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Band structures and transmission spectra of piezoelectric superlattices
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The polaritonlike excitations in piezoelectric-modulated superlattices are studied systematically by combin-
ing the plane wave expansion method and transfer matrix method; these two complementary methods yield the
full band structures of the system and mode-coupling information with the external incident waves. Both the
band structures and transmission spectra are calculated and analyzed for superlattices madezpahiNth@
polaritonlike band gagdivided by midgap frequengyf 19% is found in the computed transmission spectra of
electromagnetic wave. Furthermore, our study shows that the transmission spectra depend sensitively on the
sample thickness and the well defined polaritonlike band gap takes shape only when the number of periods
exceeds 10 000. Our results offer a natural explanation as to why previous experiments failed to observe the
gap in a sample with 250 periods.
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[. INTRODUCTION long wavelength “optical phonon” modes, and the polariton-

With the advancement in nanofabrication technologyIIke Ear)d gap Washnot Ve.”f'ed exlp_erlm_ental_ly. h h
more and more artificial structures with desired properties . 1€ |oguc-t_ype P hononlc Icry_sta IS unlquer mthe sr?n;e_dt_ at
are proposed and fabricated. The photonic crystals anf!d€nNmodes in such superlattices result from the hybridiza-

phononic crystals are just two examples in this cateddfy. t|?1n of “optical p;]honons" arf1d photons so that bothf“optical
In solid state physics, it is well known that periodic potential Phonons” and photons are forbidden to propagate if an abso-

in solids results in electronic band formation due to BlochlUte polaritonlike band gap exists. This property makes it

theorem, the propagation of electronic waves is thus modu[-)OSSibIe N con_trol and manipulate the flows of bOth. photo_ns
' and phonons simultaneously, and new opto-acoustic devices

lated by the underlying crystal structure. Inspired by the” . ; . . C
. might be designed. For example, high efficient ultrasound
same logic, Yablonnovtch and Jdtfproposed the concept generator could be designed by controlling the energy trans-

of photonic crystals(PC) which are dielectric modulated fer between photons and phonons as they behave like two
structures in space. Electromagnetic wave also forms baniﬁ

: . terdependent degrees of freedom.
structures in PCs and absolute photonic band(@&%G) can Because of the fundamental importance of the concept of

be created sometimés'® The PBGs are explored to control manmade polaritonlike crystals and its potential application
and manipulate the propagation of electromagnetic waves, the control and manipulation of the propagation of both
and form the base for a variety of device applications. Suclplectromagnetic waves and acoustic waves, several issues
innovative thinking was further extended to phononicneed to be elucidatedl) The superlattice structures split the
crystals'~*4 (PhQ with space modulated elastic structures.common acoustic dispersion curve in ferroelectric media into
Also, PhCs with local-resonator structures were designedne “acoustic phonon” branch and infinite numbers of “op-
and experimentally verified by several grodps$® The tical phonon” branches. A question arises as whether all “op-
achieved low frequency phononic band gaB&BG can be tical phonons” are coupled to the electromagnetic way2s?
used to prevent the propagation of low frequency soundn the phenomenological treatment, the dispersion of “optical
wave from noise generators. phonons” was not considered when mapping the ferroelectric
Recently, the so-called ionic-type phononic crystal wassuperlattice with piezoelectric modulation into Huang’s
proposed by Liet all”'8The structure is made of ferroelec- equation set, it is of interest to know whether the polariton-
tric superlattices with alternately reversed domain structurelke band gap is sustained when the acoustic band dispersion
and piezoelectric constant is modulated due to domain revers taken into account3) If there exists a genuine polariton-
sal. A simple phenomenological modelwas devised to like band gap in such piezoelectric superlattice, why the pre-
mimic the coupling between the long wavelength “opticalvious experiment failed to detect it in the transmission
phonon” of superlattices and electromagnetic wave, an equaneasuremerit.
tion set similar to Huang's equatitwas derived. In analog All these issues have great impact on the robustness of
to ionic crystals where strong coupling between flat opticalpolaritonlike band gap and phenomenological theory is not
phonons and photons favors the creation of polariton bandnough to address the topics. In this paper, we tackle these
gap, a polaritonlike band gap is also predicted in the ionicissues with two complementary methods: the plane wave
type phononic crystal'® as a result of coupling between method is used to calculate the polaritonlike band structure
folded “optical phonons” and photons. The relative band gapn infinite superlattices; the transfer matrix method is
(band gap divided by mid-gap frequenayas theoretically adopted to analyze the couplings between external incident
estimated to be 7%. The reflection coefficient of the superelectromagnetic wave and various modes in finite superlat-
lattice with 250 lattice periods was measured in a waveguidéices. In addition, the transfer matrix method not only pre-
mode, an absorption dip was observed at the frequency neaents the directly measurable transmission spectra, but also
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offers a cross check for the band structures when used tdiguration shown in Fig. (), transverse electric field and
gether with the Bloch theorem. Since the physical propertiefattice displacement are ir axis, the full dynamics of the
of piezoelectric modulated superlattices are determined bgystem is described by the Maxwell equation for electric
the piezoelectric coefficients which stipulate the couplingdfield E,(z,t)
between the lattice strain and electric field, the largest cou-
pling is achieved only for certain configurations of field po- P
larization and strain components. In this paper, we consider Bz =——5Dy(z1), (1)

, 72 €C% ot
the two experimental settings beldaee Fig. 1 which cor-
respond to the optimized electromechanic coefficients ilind the vibrational equation for lattice displacement
LiINbO3. The theoretical analyses and calculated transmisg,(z,t)
sion spectra show that the polaritonlike band gap does exist
and relative gap can reach 19% for the setting shown in Fig. P J
1(a). The second important feature we find is the strong de- P?Ux(zyt) = (9—225(2.'[)- 2
pendence of transmission and reflection coefficients on
sample thickness, the well dEf'nE_’d polariton-like band gapﬁere,eo is the vacuum permittivity and is the light velocity
take shapes only when sample thickness reaches several ph “vacuum,p is the mass density of LiNbD This equation

ton wavelengths which amounts to several ten thousands&et does not form a complete set of equations and has to be

lattice periods. The samp!e thickness considered in Ref. upplemented by state equations for electric displacement
Ihas ohnlyh250 p(;I‘IOdS and |shmuEh smIaIIer than photon Wat;/giector D,(z,1) and stress componeit(z,t). For the piezo-

ength, this is the reason why the polariton gap was not de: . ! . : N . .
tected there. It should be mentioned that the previous pla electric crystal LINbQ under consideration, the piezoelectric

S . nsor takes the form
wave treatmerf made several errors both in introducing thenFe sortakes the 1o

nonlinear transformation in their E¢4) and in obtaining the 0 0 0 O0de —2d

complex wave numberisee their Fig. #which render their 15 22

results invalid. (dij)={—-dxz dpp 0 dis O 0]. 3
The rest of the paper is organized in the following way. In dg; d3; dy3 O O 0

Sec. I, we first derive the coupled equation set which gov-

erns the propagation behavior of electromagnetic waves anigor the transverse electric field iaxis, the nonzero com-
elastic waves in the piezoelectric superlattices. This equatioponents of piezoelectric tensor ailgs and dig=-2d,,, and
set is then solved by using two complementary methods, ththey couple to the stress compone#tsand Zg. Thus the
band structure for infinite long superlattice is obtained bothelectric displacemend,(z,t) and strain components; and
by using the plane wave expansion method and by using the; are given by

transfer matrix method for cross checking, and the transmis-

sion and reflection spectra for finite long superlattice are ob- D,(z,t) = d15(2)Z5(z,t) + d16(2)Zs(z,1) + €9eEx(z,t), (4a)
tained by using the transfer matrix method. The results on

the band structures and transmission spectra are presented in

Sec. lll, in particular, reasons why the polariton like band e5(z,t) = SssZs(z,1) + Ss6Z6(2,t) + dis(DEN(Z ),  (4b)
gap was not observed in previous experiments are discussed

regarding the size dependence of the transmission spectra. es(2,t) = SgZs(2, 1) + SeeZe(z, 1) + dyg(DEL(z),  (40)
The conclusion is drawn in Sec. IV.

wheres;’s are bulk moduli and is the dielectric constant of
Il. PLANE WAVE METHOD AND TRANSFER MATRIX LiNbOg. In writing down thesg state equations, a convention
METHOD has been used that the polarization direction of ferroelectric
domains is set ag axis. Note that strain components are
As we have mentioned in the Introduction, various experirelated to lattice displacement byes=du,(z,t)/dz
mental settings can be designed for the piezoelectric supe#du,(z,t)/dx=au,(z,t)/ 9z and es=duy(z,t)/ dy+auy(z,t)/ox
lattices depending on the field direction, domain poIarization,:o since 0n|yux(z,t) +0 for the Configuration shown in
and lattice strain, and they are characterized by differentig. 1(a). From these relationships, the electric displacement
electromechanic coefficients. In order to optimize the elecp (7 t) and stress componen® and Zs can be obtained

tromechanic  coefficient, one needs to have settingfy terms of electric fieldE,(z,t) and lattice displacement
which correspond to the largest component of the plezoeleq]x(Z 1)

tric tensor. For LiINbQ compound, the two configurations

shown in Fig. 1 have the large$t;s) and second largest —

(dig=—2d,,) piezoelectric components. Furthermore, the Dy(zt) = @aux(z,t)/ay ele-AeE(zt), (5a)
forms of reduced equation sets for the two configurations Ss5

turn out to be exactly the same except for the effective pa-

rameters, thus only the in-plane configuration is discussed in —

detail below. The piezoelectric superlattices involve the cou- Zo(zt) = iﬁu (1) - dlS(Z)E 2.0 (5b)
pling between electric field and lattice strain. For the con- MY T ssaz T s
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1 9 d 2) piezoelectric superlattice and is the sum of two oppositely
16 — — J— J—
Ze(Z,t):——a—ZUx(Z,t)-—— Exz1). (5¢)  polarized domainsd;<(Z)=|d;56(z) and 6()=+1 denote
Ss6 Se6 the left and right polarized domains. Using these new
In Eq. (5), Aeis the correction to dielectric constant from the variables, the dimensionless form of the equation set

piezoelectric contribution and it has the form becomes
1|2 2 1 1 L \2@2— 2 2 2
Ae:—[_—15+_—16+d15d16(_— +_—)] (6) ( ) —ZEX(Z_,t):_C—Z—Ex(Z_,t)— 15 0(2)
€L Ss5  Ses Ss6 Ses 2mcg) ot €c: 97 €0€Ss5
Note that the above simple and compact expressions are L \242 9
made possible after we have introduced the reduced bulk Py, —=u(zt), (109
= mCs/ ot° gz
moduli s;
1 Se6 ( L )2a2_ P ——
_— —U(z,1) = =u(zt) - =L 0(2)E(z1)].
S5 Ss5566 ~ So6Se5 (73 2mcg) ot {20 iz {2 &f[ (@E(z0)]
(10b)
1
== L, (7b) To calculate the band structures and transmission spectra, it
See  Ss5%66 ~ S56%5 is often convenient to work in the frequency space. After
making the Fourier transformation to frequen@y) space,
1_ =S (7¢  the equation set reads

Ss6 Ss5566 ~ SseS65

2 2 o 12
( oL ) EZw)=- L;fExz—,w)— % oz

i - _—556 (7d) 27705 ?_Cg ? €0€Ss5
S5 - ’ L\2g_
Se5  S55566 S56365_ B X(Zw )  Gw), (114
and reduced piezoelectric coefficients(z), di4(2) mCs/ Iz
— S ol \2_ P _ 0 —
di5(2) = di5(2) + dle(Z)is_S, (8 ( ) U(Z,0) = - S U(Z,0) + =[0(DE\(Z,w)].
S5 2mCq a7 0z
_ (11b
di6(2) = d1(2) + dls(Z)? : (8b)  HereE (z,w) andu,(z, w) are the Fourier transformed quan-
Ss6 tities of E,(z,t) andu,(z,t). From Eqgs.(118 and(11b) one

The bulk moduli are polarization independent and theynotices that the dynamics of piezoelectric superlattices is
are constants throughout samples of superlattice, but theharacterized by two dimensionless material parameters, one
piezoelectric coefficients are polarization dependent ands the ratio of velocity squared between the light and sound
they change their signs for oppositely polarized domainsin the mediaa:czl?cﬁ, another is the electromechanic coef-
this i_s _the reason why we write explicitly fche piezoele_ctri_c ficient ﬁ:d§5/60a5 which describes the efficiency of en-
coefficients as space dependent functions. Substitutingrgy transfer between electromagnetic energy and lattice vi-
the expressions for dielectric displacemxtz,t) [Eq.(5a]  prational energy. The eigenspectra of superlattices are given
and stress componerfs [Eqg. (5b)] into Eq. (1) and  in terms of the reduced frequenay=wL/2mc,. An estima-
Eq. (2), and defining the sound velocity in the media tion of these parameters gives us a rough idea on the strength
cs=1/psss, one finally gets a set of coupled equationsof coupling between electromagnetic wave and sound wave
for electric field E(z,t) and lattice displacement in different experimental settings. For superlattice composed
uy(z,t) of LiNbO; ferroelectric materiald® «=1.6x10°,
_ ) — B=0.5923 for Fig. 1a) and «=1.28x10°, B=0.2222
X _F _ ) & for Fig. 1(b), thus the coupling between photons and
2 2EX(Z!t) - EX(th) = 2 UX(Z,t), (ga) . .
c” ot 072 €0C "S55 0t "0 phonons is strongest in cade). Note that the photon
velocity is four orders of magnitude higher than the
14 90— sound velocity, their wavelengths set two different character-
?Fux(zvt):a_zzux(zyt)_;ZdlS(Z)Ex(th)' (9b) istic length scales in the system. In the following, we
s develop the plane wave expansion method and transfer
‘e=e—Ae is the effective dielectric constant. To facilitate matrix method from Eqs(11g and(11b) to obtain the band
the numerical analysis, it is customary to write the equatiorstructures and the transmission and reflection spectra of
set into a dimensionless form. This can be donesuperlattices.
after introducing the following dimensionless variablesth Plane wave expansion methdebr the periodically modu-

a bar on the topthroughz=zL/2m, u(z,t)=u(z,)L/27,  |ated piezoelectric superlattices, the electric figlgz, )
and E,(z,t)=|d;gE,(z,t). L is the lattice constant of and lattice displacement(z,w) satisfy the Bloch theorem.
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For scaled superlattices under discussion, the real spac @

translational vector iR =2wl, the corresponding transla-
tional vector in the reciprocal space k§=n with I, n as

integers. Thusk,(z, w) andu,(z, w) for a given wave vector ®
k=kL/27 andw can be expanded in the reciprocal space as ix

follows: Lp T
T—

E(Zw) = X Gk+ Ky wexdi(k+KyZ, (123 Y
K FIG. 1. The schematic setups of piezoelectric superlattices. The

o — — electric field and vibrational displacement are takerxasxis; L.
Uz, w) = E (= DH(k+Kp, w)exdi(k+ Ky)z]. (12b) andL_ denote the widths and arrows refer to the polarization direc-
Kn tions of domains. The polarization {® perpendicular to the do-
A prefactor(-i) is added in Eq(120) in order to make the mMain; (b) within the domain.
coefficients of the matrix equation below all real. The differ-
ential equation setl1a and(11b) is then transformed into a two independent equations. However, this equation set in-

matrix equation volves the derivative ob function in space and numerical
_ _ _ procedure turns out to be divergent. Another possibility is to
0?G(k+Kp, ) = a(k+ Kp)?*G(k + K, o) rearrange the equation sdtlg and(11b) into the differen-

tial equations with respect to the electric field and stress
component Zs(z)=du,/dz-60(2)E, as two independent

- 2B (k+ K ) 0K, — K,)
K
" functions2 but this transformation involve&(z) which takes

XH(k+Kp, ), (138  ¢(z)=+1 for left and right polarized domains, the eigenval-
ues obtained do not correspond to those obtained from Egs.
D?H(k+ K, @) = (k+ K )2H(k+ K, @) (113 and (11b), this is also the reason why the gap calcu-
_ _ lated in Ref. 20 is much smaller than what we obtained in
—(k+Kp)> 0Ky = K Gk + K o). this paper.
Km Transfer matrix methadTo cross check the band struc-

(13b)  tures obtained in the plane wave expansion method and to
analyze the mode coupling with external incident waves, the

6(K,) is the Fourier component af(z) and is given by transfer matrix method is also employed to solve the band

(f _ ) structures and transmission spectra of piezoelectric superlat-
* if n=0, tices. To do so, we first solve the eigenvalues and eigenvec-
o(K,) = ™ (14) tors in homogeneously polarized domain. For the left polar-
n 2 sinnL,/2) . ized domain[6(z)=1], by substituting Eqg.11b) into Eq.
———— ifn#0, (11a, Egs. (119 and (11b) can be rearranged into the fol-
nm lowing simple form:
andL,=27L,/L are the scaled layer thicknesses for the left P 2 2
and right polarized domains. D E(Z®) =—a—E(7.®) - B—E(Z.®) + B—UAZ o)
The matrix equation séf.3g and(13b) has the advantage 0Bz ) Y2 A{20) 'Ba? A{2,0) Ba? Wz @),
that it does not involve the derivative 6z) function, thus it (158

is numerically stable. But this advantage is achieved at the

expense of reducing the original eigenvalue problem to a 5

noneigenvalue problem since the frequency now appears on —— —_ 7 + J=

the right side of Eq(13a, an alternative numerical method 0 U(Z,0) (Ezux(z, ) (EEX(Z@- (15b)
has to be devised to find its solutions. We adopt the root

finding program codes originally used in the multiple scat-Since the propagation modes in homogeneous media have
tering method, for a given wave vectomwe first diagonalize ~the plane wave type

the matrix with certain order in reciprocal space, by counting o o o

the positive eigenvalues for the consecutive frequencies E(z,w) = E\(k, w)exp(ikz), (169
all the eigenvalues for a givek can be picked up, thus

yield the band structures of piezoelectrically modulated _ _— —

superlattices. Uy(Z ) = uy(k, w)explik2), (16b)

We have also explored other representation of differential ) ) . , ,
equation sef11a and(11b to check the numerical feasibil- the dlspersmn relation is determined by the following equa-
ity. One possibility is to substitute E¢L1b) into Eq.(113 to tion set:
eliminate the right frequency dependent part of Etla), _ . _
and to treat the newly obtained equation and old Efjb) as W’ Ex(k, ) = (e + BKE, (K, 0) =i kUK, w), (173
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WUk @) =Kk o) +ikE (k). (17 [
Thus there exist four propagation modes for a given fre- Ux(fi,ﬁ
guencyw, their wave numbers and eigenfunctions are listed - —
below: B EX(Lif’)_
- 1 — U' L+1 +E L+,
(Ex(k,@ ) 1 ((CE _ 1)w)e F(_Z/C ) X( + m + X( + 5) B
— = /= ) XD w. + _
Ukw) /| e+ (cF-1)%?\ ic. =M(L,0)
for k= wlc,, (183 Ex(0, )
_ » (0, )
Ex(k, 1 c-Do - =0
(_X(—@) =ﬁ<( , )w)exp(in/C—) _509
uX(kiaj Ve + (C_ - 1) ® - U)’((OVB) + EX(OVB)
for k=wlc_, (18b) (19)
Ek ®) 1 (- Do The detailed expressions of transfer matriceL, )
_— Y e U ic are listed in the Appendix. Here upper and lower signs
Uy(k, @) ci+ (- Do * denote the left and right polarized domains. The transfer

xexp(-iwzc,) fork=-wlc,, (189  Matrix of a superlattice can be obtained by successive appli-

cation of M(L,, w) using the sequence depicting superlattice
- = 2 configuration. This forms the basis to study the band struc-
(Ex(k’a) - ;CQ 1)“’) tures and transmission spectra of the superlattices. For ex-
_— 2. 2 129 : i
Uy (K, ) —Ic_ ample, we can also study the band structures using the Bloch

2+ (P - 1)%0?
— _ theorem. In this case, we need to solve the following matrix
xXexp(—iwzlc_) fork=-w/c_. (18d) equation:

Herec,= 0.5 (a+B+1)*(a+B+1)?-4a] are the reduced _ _ _

velocities of electromagnetic wave and sound wave in the M(L,, 0)M(L_,w) = expikL)I, (20)
media scaled by, first two modes correspond to the elec- ) ) _

tromagnetic wave and sound wave propagating to the leftvith | denoting the &4 unit matrix. _

Wh||e the |ast two Correspond to those propagating to the W|th the analytIC eXpreSS|0nS Of the transfer matrix fOI‘ the
right. Similarly, the eigenvalues and eigenfunctions in theleft and right polarized domains, it is easy to study the trans-
right polarized domain can also be derived, their expressionlission and reflection spectra of a finite superlattice. For a
are obtained by replacing. by —c, while keeping the phase finite superlattice withNP number of periods, the transfer

factors intact. matrix of the superlattice is given by
The general solutions in the left and right polarized do- _ _
mains can be expressed in terms of the above eigenfunctions. M =[M(L,,0)M(L_,w)]NP. (21

Using the boundary conditions that the electric field, lattice

displacement, the derivative of electric fidldagnetic field, For the transverse vibrational mode illustrated in Fig. 1, only

and stress component are continuous across the domain itihe electromagnetic waves are coupled out since the trans-
terface, one can define the transfer matrix in each domaimerse elastic modulus of air is nearly zero. The transmission
which relates the fields and their derivatives at the two sides and reflectionr amplitudes can be expressed in terms of

of a domain matrix elementsvl;; as follows:
|
2M
t= — A2 — , (229
My (Mg + foMyg) + f (Mg + fiMag)] = (Myp+ 7 M3o) (Myg + F M)
My [(Myy+ M) - f;_)l(M31+ foM33)] — (M- fglMsz)(M41+ foMa3) (22b)

r_ —_ —_ 1
My (Mg + M) + fpl(M3l+ foM33z)] = (Mo + flesz)(M41+ foM4a)
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5 TITITMIIT It ees e l:::::h,,,.,
4 .
-3 'm.“':".:::::unu ................ .
i R e 4
3
1=
0 : -
0.0 0.1 0.2 0.3 04 0.5
L i S R S FE 7 0 T T T T
® e 00000 00001 00002 00003 00004  0.0005
4} Jmassssessssessssoressssessssssssosssssgslesesseseseasens s e - KL/2%
§“3'_== S " FIG. 3. The polaritonlike band structures of configurati@h
Q ) . near the center of Brillouin zone using the plane wave expansion
'@1 _//' method. The material parameters are the same as in Fig. 2,
1 _— L,=0.5m; L_=1.57.

actly decoupled from the rest of modes even in the presence
of boundary. The plane wave expansion method and those
perturbation methods previously adoptédertainly cannot

FIG. 2. The polaritonlike band structures of configuratian ~ address this issue3) The polaritonlike band gaps also

using the plane wave expansion method. The material parameteRP€N Up atwl/2mcs=even integers if thicknesses of left
are listed in text and.,=L_=7. (a) For whole Brillouin zone(b) f"md right polarized dom"f“ns are dlfferé_BEe Eq(14)]. This
Near the center of Brillouin zone. is so because the parity symmetry is then broken when

E,f_ # 1, but all gap sizes are drastically reduced due to the

and the parametef,=icqw/c. The experimentally measured reduced Fourier coefficients of piezoelectric functions. An
transmission and reflection spectra are giverTsyt|2 and typical example is shown in Fig. 3 where the widths for left
R=|r|?, they satisfy the energy conservation |&+T=1 if  and right polarized domains are taken ks=0.57 and
no dissipation exists. L_=1.5m, respectively.
To cross check the band structures calculated using the
plane wave expansion method, the band structures of con-
IIl. NUMERICAL RESULTS AND DISCUSSIONS figuration(1a) are also computed using E®Q0) based on the
L transfer matrix method and Bloch theorem. The same results
_The bar_ld structures of polantonlhke modes can be c’bé\re found and presented in Fig. 4. The solid circles represent
tained easily from the matrix equation da83 and (130 . altjhe real wave vector for pass bands while the solid triangles
based on .the plang wave expansion m.ethod. Typic epresent the purely imaginary wave vector for forbidden
results are illustrated in Fig. 2 for configurati¢a), where o0 "Fiqre @) plots the wave vectors for the whole Bril-
equal widths(L,=L_=m) are assumed for left and right |ouin zone while Fig. ) is an enlarged portion near the
polarized domains. Figure (@ shows the overall band Brillouin center. For a given frequency, the transfer matrix
structure in whole Brillouin zone, the dispersion relation canmethod yields either a real wave vector for the propagation
be viewed as simply folding the dispersion relation of acousmode or a purely imaginary wave vector for the forbidden
tic wave in homogeneous media, and the proposed polaritormode which describes the attenuation of corresponding
like_band gap is not visible in the figure. The fact thatmode. Those vertical lines in Fig.(#) correspond to the
c/Vecs=Va=10* reminds us that a significant coupling takes decoupled “optical phonon” branches whose properties de-
place only near the center of Brillouin zone. This part of theserves further investigation. These band structures are ex-
dispersion curves is enlarged and replotted in Fi).ZSev-  actly the same as those presented in Fig. 2.
eral points are worth mentioning concerning the band struc- To elucidate the nature of those “optical phonon”
ture: (1) Besides the lowest polaritonlike band gap theoreti-branches within the gaps, we also studied the transmission
cally predicted in Ref. 17, here we find additional and reflection spectra of finite superlattices using the gener-
polaritonlike band gaps wheal/27cs equals odd integers alized transfer matrix method described in the last section.
though the sizes of band gaps decrease rapidly as middle g&or the specific configuration presented in Fig. 1, both elec-
frequency increases2) Unlike the usual concept of band tromagnetic wave and lattice wave are transverse waves and
gap where no eigenmodes can propagate within the gapnly the electromagnetic wave is coupled out. Contrary to
range, here there obviously exists a branch of “optical phothe conventional wisdom that tens to hundreds of lattice pe-
non” passing through the complete band gap range. Thergiods for a superlattice should be good enough to reproduce
fore, the existence of proposed band gap is not guarantedt bulk behavior, here the piezoelectric superlattice is char-
unless the above mentioned “optical phonon” branch is exacterized by two hugely different length scales, i.e., the

0 . y y y
00000 00001 0.0002 0.0003 0.0004 0.0005
kL/2n
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0.5 tical phonon” modes in Fig. 2 do decouple from the polari-
0.4 tonlike modes for the configurations shown in Fig. 1, which
) makes the polaritonlike band gaps genuine. From the trans-
(l\'“; 0.3 mission spectrum plotted in Fig(d, the relative gap$gap
) divided by midgap frequengyare 19%, 2.5%, and 1% for
ﬁ 0.2 the 1st, 2nd, and 3rd gap, respectively. This should be com-
0.1 pared with Ref. 17 where the first gap was predicted and
relative gap was estimated to be 7%. Note that the rapid
0.00 ' ' ' - - oscillations within the pass band of spectra are due to Fabry-
0.0010 Pérot interference effect in the samples. These calculated
transmission and reflection spectra also give an explanation
0.0008+ 1 as why the gap was not detected in the previous experient
50.0006- ] with sample of 250 lattice periods. Because the sample thick-
ness is far smaller than the photon wavelength, no well de-
0.0004 J . fined polaritonlike band gap has taken the shape.
(b) ( The above study can also be carried out for other trans-
0.0002 \/ ] verse and longitudinal acoustic phonon modes and same con-
0.0000 I ‘ clusions can be made. Due to the much smaller coupling
0 1 2 3 4 5 constantB, the polaritonlike band gap is much smaller and
(OL/2RCS will not be discussed here in detail.

FIG. 4. The polaritonlike band structures of configurati@n
using the transfer matrix method. The material parameters are listed IV. CONCLUSION
in text andL,=L_=1. (@) For whole Brillouin zone(b) Near the

e In summary, we have clarified in this paper several issues
center of Brillouin zone.

concerning the existence of the polaritonlike band gap in
piezoelectric superlattices. The *“optical phonon” branch
wavelengths of photon and phonon. As the phonon waveyithin the band gap is completely decoupled from external
length at polariton band gap is comparable to the lattice CONglectromagnetic wave and relative gap can be as large as
stant, the photon wavelength must be ten thousand times thabo, our results offer a natural explanation as to why pre-

of lattice constant. For comparison, the transmission coeffiyious experiments failed to observe the gap in a sample with
cients are shown in Fig. 5 for a different number of lattice 50 periods.

periods(NP). The transmission spectra change dramatically

with the sample thickness when it is much smaller than the

photon wavelength, and well defined polaritonlike band gaps ACKNOWLEDGMENTS
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0 1 2 345 0 1 2 3 4 5
1.01 1 10 '
0.8 Iy APPENDIX: TRANSFER MATRICES FOR TWO
0.6 06 POLARIZED DOMAINS

= 04 04 ci:\/O.E[(a+,8+1)i\J'(a+,8+1)2—4a] are the reduced
0.21 1 02 velocities for photons and phonons, respectively.
00p () T wease 'y 007 T(d) T TNpsssss =wlL/2mcg L,=27L,/L. The upper and lower subindices

0 1 (f)L/Z?‘CCS 4 °§L/273tcs 4 represent two polarized domains:
FIG. 5. Transmission coefficients for equal-width piezoelectric M(L,, ©,1,1) = R {CE(CE - ;|_)Cosw|‘t
superlattices with various sample thicknesses in unit of peri@ils. (c§-cd) Cs

16 periods;(b) 256 periods;(c) 4096 periodsjd) 65536 periods. _—

Since reflection and transmission coefficients satisfy the sum rule, _ CE(CE - 1)cos ‘*’Lt} , (A1)

only transmission coefficients are shown. _
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ol
—c.(c2- D)sin “(’: } , (A3)

— +(c2-1)(c?-1 WL, wl,
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+
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c.C_ ol ol
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c o
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(A5)
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+y Wy &y (CE _ CE) +\ V- .
ol
-c%(c?- 1)cos%] , (AB)
M(f 2,3 £Cic lcos c swfi]
+,(1), ) = - )
(02 - CE)_2 + -
(A7)
— _ 1 WL,
M(L,,0,2,4 = - ————]| c,(c® - 1)sin—=
( + W ) (CE‘CE)&)[ 4 ) )
wl,
- c_(c2-1)sin %] , (A8)
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— _L+
ML ,3,D)=- ﬁ{cf(cf —1)sin —
C+C—(C+ - C—) +
ol
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— (2 2 —2 - -
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