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The muffin-tin orbitalsMTOd method has been generalized to arbitrarysNthd order in the energy expansion
of the partial waves and discrete energy meshes. This so-called NMTO method can provide energies and wave
functions in a broad energy window, with controlled errors and without increasing the size of the basis set.
Here we present the fully relativistic version of the NMTO method. Several tests of the applicability of the
method are provided for both nonmagnetic and magnetic solids.
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I. INTRODUCTION

The muffin-tin-orbital sMTOd method1 has been one of
the most popularab initio methods for calculating the elec-
tronic structure of solids. An important feature of the method
is that it uses aminimal basis set of orbitals. These are con-
structed from the exact solutions of the muffin-tinsMTd ap-
proximation to the one-electron potential. Alinear muffin-tin
orbital sLMTOd is a decaying free-particle solution found in
the interstitial region between the MT spheres and continuing
smoothly inside the spheres. Inside a sphere, it is a linear
combination of a solution of Schrödinger’s equation for the
spherical potential at a chosen energyen and itsfirst energy
derivativesTaylor approximationd.

A commonly used approach that enhances the efficiency
of the method is the so-called atomic-sphere approximation
sASAd.2,3 This approximation amounts to two conditions
that the variational basis is set to satisfy:sid all interstitial
solutions have the same kinetic energy, usually zero, andsii d
only the central part of the potential inside-space-filling
spheres is used. There have been various successful attempts
to improve the calculations beyond ASA. These attempts
range from including the so-called combined correction2,3

to solving for a nonspherical representation of the potential
in the spheres. The latter approach leads to the full potential
sFPd LMTO methods.4,5 sFor an overview of the develop-
ments around LMTO see Ref. 6 and references therein.d
FPLMTO can be close to or away from the golden ratio
of accuracy over efficiency, and this depends, of course,
on the problem of interest and the available computational
power.

A few years ago the third generation LMTOsRefs. 7–9d
sin the present paper denoted as LMTO3d method was
introduced. Within LMTO3, tails and heads have the same
en energies. Moreover, the LMTO3 screening transformation
is given by a certain boundary condition that aims to
derive maximally localized orbitals in a physically transpar-
ent way. The ideas behind LMTO3 have been subsequently
enriched and transformed to the newNth order MTO
sNMTOd method.6,10 NMTO is based on a suitable interpo-
lation scheme that goes beyond the Taylor approximation
of the LMTO and can provide basis orbitals of arbitrary
sNthd order. It can describe the band energies with high
accuracy in an energy window, the position and width

of which can be chosen at will. Using NMTO one can
obtain low-lying semicore and high unoccupied band
states without increasing the size of the basis set. Moreover,
the method can provide, through the downfolding procedure,
Wannier functions for the description of any isolated set of
bands.11

In the present paper we discuss the fully relativistic ver-
sion of the NMTOsRNMTOd method. RNMTO follows in
the steps of previous relativistic LMTO approaches,12–17 but
it is based completely on the new formalism and has the
corresponding advantages. After presenting the basic formal-
ism, we demonstrate its applicability for nonmagnetic and
magnetic solids alike. Here we restrict ourselves to the intro-
duction of the new method. Further applications, concerning,
for example, calculations of optical spectra, will be presented
elsewhere.

II. METHOD

We start by introducing two different sets of spheres. The
first set is called the Wigner-SeitzsWSd or potential spheres,
with sR being the radius of the WS sphere that surrounds a
nucleus centered at positionR. These are the standard WS
spheres used in any MT construction. The head of an
RNMTO will include the solution to the MT potential from
the center up tosR. We term this solution apartial wave. The
second set of spheres is the so-called screening or charge
spheres, and they are used to define the boundary conditions
that the interstitial solutionsftermed screened spherical
wavessSSWdg obey. As we will see below, because of the
nature of the boundary conditions, screening spheres lie in
general within thes spheres. In the region between the two
sets of spheres, we solve the free wave equation to find the
so-calledback extrapolated wave.

For a central field, solutions of the nonrelativistic
Schrödinger and the scalar-relativistic Pauli equations are
classified by the combined quantum numberL=sl ,md, where
l andm are the orbital angular momentum and itsz projec-
tion, respectively. In the absence of a magnetic field, the
solutions of Dirac’s equation for a spherical potential are
distinguished with the indexL, which is a combined quan-
tum number of the total angular momentumj and itsz pro-
jection m. More details about the Dirac equation and the
classification of its solutions can be found in Appendix A
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and, in more detail, in Refs. 18 and 19. In the following, any
object that carries anL sLd subscript refers to a nonrelativ-
istic srelativisticd quantity. Relativistic wave functions are
bispinors with upper and lower components.

A. Screened spherical waves

The interstitial solutions are solutions of the Dirac equa-
tion for the constant potentialVmtz. Their upper and lower
components are Neumann or Bessel functions, which are de-
noted bynRL and jRL, respectivelyswith the bispinors de-
noted byNRL and JRLd. From these long-rangecanonical
solutions, we construct the screened relativistic Neumann
sNRL

a d and BesselsJRL
a d functions, that satisfy the following

boundary conditions on the screening spheres with radius
aR8L8:

N1,RL
a saRLd = 1,

J1,RL
a saR8L8d = 0, ∀ aR8L8, s1d

where the subscript 1 is used to denote the upper component.
In words, a screened solution is required to have pureL
character on its own sphere and to vanish on all other
spheres. These conditions are incompatible with a set of
overlapping screening spheres, and they are satisfied through
the transformation,

NRL
a = t1NRL + t2JRL,

JRL
a = t3NRL + t4JRL. s2d

If we also impose the conditionsN1,RL8a saRLd=0 and
J2,RL8a saRLd=1 for the slopes of the upper components, we
find

Ft1 t2
t3 t4

G =
1

nl j l±1 − j lnl±13
j l±1 − nl±1

−
p

g
j l

p

g
nl 4 . s3d

In the above,g=1+E−Vmtz/c
2, p=ÎsE−Vmtzdg, and 6 is

used to distinguish the cases ofk=−l −1, l, respectively.
The canonical, relativistic Neumann functions at one site

can be expanded at another site in a spin-spherical harmonic
basis. In a complete analogy to the nonrelativistic case, it can
be shown that the radial-part dependence at any other site is
given by a linear combination of Bessel functions, and the
coefficients determine the so-called canonical, relativistic
structure constantsSR8L8,RL

0 . Formally,

NRL = − o
L8

JR8L8SR8L8,RL
0 . s4d

The SR8L8,RL
0 matrix can be obtained from the nonrelativ-

istic one sSR8L8,RL
0 d by a unitary transformation from the

L=sl ,md basis to theL=sk ,md one,

SR8L8,RL
0 = o

s=±1/2
csl8 j8;m8 − s,sdSR8L8,RL

0 csl j ;m − s,sd,

s5d

wherecsl j ;m,sd are the appropriate Clebsch-Gordan coeffi-
cients.

In analogy to the canonical case, the relativisticsbispinord
SSWCRL is given by an expansion of the form,

CRL = NRL
a dR8,R − o

L8

JR8L8
a SR8L8,RL

a . s6d

The screened relativistic structure constantsSa are then
determined through theti’s and the matrixS0,

Sa =
t1
t3

+
1

t3
S−

t4
t3

− S0D−1 1

t3
ft1t4 − t2t3g. s7d

Finally, by using Green’s second theorem, and consider-
ing the fact that the value of the lower component in all
screening spheres is given bySR8L8,RL

a , we arrive at an im-
portant relation for the overlap integral,

kCRLsE1duCR8L8sE2dl =
SRL,R8L8

a sE1d − SR8L8,RL
a sE2d

E1 − E2
. s8d

B. Partial- and back-extrapolated waves

Inside the WS spheres, one has to integrate the
Dirac equationoutward from the nucleus tosR to find the
partial waveswRLsE,r d. In the conventional LMTO, one
would then augment the tails right at the WS sphere with a
combination ofw and its energy derivativeẇ. In the third
generation MTO, however, the situation is different.
Since we have defined the boundary or screening condition
for the SSW’s on a different set of spheressthe set
of a spheresd, the augmentation will also take place on that
set. To make this possible, we integrate the Dirac equation
for a flat potentialVmtz inward from thesR to theaRL screen-
ing radius to obtain the so-calledback-extrapolated wave
wRL

0 sE,r d. As we said before, because of the nature of
the boundary condition on SSW,a spheres in general lie
within potential spheres. Forw0 we require that it matches
w at sR both for the upper and the lower components.
The wave functionsw0 and w are then normalized with the
condition that

w1,RL
0 sE,aRLd = 1, s9d

where 1 as subscript denotes again the upper component.
We define at this point therelativistic kinked partial wave

sRKPWd,

FRL = wRL − wRL
0 + CRL. s10d

By construction, the upper component ofFRL is continuous
everywhere, but its slope, or, equivalently, the value of its
lower component, has discontinuities at eachaRL sphere. The
discontinuity of theR8L8 projection ofFRL is given by the
kink matrix,
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KR8L8,RLsEd ; aRLDRL
a sEddRL,R8L8 − aR8L8SR8L8,RL

a sEd,

s11d

where

DRL
a sEd ;

1

w1,RL
0 sE,aRLd

U ]w1,RL
0 sE,rd

]r
U

aR8L8

, s12d

is the logarithmic derivative andSR8L8,RL
a sEd gives the

change in the slopeskinkd of the upper component of the
R8L8 projection of a SSWCRLsE,r d as it enters theaR8L8
sphere. Solving of the Schrödinger problem for a solid
amounts to forming the right linear combination of RKPW’s,

c = o
RL

FRLcRL, s13d

so that there is a cancellation of all kinksfKorringa-Kohn-
RostokersKKRd secular equationg,

o
RL

KR8L8,RLsEdcRL = 0. s14d

In the relativistic case, we can choose to apply the condition
that either the kinks of the upper or thediscontinuitiesof the
lower components vanish on theaRL spheres. The two ap-
proaches, must of course, give the same results. Indeed, it is
easy to showsdetails are given in Appendix Ad, that the
secular equation eliminates both the kinks of the upper and
the discontinuities of the lower components. Let us also
mention here that the choice of boundary conditions for the
screened spherical waves is largely arbitrary. The key point
is that for each set of conditions, a secular equation similar to
Eq. s14d can be constructed, so that it eliminates both kinks
and discontinuities and provides solutions to the fully rela-
tivistic sDiracd problem.

Using the fact that the kinks of the RKPW’s are related to
the K matrix, it is straightforward to find the result of the
Hamiltonian operator acting on such a function,

sĤ − EdFRLsE,r d = o
R8L8

dsrR8 − aR8L8d
VR8L8sr̂ R8d

aR8L8aR8L8
KR8L8,RL,

s15d

and from this we obtain for the Hamiltonian matrix,

kFuĤuFl = EkFuFl + K. s16d

Thus, we arrive at the important relation that the inverse of
the Kink matrix gives the Green matrixsresolventd of the
problem with a minus sign.

Likewise, by using Green’s second theorem, one can de-
duce the second important relation that provides the overlap
matrix,

kFsE1duFsE2dl =
KRL,R8L8sE1d − KR8L8,RLsE2d

E1 − E2
. s17d

C. NMTO interpolation

Up to this point, we have constructed the exactsKKRd
secular equation for each energyE. In the conventional

LMTO approach, we can proceed to linearize the problem,
i.e., to construct a variational basis by a kinked partial wave
sKPWd at a certain energyEn and its energy derivative. Such
a step leads to the relativistic version of LMTO3, which we
term RLMTO3. Its formulation can be derived in a straight-
forward manner from the steps presented above and the non-
relativistic case discussed in Refs. 7–9. We implemented
RLMTO3, and we used it for the self-consistent runs of se-
lected applications discussed below. In the present work
however, we focus on the NMTO approach. For this matter,
we will discuss a different variational basis through a suit-
able interpolation scheme, with respect to a set ofEn’s cho-
sen at energieshE0,E1, . . . ,ENj. Once again, here we will
present only the basic ideas behind NMTO; a detailed pre-
sentation can be found in Ref. 6.

Our objective is to construct, out of the energy-dependent
RKPW’s, a new set of energy-independent orbitals, which
we call the NMTO’sxRL. This set of orbitals should be a
good approximation to the original ones, in the sense that
the pole structure of their resolvent should not deviate sub-
stantially from the ones of the KPW’s. To guarantee this
feature we discuss an object that acts like an orbital, but also
carries information about the singularities of the resolvent.
We call this object thecontracted Green’s function, and it is
defined as

gRLsE,r d = o
R8L8

FR8L8sE,r dGR8L8,RLsEd, s18d

whereG;−K−1 is Green’s matrix. It is easy to verify using
Eq. s15d, that gRLsE,r d is a solution to the Dirac equation,
which is smooth everywhere, except at its ownsscreeningd
sphere. At the same time, it has the same poles as Green’s
matrix. Moreover, any other set of orbitalsxsEd that are de-
fined so that

xsNdsEdGsEd ; FsEdGsEd − o
n=0

N

FsEndGsEndAn
sNdsEd

s19d

also have contracted Green’s functions with the same
poles, provided the second term is an analyticalsin energyd
function.

The energy-independent NMTO’s are defined, if we im-
pose the condition that

xsNdsE,r d = xsNdsr d, ∀ E P hE0, . . . ,ENj. s20d

If we take theNth order divided difference of Eq.s19d
and use the condition above, we find that the NMTO’s are
given by

xsNdsr d =
DNFsr dG
Df0¯ NgS DNG

Df0¯ NgD
−1

, s21d

where

DNf

Df0¯ Ng
; ff0¯ Ng s22d

are the divided differences of a function defined with respect
to a certain mesh of discrete points. Some of the technical
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details about divided differences and interpolation schemes
are included in Appendix B of the present work, and in
greater length, in the appendixes of Ref. 6. By expanding the
divided differences of Eq.s21d we find another expression
for the NMTO’s,

xsNdsr d = o
n=0

N

FnLn
sNd, s23d

where the matricesLn are defined as

Ln
sNd ;

Gn

pmÞn

N
sEn − Emd

Gf0¯ Ng−1, s24d

and subscriptsn indicate an energyEn argument.
Here and again we see that within NMTO everything

can be found through Green’s matricesswhich themselves
are obtained from the kink matricesd and their divided
differences. The same holds true for the overlap and
Hamiltonian matricessfor a proof see Ref. 6d, which are
given as

kxsNduxsNdl = − Gf0¯ Ng−1G†f0¯ Ng‡Gf0¯ Ng−1,

s25d

and

kxsNduĤ − ENuxsNdl = − Gf0¯ Ng−1G†f0¯ N − 1g · ·N‡

3Gf0¯ Ng−1, s26d

whereG[f0¯Mg · ·N] is a Hermite divided differencessee
Appendix Bd, andG[f0¯Ng] ;G[f0¯Ng · ·N]. Because of
the interpolation, the leading error of the wave function of
energyei is of order of

DC ~ sei − E0d ¯ sei − ENd, s27d

and this is true for the whole space, i.e., inside WS spheres
and in the interstitial. The single particle energiesei them-
selves are determined with a leading error,

DE ~ sei − E0d2
¯ sei − ENd2. s28d

It is thus obvious that by choosing the right number
and positions ofEn’s we can control the error of the
method and its range of validity. In the special case
of a condensed mesh, the divided differences become deriva-
tives and one can obtain again the Taylor approximation
errors of LMTO, but with the order of the expansion chosen
at will.

D. Spin-polarized RNMTO

In the spin-polarized case, as discussed in Appendix A, a
partial wavewR has, away from the nucleus, two components
k1 andk2. Such a function carries indexesl andm, with the
m indexes omitted here for clarity. This partial wave is
integrated outward until thesR radius. Then we integrate
the free Dirac equation inward to findwR

0, which now, like-
wise, has twok components. The inward integration is
similar to the nonspin polarized case, with the initial

condition that it matches for the value of the upper and
lower parts toeachk componentof w. In other words, the
values of the radial parts ofw provide the initial boundary
conditions for the inward integration in free space. Since
the free Dirac equation does not contain a magnetic-field
term, the twok differential equations decouple, and they
are performed independently. However, unlike as in the non-
spin-polarized case, we are faced with the question of how to
match thewR,l

0 solutions, which, as we mentioned above,
have a mixedk character, to the interstitial solutionsCR,k of
single k at the a sphere. For this to become possible, we
define new solutionsfR,k

0 ,

fR,k
0 = o

l=l1,l2

NR,klwR,l
0 , s29d

with the matrixN chosen so that

f1,kk8
0 saRd = dk,k8. s30d

The matrixN is then given by

NR,kl = GR,lk
−1 , GR,lk =Fw1,l1k1

0 saRd w1,l1k2

0 saRd

w1,l2k1

0 saRd w1,l2k2

0 saRd G .

s31d

In the above,f1,kk8
0 and w1,lk8

0 denote thek8 component of
the upper part of thefk

0 andwl
0, respectively. With this gen-

eralized normalization, the upper components offk
0 can be

matchedskd channel-by-channel to aCk, as far as the value
is concerned. However, there are still kinks in bothk chan-
nels that have to be canceled. The kink thatwk

0 has in thek8
channel is given by

DR,kk8 − SRk,Rk8, s32d

where

DR,kk8 = o
l

NR,klGR,lk8
8 . s33d

In the aboveG8 is the matrix of radial derivatives corre-
sponding toG. The main difference with respect to the non-
spin-polarized case is the fact that the previously diagonal,
logarithmic, derivative contribution to the kink matrix has
itself become a matrix. Otherwise the situation is completely
equivalent, and this means that once we construct the
appropriate kink matrices corresponding to Eq.s32d, we can
apply the same interpolation NMTO scheme, through the
introduction of contracted Green’s functions and their
divided differences.

III. APPLICATIONS

In this section we present the results for selected applica-
tions of the formalism discussed above. First, we study the
nonmagnetic semiconductors GaAs and InSb. Second, and as
a test of the spin-polarized case, we present the band struc-
ture of bcc Fe andd-Pu. Since the purpose of the present
work is to demonstrate the accuracy and applicability of the
new, relativistic NMTO method, we focus on numerical
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comparisons of our RNMTO results with the results from
other relativistic approaches. In all cases we use the local-
denisity approximationsLDA d functional of Hedin and
Lundqvist,20 without any relativistic corrections for the de-
scription of exchange and correlation. To fulfill the space-
filling requirement, empty spheres are introduced whenever
necessary.

A. Non-spin-polarized

We start our applications with the broadband semiconduc-
tor GaAs. Even for the relatively light elements Ga and As,
relativistic effects, e.g., spin-orbit splittings, are not negli-
gible. The RNMTO band structure of GaAs in its equilib-
rium, zinc-blende phase is given in Fig. 1. We use the ex-
perimental lattice constant of 5.654 Å and a potential
generated by RLMTO3 with Ga 4s4p3d, As 4s4p4d as va-
lence states. For the band calculations with RNMTO, As-f
states are also included in the orbital set. For the empty
spheres we includespdorbitals, with thep andd treated as
intermediate and downfolded. In generating the potential one
generally makes a choice of which levels to treat as core
states, and this is the meaning of the main quantum numbers
appearing in the description of valence states. It must be
stressed, however, that the main quantum numbers are not an
input to the NMTO-band calculation; rather, the correspond-
ing continuous numberPn is determined for a given potential
by the selection ofEn’s. One of the strengths of NMTO is
that it can treat with a single diagonalization hybridization
effects that correspond to successive atomic levels. In the
case of GaAs, our secular matrix can describe hybridization
with the semicore Ga 3d states, as well as with high-lying Ga
4d states.

In Table I we present a quantitative comparison between
different calculations that demonstrate the applicability of
RNMTO. The comparison is performed for a selection of
high-symmetry points and their corresponding levels, the
symbols of which are given in column 1. In column 2 we
present the results of a relativistic-panel-LMTO-ASA calcu-

lation obtained by Bachelet and Christensen21 using the LDA
functional of Ceperley and Adler as parametrized by Perdew
and Zunger. Column 3 has the results of a relativistic full
potential KKR method sRFKKRd by BeiderKellen and
Freeman,22 using the LDA functional of Hedin-Lundqvist. In
column 4s5d we present the results obtained with RNMTO
and with 2 s3d En’s chosen at −14.75 eV, −1.14 eV
s−14.75 eV,−6.58 eV,0.22 eVd, respectively. The zero of
the energy scale is chosen at the valence-band maximum
sVBM d found atG15v.

We have chosen to compare our results to those of panel
LMTO and KKR, since these methods obtain band energies
with minimal errors throughout the band spectrum. As one
can deduce from the results in Table I, RNMTO can provide
energies with a similar level of accuracy and still retain a
small basis set. The small discrepancies with respect to
RFKKR, more pronounced for higher orders of representa-
tion, can be explained because of the use of spherical poten-
tials within the WS spheres. One particular feature to be
mentioned is the value of the gaps0.12 eVd, which is in
excellent agreement with the result of RFKKR. Of course
this value is not close the experimental ones<1.42 eVd, but
this discrepancy is based on a well-known deficiency of the
local density approximation. It should be pointed out that
this value for the gap can be found only if the Ga 3d semi-
core states are included as valence states both in the creation
of the potential and also in a single secular matrix. If one
generates the potential with Ga 3d treated as core states, or if
one uses different panels for the 3d energy range and the
VBM range, then the calculated gap is 0.25 eV. The latter
scenario explains the discrepancy of the gap between column
2 and the other columns,23

It is also notable that RNMTO is in good agreement with
RFKKR, even for high unoccupied states, such asG15c, X1c,
X3c, and especiallyL3c. From inspection of the bands in Fig.
1, we conclude that this agreement persists for states at least
up to <7 eV above the Fermi level and for all high-
symmetry lines. As a matter of fact, the range and degree of
agreement can be adjusted at will by choosing the appropri-

FIG. 1. RNMTO band struc-
ture of GaAs. The number and po-
sitions of En’s are shown on the
right of the figure. Zero is chosen
at the Fermi level.
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ate number and positions forEn’s. We see by comparing the
last two columns that the inclusion of one extraEn at an
unoccupied level has brought the results of column 5 in sig-
nificantly closer agreement to KKR, with respect to those of
column 4.

As a second application of our RNMTO, we have
chosen InSb. The band structure of InSb in its equilibrium,
zinc-blende phase is given in Fig. 2. We have used the
experimental lattice constant of 6.478 Å and the potential
generated self-consistently using RLMTO3 with In

TABLE I. Energy levels of GaAssin eVd at G, X, and L.

Level RLMTOa RFKKRb RNMTOc RNMTOd

G1v −12.85 −12.94 −12.87 −12.87

G15v h−0.36

0.00j −0.35 −0.35 −0.35

0.00 0.00 0.00

G1c 0.25 0.12 0.13 0.14

G15c h3.46

3.66j 3.48 3.43

3.69 3.63

X1v −10.49 −10.42 −10.35 −10.37

X3v −7.06 −7.02 −6.96 −6.98

X5v h−2.90

−2.83j −2.88 −2.83 −2.84

−2.79 −2.75 −2.75

X1c 1.05 1.17 1.24 1.24

X3c 1.28 1.39 1.44 1.43

L1v −11.20 −11.18 −11.09 −11.11

L1v −6.94 −6.83 −6.81 −6.82

L3v h−1.39

−1.18j −1.38 −1.31 −1.30

−1.17 −1.10 −1.09

L1c 0.67 0.71 0.66 0.66

L3c h4.38

4.46j 4.56 4.36

4.67 4.45

aPanel LMTO, Ref. 21.
bRelativistic full potential KKR, Ref. 22.
cRNMTO, 2 Ev’s at −14.75 eV and −1.14 eV.
dRNMTO, 3 Ev’s at −14.75 eV, −6.58 eV, and 0.22 eV.

FIG. 2. RNMTO band struc-
ture of InSb. The number and po-
sitions of En’s are shown on the
right of the figure. Zero is chosen
at the Fermi level.
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5s5p4d4f s4f downfoldedd, Sb 5s5p5d4f s5d4f down-
foldedd, andspdfor the empty spheresspd downfoldedd. The
same set of orbitals was chosen for the band calculations
using RNMTO.

The results from our own calculations for certain
levels are again compared with those of RFKKR22 in Table
II. Column 2 has the results of RFKKR, and column 3s4d
the RNMTO results with 2s4d En’s at −13.32 eV and
−1.07 eV s−13.32 eV, −6.52 eV, −1.07 eV, and 3.01 eVd.
This comparison reinforces the validation of our approach.
Especially when the spectrum is considered as a whole,
the advantage of RNMTO becomes apparent in providing
even the high unoccupied states such asG15c and L3c.
We should once again point out that the poor value of the
gap obtainedsfor InSb it is even negative, −0.74 eVd in
these calculations can be traced to the deficiencies of
LDA, and just as for GaAs, no effort to correct it was
undertaken.

B. Spin-polarized

The first test case for our spin-polarized RNMTOsSRN-
MTOd is ferromagnetic, bcc Fe. The lattice constant used is
2.861 Å and the valence-state orbital set consists ofspdor-
bitals. The spin-polarized potential was obtained with a

scalar-relativistic tight-binding sTBd LMTO-ASA code,
which gave a magnetic moment of 2.23mB. With this poten-
tial we have calculated the band structure with the magneti-
zation along thef001g direction. A detail of the band struc-
ture around theG point, and close to the Fermi level, is given
in Fig. 3. Since Fe is not a particularly heavy metal, its band
structure is almost the same as a superposition of the major-
ity and minority bands from a standard nonrelativistic calcu-
lation. The inclusion of spin-orbit effects alters the nonrela-
tivistic bands only slightly by providing extra anticrossing
features, as shown in Fig. 3. This picture compares very well
with the one obtained by Lovattet al.24 using a non-self-
consistent, full-potential KKR method. We see that in the
presence of a magnetic field, all degeneracies, including time
reversal, are lifted at the high-symmetry points.sThere is
indeed a very small splitting for point P.d Even though the
apparent splittings are very small, they play a defining role
for interesting properties such as magnetocrystalline aniso-
tropy, magnetic dichroism, and the optical Kerr effect. In
particular, for the latter optical properties, SRNMTO can
provide a useful tool to obtain the spectra, even for states
that lie high above the Fermi level.

As a second test for SRNMTO, we have used the case of
d-Pu. Thed phase of Pu corresponds to an fcc structure, and
it is one of the Pu phases found at high temperatures. In Fig.

TABLE II. Energy levels of InSbsin eVd at G, X, and L.

Level RFKKRa RNMTOb RNMTOc

G25v h−15.15

−14.34j −15.21 −15.24

−14.41 −14.42

G12v −14.26 −14.38 −14.38

G1v −11.05 −10.97 −10.97

G15v h−0.77

0.00j −0.77 −0.77

0.00 0.00

G1c −0.66 −0.74 −0.74

G15c h2.39

2.83j 2.48 2.38

2.97 2.83

X1v −9.05 −8.97 −8.97

X3v −6.24 −6.15 −6.17

X5v h−2.67

−2.49j −2.59 −2.59

−2.41 −2.41

X1c 0.91 1.06 1.04

X3c 0.94 1.07 1.04

L1v −9.68 −9.57 −9.59

L1v −5.93 −5.88 −5.89

L3v h−1.53

−1.05j −1.44 −1.44

−0.95 −0.95

L1c 0.15 0.09 0.09

L3c h3.33

3.51j 3.91 3.40

4.22 3.59

aRelativistic full potential KKR, Ref. 22.
bRNMTO, 2 Ev’s at −13.32 eV and −1.07 eV.
cRNMTO, 4 Ev’s at −13.32 eV, −6.52 eV, −1.07 eV, and 3.01 eV.
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4 we give a detail of the band structure calculated at a lattice
constant of 4.63 Å withspdf orbitals included. The spin-
polarized potential was again taken from a nonrelativistic
calculation using TB-LMTO-ASA and the magnetization
points along thef001g axis. In generating the potential the
spin-orbit coupling was included self-consistently at the
variational step. The detail given here is in excellent agree-
ment with the bands obtained by Solovyevet al.,17 using a
self-consistent, spin-polarized, relativistic version of LMTO-
ASA. In particular the figure shows the big magnetocrystal-
line anisotropy along theGX andGZ directions. These direc-
tions would be otherwise equivalent in the nonrelativistic or
the nonmagnetic case.

The physical properties of different phases of Pu have
attracted considerable attention in the last few years. As we

mentioned before, it is not the aim of the present paper to
dwell on such interesting properties related to correlated phe-
nomenassee for example Ref. 25 and references thereind.
Also, a highly accurate description of Pu and similar
structures entails self-consistent calculations based on a full-
potential scheme and inclusion of orbital polarization
and spin disorder.26 The development of such a scheme,
however, lies outside the scope of the present work,
which has as a well-defined task: the discussion of the rela-
tivistic version of the third generation LMTO and NMTO
methods. In this respect, we have usedd-Pu as a typical
example of a narrow-band system, where a set ofEn’s
can be chosen to obtain the bands ranging from the low-lying
6p states to states high above the Fermi level. It must
be pointed out that the proper switching behavior in NMTO

FIG. 3. Detail of the SRN-
MTO band structure of ferromag-
netic bcc Fe with magnetization
along thef001g axis. Zero is cho-
sen at the Fermi level.

FIG. 4. SRNMTO band struc-
ture of ferromagneticd-Pu with
magnetization along thef001g axis
sin units of 2p /ad. En’s at
−26.25 eV, −20.12 eV, −4.49 eV,
and 4.35 eV. Zero is chosen at the
Fermi level.
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from one level to the other depends on the selection ofEn’s.
They must be positioned within a reasonable range of the
band sor bandsd to be described. It is therefore clear that
more caution is to be exercised in the case of a narrow-band
system, in order to avoid wrong switching behavior between
different levels. Similarly, caution is needed also in the se-
lection of the augmentationsscreening sphered radii.6 In case
of switching problems, the procedure of downfolding,
which has been used in previous approaches of LMTO and
has been adopted easily in RNMTO as well, can provide a
solution.

IV. SUMMARY

In the present paper we discussed the fully relativistic
version of the NMTO method. The formalism is a rather
straightforward generalization of the nonrelativistic one
discussed recently by Andersen and co-workers. At the
same time, the current paper provides the necessary steps
for a relativistic version for the earlier-developed third
generation LMTO. All the important quantities can be
expressed using the relativistic kink matrices, through which
the matching conditions on the screening spheres is
defined. The applicability of the method has been demon-
strated through a series of examples. First, we used as
test cases two broadband semiconductors, GaAs and InSb.
For the spin-polarized case, we obtained the band structures
of bcc Fe andd-Pu. The advantage of NMTO in describing
the bands accurately in a broad-energy range is clearly
established.
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APPENDIX A: DIRAC EQUATION SOLUTIONS

1. No magnetic field

The Dirac Equation has the form

Ĥ0C = EiC, sA1d

where

Ĥ0 = ca ·p + sb − I4dmc2 + Vsr dI4, sA2d

and

a = S0 s

s 0
D, b = SI2 0

0 − I2
D , sA3d

with s being the vector of the Pauli matrices. In a central

field, the Dirac HamiltonianĤ0 commutes with the following
operators:

fH0,J
2g = 0, fH0,Jzg = 0, fH0,S

2g = 0, fH0,Kg = 0,

sA4d

where JsSd is the total sspind angular momentum, andK
=bss ·L +1d.

Based on the commutation relations of Eq.sA4d, the so-
lution of the Dirac Equation in a central field has the form of

FLsE,r d = F gksE,rdVkmsr̂ d
i f ksE,rdV−kmsr̂ d

G, L = sk,md. sA5d

In the above, thek’s assume the following values:

k = H− l − 1 for j = l + 1/2

l for j = l − 1/2
J, k = ± 1, ± 2, ± 3, . . . ,

sA6d

and j ,m are the quantum numbers ofJ and itsz projection,
respectively.

The spin-spherical harmonicsVkm are defined as

Vkmsr̂ d = o
s=±1/2

cSl j
1

2
;m − s,sDYl,m−ssr̂ dws, sA7d

wherews are the spin functions,Yl,m are the spherical har-
monics, andcsl j 1

2 ;m−s ,sd are the Clebsch-Gordan coeffi-
cients for spin1

2.
The radial partsgksE,rd, fksE,rd satisfy a set of differen-

tial equations,

dgk

dr
= −

1 + k

r
gk − F1 +

E − Vsrd
c2 Gcfk, sA8d

c
dfk

dr
= −

1 − k

r
cfk + fE − Vsrdggk, sA9d

and certain initial conditions,

XgksE,rd
fksE,rd

C ~ AraX1

q
C , sA10d

where

a = − 1 + fk2 − s2Z/cd2g1/2, q =
c

2Z
sk + 1 +ad.

sA11d

If we have an empty spheresZ=0d, then the initial condition
is

XgksE,rd
fksE,rd

C ~ A_ r l

k + 1 + l

cg
r l−1+, g = 1 +

E − Vs0d
c2

sA12d

2. With magnetic field

In the presence of a magnetic fieldsexternal+ internald,
only m remains a good quantum number and the solutions to
the Dirac Equation are given by
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FlmsEd = o
k=k1,k2

S gklmsEdVkm

i f klmsEdV−km
D . sA13d

The radial partsgksE,rd, fksE,rd satisfy a set of differen-
tial equations,

S d

dr
+

1 + k

r
Dgk − F1 +

E − Vsrd
c2 Gcfk

=
Bsrd
c2 o

k8

k− kmuszu − k8mlcfk8, sA14d

S d

dr
+

1 − k

r
Dcfk − fE − Vsrdggk = Bsrdo

k8

kkmuszuk8mlgk8.

sA15d

In general, the last terms in the above set of equations
couple anyk solutions to any otherk8. However, using a
standard approximation, we retain only terms that couple the
two k’s ssayk1,k2d and that correspond to the samel. Then a
way of defining linearly independentl solutions is to apply
the initial condition that al1 sl2d solution has only ak1 sk2d
component close to the nucleus.

3. Relation of kinks to discontinuities

Let SR8L8,RL
a denote the valuestimes the velocity of light

cd of the lower component ofNRL
a on theaRL sphere. Let also

TR8L8,RL
a denote the slope of the upper component ofNRL

a on
the aRL sphere. For the freefVsrd=0g Dirac equation we
have

cfsaRLd =
1

g
Fg8saRLd +

1 + k

aRL

gsaRLdG , sA16d

and therefore,

sA17d

If we impose the conditions N1,RL
a8 saRLd=0 and

J1,RL
a8 saRLd=1, then the matrixSR8L8,RL

a will give at the same
time both the slope of the upper component and the value of
the lower component of theL8 projection of a relativistic
SSW CRL on the aR8L8 sphere, with only a diagonal-term
difference between the two and a scaling factorg<1. The
diagonal term can be combined with the value of the lower
component of the partial wavew to lead to the so-called
relativistic logarithmic derivative,12–15,19

DksEd = sc
fksE,sd
gksE,sd

− k − 1. sA18d

It is thus clear that the secular Eq.s14d eliminates both the
kinks of the upper components and the discontinuities of the
lower components.

APPENDIX B: INTERPOLATION THROUGH DIVIDED
DIFFERENCES

Given a function fsed and a discrete set of points
hem,em+1, . . . ,en,en+1, . . . ,eNj, the divided differences off
are defined by the following:

ffm,m+ 1, . . . ,n + 1g ;
ffm, . . . ,ng − ffm+ 1, . . . ,n + 1g

em − en+1
,

sB1d

wheremøn and ffm,mg; fsemd. The approximating poly-
nomial of orderN that has the same values as functionfsed
on a set of pointshe0,e1, . . . ,eNj is given by

f sNdsed = o
M=0

N

ff0¯ Mg p
n=0

M−1

se − end. sB2d

If we expand the right side of Eq.sB1d we obtain
the important relationsLagrange form of the divided
differencesd,

ff0¯ Mg = o
n=0

M
fn

pm=0,Þn

M
sen − emd

. sB3d

For the product of the two functionsfsed andgsed defined
on the same mesh of points, we obtain, by using Eq.sB3d,
the binomial formula,

sfgdf0¯ Ng = o
M=0

N

ff0¯ MggfM ¯ Ng. sB4d

It is easy to show that for a mesh that condenses around a
certain pointen, the Newton interpolation is equivalent to a
Taylor expansion of the same order.

Another interpolating scheme is the so-calledHermite in-
terpolation. In this case, the approximating polynomial
matches not only the values of a functionf at certain points
heij, but also the derivatives off. Given the values at a set
he0, . . .eNj and the slopes at its subsethe0, . . .eMj the Hermite
interpolating polynomial is given by

f sN+M+1dsed = o
n=0

M H fn + F ḟ n − fnS o
m=0,Þn

M
2

en − em

+ o
m=M+1

N
1

en − em
DGsen − emdJln

sMdsedln
Nsed

+ o
n=M+1

N

fnln
sM+1dsedln

Nsed, sB5d

where
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ln
Nsed ; p

m=0,Þn

N
e − em

en − em
. sB6d

The coefficient corresponding fromf sN+M+1dsed to the highest
power of e defines theHermite divided differences, which
can be expressed through the Newton divided differences as

ffs0¯ Mg · ·Nd

= o
n=0

N

o
n8=0

M
ffn,n8g

pm=0,Þn

N
sen − emdpm8=0,Þn8

M
sen8 − em8d

.

sB7d

In Eq. sB7d the special casen→n8 means that the corre-
sponding divided difference becomes the derivative.
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