P AT\ e

| | *o “3('”[?]) ST

FIG. 7. Diagrams for the quasiparticle self-energy of right- sinm iz
moving electrons. The lines with arrows represent the fermionic o 0 112
Green’s functions of right-moving and left-moving electrons and ~ixgwIn max o, T} In T . (8D
holes. The B-point vertices denote cumulants of the matrix fiedds '
andg'. Here Eal serves as a short-time cutoff in all integrals. The

diagram in Fig. Tb) involves cumulants of the type,

Fermi liquid 8 The following discussion closely parallels the (elilR20(r)g(1120(r) g(i120(r9)g=(120(73)) (82)

analysis given by Chubukoet al. for the spin-fermion
model (see, for example Ref.)2Let us consider the dia- and gives a contribution,

grams for the Green'’s function of right-moving electrons. We gora

expand around uncoupled chains and take both the spin- E(b)(w)ocngdrzd@du x[ 713724
fermion coupling and interchain spin-spin exchange into ac- T12723734 T12T14723734
count, perturbatively. The elements of the diagram technique 1 1

for the fermionic degrees of freedom are as usual, whereas - - } 2, (83)
the building blocks in the spin sector are the connected 712734 [714723)

2n-point spin correlators for a single chain. In diagrams thato the self-energy. Various other contributions are zero be-
do not contain closed fermionic loops or the interchain excayse some local cumulants vanish,

change such as the ones in Figga)7and 7b), the spin
correlations are independent of the transverse wave vector.
This means that each fermion Green'’s function is integrate%quation(SB) shows that contributions from higher cumu-
overk, . This integral does not differ significantly from the | nt5 can be neglected at small frequencies. As a result, the

integral over all momenta and as a result is independent Qi essential contribution to the self-energy comes from the
gy, corresponding to a Green’s function that is local in realdiagram in Fig. 7a) and is given by Eq(81).
space,

(D) (120(r)glil20(r)g-(1DP(yy = 0 (84)

VI. THE ORDERED STATE
dk? 1
(2m%io-ES(g,k,)

As we have discussed in the previous sections, the system
undergoes an antiferromagnetic transition at a temperature
much smaller than the Mott-Hubbard gép~ ng. OnceT,

As (79) is independent of, we may integrate the spin cor- becomes sma_ll, .com.pared to the quasiparticle_ Fermi. energy
E,, one can distinguish between metallic and insulating be-

relator in the diagram of Fig.(@ over g. This makes the ; ) )
spin correlator local. As a result the contributions to the self12vior. As we have demonstrated, the corresponding metal is
rather unusual, being in fact a marginal Fermi liquid. Below

energy that do not contain closed fermionic loops or inter- ) _
chain spin exchange are approximately momentum indeperlc: NOWever, the system becomes either an insuléorzero
ping or an ordinary Fermi liquid. Indeed, at zero doping

dent. Then the self-energy calculation becomes essentially :
local problem, such as the problem of electron-phohon intertN€ €lectron and hole Fermi surfaces are nested, and the or-
actions in metals and superconductofthe Eliashberg dering occurs at the antiferromagnetic wave vector in the

theory.19 In fact, such an approach works under less Strin_transversheﬂc]iirtectiorﬁrecall that the chains run along tlze
such tha

gent conditions, namely, when the spin excitations in the®Xis)
transverse direction are much slower than the quasiparticles. (1.ap(0) = Gg - M (= Dy, (85)
Therefore the diagrams generatin a dependence of the _ _ _
spin-spin correlators, such as the ones in Fige) @nd 7d) ~ Here the components af are the Pauli matrices arld is

do not affect the result for the electron self-energy, everthe ordering vector. In the mean-field approximation the fer-
close to the transition. Once sutc;% diagrams are neglected, wgionic spectrum is gapped,

get an expansion where a factef is associated with each 2 _ =R\ 12 2 _

fermionic line[originating from the integration ovek |, as w0z =B+ MP, a=eh. (86)

in Eq. (79)]. SinceX depends only on frequency, making At nonzero doping our approach still holds, provided the
these lines fat does not change the re§t®, and no self- chemical potential lies inside the Mott-Hubbard gap. There is

~ const k3 sgr(w). (79

195116-10
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no nesting any longer, and the magnetic ordering does ndchmalian, but on the entire quasiparticle FS. This makes the
open a gap in the quasiparticle spectrum. As usual, the magresent model a candidate for the description of bad metals.
netic fluctuations interact with quasiparticles through gradi-The fact that in our model the electron self-energy is of the

ent vertices, and these interactions are weak. marginal Fermi liquid form is not universal and is deter-
mined by the particular spin-fluctuation spectrum.
VIl. CONCLUSIONS As we discussed in the Introduction, our theory provides

an example of a state where the number of carriers is unre-

The main result of this paper is a formulation of a self-|ated to the volume of the FS. Though this idea is well es-
consistent description of the hybrid state of 3D quasiparticlegypjished[see, e.g., the textboolRef. 5], its microscopic
interacting with magnetic collective modes. The derivation isregjization was restricted to superconductéttee example
done for a toy model of half-filled Hubbard chains weakly given in Ref. 5. Our model provides another example. It
coupled through a long-range interchain hopping. A certairy|so demonstrates that one does not need exotic ground states
artificiality of the model is necessary to ensure the selfys have a small FS, as was suggested in Refs. 20 and 21. The
consistency of our approach through the presence of a smallng|l FS phenomenology can be generalized beyond our
parameterg. We also neglect the long-range component ofmodel. In general there is na priori reason for the Fermi
the Coulomb interaction, which plays an important role insyrface even to be closed; for instance, Ref. 22 describes a

determining the character of the metal-insulator transition. Instate with a truncated Fermi surface observed in ARPES ex-
reality a long-range interaction may lead to an instability ofperiments on undoped cuprafes.

the small FS phase, though for a small Mott-Hubbard gap its

influence is dlmlnlshed by t_he presence of a I_qrge Q|electr|c ACKNOWLEDGMENTS
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