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Relativistic Nth order muffin-tin orbital theory
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The muffin-tin orbital(MTO) method has been generalized to arbitréyh) order in the energy expansion
of the partial waves and discrete energy meshes. This so-called NMTO method can provide energies and wave
functions in a broad energy window, with controlled errors and without increasing the size of the basis set.
Here we present the fully relativistic version of the NMTO method. Several tests of the applicability of the
method are provided for both honmagnetic and magnetic solids.
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[. INTRODUCTION of which can be chosen at will. Using NMTO one can
obtain low-lying semicore and high unoccupied band
The muffin-tin-orbital(MTO) method has been one of states without increasing the size of the basis set. Moreover,
the most populaab initio methods for calculating the elec- the method can provide, through the downfolding procedure,
tronic structure of solids. An important feature of the methodWannier functions for the description of any isolated set of
is that it uses aninimal basis set of orbitals. These are con- bands'!
structed from the exact solutions of the muffin-tMT) ap- In the present paper we discuss the fully relativistic ver-
proximation to the one-electron potentialliAear muffin-tin ~ sion of the NMTO(RNMTO) method. RNMTO follows in
orbital (LMTO) is a decaying free-particle solution found in the steps of previous relativistic LMTO approach&s; but
the interstitial region between the MT spheres and continuingt is based completely on the new formalism and has the
smoothly inside the spheres. Inside a sphere, it is a lineasorresponding advantages. After presenting the basic formal-
combination of a solution of Schrddinger’s equation for theism, we demonstrate its applicability for nonmagnetic and
spherical potential at a chosen enekgyand itsfirst energy  magnetic solids alike. Here we restrict ourselves to the intro-
derivative (Taylor approximatioh duction of the new method. Further applications, concerning,
A commonly used approach that enhances the efficiencfor example, calculations of optical spectra, will be presented
of the method is the so-called atomic-sphere approximatioelsewhere.
(ASA).23 This approximation amounts to two conditions
that the variational basis is set to satisfi): all interstitial
solutions have the same kinetic energy, usually zero,(&hd
only the central part of the potential inside-space-filling We start by introducing two different sets of spheres. The
spheres is used. There have been various successful attemfitst set is called the Wigner-Seit#VS) or potential spheres,
to improve the calculations beyond ASA. These attemptsvith sz being the radius of the WS sphere that surrounds a
range from including the so-called combined correctfon nucleus centered at positidd. These are the standard WS
to solving for a nonspherical representation of the potentiakpheres used in any MT construction. The head of an
in the spheres. The latter approach leads to the full potentid@NMTO will include the solution to the MT potential from
(FP) LMTO methods*® (For an overview of the develop- the center up teg. We term this solution gartial wave The
ments around LMTO see Ref. 6 and references thereinsecond set of spheres is the so-called screening or charge
FPLMTO can be close to or away from the golden ratiospheres, and they are used to define the boundary conditions
of accuracy over efficiency, and this depends, of coursethat the interstitial solutiondtermed screened spherical
on the problem of interest and the available computationalvaves(SSW] obey. As we will see below, because of the
power. nature of the boundary conditions, screening spheres lie in
A few years ago the third generation LMT@efs. 7-9  general within thes spheres. In the region between the two
(in the present paper denoted as LMTO®ethod was sets of spheres, we solve the free wave equation to find the
introduced. Within LMTO3, tails and heads have the sameso-calledback extrapolated wave
€, energies. Moreover, the LMTO3 screening transformation For a central field, solutions of the nonrelativistic
is given by a certain boundary condition that aims toSchrédinger and the scalar-relativistic Pauli equations are
derive maximally localized orbitals in a physically transpar-classified by the combined quantum number(l,m), where
ent way. The ideas behind LMTO3 have been subsequentlyandm are the orbital angular momentum and 4tgrojec-
enriched and transformed to the neMth order MTO tion, respectively. In the absence of a magnetic field, the
(NMTO) method®1° NMTO is based on a suitable interpo- solutions of Dirac’s equation for a spherical potential are
lation scheme that goes beyond the Taylor approximatiomlistinguished with the index, which is a combined quan-
of the LMTO and can provide basis orbitals of arbitrary tum number of the total angular momentynand itsz pro-
(Nth) order. It can describe the band energies with highiection u. More details about the Dirac equation and the
accuracy in an energy window, the position and widthclassification of its solutions can be found in Appendix A
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and, in more detail, in Refs. 18 and 19. In the following, an - rireor_ S
object that carries ah (A) subscript refers to a nonrel%ttiv-y St F%mc(l w0 S lliin o0,
istic (relativistico quantity. Relativistic wave functions are 5)
bispinors with upper and lower components.
wherec(lj ;m, o) are the appropriate Clebsch-Gordan coeffi-
cients.
In analogy to the canonical case, the relativighispinon
The interstitial solutions are solutions of the Dirac equa-SSWW¥y, is given by an expansion of the form,
tion for the constant potential,,, Their upper and lower
components are Neumann or Bessel functions, which are de- Wra = Ny Sk g = 2 JaarSirar ra- (6)
noted byng, and jg., respectively(with the bispinors de- A
noted byNg, and Jg,). From these long-rangeanonical
solutions, we construct the screened relativistic Neuman
(N}, and BesselJg,) functions, that satisfy the following

A. Screened spherical waves

The screened relativistic structure constaBtsare then
Qetermined through thg's and the matrix3,

boundary conditions on the screening spheres with radius t, 1/ t -9
agrpre Sa:_l"'_ __4_§) _[t1t4_t2t3]. (7)
t; t3\ tg ts
N§ gr(@ry) = 1, Finally, by using Green’s second theorem, and consider-

ing the fact that the value of the lower component in all
screening spheres is given @,A,’RA, we arrive at an im-

Jra@ra) =0, Dara, (D) portant relation for the overlap integral,
where the subscript 1 is used to denote the upper component. S ra(ED) = Sha ma(BE2)
In words, a screened solution is required to have pire (PrA(E)|[Pra(Ep)) = ’ ’ . (8)

character on its own sphere and to vanish on all other Sl

spheres. These conditions are incompatible with a set of
overlapping screening spheres, and they are satisfied through B. Partial- and back-extrapolated waves
the transformation,
Inside the WS spheres, one has to integrate the
NE&, = t;Ngry + todra, Dirac equationoutward from the nucleus tesg to find the
partial wavesgg,(E,r). In the conventional LMTO, one
would then augment the tails right at the WS sphere with a
JRa = t3NRa + tadRrs - (20 combination ofe and its energy derivative. In the third
generation MTO, however, the situation is different.
If we also impose the conditiondN;&,\(aga)=0 and  Since we have defined the boundary or screening condition
JyRa(@ra) =1 for the slopes of the upper components, wefor the SSW’s on a different set of spheréthe set

find of a spheres the augmentation will also take place on that
set. To make this possible, we integrate the Dirac equation
Jl+1 — N for a flat potentialV,,,, inward from the s to theag, screen-
[tl tz} _ 1 0. p (3)  ing radius to obtain the so-calledack-extrapolated wave
t3 4 Njeg = JiN+1 —;j| ;n| ' gogA(E,r). As we said before, because of the nature of

the boundary condition on SSV4 spheres in general lie
_ B > e o : within potential spheres. Fap® we require that it matches
In the above,y=1+E-Vp/C’, p=Y(E=Vmy)y, and £ is ¢ at sg both for the upper and the lower components.

used to dlst|ngwsh the. qas_es;ot—l -1, respecuvely. . The wave functions,® and ¢ are then normalized with the
The canonical, relativistic Neumann functions at one site

o . . condition that

can be expanded at another site in a spin-spherical harmonic

basis. In a complete analogy to the nonrelativistic case, it can (P(l),RA(EvaRA) =1, (9)

be shown that the radial-part dependence at any other site is

given by a linear combination of Bessel functions, and thewhere 1 as subsc_ript Qenotes a_g«_’:lin th(_a upper component.
coefficients determine the so-called canonical, relativistic We define at this point theelativistic kinked partial wave

structure constanlS%,A,]RA. Formally, (RKPW),
Dy = @ra ~ 00 + PR (10

By construction, the upper component®g, is continuous

, i . everywhere, but its slope, or, equivalently, the value of its
The S}, gy Matrix can be obtained from the nonrelativ- |oyer component, has discontinuities at eagh sphere. The

istic one (S;,, g) by a unitary transformation from the discontinuity of theR’A’ projection ofdg, is given by the

L=(l,m) basis to theA=(«, u) one, kink matrix

NRA:_E'JR’A'$’A’,RA' (4)
A
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Krrar ra(E) = agaDRA(E) Sra rrar — Arrar Sy ar ra(E)s LMTO approach, we can proceed to linearize the problem,
’ ’ ‘ i.e., to construct a variational basis by a kinked partial wave
(11) (KPW) at a certain energk, and its energy derivative. Such
a step leads to the relativistic version of LMTO3, which we
term RLMTQOS. Its formulation can be derived in a straight-
forward manner from the steps presented above and the non-
relativistic case discussed in Refs. 7-9. We implemented
RLMTOS, and we used it for the self-consistent runs of se-
is the logarithmic derivative anc%’A’,RA(E) gives the lected applications discussed below. In the pregent work
change in the slopékink) of the upper component of the however, we focus on the NMTO approach. For this matter,
R'A’ projection of a SSWWg,(E,r) as it enters theg,,  We Will discuss a different variational basis through a suit-
sphere. Solving of the Schrédinger problem for a solig@pPle interpolation scheme, with respect to a se 8 cho-

amounts to forming the right linear combination of RKPW's, S€N at energiesE,, Ey, ... ,Eyj. Once again, here we wil
present only the basic ideas behind NMTO; a detailed pre-

=, OrACrA, (13)  sentation can be found in Ref. 6.

RA Our objective is to construct, out of the energy-dependent
RKPW’s, a new set of energy-independent orbitals, which
we call the NMTQO’s ygx. This set of orbitals should be a
good approximation to the original ones, in the sense that
> Kra'ra(E)Cra = 0. (14)  the pole structure of their resolvent should not deviate sub-
RA stantially from the ones of the KPW’s. To guarantee this
I{eature we discuss an object that acts like an orbital, but also
carries information about the singularities of the resolvent.

lower components vanish on tfa, spheres. The two ap- We call this object theontracted Green’s functigrand it is
proaches, must of course, give the same results. Indeed, it gsefmed as

easy to show(details are given in Appendix JA that the - . N

secular equation eliminates both the kinks of the upper and rra(ET) R%, Pra(ENCrv (B, (18)

the discontinuities of the lower components. Let us also

mention here that the choice of boundary conditions for thevhereG=-K™ is Green's matrix. It is easy to verify using
screened spherical waves is largely arbitrary. The key poinEd. (15), that y,(E,r) is a solution to the Dirac equation,

is that for each set of conditions, a secular equation similar tavhich is smooth everywhere, except at its o(gereening

Eq. (14) can be constructed, so that it eliminates both kinkssphere. At the same time, it has the same poles as Green’s
and discontinuities and provides solutions to the fully rela-matrix. Moreover, any other set of orbitg{$E) that are de-

where

1 93 ra(E.T)
()D(J?,RA(E!aRA) ar aRrp’

ra(E) = . (12

so that there is a cancellation of all kink€orringa-Kohn-
Rostoker(KKR) secular equatioip

In the relativistic case, we can choose to apply the conditio
that either the kinks of the upper or théscontinuitiesof the

tivistic (Dirac) problem. fined so that
Using the fact that the kinks of the RKPW's are related to N
the K matrix, it is straightforward to find the result of the N(EYG(E) = (E)GE) - S O&(ENGEIAN(E
Hamiltonian operator acting on such a function, XT(EGE) (BYG(E) nzzo (ENG(E)A(E)
~ Qra(Pr) (19
(H_E)QRA(E,I'): E 5(rRr _aR/Ar)—KRrAr,RA, . .
R'A’ AR/ AR A also have contracted Green’s functions with the same
(15) poles, provided the second term is an analytigalenergy
function.
and from this we obtain for the Hamiltonian matrix, The energy-independent NMTO’s are defined, if we im-
- pose the condition that
(P|H|D) = E(D|D) + K. (16)
XNVEN)=xN(r), DEe{E, ... Ed. (20
Thus, we arrive at the important relation that the inverse of o }
the Kink matrix gives the Green matriftesolvent of the If we take theNth order divided difference of Eq19)
problem with a minus sign. and use the condition above, we find that the NMTO's are
Likewise, by using Green's second theorem, one can dediven by
duce the second important relation that provides the overlap () = AN(D(I.)G< ANG )-1 21
matrix, X “A[0--N]\A[0---N])
K ! !(E ) - K TAT (E )
(PEY|DE) =~ — . (17)  where
17 B2
ANf
S —f[0--N] (22
C. NMTO interpolation A[0---N]

Up to this point, we have constructed the ex&8¢KR) are the divided differences of a function defined with respect
secular equation for each ener@y In the conventional to a certain mesh of discrete points. Some of the technical
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details about divided differences and interpolation schemesondition that it matches for the value of the upper and
are included in Appendix B of the present work, and inlower parts toeach x componenof ¢. In other words, the
greater length, in the appendixes of Ref. 6. By expanding thealues of the radial parts af provide the initial boundary
divided differences of Eq(21) we find another expression conditions for the inward integration in free space. Since
for the NMTO's, the free Dirac equation does not contain a magnetic-field
term, the twox differential equations decouple, and they

YN = % oL (23) are performed independently. Howe_ver, unlike as in the non-
o spin-polarized case, we are faced with the question of how to
match thecpg’x solutions, which, as we mentioned above,
where the matricek,, are defined as have a mixed« character, to the interstitial solutiofsg , of
G single k at thea sphere. For this to become possible, we
LLN) = N—“G[o--- N] 2, (24) define new solutionaﬁgm,
Hm#:n (En - Em) 0 0
$re= 2 Neara (29)
and subscripts indicate an energ¥, argument. A=NpAp

Here and again we see that within NMTO everything,yith the matrixN chosen so that
can be found through Green’s matric@shich themselves
are obtained from the kink matricesind their divided ¢2KK,(aR):5K,K/. (30)
differences. The same holds true for the overlap and ’
Hamiltonian matricesfor a proof see Ref. )6 which are  The matrixN is then given by

given as 0 0
1 (Pl’)‘lKl(aR) @1,)\1K2(aR)
(X™xX™) == GlO---NJ"*GI[0--- N]]G[0--- NI ™, Nro=Grie  Grax=| o 0 :
PLan (@R @10, (8R)
(25
q (31)
an
In the above,¢2’KK, and cpSM, denote thex’ component of

OMIH - Eglx™) = - G[0---NTIG[[0---N-1] - -N] the upper part of the? and ¢?, respectively. With this gen-
XG[0- - NJ ™. (26) eralized normalization, the upper componentsgifcan be
' matched(x) channel-by-channel to ¥,, as far as the value
where G[[0---M]- -N] is a Hermite divided differencésee is concerned. However, there are still kinks in batlchan-
Appendix B, andG[[0---N]J]=G[[0---N]- -N]. Because of nels that have to be canceled. The kink thftas in thex’
the interpolation, the leading error of the wave function ofchannel is given by
energyse; is of order of

DR,KK’ - S?K,Rk'i (32)
Ay (6 —Eg) -+~ (~Ep), (27) where
and this is true for the whole space, i.e., inside WS spheres ,
and in the interstitial. The single particle energiesthem- DR’ = 2 NraGpyr- (33
selves are determined with a leading error, A
Ap = (& = Eg)?+ (& — Ey)2. (28) In the aboveG’ is the matrix of radial derivatives corre-

sponding toG. The main difference with respect to the non-
It is thus obvious that by choosing the right numberspin-polarized case is the fact that the previously diagonal,
and positions ofE,’s we can control the error of the logarithmic, derivative contribution to the kink matrix has
method and its range of validity. In the special caseitself become a matrix. Otherwise the situation is completely
of a condensed mesh, the divided differences become derivaquivalent, and this means that once we construct the
tives and one can obtain again the Taylor approximatiorappropriate kink matrices corresponding to E2p), we can
errors of LMTO, but with the order of the expansion chosenapply the same interpolation NMTO scheme, through the
at will. introduction of contracted Green’s functions and their

divided differences.

D. Spin-polarized RNMTO

. . . . . Il. APPLICATIONS
In the spin-polarized case, as discussed in Appendix A, a

partial wavegr has, away from the nucleus, two components In this section we present the results for selected applica-
k1 andk,. Such a function carries index&sand u, with the  tions of the formalism discussed above. First, we study the
w indexes omitted here for clarity. This partial wave is nonmagnetic semiconductors GaAs and InSh. Second, and as
integrated outward until theg radius. Then we integrate a test of the spin-polarized case, we present the band struc-
the free Dirac equation inward to finpOR, which now, like-  ture of bcc Fe and5-Pu. Since the purpose of the present
wise, has twox components. The inward integration is work is to demonstrate the accuracy and applicability of the
similar to the nonspin polarized case, with the initial new, relativisic NMTO method, we focus on numerical
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comparisons of our RNMTO results with the results fromlation obtained by Bachelet and Christer@arsing the LDA
other relativistic approaches. In all cases we use the locafunctional of Ceperley and Adler as parametrized by Perdew
denisity approximation(LDA) functional of Hedin and and Zunger. Column 3 has the results of a relativistic full
Lundqvist2° without any relativistic corrections for the de- potential KKR method (RFKKR) by BeiderKellen and
scription of exchange and correlation. To fulfill the space-Freemarf? using the LDA functional of Hedin-Lundgvist. In

filling requirement, empty spheres are introduced whenevegolumn 4(5) we present the results obtained with RNMTO
necessary. and with 2 (3) E,’s chosen at -14.75eV, -1.14 eV

(-14.75 eV,-6.58 eV,0.22 gV respectively. The zero of
the energy scale is chosen at the valence-band maximum
(VBM) found atl'ys,.

We start our applications with the broadband semiconduc- We have chosen to compare our results to those of panel
tor GaAs. Even for the relatively light elements Ga and As,LMTO and KKR, since these methods obtain band energies
relativistic effects, e.g., spin-orbit splittings, are not negli-with minimal errors throughout the band spectrum. As one
gible. The RNMTO band structure of GaAs in its equilib- can deduce from the results in Table I, RNMTO can provide
rium, zinc-blende phase is given in Fig. 1. We use the exenergies with a similar level of accuracy and still retain a
perimental lattice constant of 5.654 A and a potentialsmall basis set. The small discrepancies with respect to
generated by RLMTO3 with Gas4p3d, As 4s4p4d as va- RFKKR, more pronounced for higher orders of representa-
lence states. For the band calculations with RNMTO,fAs- tion, can be explained because of the use of spherical poten-
states are also included in the orbital set. For the emptyials within the WS spheres. One particular feature to be
spheres we includepd orbitals, with thep andd treated as mentioned is the value of the ggp.12 eV}, which is in
intermediate and downfolded. In generating the potential onexcellent agreement with the result of RFKKR. Of course
generally makes a choice of which levels to treat as corehis value is not close the experimental drel.42 eV}, but
states, and this is the meaning of the main quantum numbethis discrepancy is based on a well-known deficiency of the
appearing in the description of valence states. It must béocal density approximation. It should be pointed out that
stressed, however, that the main quantum numbers are not &nis value for the gap can be found only if the Ga Smi-
input to the NMTO-band calculation; rather, the correspond-core states are included as valence states both in the creation
ing continuous numbep?,, is determined for a given potential of the potential and also in a single secular matrix. If one
by the selection oE,’s. One of the strengths of NMTO is generates the potential with Gd 8eated as core states, or if
that it can treat with a single diagonalization hybridizationone uses different panels for thel &nergy range and the
effects that correspond to successive atomic levels. In thgBM range, then the calculated gap is 0.25 eV. The latter
case of GaAs, our secular matrix can describe hybridizatiogcenario explains the discrepancy of the gap between column
with the semicore Gadstates, as well as with high-lying Ga 2 and the other columrs,
4d states. It is also notable that RNMTO is in good agreement with

In Table | we present a quantitative comparison betweeilRFKKR, even for high unoccupied states, sucHas, X;.,
different calculations that demonstrate the applicability ofX,., and especially;.. From inspection of the bands in Fig.
RNMTO. The comparison is performed for a selection of1, we conclude that this agreement persists for states at least
high-symmetry points and their corresponding levels, theup to =7 eV above the Fermi level and for all high-
symbols of which are given in column 1. In column 2 we symmetry lines. As a matter of fact, the range and degree of
present the results of a relativistic-panel-LMTO-ASA calcu-agreement can be adjusted at will by choosing the appropri-

A. Non-spin-polarized
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TABLE I. Energy levels of GaAgin eV) atT, X, and L.

Level RLMTQ? RFKKRP RNMTO® RNMTOH

Iy -12.85 -12.94 -12.87 -12.87
I'is, -0.36 -0.35 -0.35 -0.35
0.00 0.00 0.00 0.00

Tic 0.25 0.12 0.13 0.14
Tis 3.46 3.48 3.43
3.66 3.69 3.63

X1, -10.49 -10.42 -10.35 -10.37
Xsp -7.06 -7.02 -6.96 -6.98
Xs, {—2.90 -2.88 -2.83 -2.84
-2.83 -2.79 -2.75 -2.75

X1c 1.05 1.17 1.24 1.24
Xac 1.28 1.39 1.44 1.43

Ly, -11.20 -11.18 -11.09 -11.11
Ly, -6.94 -6.83 -6.81 -6.82
Ls, {—1.39 -1.38 -1.31 -1.30
-1.18 -1.17 -1.10 -1.09

Lic 0.67 0.71 0.66 0.66
Lac 4.38 4.56 4.36
4.46 4.67 4.45

3Panel LMTO, Ref. 21.

bRelativistic full potential KKR, Ref. 22.

‘RNMTO, 2E,’s at -14.75 eV and —-1.14 eV.
d9RNMTO, 3E,’s at —-14.75 eV, —-6.58 eV, and 0.22 eV.

ate number and positions f&;'s. We see by comparing the As a second application of our RNMTO, we have
last two columns that the inclusion of one extg at an  chosen InSh. The band structure of InSb in its equilibrium,
unoccupied level has brought the results of column 5 in sigzinc-blende phase is given in Fig. 2. We have used the
nificantly closer agreement to KKR, with respect to those ofexperimental lattice constant of 6.478 A and the potential
column 4. generated self-consistently using RLMTO3 with In

0.6

0.4 iﬁ/ I
P — : | , i
0 -
Z —/\ A/ E3 FIG. 2. RNMTO band struc
>\‘ : | . . -
E::‘O'z 7 — ture of InSb. The number and po-
) : sitions of E,’'s are shown on the
2-04 L L i right of the figure. Zero is chosen
3 - B2 .
, at the Fermi level.
0.6 | .
I
08 T \ _El |
-1 f ] .
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TABLE Il. Energy levels of InSkin eV) atT’, X, and L.

Level RFKKR2 RNMTOP RNMTO®
Iy, -15.15 -15.21 -15.24
-14.34 -14.41 -14.42

T'ip -14.26 -14.38 -14.38

Ty, -11.05 -10.97 -10.97
FlSU -0.77 -0.77 -0.77
0.00 0.00 0.00

Ty -0.66 -0.74 -0.74
| T {2.39 2.48 2.38
283 2.97 2.83

X1y -9.05 -8.97 -8.97
Xay -6.24 -6.15 -6.17
Xsy -2.67 -2.59 -2.59
-2.49 -2.41 -2.41

X1e 0.91 1.06 1.04
Xae 0.94 1.07 1.04
Ly, -9.68 -9.57 -9.59
Ly, -5.93 -5.88 -5.89
Ls, -1.53 -1.44 -1.44
-1.05 -0.95 -0.95

L1e 0.15 0.09 0.09
Lac 3.33 3.91 3.40
3.51 4.22 3.59

@Relativistic full potential KKR, Ref. 22.
PRNMTO, 2 E,’s at -13.32 eV and -1.07 eV.
‘RNMTO, 4E,’s at -13.32 eV, —-6.52 eV, —-1.07 eV, and 3.01 eV.

5s5p4daf (4f downfolded, Sb 5S5p5d4f (5d4f down-  scalar-relativistic tight-binding(TB) LMTO-ASA code,
folded), andspdfor the empty sphere@d downfolded. The  which gave a magnetic moment of 2,233 With this poten-
same set of orbitals was chosen for the band calculationéal we have calculated the band structure with the magneti-
using RNMTO. zation along thd001] direction. A detail of the band struc-
The results from our own calculations for certain ture around thé&' point, and close to the Fermi level, is given
levels are again compared with those of RFKRR Table in Fig. 3. Since Fe is not a particularly heavy metal, its band
II. Column 2 has the results of RFKKR, and columr(4  Structure is almost the same as a superposition of the major-
the RNMTO results with 2(4) E,s at -13.32 eV and ity and minority bands from a standard nonrelativistic calcu-
-1.07 eV (-13.32 eV, —-6.52 eV, —1.07 eV, and 3.01)eV I_at_ior_1. The inclusion _of spin-orbit effe_cts alters the_ nonr_ela-
This comparison reinforces the validation of our approachfivistic bands only slightly by providing extra anticrossing
Especially when the spectrum is considered as a whold€atures, as shown in Fig. 3. This picture compares very well
the advantage of RNMTO becomes apparent in providingVith the one obtained by Lovatt al* using a non-self-
even the high unoccupied states such Iis, and L.  consistent, fuII-potent!aI KKR method. We see thatlln the
We should once again point out that the poor value of théPresence of a magnetic field, all degeneracies, including time
gap obtained(for InSb it is even negative, —0.74 ¢\in  eversal, are lifted at the high-symmetry pointShere is
these calculations can be traced to the deficiencies dfdeed a very small splitting for point)FEven though the

LDA, and just as for GaAs, no effort to correct it was apparent splittings are very small, they play a defining role
undertaken. for interesting properties such as magnetocrystalline aniso-

tropy, magnetic dichroism, and the optical Kerr effect. In

particular, for the latter optical properties, SRNMTO can

provide a useful tool to obtain the spectra, even for states
The first test case for our spin-polarized RNMTSRN-  that lie high above the Fermi level.

MTO) is ferromagnetic, bcc Fe. The lattice constant used is As a second test for SRNMTO, we have used the case of

2.861 A and the valence-state orbital set consistspafor-  §-Pu. Thes phase of Pu corresponds to an fcc structure, and

bitals. The spin-polarized potential was obtained with ait is one of the Pu phases found at high temperatures. In Fig.

B. Spin-polarized
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FIG. 3. Detail of the SRN-
MTO band structure of ferromag-
netic bcc Fe with magnetization
along the[001] axis. Zero is cho-
sen at the Fermi level.

Energy (Ry.)

=

—

~
1

-0.18

N

—

P

4 we give a detail of the band structure calculated at a latticenentioned before, it is not the aim of the present paper to
constant of 4.63 A withspdf orbitals included. The spin- dwell on such interesting properties related to correlated phe-
polarized potential was again taken from a nonrelativisticnomena(see for example Ref. 25 and references therein
calculation using TB-LMTO-ASA and the magnetization Also, a highly accurate description of Pu and similar
points along thg001] axis. In generating the potential the structures entails self-consistent calculations based on a full-
spin-orbit coupling was included self-consistently at thepotential scheme and inclusion of orbital polarization
variational step. The detail given here is in excellent agreeand spin disordet®® The development of such a scheme,
ment with the bands obtained by Solovyetal,'” using a however, lies outside the scope of the present work,
self-consistent, spin-polarized, relativistic version of LMTO- which has as a well-defined task: the discussion of the rela-
ASA. In particular the figure shows the big magnetocrystal-ivistic version of the third generation LMTO and NMTO
line anisotropy along thEX andI'Z directions. These direc- methods. In this respect, we have us&®u as a typical
tions would be otherwise equivalent in the nonrelativistic orexample of a narrow-band system, where a setEgé
the nonmagnetic case. can be chosen to obtain the bands ranging from the low-lying
The physical properties of different phases of Pu havesp states to states high above the Fermi level. It must
attracted considerable attention in the last few years. As wbe pointed out that the proper switching behavior in NMTO

0.5

0 ></
| %
1 4
1.5

Z r X

FIG. 4. SRNMTO band struc-
ture of ferromagnetics-Pu with
magnetization along tH®01] axis
(in units of 2r/a). E,/s at
-26.25 eV, -20.12 eV, -4.49 eV,
and 4.35 eV. Zero is chosen at the
Fermi level.

Energy (eV)

B

195115-8



RELATIVISTIC NTH ORDER MUFFIN-TIN ORBITAL THEORY PHYSICAL REVIEW B71, 195115(2005

from one level to the other depends on the selectioR (. [HO,J2] =0, [HoJ,1=0, [HO,SZ] =0, [HqxK]=0,
They must be positioned within a reasonable range of the (Ad)
band (or band$ to be described. It is therefore clear that
more caution is to be exercised in the case of a harrow-bandhere J(S) is the total (spin) angular momentum, an#&
system, in order to avoid wrong switching behavior betweer=g(o-L +1).

different levels. Similarly, caution is needed also in the se- Based on the commutation relations of E44), the so-

lection of the augmentatiofscreening spheyeadii® In case  |ution of the Dirac Equation in a central field has the form of
of switching problems, the procedure of downfolding,

which has been used in previous approaches of LMTO and | 9ENQ,,(F) _
has been adopted easily in RNMTO as well, can provide a Pa(E) = if (ENQ,,(F) |’ A=(kp). (A5
solution.
In the above, thec's assume the following values:
_J-1-1 for j=1+1/2 C a1 42 43
IV. SUMMARY K= | for j=1-1/2 , K=ITl, T, To,...,
In the present paper we discussed the fully relativistic (AB)

version of the NMTO method. The formalism is a rather

straightforward generalization of the nonrelativistic oneandj,u are the quantum numbers dfand itsz projection,
discussed recently by Andersen and co-workers. At théespectively.

same time, the current paper provides the necessary steps The spin-spherical harmoni€s, , are defined as

for a relativistic version for the earlier-developed third 1

generation LMTO. All the important quantities can be O, (7) = > C<|j_;,u_g,g>yl w-oD) g (A7)
expressed using the relativistic kink matrices, through which o=+1/2 2 '

the matching conditions on the screening spheres is , . .
) L Where ¢, are the spin functionsy, ,, are the spherical har-
defined. The applicability of the method has been demon onics. andc(lj%;,u—a,a) are the Clebsch-Gordan coeffi-

strated through a series of examples. First, we used e
test cases two broadband semiconductors, GaAs and InsHENts for spin;. _ ,

For the spin-polarized case, we obtained the band structures '€ radial partg,(E,n), f.(E,r) satisfy a set of differen-
of bee Fe ands-Pu. The advantage of NMTO in describing i@l equations,

the bands accurately in a broad-energy range is clearly dg 1+xk E-V(r)
established. —~ == 1+ > fr (A8)
dr r c
ACKNOWLEDGMENTS df, __1-«
e = ehF [E- Vg, (A9)
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members of the Stuttgart group, especially Dr. Sergei Ezhov E 1
and Dr. Dmitri Savrasov, for fruitful discussions on the (gK ’ ) A a( ) (A10)
NMTO method and its implementation. f (Er)
where
: c
APPENDIX A: DIRAC EQUATION SOLUTIONS w=—1+[2 - (U2 q=S(x+1+a),
1. No magnetic field 2Z
The Dirac Equation has the form (A1)
- If we have an empty sphef@=0), then the initial condition
HoV =EW, (Al) s
where !
~ g.(E,r) L+l . E-V(0)
Ho=ca-p+(B-1mc+V(r)ly, (A2) f (E,r) xA Lrl—l ,oy=1+ 2
and Cy
(A12)
0 g |2 0
a= , B= , (A3)
o 0 0 -1 2. With magnetic field

with o being the vector of the Pauli matrices. In a central |y the presence of a magnetic fieldxternal+internal
field, the Dirac Hamiltoniar, commutes with the following only u remains a good quantum number and the solutions to
operators: the Dirac Equation are given by
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E)Q
D, E)= X (g“”“() ") (A13)

K=K1,Kp if K)\,M(E)Q—K/.L

The radial partg,(E,r), f(E,r) satisfy a set of differen-
tial equations,

dr r 9« c? «
B(r) ,
?E (- kplo] = & wet,y,

K

(A14)

d - K
<a + 1T)ch -[E-V(")]g,=B(r)> (k| oK )G,

K

(A15)

PHYSICAL REVIEW B1, 195115(2005

f(E,s)
DJ(E)=sc———-
9.(E.s)
It is thus clear that the secular E@4) eliminates both the
kinks of the upper components and the discontinuities of the
lower components.

k—1. (A18)

APPENDIX B: INTERPOLATION THROUGH DIVIDED
DIFFERENCES

Given a function f(e) and a discrete set of points
{€m €mt1s --- 1€ns €ns1r -+ - 26N, the divided differences of
are defined by the following:

flm, ... ,n]=-f[m+1, ... n+1]

€m ™ €n+1

flmm+1,...n+1]=

(B1)

wherem=n and f[m,m]=1f(e,). The approximating poly-

In general, the last terms in the above set of equationgomial of orderN that has the same values as functige)

couple anyx solutions to any othek’. However, using a g4 3 set of pointge,,

€, ...,€x} IS given by

standard approximation, we retain only terms that couple the

two «'s (say «1,k,) and that correspond to the sam&hen a
way of defining linearly independent solutions is to apply
the initial condition that &, (\,) solution has only a; (k>)
component close to the nucleus.

3. Relation of kinks to discontinuities

Let Si,/ gy denote the valuétimes the velocity of light
c) of the lower component dflz, on thear, sphere. Let also
Trav ry denote the slope of the upper componenhgf on
the ag, sphere. For the fregV(r)=0] Dirac equation we
have

1 1+«
cf(agy) = —{g’(am) + —g(am)] , (A16)
Y ara

and therefore,

1 1+«
Sinan= | S +

R'A’

0
e,
J?,R’A’(aR’A’):| Trear A

1 wr I+ Kk——""—
+—| N{galaga) + ——N{gralaga) | Srarrar-
P ARA

(A17)

If we impose the conditions Nf'RA(aRA)zo and
JffRA(aRA):l, then the matrig;, ,, 5, will give at the same

time both the slope of the upper component and the value of

the lower component of théd’ projection of a relativistic

SSW Wy, on the ag,r sphere, with only a diagonal-term

difference between the two and a scaling facier 1. The

diagonal term can be combined with the value of the lower
component of the partial wave to lead to the so-called

relativistic logarithmic derivativé?-1519

N M-1
Mg = fo--MIII (e-&. (B2)
M=0 n=0
If we expand the right side of Eq(B1) we obtain
the important relation(Lagrange form of the divided
differences,

v f
f[O---M]=E n
n=0 Hmw;n (€n— €m)

For the product of the two functiorfée) andg(e) defined
on the same mesh of points, we obtain, by using B3),
the binomial formula,

(B3)

N
(fg[0---N]= X f[0---M]Jg[M---N].  (B4)
M=0

It is easy to show that for a mesh that condenses around a
certain pointe,, the Newton interpolation is equivalent to a
Taylor expansion of the same order.

Another interpolating scheme is the so-calléermite in-
terpolation In this case, the approximating polynomial
matches not only the values of a functibrt certain points
{g}, but also the derivatives df. Given the values at a set
{€o, ...y} and the slopes at its subdeg, ...€y} the Hermite
interpolating polynomial is given by

M

M
Mg =34 1, ['fn—fn< )
n=0

m=0,#n €n ~ €m

2

N
+ > )](en—em) IM(e)IN(e)
m=M+1 €n ~ €m

N
+ 2 M), (B5)
n=M+1

where
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N N €~ €n f(0---M]- -N)
Ih(e) = . (B6) N M
m=0,#n €n~ €m f[n,n’]
n=0p’=g Hm:O,:#n (en— Em)HmEO,:#n’ (€ = €m)

The coefficient corresponding froff¥*™M*1(¢) to the highest (B7)
power of e defines theHermite divided differencgsvhich  In Eq. (B7) the special case@—n’ means that the corre-
can be expressed through the Newton divided differences aponding divided difference becomes the derivative.
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