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We develop a theory of a hybrid state, where quasiparticles coexist with strong collective modes, taking as
a starting point a model of infinitely many one-dimensional Mott insulators weakly coupled by interchain
tunneling. This state exists at an intermediate temperature range and undergoes an antiferromagnetic phase
transition at temperatures much smaller than the Mott-Hubbard gap. The most peculiar feature of the hybrid
state is that its Fermi surface volume is unrelated to the electron density. We present a self-consistent derivation
of the low-energy effective action for our model.
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I. INTRODUCTION

The presence of strong collective modes interacting with
quasiparticles is a distinctive feature of many strongly inter-
acting systems such as “bad” metals, weakly doped Mott
insulatorsssuch as the cupratesd, and heavy fermion materi-
als. This interaction is believed to result in a variety of un-
usual phenomena observed in these systems, such as the vio-
lation of the Mott-Regel limit in the temperature dependence
of the electrical resistivity of bad metals or the absence of
quasiparticle peaks in the spectral function of the cuprates.
The lack of nonperturbative techniques in dimensions higher
than one makes a detailed theoretical description of these
phenomena quite challenging. One successful approach has
been developed by Chubukov, Schmalian, and Abanov, who
have studied the so-called spin-fermion model put forward
by Pines.1 This model is semiphenomenological and postu-
lates the existence of a strong, coherent, collective mode,
which interacts with quasiparticles located in the vicinity of a
Fermi surface. This model is reviewed comprehensively in
Ref. 2 and has proven quite successful in explaining various
properties of the cuprates. However, a derivation from a mi-
croscopic Hamiltonian is lacking.

In this paper we provide a microscopic derivation of a
model in the same class as the spin-fermion models of Pines
and Chubukovet al. Namely, we continue to develop a
theory of a hybrid state combining the features of a Landau
Fermi liquid and a Mott insulator suggested in Ref. 3. This
state is characterized by the coexistence of well-developed
collective modes with quasiparticles. The latter ones have a
small Fermi surfacesSFSd, the volume of which is unrelated
to the total number of electrons. By definition, the Fermi
surfacesFSd is small if its volume is less than the maximum
volume allowed by Luttinger’s theorem.4–7 The existence of
such a state does not contradict Luttinger’s theorem, since
the latter, contrary to popular belief, does not fix the volume
of the FS. Instead the theorem states that the electron density
n is proportional to the volume of phase space enclosed by
the surface where the single-electron Green’s function
changes its sign,

n =
2

s2pddE
Gsv=0,kd.0

ddk. s1d

When the Green’s function has zeros, the Fermi surface con-
stitutes only a part of this surface, namely, the one where
Gs0,kd→`. Hence Luttinger’s theorems1d does not even
require the existence of a Fermi surface; the Green’s function
may have only zeros and no poles, as is the case for
superconductors5 and certain one-dimensional systems, in
which the spectral gap is generated dynamically.sFor the
latter case a general proof is outlined in Ref. 8.d

A metallic state with a small FS would necessarily be
associated with a Green’s function that has both poles and
zeros atv=0. In our previous work3 we suggested a model
for such a state based on the quasi-one-dimensional Hubbard
model at half filling. The transverse hopping was treated in a
random phase approximationsRPAd. In order to understand
the conditions of stability of such an exotic metal, one has to
go beyond RPA, which is the main subject of the present
paper. Experimental indications of the existence of the SFS
states come from angle-resolved photoemission spectroscopy
sARPESd measurements in underdoped cuprates9 and from
the Hall-effect measurements in heavy fermion materials.10

Before turning to the calculations, we shall give a quali-
tative account of the physics we are after. Our starting point
is an ensemble of uncoupled, Mott insulating chains. The
relevant energy scale is the one-dimensionals1Dd Mott gap
m. We consider finite temperaturesT such thatT!m. The
physics is purely one dimensional.

We then turn on a small long-range interchain tunneling
with characteristic energy scalet'. Clearly, at zero tempera-
ture the hopping between chains will be essential, and it will
induce a three-dimensionals3Dd ordered state. On the other
hand, in the window,

t' ! T, t̃'skd ! m, s2d

we will recover the physics of 1D Mott-insulating chains.
Here t̃'skd denotes the Fourier transform of the interchain
tunneling. Furthermore, asT!m we may, to a good approxi-
mation, work with zero-temperature quantities in many in-
stances.
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The crucial point is that whilet' remains much smaller
than the Mott gapm, the Fourier transformt̃'skd can become
comparable tom in a region of the Brillouin zone, i.e., we
may have a situation where

t' ! T ! t̃s0d < m. s3d

In this case an interesting “hybrid” state combining 1D
features with 3D features develops. In particular, the low-
energy sector corresponds to a 3D metal with a small Fermi
surface and quasiparticles interacting with well-developed
collective modes. The existence of the regimes3d is ensured
by making the interchain tunneling long ranged.

The dimensional crossover from a quasi-one-dimensional
Mott insulator to an anisotropic 3D Fermi liquid, as a func-
tion of the strengtht' of the interchain hopping, is sketched
in Fig. 1.

The purpose of the present work is to derive an effective
theory for the low-energy degrees of freedom in the “1D
Mott insulator/3D Fermi liquid hybrid” regime and to ana-
lyze its instabilities towards 3D order at sufficiently low tem-
peratures.

II. THE MODEL

The model we study is the Hubbard model with a strongly
anisotropic hopping,

H = − t o
n,l,s

fcn,l,s
† cn+1,l,s + H.c.g + Uo

n,l
nj ,l,↑nj ,l,↓

+ o
l,m,n,p,s

tlm
npcn,l,s

† cp,m,s. s4d

For definiteness we consider the chain direction to bez, so
that l =slx, lyd, m=smx,myd label Hubbard chains, andn, p
label the sites along a given chain.

As we have mentioned before, the hopping integrals in the
transverse directions are supposed to be small in comparison
to t. In the limit t'=0 and at half filling the model has a
Mott-Hubbard gapm. We work in a regime where the mag-

nitude of this gap is much smaller than the bandwidthW
<4t. In our previous paper3 the transverse hopping was
treated in a random phase approximationsRPAd. In order to
suppress corrections to the RPAsat least in some temperature
intervalsd we assume that the transverse hopping is long
rangedssee belowd.

A. Uncoupled, Mott-insulating chains

Let us briefly discuss the low-energy physics for un-
coupled chains. In order to ease notations we suppress the
chain indexsld. Keeping only the low-energy modes around
the two Fermi points ±kF, the electron annihilation operators
are decomposed as

cn,s = Îa0fexpsikFxdRssxd + exps− ikFxdLssxdg, s5d

wherea0 is the lattice spacing,x= ja0, andkF=p /2a0. The
fermionic creation operators for left and right moving Fermi-
ons are bosonized, using the following conventions:

Ls
†sxd =

hs

Î2p
eif sp/4 expS−

i

2
f̄cDexpS−

i f s

2
f̄sD ,

Rs
†sxd =

hs

Î2p
eif sp/4 expS i

2
fcDexpS i f s

2
fsD , s6d

whereha are the Klein factors withhha,hbj=2dab and where

f↑=1, f↓=−1. The chiral boson fieldsfa and f̄a fulfill the
following commutation relations:

ffasxd,f̄asydg = 2pi, a = c,s. s7d

In terms of the chiral fieldsfa andf̄a we define the canoni-
cal Bose fieldsFa and their dual fieldsQa by

Fa = fa + f̄a, Qa = fa − f̄a. s8d

The low-energy effective Hamiltonian density for a single
chain takes the following bosonic form:

Hs =
vs

16p
fs]xQsd2 + s]xFsd2g − gJ · J̄,

Hc =
vc

16p
fs]xQcd2 + s]xFcd2g + gI · Ī . s9d

Here Ia and Īa sJa and J̄ad are the chiral components of the
SUs2d pseudospinsspind currents,

Iz = −
1

4p
]xfc, I+ =

h↑h↓
2p

eifc,

Jz = −
1

4p
]xfs, J+ = i

h↑h↓
2p

eifs. s10d

The current-current interaction in the spin sector ofs9d is
marginally irrelevant, and we will ignore it in what follows.
We note that doing so enhances the symmetry in the spin
sector from SUs2d sspin rotational symmetryd to SUs2d

FIG. 1. Cartoon-phase diagram forT!m for weakly coupled
1D Mott insulators, wherem is the 1D Mott gap.
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3SUs2d srotational symmetry of the left and right sectorsd.

1. Single-particle Green’s function

The single-particle Green’s function for the half-filled
Hubbard model was obtained in the framework of the form-
factor approach in Refs. 3 and 11. In particular, when the
charge and spin velocities are equal we have

G0sv, ± kF + qd =
Z0

iv 7 vqF1 −
m

Îm2 + v2 + svqd2G ,

s11d

whereZ0<0.921 862. In order to obtain the above expres-
sion for G0 we took into account only processes involving
the emission of a single, massive holon and a cascade of
gapless spinons.

2. Spin sector

The spin operatorsSn
a= 1

2cn,a
† sab

a cn,b are expressed in terms
of the left and right moving Fermi fields by

Sj
a . s− 1d j a0

2
fRa

†sxdsab
a Lbsxd + H.c.g

+
a0

2
fRa

†sxdsab
a Rbsxd + R→ Lg

; a0fs− 1d jnasxd + Jasxdg. s12d

The bosonized expressions for the staggered components of
the spin operators are

Ra
†sxdsab

a Lbsxd .
1

piÎ2a0

expS i

2
FcDtrsgsad, s13d

where we have replaced the product of the Klein factors by
their expectation values,

kh↑h↓l = − i , s14d

and where the matrix fieldg is expressed in terms of the spin
bosonFs and its dual fieldQs by

g =Îa0

2 1 expS i

2
FsD i expS−

i

2
QsD

i expS i

2
QsD expS−

i

2
FsD 2 . s15d

At T=0 we have

kgabst,xdggd
† s0,0dl = daddbg

a0

2Îv2t2 + x2
. s16d

Usings15d one can easily calculate the multipoint correlation
functions ofg.

The actions9d describing the collective spin excitations
on each chain is equivalent to theSU1s2d Wess-Zumino-
Novikov-Witten sWZNWd model once we drop the margin-
ally irrelevant interaction of spin currents. The WZWN ac-
tion for the matrix fieldgst ,xd is given by

Wfgg =
1

16p
E d2x Trf]mg†]mgg

+ − i
emnl

24p
E

B

d3x Trfg†]mgg†]ngg†]lgg, s17d

wherex1=vt, x2=x, ]m=] /]xm, B is a three-dimensional half
spacesx3ø0d whose boundary atx3=0 coincides with the
two-dimensionalsvt ,xd plane, andg is an arbitrary extrapo-
lation of the function defined on the two-dimensional space
x3=0, which approaches 1 atx3→−`. The actions17d is

invariant underSUs2d3SUs2d transformationsg→UgŨ†.
The marginally irrelevant interactions of spin currents breaks
this symmetry down to the diagonal spin-rotational
SUs2d g→UgU†. The form s17d of the action for the spin
degrees of freedom is significantly more complicated than
the free boson representations9d. The latter is very conve-
nient for calculations in one dimension, but may be less use-
ful when one considers interchain coupling due to the fact
that the dual fieldQs is nonlocal with respect toFs. The
formulation in terms of the matrix fieldg has the advantage
of the fundamental field being the order parameter itself. In
fact, Wfgg is the Ginzburg-Landau action for a 1D spin-1

2
antiferromagnet.

3. Three-point function

Some important ingredients in our analysis are the three-
point functions of the formkTrfgszdsagRa

†sz1dLbsz2dl. The
large-distance asymptotics of these correlators can be evalu-
ated by using the results of11

kTrfgszds+gR↓
†sz1dL↑sz2dl = − i

kh↓h↑l
2p

kTrfgszds+ge−si/2dfssz1desi/2df̄ssz2dlskesi/2dfcsz1desi/2df̄csz2dlc

. i
kh↓h↑l

2p
kTrfgszds+ge−si/2dfssz1desi/2df̄ssz2dls

Z1
Îa0

p
e3ip/4K0smr12d

. Ẑkh↓h↑lK0smr12dkTrfgszds+gTrfgsz+ds−gls, s18d
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where z1,2=st1,2,x1,2d, r12= uz1−z2u and z+=fst1+t2d /2 ,sx1

+x2d /2g. The constantẐ is related to the normalizationZ0 of
the single-particle Green’s function by11

Ẑ = −
Z0

p3/2Î m

va0
. s19d

The calculation we have just carried out can be summarized
by the following approximate relations,

Ra
†sz1dsab

a Lbsz2d → iẐK0smr12dTrfgsz+dsag,

La
†sz1dsab

a Rbsz2d → iẐK0smr12dTrfgsz+dsag. s20d

The approximations20d fails at small distances. In order to
remove the logarithmic singularity ofK0 one needs to in-
clude terms corresponding to the multiple production of soli-
tons and antisolitons. At energies much smaller than the Mott
gap, the fusions20d gives rise to the spin-fermion vertex
depicted in Fig. 2.

B. Long-range interchain hopping

In order to have a small parameter in our theory we con-
sider the interchain hopping to be long ranged, such that the
Fourier transform of the hopping matrix elements strongly
depends on the wave vector. This is a well-known trickssee,
for example, Ref. 12d and results in a controlled “loop” ex-
pansion, where every integration over the transverse mo-
menta leads to a small factork0

2 in three dimensions, where
k0 is the inverse range of the interchain tunneling. The inter-
chain hopping may be taken long ranged both along and
perpendicular to the chain direction. In order to simplify the
calculations, we will constrain our discussion to the case
where tlm

np= tsl −mddn,p, i.e., the interchain hopping has no
component along the chain direction and depends only on the
distance between chains. The Fourier transform of the inter-
chain tunneling is then given by

t̃'sk'd = o
m

tlm expfik' · sl − mda'g. s21d

In the following we choose the interchain hopping such that
it respects the particle-hole symmetry:

cn,l,s ↔ s− 1dn+lx+lycn,l,s
† , s22d

which implies that

t̃'sk' + Qd = − t̃'sk'd, s23d

where

Q = S p

a'

,
p

a'

D , s24d

is the antiferromagnetic wave vector in the direction trans-
verse to the chains. It is straightforward to generalize our
following analysis to non-particle-hole symmetric cases. The
basic assumptions underlying our model are then summa-
rized in the following inequalities:

W@ m, ut̃'s0du = ut̃'sQdu @ t̃'sp'd. s25d

Here W=4t and m are the bandwidth and Mott gap for un-
coupled chains, respectively, andup'a'u , usp'−Qda'u@k0.
The small parameterk0 characterizes the support oft̃'sk'd
in momentum space. The precise form of the momentum
dependence oft̃' is supposedly unimportant, but in order to
simplify the concrete calculations we shall use the following
model:

t̃'sk'd = −
t0

1 + uk'a'u2k0
−2, uk'a'u ! 1. s26d

Within the models26d the integration over the transverse
wave vectors may be replaced by integration overt
; t'sk'd,

a'
2 E d2k'

4p2 fstd <
k0

2t0
4p

E
k0

2t0/4p2

t0 dt

t2
ffstd + fs− tdg. s27d

Some readers may find that our approach is similar to dy-
namical mean field theory in aninfinitely dimensionalspace.
This is not the case; the difference comes from the fact that
in our model the transverse density of states is constant on
the zone boundary. This feature strengthens the influence of
fermionic coherent modes and utterly changes the physics
ssee the discussion in Sec. VIId.

III. PERTURBATION THEORY IN THE INTERCHAIN
TUNNELING

As we have already mentioned, the perturbation theory in
the interchain tunneling can be reorganized in terms of a loop
expansion. Every integration over the transverse momenta
generates a small factork0

2. We will refer to the leading order
Osk0

0d in this expansion as random phase approximation
sRPAd.

The RPA expression for the single-particle Green’s func-
tion G was derived in Ref. 3 and is given by

Gsv, ± kF + q,k'd =
G0sv, ± kF + qd

1 − t̃'sk'dG0sv, ± kF + qd
. s28d

Here G0 is the single-particle Green’s function for an indi-
vidual chains11d. In a purely one-dimensional Mott insulator
the electron is a composite particle, and, as a result, the spec-
tral function is incoherent. Coherent electronic excitations
reappear as soon as the interchain tunneling is turned on.
They can be understood as antiholon-spinon bound states,
and they occur at energiesbelow the Mott gap. Whent'

exceeds a certain critical value, the dispersion of the coherent
mode crosses the chemical potential, and a Fermi surface is
formed. As a consequence of particle-hole symmetry, at half-
filling this Fermi surface consists of electronlike and holelike

FIG. 2. The fermion-spinon interaction generated by fusion
s20d.
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pockets of equal volume. A sketch of such a Fermi surface is
shown in Fig. 3. A convenient measure for the strength of the
interchain coupling is given by the quantity,

Z ;
Z0t0
m

, s29d

where t0 is defined in s26d. The RPA form s28d for the
Green’s function features a pole corresponding to a coherent
quasiparticle mode. This mode crosses the chemical potential
whenZ exceeds the critical value,

Zc = 3.330 19 . . . , s30d

and a Fermi surface is present for allZ.Zc.
Having in hand the expression for the chain single-

particle Green’s function, we may use it to define a dressed

interchain hoppingT̃R,Lsv ,q,k'd by summing the diagrams
shown in Fig. 4. This results in

TR,Lsv,q,k'd =
t̃'sk'd

1 − t̃sk'dG0sv, ± kF + qd
, s31d

where the1 sign corresponds toR and the2 sign to L,
respectively. We note that the dressed interchain hopping is
equal to the propagator of the Hubbard-Stratonovich field
that can be introduced to decouple the interchain hopping.13

A. The spin sector in RPA

In the RPA, the spin sector remains one-dimensional and
critical. This can be seen as follows. Let us consider the
real-space correlator between the staggered components of
spins on different chainsl andm,

knj ,l
+ stdn1,m

− s0dl. s32d

Within perturbation theory in the interchain hopping, we
need at least one right-moving and left-moving fermion op-
erator each on chainsl and m in order to obtain a nonzero
expectation value in the spin sector. The only ways to
achieve this are shown in Fig. 5. Here the dashed lines de-
note the bare interchain hopping, the ellipses enclosing two
black swhited circles represent the purely 1D Green’s func-
tion of right-moving sleft movingd electrons on a given
chain, and the ellipses enclosing two circles and a hexagon
stand for the three-point functions18d. Clearly all such dia-
grams involve at least one integration over the transverse
momentum. Hence, within the RPA, the spin-spin correlation
functions remain entirely one-dimensional and spins on dif-
ferent chains remain uncorrelated.

B. Excitation spectrum in RPA

From the discussion above it is clear that for sufficiently
strong interchain hoppingZ.Zc the RPA leads to two types
of gapless excitations:

sid fermionic particle and hole excitations over the Fermi
surface with anisotropic 3D dispersions.

sii d collective excitations of the spin degrees of freedom.
These are of a purely 1D nature and do not have a dispersion
in the direction transverse to the chains.

FIG. 3. sColord The Brillouin zone with the electronsred ovalsd
and holelikesblue semiovalsd Fermi pockets of a two-dimensional
lattice. The noninteracting Fermi surface is shown as a dashed line.

FIG. 4. The dressed interchain hopping.

FIG. 5. sColord Real-space diagrams that contribute to the two-
point function of staggered magnetizations between chainssld and
smd.

FIG. 6. sColord Leading-orderOsk0
2d contribution to the inter-

chain exchange.

THEORY OF HYBRID STATE IN A METAL WITH A… PHYSICAL REVIEW B 71, 195116s2005d

195116-5



If one goes beyond the RPA, the interactions between
these two types of excitations will be generated. In the fol-
lowing we determine the form of these interactions and study
their effects. To go beyond the RPA in principle requires
knowledge of the two-particle Green’s function of uncoupled
Mott-insulating chains. However, if one restricts one’s atten-
tion to the regime of energies that are small compared to the
Mott gap, the three-point functions18d swhich corresponds
to a particular limit of the two-particle Green’s functiond suf-
fices.

IV. INTERCHAIN EXCHANGE AND ESTIMATE OF THE
TRANSITION TEMPERATURE

Although it is obvious that corrections to RPA are of
higher order in the small parameterk0, they will diverge at
small temperatures. Therefore RPA works only at finite tem-
peratures, and for its consistency the transition temperature
sbelow which the system is three-dimensionally orderedd
must be much smaller than the Mott-Hubbard gapm. It is

therefore important to estimate the corresponding corrections
to RPA and their temperature dependence. As the first step in
taking into account corrections to RPA we have to estimate
the interchain Ruderman-Kittel-Kasuya-YosidasRKKY d in-
teraction. As we have shown in Sec. II A 3, there is a three-
point “vertex” that couples the spin degrees of freedom to
the fermionic quasiparticles. In the second-order perturbation
theory in this interaction, an interchain exchange interaction
between the spin degrees of freedom is generated. The cor-
responding action is given by

Sxc =E p
j=1

2

dt jdxj o
lÞm

Jlmsx1 − x2,t1 − t2d

3 Trfglst1,x1dgm
† st2,x2dg. s33d

The Fourier transform of the leading-ordersin k0d exchange
matrix element is given by the “bubble” diagram shown in
Fig. 6, where the doubles lines are the dressed interchain
hoppings for left-moving and right-moving fermions and the
squares denote the elements of the matrix field. The result is

J̃sv,q,q'd = Ẑ2E dv8dq8

s2pd2 a'
2 E d2k'F v

m2 + v82 + svq8d2G2

TRSv8 +
v

2
,q8 +

q

2
,k'D

3TLSv8 −
v

2
,q8 −

q

2
,q' − k'D . s34d

To make the calculations easier, we use thek dependence
s26d so that the sum over the transverse wave vectors is
replaced by integration overt according tos27d. Sincet̃sk'd
is peaked near zero andQ, there are two interesting wave
vectors:q'=0 andq'=Q.

A. Case 1:Z,Zc

In this case the coherent electron modes still have a gap
and no Fermi surface is formed in the RPA. Usings27d to
carry out the summation over the transverse momenta we
obtain

J̃s0,0,0d < C1E
0

`

dss
arctanfZGssdg
s1 + s2d2Gssd

; a0C1, s35d

whereZ=Z0t0/m is defined ins29d and

C1 = Ẑ2k0
2t0

v
mZ0

=
Zk0

2

p3a0
m, s36d

and

Gssd = s−1F1 −
1

Îs2 + 1
G . s37d

As expected, this interaction is of the order ofk0
2t0. The

numerical factora0 ranges between 0 forZ=0 and 2.81 for

Z→3.33 019. The exchange at momentum transferQ is

J̃s0,0,Qd < −
C1

2
E

0

`

dss

lnF1 +ZGssd
1 −ZGssdG

s1 + s2d2Gssd
= − aQC1,

s38d

whereaQ varies between 0 forZ=0 and 3.07 forZ→Zc.

B. Case 2:Z.Zc

In this case a Fermi surface in the form of electron and
hole pockets is present. The presence of zero-energy modes
does not really affect the exchange at zero-momentum trans-
fer, which is given by

J̃s0,0,0d < C1E
0

`

ds
sfssd

s1 + s2d2Gssd
= a08C1, s39d

where

fssd = 2 arctanfjssdZGssdg − arctanfZGssdg,

jssd = min„1,fZGssdg−1
…. s40d

We find thata08 starts at 1.405 forZ→3.33 019, then goes
through a maximum of approximately 1.48 aroundZ
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<4.18, and then diminishes slowly. Hence the exchange at
wave number zero plays a subdominant role.

Let us now turn to the exchange at wave numberQ. We
find that there is a logarithmic divergence ins34d, which is
related to the Fermi-surface formation and will be discussed
later in more detail. We regularize the divergence by tem-
perature. This may be done by replacing thev8-integral in
s34d by a sum over Matsubara frequencies and substituting
the finite-temperature Green’s function for theirT=0 analogs

in the dressed interchain hoppingsT̃R,L in s34d. At low tem-
peratures the single-particle Green’s function is given by8

GRsvn,qd =E
−`

`

dx
ARsx,qd
ivn − x

,

ARsv,qd =
Z0

4p2m
Î2m

T
F m

uv − vquG3/2

3ReFÎ− 2iBS1

4
−

i

2

v2 − v2q2 − m2

2pTuv − vqu
,
1

2
DG . s41d

The singular piece ofJ̃sings0,0,Qd diverges logarithmically
with temperature and is estimated as

J̃sings0,0,Qd < − C1 lnFm

T
GE

s−

s+

ds
sfGssdg−1

s1 + s2d2 , s42d

wheres± are solutions to the equation,

1 −ZGss±d = 0. s43d

In order to establish the exchange at nonzero values ofv and

q we have calculatedJ̃sv ,q,Qd numerically at small tem-
peratures. Rather than using the finite-T Green’s function
s41d we work with theT=0 expressions11d and replacev by
the discrete Matsubara frequencies. For small temperatures

this is a reasonable approximation. We find thatuJ̃sv ,q,Qdu
is largest atv=0=q.

In addition to the singular pieces42d there also is a regu-
lar contribution to the exchange. As long as we are close to
the transition, i.e.,

Z − Zc

Zc
! 1, s44d

we may estimate the regular contribution to the exchange by
its value at the critical strengthZc of the interchain tunnel-
ing. The latter is given bys38d

J̃regs0,0,Qd < − 3.071C1. s45d

In the regimes44d,

J̃sings0,0,Qd < − 1.318ÎZ − ZcC1 lnFm

T
G . s46d

The total exchange constant at wave numberQ is then esti-
mated as

J̃s0,0,Qd < − C1S3.071 + 1.318ÎZ − Zc lnFm

T
GD .

s47d

Having determined the exchange constant, we are now in
a position to estimate the temperature at which a magnetic
instability develops. In the absence of interchain hopping the
correlation functions of the matrix field atT=0 are given by
s16d. At T.0 we have

kgabst,xdggd
+ s0,0dl = daddbg

pTa0/v

2UsinhSpT

v
fx + ivtgDU ,

s48d

if we neglect the marginally irrelevant current-current inter-
action in the spin-sector of Hamiltonians9d, describing the
1D Mott insulating chains. If one takes it into account in
renormalization-group-improved perturbation theory one
obtains14

ktrsgsadtrsg†sbdl = dab

ÎlnFL

T
GpTa0v

−1

UsinhSpT

v
fx + ivtgDU , s49d

whereL is a high-energy cutoff, which we may take to be of
the order of the hopping integral along the chain direction.
Carrying out an analogous calculation for the dimerization
operator we find

ktrsgdtrsg†dl = dab

SlnFL

T
GD−3/2

pTa0v
−1

UsinhSpT

v
fx + ivtgDU . s50d

Upon Fourier transformation and analytical continuation one
finds the following result for the dynamical magnetic suscep-
tibility of the uncoupled chain system:15

x1dsv,qd = −

a0ÎlnFL

T
G

2T

GF 1
4 − i

v − vq

4pT
GGF 1

4 − i
v + vq

4pT
G

GF 3
4 − i

v − vq

4pT
GGF 3

4 − i
v + vq

4pT
G .

s51d

The dimerization susceptibility is equal tos51d apart from
the prefactor, in which ÎlnfL /Tg is replaced by
slnfL /Tgd−3/2. Hence the staggered spin susceptibility is al-
ways more singular than the dimerization susceptibility, and
as a result the dominant instability of the spin sector is to-
wards the Néel order. The enhancement of the spin suscep-
tibility as compared to the dimerization susceptibility is
caused by the leading irrelevant operator in the Hamiltonian,
namely the interaction of the spin currents. If we were to add
an interaction to the underlying lattice Hamiltonian in order
to eliminate this interaction, the symmetry between the
dimerization and the staggered components of the spins

THEORY OF HYBRID STATE IN A METAL WITH A… PHYSICAL REVIEW B 71, 195116s2005d

195116-7



would be broken by some other irrelevant operator. The dy-
namical susceptibility of the coupled chains system can be
determined by an expansion in the interchain coupling of the
type discussed in Refs. 16 and 17. The leading term is given
by the random phase approximation,

x3dsv,q,p'd =
x1dsv,qd

1 − 2J̃sv,q,p'dx1dsv,qd
. s52d

Given the expressions52d for the dynamical susceptibility,
we may obtain an estimate for the transition temperatureTc,
below which the three-dimensional magnetic-long-range or-
der develops.Tc is defined as the temperature at which a zero
frequency pole develops inx3d. Given that x1ds0,qd is

peaked atq=0 andJ̃ is peaked atq=0 andp=Q, we obtain
the following condition-fixingTc:

1 − 2J̃s0,0,Qdx1ds0,0d = 0. s53d

ReplacingJ̃s0,0,Qd by s47d we arrive at the following equa-
tion determining the transition temperatureTc:

Tc

m
< 2.887k0

2ÎlnF L

Tc
G 3 S1 + 0.429ÎZ − Zc lnFm

Tc
GD .

s54d

Let us consider the two limiting cases in which either the
regulars45d or the singular parts46d of the exchange domi-
nates and drives the transition. The first case occurs if we are
very close to the point where the Fermi pockets are first
formed andZ−Zc! flnsk0

2dg−2. Then the transition tempera-
ture is roughly equal to

Tc

m
< 2.887k0

2ÎlnF L

mk0
2G . s55d

The second case occurs ifZ−Zc@ flnsk0
2dg−2 and then,

Tc

m
< 1.239k0

2dÎlnF L

mk0
2d
G lnF 1

k0
2d
G , s56d

whered=ÎZ−Zc.

V. EFFECTIVE THEORY AT LOW ENERGIES; THE
RESIDUAL INTERACTIONS

Now we are in the position of writing the low-energy
effective action for the metallic state. This effective action
describes the interactions of the low-energy modes, i.e., the
coherent fermions and the order-parameter fieldgab. In Sec.
IV we calculated the interchain coupling for theg field. It
contains a part coming from states far from the chemical
potential and a part with logarithmic divergences coming
from the states close to the Fermi surface. We can isolate the
first piece and include it into the effective action ofg,

Ssp= o
n

Wfgng + o
m,l

Jml E dtdxTrfgmst,xdgl
†st,xdg,

s57d

where to first approximation,

Jnl <
Z0

2

p2ma0
tnl
2 . s58d

This part of the action plays the role of the sigma model in
the spin-fermion model by Chubukov, Pines, and Schmalian
ssee Ref. 2 and references thereind. Taken in isolation, this
model has an instability at some temperatureTc that can be
estimated from the RPA expression for the dynamical mag-
netic susceptibility in complete analogy with our calculation
in Sec. IV B. Since the coherent fermions are low-energy
excitations, they cannot be simply integrated out, but their
interaction with theg field should be added to the action. The
Fermi surface of the coherent fermions is determined by the
equation,

G0s0,qdt̃'sk'd = 1, s59d

and it consists of four pocketsstwo electronlike ones and two
holelike onesd as is shown in Fig. 3. Let us consider the
situation where the scale of the interchain hoppingt0 is very
slightly larger than the minimal valuet̄0 required for the
formation of a Fermi surface,

t0 = t̄0 + dt =Î11 + 5Î5

2

m

Z0
+ dt. s60d

The electron and hole pockets are then shallow and aniso-
tropic, and the Fermi surface is determined by the equation,

Esq,k'd = 0, s61d

where

Esq,k'd = Aim
sq − q0d2

q0
2 + A'm

uk'a'u2

k0
2 − E0, s62d

E0 < 0.352dt,
vq0

m
= F1 +Î5

2
G1/2

< 1.27202,

Ai < 0.543, A' < 1.27 202. s63d

The electron pockets are formed atskF+q,k'd and s−kF

−q,k'd, whereas the hole pockets are located atskF−q,Q
+k'd and s−kF+q,Q+k'd, whereq andk' are determined
from s61d. Let us denote the annihilation operator of the
coherent fermions byCst ,q,k'd. The soft modes occur in
the vicinity of the electron and hole pockets and it is conve-
nient to decomposeCst ,q,k'd accordingly. We denote by
Rest ,q,p'd andLest ,q,p'd the annihilation operators in the
vicinity of the electron pockets andsq,p'd is the deviation
from s±kF ,0d. Similarly we denote byRhst ,q,p'd and
Lhst ,q,p'd the annihilation operators in the vicinity of the
hole pockets, andsq,p'd is the deviation froms±kF ,Qd.

From Eq.s62d we determine that the particle density as-
sociated with a single pocket is

n < 0.027a'
−2q0k0

2sZ − Zcd3/2. s64d

The liquid of quasiparticles becomes degenerate at tempera-
tures of the order ofE0. Comparing them with the transition
temperaturesfs54d ands56dg we conclude that the degenerate
metallic state exists only at
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Z − Zc @ k0
2, s65d

corresponding tona'
2 @0.027q0k0

5. Close to the Fermi sur-
face the Green’s functions28d can be approximated as

Gsv, ± kF + q,k'd <
Z2

iv − Es±q,k'd
, s66d

Gsv, ± kF + q,k' + Qd <
Z2

iv + Es7q,k'd
, s67d

where

Z2 <
vq0

t̄0
< 0.352. s68d

The expressionss67d exhibit the particle-hole symmetry
characteristic of our model at half filling. As usual, we in-
clude the residueZ in the coupling constant and replace the
fermionic action by the action of the four components of free
fermions. The effective action describing the fermions is then
given by

Sf = a'
2 E dtd3k

s2pd3 hRa,a
* st,kdf]t − Ea

RskdgRa,ast,kd + La,a
* st,kd

3f]t − Ea
LskdgLa,ast,kdj, s69d

wherek =sq,k'd, a= ↑ ,↓, a=e,h, and

Ee
R,Lskd = Es±q,k'd, Eh

R,Lskd = − Es7q,k'd. s70d

The fermion-spin vertex is described by the action,

Sint = a'
4 E dtd3kd3k8

s2pd6 Lint, s71d

where

Lint = Ik,k8 o
a=e,h

Ra,a
* st,kdLa,bst,k8dgabst,k − k8d

+ Ik,Q+k8Re,a
* st,kdLh,bst,k8dgabst,k − Q − k8d

+ IQ+k,k8Rh,a
* st,kdLe,bst,k8dgabst,k + Q − k8d + H.c.,

Ik,k8 = 2p
vẐZ2

m2 t̃'skdt̃'sk8d. s72d

All wave vectors in the above formulas lie close to the non-
interacting Fermi surface, and therefore their longitudinal
components are small in comparison top: uqu!pa0. The
entire approach is valid only when the volumes inside of the
Fermi surfaces are small. One then can neglect the momen-
tum dependence of the exchange constant in Eq.s72d. The
sign of the exchange constant depends on the “pocket index”
a,b,

Iab < gmS 1 − 1

− 1 1
D , s73d

whereg is a constant. The interaction can be cast in the form

Lint = gmFo
a

Ra,a
* skdLa,bsk8dgabsk − k8d − hRe,a

* skdLh,bsk8d

+ Rh,a
* skdLe,bsk8djgabsk − k8 − QdG + H.c. s74d

The value of the coupling constantg can be extracted from
Eqs.s42d and s76d by noting that it is this interaction which
gives rise to the logarithmic singularity inJsQd,

J̃sings0,0,Qd < − 2g2m2rs0d
a0

lnFdt

T
G . s75d

Here rs0d is the density of states per species at the Fermi
surface of coherent fermions,

rs0d = lim
v→0

a0E d3k

s2pd3F−
1

p
Im Gsv,kF + q,k'dG

< 0.539
a0

s2pd2

k0
2

v
Fdt

t0
G1/2

. s76d

The result is that close to the transition we have

g ~Î t

m
, s77d

wheret@m is the hopping along the chains, and the constant
of proportionality is of order 1. Thoughg is never small, the
small parameterk0

2 appears every time one integrates it over
the transverse momentum. Hence the magnitude ofg is not a
problem. The effective action describing the metallic side of
the Mott-insulator to metal transition is given by Eqs.s57d,
s69d, ands74d. We find it instructive to write it down also in
position space,

Sf =E dtd3xCa
†st,xd

3HsI ^ Id]t + sI ^ tzdFE0 +
]x

2

2Mi

+
¹W '

2

2M'

GJCbst,xd,

Sint =
gm

2
E dtd3xCa

†st,xd„ht+
^ fexps− 2iq0xtzd

− txexps− iQ ·x'dgjgabst,xd + H.c.…Cbst,xd.

s78d

Here we have taken the continuum limit in the directions
perpendicular to the chains and introduced a fieldCa

+

=sf*Re,a
+ ,fRh,a

+ ,fLe,a
+ ,f*Lh,a

+ d, wheref=expsiq0xd. We em-
ploy a tensor-product notation, where the first space is asso-
ciated with the “right and/or left” index and the second space
with the “e and/or h” index. The Fermi surfaces of electrons
and holes are shifted to the origin and superimposed. The
spin actionSfgg is given by Eq.s57d. Alternatively, one may
use the Abelian representation given by Eq.s9d, with g de-
fined by s15d.

Marginal Fermi liquid

As we shall now demonstrate, at temperatures higher than
the Néel temperatureTc this metal is, in fact a marginal
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Fermi liquid.18 The following discussion closely parallels the
analysis given by Chubukovet al. for the spin-fermion
model ssee, for example Ref. 2d. Let us consider the dia-
grams for the Green’s function of right-moving electrons. We
expand around uncoupled chains and take both the spin-
fermion coupling and interchain spin-spin exchange into ac-
count, perturbatively. The elements of the diagram technique
for the fermionic degrees of freedom are as usual, whereas
the building blocks in the spin sector are the connected
2n-point spin correlators for a single chain. In diagrams that
do not contain closed fermionic loops or the interchain ex-
change such as the ones in Figs. 7sad and 7sbd, the spin
correlations are independent of the transverse wave vector.
This means that each fermion Green’s function is integrated
over k'. This integral does not differ significantly from the
integral over all momenta and as a result is independent of
qi, corresponding to a Green’s function that is local in real
space,

dk'
2

s2pd2

1

iv − Ee
Lsq,k'd

< const ik0
2 sgnsvd. s79d

As s79d is independent ofq, we may integrate the spin cor-
relator in the diagram of Fig. 7sad over q. This makes the
spin correlator local. As a result the contributions to the self-
energy that do not contain closed fermionic loops or inter-
chain spin exchange are approximately momentum indepen-
dent. Then the self-energy calculation becomes essentially a
local problem, such as the problem of electron-phohon inter-
actions in metals and superconductorssthe Eliashberg
theoryd.19 In fact, such an approach works under less strin-
gent conditions, namely, when the spin excitations in the
transverse direction are much slower than the quasiparticles.
Therefore the diagrams generating ak' dependence of the
spin-spin correlators, such as the ones in Figs. 7scd and 7sdd
do not affect the result for the electron self-energy, even
close to the transition. Once such diagrams are neglected, we
get an expansion where a factork0

2 is associated with each
fermionic line foriginating from the integration overk', as
in Eq. s79dg. Since S depends only on frequency, making
these lines fat does not change the results79d, and no self-

consistency is required. The contribution from the diagram in
Fig. 7sad contains the correlation function,

Škesi/2dQst1de−si/2dQst2dl‹ .
SlnFL

T
GD1/2

pTv−1

usinspTft1 − t2gdu
. s80d

The contribution of the diagram in Fig. 7sad to the self-
energy is then

Ssadsvd ~ k0
2SlnFL

T
GD1/2E dt

eivtT

tusinspTtdu

, ik0
2v lnF E0

maxhv,TjGSlnFL

T
GD1/2

. s81d

Here E0
−1 serves as a short-time cutoff in all integrals. The

diagram in Fig. 7sbd involves cumulants of the type,

Škesi/2dQst1de−si/2dQst2desi/2dQst3de−si/2dQst4dl‹, s82d

and gives a contribution,

Ssbdsvd ~ k0
6E dt2dt3dt4

eivt14

t12t23t34
3 FU t13t24

t12t14t23t34
U

−
1

ut12t34u
−

1

ut14t23u
G ~ v2, s83d

to the self-energy. Various other contributions are zero be-
cause some local cumulants vanish,

Škesi/2dFst1de−si/2dQst2desi/2dQst3de−si/2dFst4dl‹ = 0. s84d

Equations83d shows that contributions from higher cumu-
lants can be neglected at small frequencies. As a result, the
only essential contribution to the self-energy comes from the
diagram in Fig. 7sad and is given by Eq.s81d.

VI. THE ORDERED STATE

As we have discussed in the previous sections, the system
undergoes an antiferromagnetic transition at a temperature
much smaller than the Mott-Hubbard gapTc,mk0

2. OnceTc
becomes small, compared to the quasiparticle Fermi energy
E0, one can distinguish between metallic and insulating be-
havior. As we have demonstrated, the corresponding metal is
rather unusual, being in fact a marginal Fermi liquid. Below
Tc, however, the system becomes either an insulatorsfor zero
dopingd or an ordinary Fermi liquid. Indeed, at zero doping
the electron and hole Fermi surfaces are nested, and the or-
dering occurs at the antiferromagnetic wave vector in the
transverse directionsrecall that the chains run along thez
axisd such that

kgl,absxdl = sW ab ·M s− 1dlx+ly. s85d

Here the components ofsW are the Pauli matrices andM is
the ordering vector. In the mean-field approximation the fer-
mionic spectrum is gapped,

va
2 = fEa

Rskdg2 + g2m2uM u2, a = e,h. s86d

At nonzero doping our approach still holds, provided the
chemical potential lies inside the Mott-Hubbard gap. There is

FIG. 7. Diagrams for the quasiparticle self-energy of right-
moving electrons. The lines with arrows represent the fermionic
Green’s functions of right-moving and left-moving electrons and
holes. The 2n-point vertices denote cumulants of the matrix fieldsg
andg†.
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no nesting any longer, and the magnetic ordering does not
open a gap in the quasiparticle spectrum. As usual, the mag-
netic fluctuations interact with quasiparticles through gradi-
ent vertices, and these interactions are weak.

VII. CONCLUSIONS

The main result of this paper is a formulation of a self-
consistent description of the hybrid state of 3D quasiparticles
interacting with magnetic collective modes. The derivation is
done for a toy model of half-filled Hubbard chains weakly
coupled through a long-range interchain hopping. A certain
artificiality of the model is necessary to ensure the self-
consistency of our approach through the presence of a small
parameterk0

2. We also neglect the long-range component of
the Coulomb interaction, which plays an important role in
determining the character of the metal-insulator transition. In
reality a long-range interaction may lead to an instability of
the small FS phase, though for a small Mott-Hubbard gap its
influence is diminished by the presence of a large dielectric
constant. In this case the first-order MI transition line may
terminate below the antiferromagnetic transition line of Fig.
1.

The resulting low-energy effective theory is of the Eliash-
berg type: the interaction between quasiparticles and collec-
tive modes leads to strong retardation effects, resulting in a
strongly frequency-dependent, quasiparticle self-energy. In
the present model this takes place not just at the “hot spots”
as in the spin-fermion model of Chubukov, Pines, and

Schmalian, but on the entire quasiparticle FS. This makes the
present model a candidate for the description of bad metals.
The fact that in our model the electron self-energy is of the
marginal Fermi liquid form is not universal and is deter-
mined by the particular spin-fluctuation spectrum.

As we discussed in the Introduction, our theory provides
an example of a state where the number of carriers is unre-
lated to the volume of the FS. Though this idea is well es-
tablishedfsee, e.g., the textbooksRef. 5dg, its microscopic
realization was restricted to superconductorssthe example
given in Ref. 5d. Our model provides another example. It
also demonstrates that one does not need exotic ground states
to have a small FS, as was suggested in Refs. 20 and 21. The
small FS phenomenology can be generalized beyond our
model. In general there is noa priori reason for the Fermi
surface even to be closed; for instance, Ref. 22 describes a
state with a truncated Fermi surface observed in ARPES ex-
periments on undoped cuprates.9
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