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The polaritonlike excitations in piezoelectric-modulated superlattices are studied systematically by combin-
ing the plane wave expansion method and transfer matrix method; these two complementary methods yield the
full band structures of the system and mode-coupling information with the external incident waves. Both the
band structures and transmission spectra are calculated and analyzed for superlattices made of LiNbO3, and the
polaritonlike band gapsdivided by midgap frequencyd of 19% is found in the computed transmission spectra of
electromagnetic wave. Furthermore, our study shows that the transmission spectra depend sensitively on the
sample thickness and the well defined polaritonlike band gap takes shape only when the number of periods
exceeds 10 000. Our results offer a natural explanation as to why previous experiments failed to observe the
gap in a sample with 250 periods.
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I. INTRODUCTION

With the advancement in nanofabrication technology
more and more artificial structures with desired properties
are proposed and fabricated. The photonic crystals and
phononic crystals are just two examples in this category.1–16

In solid state physics, it is well known that periodic potential
in solids results in electronic band formation due to Bloch
theorem, the propagation of electronic waves is thus modu-
lated by the underlying crystal structure. Inspired by the
same logic, Yablonnovtch and John1,2 proposed the concept
of photonic crystalssPCd which are dielectric modulated
structures in space. Electromagnetic wave also forms band
structures in PCs and absolute photonic band gapsPBGd can
be created sometimes.3–10 The PBGs are explored to control
and manipulate the propagation of electromagnetic waves
and form the base for a variety of device applications. Such
innovative thinking was further extended to phononic
crystals11–14 sPhCd with space modulated elastic structures.
Also, PhCs with local-resonator structures were designed
and experimentally verified by several groups.15,16 The
achieved low frequency phononic band gapssPhBGd can be
used to prevent the propagation of low frequency sound
wave from noise generators.

Recently, the so-called ionic-type phononic crystal was
proposed by Luet al.17,18The structure is made of ferroelec-
tric superlattices with alternately reversed domain structures
and piezoelectric constant is modulated due to domain rever-
sal. A simple phenomenological model17 was devised to
mimic the coupling between the long wavelength “optical
phonon” of superlattices and electromagnetic wave, an equa-
tion set similar to Huang’s equation19 was derived. In analog
to ionic crystals where strong coupling between flat optical
phonons and photons favors the creation of polariton band
gap, a polaritonlike band gap is also predicted in the ionic-
type phononic crystal17,18 as a result of coupling between
folded “optical phonons” and photons. The relative band gap
sband gap divided by mid-gap frequencyd was theoretically
estimated to be 7%. The reflection coefficient of the super-
lattice with 250 lattice periods was measured in a waveguide
mode, an absorption dip was observed at the frequency near

long wavelength “optical phonon” modes, and the polariton-
like band gap was not verified experimentally.

The ionic-type phononic crystal is unique in the sense that
eigenmodes in such superlattices result from the hybridiza-
tion of “optical phonons” and photons so that both “optical
phonons” and photons are forbidden to propagate if an abso-
lute polaritonlike band gap exists. This property makes it
possible to control and manipulate the flows of both photons
and phonons simultaneously, and new opto-acoustic devices
might be designed. For example, high efficient ultrasound
generator could be designed by controlling the energy trans-
fer between photons and phonons as they behave like two
interdependent degrees of freedom.

Because of the fundamental importance of the concept of
manmade polaritonlike crystals and its potential application
in the control and manipulation of the propagation of both
electromagnetic waves and acoustic waves, several issues
need to be elucidated.s1d The superlattice structures split the
common acoustic dispersion curve in ferroelectric media into
one “acoustic phonon” branch and infinite numbers of “op-
tical phonon” branches. A question arises as whether all “op-
tical phonons” are coupled to the electromagnetic waves?s2d
In the phenomenological treatment, the dispersion of “optical
phonons” was not considered when mapping the ferroelectric
superlattice with piezoelectric modulation into Huang’s
equation set, it is of interest to know whether the polariton-
like band gap is sustained when the acoustic band dispersion
is taken into account.s3d If there exists a genuine polariton-
like band gap in such piezoelectric superlattice, why the pre-
vious experiment failed to detect it in the transmission
measurement.17

All these issues have great impact on the robustness of
polaritonlike band gap and phenomenological theory is not
enough to address the topics. In this paper, we tackle these
issues with two complementary methods: the plane wave
method is used to calculate the polaritonlike band structure
in infinite superlattices; the transfer matrix method is
adopted to analyze the couplings between external incident
electromagnetic wave and various modes in finite superlat-
tices. In addition, the transfer matrix method not only pre-
sents the directly measurable transmission spectra, but also
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offers a cross check for the band structures when used to-
gether with the Bloch theorem. Since the physical properties
of piezoelectric modulated superlattices are determined by
the piezoelectric coefficients which stipulate the couplings
between the lattice strain and electric field, the largest cou-
pling is achieved only for certain configurations of field po-
larization and strain components. In this paper, we consider
the two experimental settings belowssee Fig. 1d which cor-
respond to the optimized electromechanic coefficients in
LiNbO3. The theoretical analyses and calculated transmis-
sion spectra show that the polaritonlike band gap does exist
and relative gap can reach 19% for the setting shown in Fig.
1sad. The second important feature we find is the strong de-
pendence of transmission and reflection coefficients on
sample thickness, the well defined polariton-like band gaps
take shapes only when sample thickness reaches several pho-
ton wavelengths which amounts to several ten thousands of
lattice periods. The sample thickness considered in Ref. 17
has only 250 periods and is much smaller than photon wave-
length, this is the reason why the polariton gap was not de-
tected there. It should be mentioned that the previous plane
wave treatment20 made several errors both in introducing the
nonlinear transformation in their Eq.s4d and in obtaining the
complex wave numbersssee their Fig. 4d which render their
results invalid.

The rest of the paper is organized in the following way. In
Sec. II, we first derive the coupled equation set which gov-
erns the propagation behavior of electromagnetic waves and
elastic waves in the piezoelectric superlattices. This equation
set is then solved by using two complementary methods, the
band structure for infinite long superlattice is obtained both
by using the plane wave expansion method and by using the
transfer matrix method for cross checking, and the transmis-
sion and reflection spectra for finite long superlattice are ob-
tained by using the transfer matrix method. The results on
the band structures and transmission spectra are presented in
Sec. III, in particular, reasons why the polariton like band
gap was not observed in previous experiments are discussed
regarding the size dependence of the transmission spectra.
The conclusion is drawn in Sec. IV.

II. PLANE WAVE METHOD AND TRANSFER MATRIX
METHOD

As we have mentioned in the Introduction, various experi-
mental settings can be designed for the piezoelectric super-
lattices depending on the field direction, domain polarization,
and lattice strain, and they are characterized by different
electromechanic coefficients. In order to optimize the elec-
tromechanic coefficient, one needs to have settings
which correspond to the largest component of the piezoelec-
tric tensor. For LiNbO3 compound, the two configurations
shown in Fig. 1 have the largestsd15d and second largest
sd16=−2d22d piezoelectric components. Furthermore, the
forms of reduced equation sets for the two configurations
turn out to be exactly the same except for the effective pa-
rameters, thus only the in-plane configuration is discussed in
detail below. The piezoelectric superlattices involve the cou-
pling between electric field and lattice strain. For the con-

figuration shown in Fig. 1sad, transverse electric field and
lattice displacement are inx axis, the full dynamics of the
system is described by the Maxwell equation for electric
field Exsz,td

]2

]z2Exsz,td =
1

e0c
2

]2

]t2
Dxsz,td, s1d

and the vibrational equation for lattice displacement
uxsz,td

r
]2

]t2
uxsz,td =

]

]z
Z5sz,td. s2d

Here,e0 is the vacuum permittivity andc is the light velocity
in vacuum,r is the mass density of LiNbO3. This equation
set does not form a complete set of equations and has to be
supplemented by state equations for electric displacement
vectorDxsz,td and stress componentZ5sz,td. For the piezo-
electric crystal LiNbO3 under consideration, the piezoelectric
tensor takes the form

sdijd = 1 0 0 0 0 d15 − 2d22

− d22 d22 0 d15 0 0

d31 d31 d33 0 0 0
2 . s3d

For the transverse electric field inx axis, the nonzero com-
ponents of piezoelectric tensor ared15 and d16=−2d22, and
they couple to the stress componentsZ5 and Z6. Thus the
electric displacementDxsz,td and strain componentse5 and
e6 are given by

Dxsz,td = d15szdZ5sz,td + d16szdZ6sz,td + e0eExsz,td, s4ad

e5sz,td = s55Z5sz,td + s56Z6sz,td + d15szdExsz,td, s4bd

e6sz,td = s65Z5sz,td + s66Z6sz,td + d16szdExsz,td, s4cd

wheresij ’s are bulk moduli ande is the dielectric constant of
LiNbO3. In writing down these state equations, a convention
has been used that the polarization direction of ferroelectric
domains is set asz axis. Note that strain components are
related to lattice displacement bye5=]uxsz,td /]z
+]uzsz,td /]x=]uxsz,td /]z and e6=]uxsz,td /]y+]uysz,td /]x
=0 since onlyuxsz,tdÞ0 for the configuration shown in
Fig. 1sad. From these relationships, the electric displacement
Dxsz,td and stress componentsZ5 and Z6 can be obtained
in terms of electric fieldExsz,td and lattice displacement
uxsz,td

Dxsz,td =
d̄15szd

s̄55

]uxsz,td/]z+ e0se − DedExsz,td, s5ad

Z5sz,td =
1

s̄55

]

]z
uxsz,td −

d̄15szd
s̄55

Exsz,td, s5bd
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Z6sz,td =
1

s̄56

]

]z
uxsz,td −

d̄16szd
s̄66

Exsz,td. s5cd

In Eq. s5d, De is the correction to dielectric constant from the
piezoelectric contribution and it has the form

De =
1

e0
Fd15

2

s̄55

+
d16

2

s̄66

+ d15d16S 1

s̄56

+
1

s̄65
DG . s6d

Note that the above simple and compact expressions are
made possible after we have introduced the reduced bulk
moduli s̄i j

1

s̄55

=
s66

s55s66 − s56s65
, s7ad

1

s̄66

=
s55

s55s66 − s56s65
, s7bd

1

s̄56

=
− s65

s55s66 − s56s65
, s7cd

1

s̄65

=
− s56

s55s66 − s56s65
, s7dd

and reduced piezoelectric coefficientsd̄15szd, d̄16szd

d̄15szd = d15szd + d16szd
s̄55

s̄65

, s8ad

d̄16szd = d16szd + d15szd
s̄66

s̄56

. s8bd

The bulk moduli are polarization independent and they
are constants throughout samples of superlattice, but the
piezoelectric coefficients are polarization dependent and
they change their signs for oppositely polarized domains,
this is the reason why we write explicitly the piezoelectric
coefficients as space dependent functions. Substituting
the expressions for dielectric displacementDxsz,td fEq. s5adg
and stress componentZ5 fEq. s5bdg into Eq. s1d and
Eq. s2d, and defining the sound velocity in the media
cs

2=1/rs̄55, one finally gets a set of coupled equations
for electric field Exsz,td and lattice displacement
uxsz,td

ē

c2

]2

]t2
Exsz,td =

]2

]z2Exsz,td −
d̄15szd
e0c

2s̄55

]3

]t2]z
uxsz,td, s9ad

1

cs
2

]2

]t2
uxsz,td =

]2

]z2uxsz,td −
]

]z
d̄15szdExsz,td. s9bd

ē=e−De is the effective dielectric constant. To facilitate
the numerical analysis, it is customary to write the equation
set into a dimensionless form. This can be done
after introducing the following dimensionless variablesswith
a bar on the topd through z= z̄L /2p, uxsz,td= ūxsz̄,tdL /2p,

and Ēxsz̄,td= ud̄15uExsz,td. L is the lattice constant of

piezoelectric superlattice and is the sum of two oppositely

polarized domains.d̄15sz̄d= ud̄15uusz̄d and usz̄d= ±1 denote
the left and right polarized domains. Using these new
variables, the dimensionless form of the equation set
becomes

S L

2pcs
D2 ]2

]t2
Ēxsz̄,td =

c2

ēcs
2

]2

]z̄2Ēxsz̄,td −
d̄15

2

e0ēs̄55

usz̄d

3S L

2pcs
D2 ]2

]t2
]

]z̄
ūxsz̄,td, s10ad

S L

2pcs
D2 ]2

]t2
ūxsz̄,td =

]2

]z̄2ūxsz̄,td −
]

]z̄
fusz̄dĒxsz̄,tdg.

s10bd

To calculate the band structures and transmission spectra, it
is often convenient to work in the frequency space. After
making the Fourier transformation to frequencysvd space,
the equation set reads

S vL

2pcs
D2

Ēxsz̄,vd = −
c2

ēcs
2

]2

]z̄2Ēxsz̄,vd −
d̄15

2

e0ēs̄55

usz̄d

3S vL

2pcs
D2 ]

]z̄
ūxsz̄,vd, s11ad

S vL

2pcs
D2

ūxsz̄,vd = −
]2

]z̄2ūxsz̄,vd +
]

]z̄
fusz̄dĒxsz̄,vdg.

s11bd

HereExsz̄,vd anduxsz̄,vd are the Fourier transformed quan-
tities of Exsz̄,td anduxsz̄,td. From Eqs.s11ad and s11bd one
notices that the dynamics of piezoelectric superlattices is
characterized by two dimensionless material parameters, one
is the ratio of velocity squared between the light and sound
in the mediaa=c2/ ēcs

2, another is the electromechanic coef-

ficient b= d̄15
2 /e0ēs̄55 which describes the efficiency of en-

ergy transfer between electromagnetic energy and lattice vi-
brational energy. The eigenspectra of superlattices are given
in terms of the reduced frequencyv̄=vL /2pcs. An estima-
tion of these parameters gives us a rough idea on the strength
of coupling between electromagnetic wave and sound wave
in different experimental settings. For superlattice composed
of LiNbO3 ferroelectric materials,21 a=1.63108,
b=0.5923 for Fig. 1sad and a=1.283108, b=0.2222
for Fig. 1sbd, thus the coupling between photons and
phonons is strongest in casesad. Note that the photon
velocity is four orders of magnitude higher than the
sound velocity, their wavelengths set two different character-
istic length scales in the system. In the following, we
develop the plane wave expansion method and transfer
matrix method from Eqs.s11ad ands11bd to obtain the band
structures and the transmission and reflection spectra of
superlattices.

Plane wave expansion method. For the periodically modu-

lated piezoelectric superlattices, the electric fieldĒxsz̄,v̄d
and lattice displacementūxsz̄,v̄d satisfy the Bloch theorem.

BAND STRUCTURES AND TRANSMISSION SPECTRA OF… PHYSICAL REVIEW B 71, 195114s2005d

195114-3



For scaled superlattices under discussion, the real space

translational vector isR̄l =2pl, the corresponding transla-
tional vector in the reciprocal space isKn=n with l, n as

integers. Thus,Ēxsz̄,v̄d andūxsz̄,v̄d for a given wave vector

k̄=kL/2p and v̄ can be expanded in the reciprocal space as
follows:

Ēxsz̄,v̄d = o
Kn

Gsk̄ + Kn,v̄dexpfisk̄ + Kndz̄g, s12ad

ūxsz̄,v̄d = o
Kn

s− idHsk̄ + Kn,v̄dexpfisk̄ + Kndz̄g. s12bd

A prefactors−id is added in Eq.s12bd in order to make the
coefficients of the matrix equation below all real. The differ-
ential equation sets11ad ands11bd is then transformed into a
matrix equation

v̄2Gsk̄ + Kn,v̄d = ask̄ + Knd2Gsk̄ + Kn,v̄d

− v̄2bo
Km

sk̄ + KmdusKn − Kmd

3Hsk̄ + Km,v̄d, s13ad

v̄2Hsk̄ + Kn,v̄d = sk̄ + Knd2Hsk̄ + Kn,v̄d

− sk̄ + Kndo
Km

usKn − KmdGsk̄ + Km,v̄d.

s13bd

usKnd is the Fourier component ofusz̄d and is given by

usKnd =5sL̄+ − pd
p

if n = 0,

2 sinsnL̄+/2d
np

if n Þ 0,6 s14d

and L̄±=2pL± /L are the scaled layer thicknesses for the left
and right polarized domains.

The matrix equation sets13ad ands13bd has the advantage
that it does not involve the derivative ofdsz̄d function, thus it
is numerically stable. But this advantage is achieved at the
expense of reducing the original eigenvalue problem to a
noneigenvalue problem since the frequency now appears on
the right side of Eq.s13ad, an alternative numerical method
has to be devised to find its solutions. We adopt the root
finding program codes originally used in the multiple scat-

tering method, for a given wave vectork̄ we first diagonalize
the matrix with certain order in reciprocal space, by counting
the positive eigenvalues for the consecutive frequencies

all the eigenvalues for a givenk̄ can be picked up, thus
yield the band structures of piezoelectrically modulated
superlattices.

We have also explored other representation of differential
equation sets11ad ands11bd to check the numerical feasibil-
ity. One possibility is to substitute Eq.s11bd into Eq.s11ad to
eliminate the right frequency dependent part of Eq.s11ad,
and to treat the newly obtained equation and old Eq.s11bd as

two independent equations. However, this equation set in-
volves the derivative ofd function in space and numerical
procedure turns out to be divergent. Another possibility is to
rearrange the equation sets11ad and s11bd into the differen-
tial equations with respect to the electric field and stress

component Z5sz̄d=dūx/dz̄−usz̄dĒx as two independent
functions,20 but this transformation involvesusz̄d which takes
usz̄d= ±1 for left and right polarized domains, the eigenval-
ues obtained do not correspond to those obtained from Eqs.
s11ad and s11bd, this is also the reason why the gap calcu-
lated in Ref. 20 is much smaller than what we obtained in
this paper.

Transfer matrix method. To cross check the band struc-
tures obtained in the plane wave expansion method and to
analyze the mode coupling with external incident waves, the
transfer matrix method is also employed to solve the band
structures and transmission spectra of piezoelectric superlat-
tices. To do so, we first solve the eigenvalues and eigenvec-
tors in homogeneously polarized domain. For the left polar-
ized domainfusz̄d=1g, by substituting Eq.s11bd into Eq.
s11ad, Eqs. s11ad and s11bd can be rearranged into the fol-
lowing simple form:

v̄2Ēxsz̄,v̄d = − a
]2

]z̄2Ēxsz̄,v̄d − b
]2

]z̄2Ēxsz̄,v̄d + b
]3

]z̄3ūxsz̄,v̄d,

s15ad

v̄2ūxsz̄,v̄d = −
]2

]z̄2ūxsz̄,v̄d +
]

]z̄
Ēxsz̄,v̄d. s15bd

Since the propagation modes in homogeneous media have
the plane wave type

Ēxsz̄,v̄d = Ēxsk̄,v̄dexpsik̄z̄d, s16ad

ūxsz̄,v̄d = ūxsk̄,v̄dexpsik̄z̄d, s16bd

the dispersion relation is determined by the following equa-
tion set:

v̄2Ēxsk̄,v̄d = sa + bdk̄2Ēxsk̄,v̄d − ibk̄3ūxsk̄,v̄d, s17ad

FIG. 1. The schematic setups of piezoelectric superlattices. The
electric field and vibrational displacement are taken asx axis; L+

andL− denote the widths and arrows refer to the polarization direc-
tions of domains. The polarization issad perpendicular to the do-
main; sbd within the domain.
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v̄2ūxsk̄,v̄d = k̄2ūxsk̄,v̄d + ik̄Ēxsk̄,v̄d. s17bd

Thus there exist four propagation modes for a given fre-
quencyv̄, their wave numbers and eigenfunctions are listed
below:

SĒxsk̄,v̄d

ūxsk̄,v̄d
D =

1

Îc+
2 + sc+

2 − 1d2v̄2
Ssc+

2 − 1dv̄
ic+

Dexpsiv̄z̄/c+d

for k = v̄/c+, s18ad

SĒxsk̄,v̄d

ūxsk̄,v̄d
D =

1

Îc−
2 + sc−

2 − 1d2v̄2
Ssc−

2 − 1dv̄
ic−

Dexpsiv̄z̄/c−d

for k = v̄/c−, s18bd

SĒxsk̄,v̄d

ūxsk̄,v̄d
D =

1

Îc+
2 + sc+

2 − 1d2v̄2
Ssc+

2 − 1dv̄
− ic+

D
3exps− iv̄z̄/c+d for k = − v̄/c+, s18cd

SĒxsk̄,v̄d

ūxsk̄,v̄d
D =

1

Îc−
2 + sc−

2 − 1d2v̄2
Ssc−

2 − 1dv̄
− ic−

D
3exps− iv̄z̄/c−d for k = − v̄/c−. s18dd

Herec±=Î0.5fsa+b+1d±Îsa+b+1d2−4ag are the reduced
velocities of electromagnetic wave and sound wave in the
media scaled bycs, first two modes correspond to the elec-
tromagnetic wave and sound wave propagating to the left
while the last two correspond to those propagating to the
right. Similarly, the eigenvalues and eigenfunctions in the
right polarized domain can also be derived, their expressions
are obtained by replacingc± by −c± while keeping the phase
factors intact.

The general solutions in the left and right polarized do-
mains can be expressed in terms of the above eigenfunctions.
Using the boundary conditions that the electric field, lattice
displacement, the derivative of electric fieldsmagnetic fieldd,
and stress component are continuous across the domain in-
terface, one can define the transfer matrix in each domain
which relates the fields and their derivatives at the two sides
of a domain

1
ĒxsL̄±,v̄d

ūxsL̄±,v̄d

Ēx8sL̄±,v̄d

ūx8sL̄±,v̄d 7 ĒxsL̄±,v̄d
2

= MsL̄±,v̄d

31
Ēxs0̄,v̄d

ūxs0̄,v̄d

Ēx8s0̄,v̄d

ūx8s0̄,v̄d 7 Ēxs0̄,v̄d
2 .

s19d

The detailed expressions of transfer matricesMsL̄± ,v̄d
are listed in the Appendix. Here upper and lower signs
denote the left and right polarized domains. The transfer
matrix of a superlattice can be obtained by successive appli-

cation ofMsL̄± ,v̄d using the sequence depicting superlattice
configuration. This forms the basis to study the band struc-
tures and transmission spectra of the superlattices. For ex-
ample, we can also study the band structures using the Bloch
theorem. In this case, we need to solve the following matrix
equation:

MsL̄+,v̄dMsL̄−,v̄d = expsik̄L̄dI , s20d

with I denoting the 434 unit matrix.
With the analytic expressions of the transfer matrix for the

left and right polarized domains, it is easy to study the trans-
mission and reflection spectra of a finite superlattice. For a
finite superlattice withNP number of periods, the transfer
matrix of the superlattice is given by

M = fMsL̄+,v̄dMsL̄−,v̄dgNP. s21d

For the transverse vibrational mode illustrated in Fig. 1, only
the electromagnetic waves are coupled out since the trans-
verse elastic modulus of air is nearly zero. The transmission
t and reflectionr amplitudes can be expressed in terms of
matrix elementsMij as follows:

t =
2M42

M42fsM11 + fpM13d + fp
−1sM31 + fpM33dg − sM12 + fp

−1M32dsM41 + fpM43d
, s22ad

r =
M42fsM11 + fpM13d − fp

−1sM31 + fpM33dg − sM12 − fp
−1M32dsM41 + fpM43d

M42fsM11 + fpM13d + fp
−1sM31 + fpM33dg − sM12 + fp

−1M32dsM41 + fpM43d
, s22bd
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and the parameterfp= icsv̄ /c. The experimentally measured
transmission and reflection spectra are given byT= utu2 and
R= ur u2, they satisfy the energy conservation lawR+T=1 if
no dissipation exists.

III. NUMERICAL RESULTS AND DISCUSSIONS

The band structures of polaritonlike modes can be ob-
tained easily from the matrix equation sets13ad and s13bd
based on the plane wave expansion method. Typical
results are illustrated in Fig. 2 for configurationsad, where

equal widthssL̄+= L̄−=pd are assumed for left and right
polarized domains. Figure 2sad shows the overall band
structure in whole Brillouin zone, the dispersion relation can
be viewed as simply folding the dispersion relation of acous-
tic wave in homogeneous media, and the proposed polariton-
like band gap is not visible in the figure. The fact that
c/Îēcs=Îa.104 reminds us that a significant coupling takes
place only near the center of Brillouin zone. This part of the
dispersion curves is enlarged and replotted in Fig. 2sbd. Sev-
eral points are worth mentioning concerning the band struc-
ture: s1d Besides the lowest polaritonlike band gap theoreti-
cally predicted in Ref. 17, here we find additional
polaritonlike band gaps whenvL /2pcs equals odd integers
though the sizes of band gaps decrease rapidly as middle gap
frequency increases.s2d Unlike the usual concept of band
gap where no eigenmodes can propagate within the gap
range, here there obviously exists a branch of “optical pho-
non” passing through the complete band gap range. There-
fore, the existence of proposed band gap is not guaranteed
unless the above mentioned “optical phonon” branch is ex-

actly decoupled from the rest of modes even in the presence
of boundary. The plane wave expansion method and those
perturbation methods previously adopted18 certainly cannot
address this issue.s3d The polaritonlike band gaps also
open up atvL /2pcs=even integers if thicknesses of left
and right polarized domains are differentfsee Eq.s14dg. This
is so because the parity symmetry is then broken when

L̄+,L̄−Þp, but all gap sizes are drastically reduced due to the
reduced Fourier coefficients of piezoelectric functions. An
typical example is shown in Fig. 3 where the widths for left

and right polarized domains are taken asL̄+=0.5p and

L̄−=1.5p, respectively.
To cross check the band structures calculated using the

plane wave expansion method, the band structures of con-
figurations1ad are also computed using Eq.s20d based on the
transfer matrix method and Bloch theorem. The same results
are found and presented in Fig. 4. The solid circles represent
the real wave vector for pass bands while the solid triangles
represent the purely imaginary wave vector for forbidden
gaps. Figure 4sad plots the wave vectors for the whole Bril-
louin zone while Fig. 4sbd is an enlarged portion near the
Brillouin center. For a given frequency, the transfer matrix
method yields either a real wave vector for the propagation
mode or a purely imaginary wave vector for the forbidden
mode which describes the attenuation of corresponding
mode. Those vertical lines in Fig. 4sbd correspond to the
decoupled “optical phonon” branches whose properties de-
serves further investigation. These band structures are ex-
actly the same as those presented in Fig. 2.

To elucidate the nature of those “optical phonon”
branches within the gaps, we also studied the transmission
and reflection spectra of finite superlattices using the gener-
alized transfer matrix method described in the last section.
For the specific configuration presented in Fig. 1, both elec-
tromagnetic wave and lattice wave are transverse waves and
only the electromagnetic wave is coupled out. Contrary to
the conventional wisdom that tens to hundreds of lattice pe-
riods for a superlattice should be good enough to reproduce
its bulk behavior, here the piezoelectric superlattice is char-
acterized by two hugely different length scales, i.e., the

FIG. 2. The polaritonlike band structures of configurationsad
using the plane wave expansion method. The material parameters

are listed in text andL̄+= L̄−=p. sad For whole Brillouin zone.sbd
Near the center of Brillouin zone.

FIG. 3. The polaritonlike band structures of configurationsad
near the center of Brillouin zone using the plane wave expansion
method. The material parameters are the same as in Fig. 2,

L̄+=0.5p; L̄−=1.5p.

ZHANG, LIU, AND WANG PHYSICAL REVIEW B 71, 195114s2005d

195114-6



wavelengths of photon and phonon. As the phonon wave-
length at polariton band gap is comparable to the lattice con-
stant, the photon wavelength must be ten thousand times that
of lattice constant. For comparison, the transmission coeffi-
cients are shown in Fig. 5 for a different number of lattice
periodssNPd. The transmission spectra change dramatically
with the sample thickness when it is much smaller than the
photon wavelength, and well defined polaritonlike band gaps
appear only when the sample thickness reaches several pho-
ton wavelength. These results also show that the in-gap “op-

tical phonon” modes in Fig. 2 do decouple from the polari-
tonlike modes for the configurations shown in Fig. 1, which
makes the polaritonlike band gaps genuine. From the trans-
mission spectrum plotted in Fig. 5sdd, the relative gapssgap
divided by midgap frequencyd are 19%, 2.5%, and 1% for
the 1st, 2nd, and 3rd gap, respectively. This should be com-
pared with Ref. 17 where the first gap was predicted and
relative gap was estimated to be 7%. Note that the rapid
oscillations within the pass band of spectra are due to Fabry-
Pérot interference effect in the samples. These calculated
transmission and reflection spectra also give an explanation
as why the gap was not detected in the previous experiment17

with sample of 250 lattice periods. Because the sample thick-
ness is far smaller than the photon wavelength, no well de-
fined polaritonlike band gap has taken the shape.

The above study can also be carried out for other trans-
verse and longitudinal acoustic phonon modes and same con-
clusions can be made. Due to the much smaller coupling
constantb, the polaritonlike band gap is much smaller and
will not be discussed here in detail.

IV. CONCLUSION

In summary, we have clarified in this paper several issues
concerning the existence of the polaritonlike band gap in
piezoelectric superlattices. The “optical phonon” branch
within the band gap is completely decoupled from external
electromagnetic wave and relative gap can be as large as
19%. Our results offer a natural explanation as to why pre-
vious experiments failed to observe the gap in a sample with
250 periods.
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APPENDIX: TRANSFER MATRICES FOR TWO
POLARIZED DOMAINS

c±=Î0.5fsa+b+1d±Îsa+b+1d2−4ag are the reduced
velocities for photons and phonons, respectively.v̄

=vL /2pcs; L̄±=2pL± /L. The upper and lower subindices
represent two polarized domains:

MsL̄±,v̄,1,1d =
1

sc+
2 − c−

2d
Fc−

2sc+
2 − 1dcos

v̄L̄±

c+

− c+
2sc−

2 − 1dcos
v̄L̄±

c−
G , sA1d

FIG. 4. The polaritonlike band structures of configurationsad
using the transfer matrix method. The material parameters are listed

in text andL̄+= L̄−=p. sad For whole Brillouin zone.sbd Near the
center of Brillouin zone.

FIG. 5. Transmission coefficients for equal-width piezoelectric
superlattices with various sample thicknesses in unit of periods.sad
16 periods;sbd 256 periods;scd 4096 periods;sdd 65536 periods.
Since reflection and transmission coefficients satisfy the sum rule,
only transmission coefficients are shown.
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MsL̄±,v̄,1,2d = 7
sc+

2 − 1dsc−
2 − 1dv̄

sc+
2 − c−

2d
Fc+ sin

v̄L̄±

c+

− c− sin
v̄L̄±

c−
G , sA2d

MsL̄±,v̄,1,3d =
c+c−

sc+
2 − c−

2dv̄
Fc−sc+

2 − 1dsin
v̄L̄±

c+

− c+sc−
2 − 1dsin

v̄L̄±

c−
G , sA3d

MsL̄±,v̄,1,4d =
±sc+

2 − 1dsc−
2 − 1d

sc+
2 − c−

2d
Fcos

v̄L̄±

c+
− cos

v̄L̄±

c−
G ,

sA4d

MsL̄±,v̄,2,1d = 7
c+c−

sc+
2 − c−

2dv̄
Fc− sin

v̄L̄±

c+
− c+ sin

v̄L̄±

c−
G ,

sA5d

MsL̄±,v̄,2,2d =
− 1

sc+
2 − c−

2d
Fc+

2sc−
2 − 1dcos

v̄L̄±

c+

− c−
2sc+

2 − 1dcos
v̄L̄±

c−
G , sA6d

MsL̄±,v̄,2,3d =
±c+

2c−
2

sc+
2 − c−

2dv̄2Fcos
v̄L̄±

c+
− cos

v̄L̄±

c−
G ,

sA7d

MsL̄±,v̄,2,4d = −
1

sc+
2 − c−

2dv̄
Fc+sc−

2 − 1dsin
v̄L̄±

c+

− c−sc+
2 − 1dsin

v̄L̄±

c−
G , sA8d

MsL̄±,v̄,3,1d = −
v̄

c+c−sc+
2 − c−

2d
Fc−

3sc+
2 − 1dsin

v̄L̄±

c+

− c+
3sc−

2 − 1dsin
v̄L̄±

c−
G , sA9d

MsL̄±,v̄,3,2d =
7sc+

2 − 1dsc−
2 − 1dv̄2

sc+
2 − c−

2d
Fcos

v̄L̄±

c+
− cos

v̄L̄±

c−
G ,

sA10d

MsL̄±,v̄,3,3d =
1

sc+
2 − c−

2d
Fc−

2sc+
2 − 1dcos

v̄L̄±

c+

− c+
2sc−

2 − 1dcos
v̄L̄±

c−
G , sA11d

MsL̄±,v̄,3,4d = 7
sc+

2 − 1dsc−
2 − 1dv̄

c+c−sc+
2 − c−

2d
Fc− sin

v̄L̄±

c+

− c+ sin
v̄L̄±

c−
G , sA12d

MsL̄±,v̄,4,1d =
7c+

2c−
2

sc+
2 − c−

2d
Fcos

v̄L̄±

c+
− cos

v̄L̄±

c−
G ,

sA13d

MsL̄±,v̄,4,2d =
v̄

sc+
2 − c−

2d
Fc+

3sc−
2 − 1dsin

v̄L̄±

c+

− c−
3sc+

2 − 1dsin
v̄L̄±

c−
G , sA14d

MsL̄±,v̄,4,3d = 7
c+

2c−
2

sc+
2 − c−

2dv̄
Fc+ sin

v̄L̄±

c+
− c− sin

v̄L̄±

c−
G ,

sA15d

MsL̄±,v̄,4,4d =
− 1

sc+
2 − c−

2d
Fc+

2sc−
2 − 1dcos

v̄L̄±

c+

− c−
2sc+

2 − 1dcos
v̄L̄±

c−
G . sA16d
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