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Adaptive curvilinear coordinates in a plane-wave solution of Maxwell’s equations in photonic
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A method is described to compute the modes propagating at a given frequency in dielectric systems that are
periodic in two dimensions and uniform in the third dimension, using a plane-wave basis expressed in a system
of generalized curvilinear coordinates. The coordinates are adapted to the structure under consideration by
increasing the effective plane-wave cutoff in the vicinity of the interfaces between dielectrics, where the
electromagnetic fields vary most rapidly. The favorable efficiency and convergence properties of the method
are shown by comparison with the conventional plane-wave formulation of Maxwell’'s equations. Although the
method is developed to study propagation in photonic crystal fibers, it is also applicable more generally to
plane-wave modal solutions of structured dielectrics.
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[. INTRODUCTION methods instead rely on expanding fields in basis states of a
definite frequency. A cutoff is imposed to make the basis set
Photonic crystals, materials whose structure varies on theinite (but sufficiently large to give physically accurate re-
scale of the wavelength of light, have been an area of greajulty, and the resulting eigenproblem is solved to yield the
interest in recent years: By means of a periodic variation in eigenmodes of the system.
structure, it is possible in such materials to introduce “pho- |n the case of modeling PCF, and often more generally in
tonic band gaps” that forbid propagation of light over a rangephotonics, it is the eigenmodes of a given structure that are
of frequencies or wave vectors, providing control of the op-needed in order to determine the position of band gaps and
tical properties of the material. Photonic crystal fibd€F3$  hence guidance properties. Such optical eigenproblems lend
are a class of photonic crystals that are invariant in one spahemselves naturally to frequency-domain methods. How-
tial dimension but structured in two dimensiotfsSimilar to ever, there is generally a choice of variable in using such
conventional optical fibers, PCFs are usually fabricated frommethods. One method is to fix the wave vector of ligtend
glasses such as silica but the microstructure, consisting of ajompute a set of modes characterized by frequaendyhe
holes running along the length of the fiber, leads to a widefixed-wave-vector” method The other possibility is instead
range of new physical properties. In particular, the ability ofto fix  and, for ad-dimensional calculatior(d—1) compo-
PCFs to guide light in an airather than solificore has been nents ofk, and compute a set of the remaining component
demonstrated. These hollow-core PCFs open up a wide (the “fixed-frequency” method Although the fixed-wave-
range of novel opportunitie¥’ including enhanced nonlinear yector method is in common ueye choose here to develop
effects resulting from their long interaction lengths with the fixed-frequency method, as it is a natural approach when
gases, and particle guidanceThere has been a correspond- studying PCF. In experiments, light enters PCF at a given
ing increase in the need for computational modeling toolsfrequency, and it is of interest which mod@sach character-
largely owing to the failure of the theoretical techniques pre4zed by the component df along the length of the fibgr
ViOUS'y used with conventional fibers to describe PCF admay propagate. Working at a fixed frequency has the addi-
equately. Our aim in this paper is to present a method fofional advantage of simplifying the inclusion of material dis-
solving Maxwell's equations to understand the physics ofpersion. If the dielectric constant in a material is a function
light propagation in PCF. Although the method is formulatedof frequency, we simply choose the dielectric constant rel-
specifically for PCF, the ideas behind it are applicable moreyant to the chosen.
generally to other types of photonic crystals. Defining thez direction as that along the axis of the fiber,

The solution of Maxwell's equations in photonic systemsthe translational invariance of PCF along its length allows us
can be approached by a variety of means. Methods generalty write the magnetic fieldd as

fall under the broad class of either time-domain or

frequency-domain methods, each of which is more ideally H = (h+ h%2)exp(iB2), (1)
suited to different problems. In time-domain methods, such

as finite-difference time domaifFDTD),? fields are repre- Whereg is thez component of the wave vect@he “propa-
sented on a real-space grid and, by using Maxwell's equagation constant; hy(x,y) andh*(x,y) are the transverse and
tions, are evolved over time; both the grid spacing and timdongitudinal components of the magnetic field, respectively,
interval must be sufficiently fine to ensure that the solutionsand a time dependence of the foeW*! is implicit through-

are physically accurate. This is a flexible and general apout. Providing we assume the medium is linear and nonmag-
proach that is well suited to dynamical problems, but it isnetic [e=gon?(X,y), u=puol, Maxwell's equations forh, in

less suited to determining eigenmodes. Frequency-domaithis geometry take the forth
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{vtz + nzkg +V,Inn?x V, X }h,= gh,, (2 An important feature of plane-wave methods that make
use of FFTs is that functionge., n? andh,) are represented
on a uniform grid of points in real spa¢see Sec. Il B In
whereV? is the transverse Laplacian operatgjs w/cis the ~ PCF(and other photonic crystalshere are usually large re-
free-space wave vector, amgx,y) is the refractive index. gions of space with no variation in? separated by sharp
The longitudinal component® and the electric field can be interfaces. Although the fields vary in the regions of constant
derived fromh,.1° We hold k, (and hence frequengycon- n?, it is at the interfaces where the most rapid variation oc-
stant, and the eigenvalues of the equation are a set of allowedirs. The grid points in uniform regions therefore tend to be
B2. Unlike in the fixed-wave-vector meth8dhis eigenprob-  “wasted,” implying a loss of computational efficiency. The
lem is not Hermitian, and therefore a generalized comples@m of our work is a reformulation of the fixed-frequency
eigensolver must be used. This precludes the use of marjlane-wave method in generalized curvilinear coordinates
well-developed variational methods for Hermitian systemsthat allows aposition-dependenplane-wave cutoff to be
but it brings the advantage that the method, once impleused (or, equivalently, a nonuniform grid spacing in real
mented, can handle materials with complex dielectric conspacg while retaining all of the desirable properties of the
stants with no additional effort. The need to develop nonvaplane-wave basis outlined above. We demonstrate that by
riational methods also simplifies the process of findingmaking an appropriate choice of coordinates adapted to the
interior eigenvalues, as discussed in detail in Sec. Il A. structure of interest, this provides a considerable increase in
To solve Eq.(2) computationally, the fields must be ex- computational efficiency.
panded in a finite basis set. Issues to consider when choosing In Sec. Il, we describe the conventional fixed-frequency
the basis set include generalfiye., placing as few restric- plane-wave method. The formulation of the method in gen-
tions on nz(x,y) as possibﬂg the compactness of the repre- eralized curvilinear coordinates is presented in Sec. Ill, and a
sentation of the fieldsi.e., the number of basis functions demonstration of its application to a test system is described
needed for accurate resultand the Speed and memory ef- in Sec. IV. The method and results are discussed in Sec. V.
ficiency of the computation. A natural choice in studying
photonic crystals is to use plane waves as the basis. This || THE CONVENTIONAL FIXED-FREQUENCY
choice brings several advantages: it is implicitly periodic; it PLANE-WAVE METHOD
is general, placing no restrictions @A(x,y) other than pe-
riodicity; and, crucially, it allows the use of the fast Fourier A brief outline of the conventional fixed-frequency plane-
transform(FFT) to perform rapid calculations in real space Wave method has been published previously in Ref. 11. Al-
in addition to reciprocal space, as is described below in Sedhough our key result is the development of the method in
Il B. Although the plane-wave basis is not particularly com- curvilinear coordinates, it is useful to set this in the context
pact in terms of basis states, the speed increase brought ab&ftthe conventional approach. The iterative eigensolver, the
by using FFTs outweighs this problem. For these reasons, tHése of FFTs, and the need for preconditioning which are
plane-wave basis is frequently used in photofiitsand also ~ described in this section are all common to the formulation
in other areas of physics such as electronic Structurén generalized curvilinear coordinates given in Sec. Ill. We
computationt2 therefore begin with a more detailed description of the
The implicit periodicity of the plane-wave basis makes it method of Ref. 11.

ideal to study propagation in PCF C|adding, i_e_, the periodic A dielectric function that is periOdiC in 2D with prlmltlve
structure that surrounds the central region of the fiberlattice vectorsR; and R, (defining either a unit cell or su-
Knowledge of, for example, the density of photonic statesPercel) satisfies
and the location of band gaps in a cladding structure is im- o o
portant to understand the guidance properties of BERw- n“(x) =n“(x+R), 3)
ever, real PCFs have a different microstructure at their Cem%hereRzllRlﬂsz, .1, e 7, andx=(x,y) is the 2D posi-
(e.g., an air CO.FE) which can be thought of as a defect in th? tion vector. Defining primitive reciprocal lattice vectors by
periodic cladding structure. To model the effect of defects NS R.=2m6 ( =1.9), the dielectric function can be
the PCF cladding, it is still possible to use the plane-wave>® "8~ <7 %ap @,B=1,2), .
method by employing a supercell approximation. A:supercelFXpande‘j in a plane-wave basis set as
is a large “unit cell” containing a single defect and many 2x) =S n2dex @
repeated unit cells of cladding; the exponential decay of - 5 ° '
fields in the cladding region ensures that the interaction be-
tween adjacent defect imagéatroduced by the periodicity where G=m;G;+m,G, and m;,m, e Z. Similarly, with the
of the supercell latticeis minimal. Of course, this false pe- inclusion of a Bloch wave vectdr in the transverse plane,

riodicity introduced by the supercell prevents the computathe transverse magnetic fielg=(h*, hY) may be written
tion of radiation losses of a redfinite-sized fiber. Ap-

proaches such as the transfer mafriband multipolé® hx) = S h dk+ex (5)
methods, which use field expansions localized to defects, are G kG '

better suited to such confinement loss calculations. However,

they do not have the flexibility or speed of the plane-waveSubstitution into Eq(2) yields the vector wave equation in
method for accurate modal calculations. reciprocal-space form

195108-2



ADAPTIVE CURVILINEAR COORDINATES IN A... PHYSICAL REVIEW B 71, 195108(2005

Mow M hﬁ o X implicitly restarted Arnoldi methofimplemented imRPACK
> ( xx yx) , :,32< ;‘/G) (6) (Ref. 18] to locate the eigenvalues; this requires only the
o My Myy h o h result of the matrix-vector multiplicatiotVl -l )1u for ar-

bitrary vectorau. In this method, repeated multiplication of a
random starting vector b§M — ol )% builds up a Krylov sub-
space from which extremal eigenvalues are extrati@gipi-

where the elements oM (showing manifestly the non-
Hermitian nature of the eigenprobl¢rare

Myy= = |k + G'[285 57 + K3n> cally, we have found that between 4-10 multiplications per
XX G,G’ G-G’ . .
eigenvalue are required.
+(Gy— Gy (k,+ Gy)[In n?lg_g’, (7a) ARPACK requires the results diM - 1) 'u. We can pro-
vide this by noting that each matrix inversion is equivalent to
My, = - |k + G’|25 4 k{z)nz / solving the set of linear equatiolis! — ol )w=u for the vec-
i ¢e GG tor w givenu. We have tested a wide range of iterative linear
+(Gy— G (ke + GY[IN n?g g, (7b)  solvers, and conclude that tieREs (Ref. 18 solver gives
particularly rapid convergence. To determiwe GMRES re-
Myy =~ (G, - G;)(kXJr G oo, (70) quires only matrix-vector multiplications of the form

(M =al)y for arbitrary vectorsy. We have found that for
, , ) well-conditioned problemgsee Sec. Il ¢ typically 10-40

My == (Gx= Gk, + Gy)[In nJg . (7d)  multiplications may be needed for eat¥ —ol)~'u evalua-
tion. It follows that of the order of 100 matrix-vector multi-
plication operations are required for each eigenvalue. This
compares well with Hermitian variational schemes for exte-
rior eigenvalues, and very favorably with variational
schemes for interior eigenvalues.

In summary, providing we are able to perform the opera-
tion (M —ol)y on any given vectoy, we can efficiently lo-
cate interior eigenvalues &fl even for non-Hermitian sys-
tems. The problem is reduced to that of performing this
operation quickly, even for largsl; in Sec. Il B below we
describe how FFTs can be used to do this efficiently without
explicitly forming M.

Note that the terms itk + G’|? arise from theV? operation in
Eq.(2), those inné_G, from nzk(z), and the remainder from the
Vinn?Xx VX operation. Equatiori6) is solved numerically
by imposing a finite circular cutofG. for the reciprocal-
space components df* and hY such that onlyG vectors
satisfying |G| <G, are included. This creates a matrix
eigenproblemM -v=8%, where the vectorv comprises
reciprocal-space components of béthandhY.

A. Iterative solution

For sufficiently small plane-wave cutoffs, the matik
can be diagonalized directly using standard techniques, re-
quiring O(N3,,) operations for aMpy, X Npy, matrix. Npy, is
the number of plane waves used in Eg), and is typically The O(N3,,) storage and computational time requirements
of the order of 1000 and 100 000 for single cell and supercelbf storing the matrixM and carrying out matrix-vector mul-
calculations, respectively. Diagonalization is not practical fortiplications can be avoided by use of FFTs. The FFT is a
large supercells because the scaling is so poor. Howevedjscrete Fourier transform, which creates a real-space repre-
when modeling PCF, we generally require only a few eigensentation of a functiof on a uniformN; X N, grid from a set
values ofM. In particular, for hollow-core PCF, the eigen- of reciprocal-space componerfs
values of interest hav@=k,, which corresponds to modes

B. Matrix-vector multiplication by FFT

. . . N;-1 Np-1
that can propagate in afr.e., in the hollow corgbut where _ iGx
a band gap may exist in the cladding. These iaterior f(ng,ny) = 1 2mlE:0 EO F(my, mp)e™=. (8)

eigenvalues, and consist of only a small fraction of the ei-

genvalue spectrum: smallg corresponds to the continuum Here, f(n;,ny)=f(x=n;R;/N;+n;R,/N,) and F(mg,m,)

of unbound modes free to propagate in the air holes of the F(G=m;G;+m,G,). In our casef may ben?,h* or hv.

cladding, and largeg to index-guided modes that are peakedAny geometry of unit cell or supercell is allowed by ES),

in the glass regions. Although a considerable increase in efas grid sizedN; and N, corresponding to any basis vectors

ficiency can be made by using an iterative eigensolver tdR,; and R, can be included. In practice, PCFs tend to be

locate only these states of interest, many methods currentlygased on hexagonal lattices, in which case it is natural to

in use are restricted to findirgxtremaleigenvalues. The use takeN;=N,=N. By choosing a circular cutoff for the recip-

of variational methods for interior eigenvalues generally resocal space components ldfas described previously, we are

quires squaringv, which worsens the convergence of itera- able to preserve all symmetries exactly; to use the FFT in

tive solvers’ Our method does not use a variational schemethis case we extend the cutoff to the nearest edge of the FFT

and is ideally suited to determining interior eigenvalues. grid and set any unfilled elements on the grid to zero. It
The transformed eigensystefi —ol1)'v=uv has iden- follows that the linear FFT grid siz&l and the number of

tical eigenvectors to those ofM, and eigenvalues related basis states are related b« Npy,. The FFT can be evalu-

by u=1/(8%-0). Thus it is possible to transform the interior ated in O(N?logN) time, or equivalentlyO(Npwlog Npw)

eigenvaluess? to extremal eigenvalueg by appropriate which compares very favorably with th@(N3,,) of direct

choice of o (e.g., for hollow-core PCRr=k3). We use the matrix-vector multiplication.
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To demonstrate the use of FFTs in performing matrix-nents are transformed back to real space and the logarithm is
vector operations, consider tH& component of Eq(6), taken to create the function if, which is then transformed

which is to reciprocal space. Components of bathand Inn? with
« y |G| < Gmax (Where G, corresponds to the smallédx N
2 (My+ My + My o, + Mg ), (9)  FFT grid) are extracted for use in the mode-solving calcula-
G’ tion. This oversampling procedure ensures that the compo-
nents ofn? and Inn? remain consistent with one another after
where . X i :
smoothing(i.e., the same? is described in each case
M1:_|k+G’|26G,G’1 (103)
2 2 5 C. Preconditioning
M, =kgNe_/, 10 .
2= kog-g (100 The linear problem{M -ol)w=u may be solved by suc-
, , 5 cessive application of(M -al) to vectors provided by
M3z =(Gy - Gy)(ky+ G)[In n]gq, (109 Gwmres but it is generally the case that convergence when
using this method is either slow or fails entirely. This behav-
My=—(Gy— G (k+ Gy[In N?lg_g’. (10d)  ior can be rectified by preconditionif§which in this case
) ) . ) involves multiplying by a preconditione?:
The term inM, can clearly be carried out in reciprocal space
PM-al)w=P-u, (14)
= Mihy g, ==k +Gl’hig, (11) | o
G ’ ‘ where P is chosen to be an approximate inverse of
. . (M =gl).
but the term |nM2 IS beSt performed as fOIIOWS: A good preconditioner has been found to be an
x 22 % exact inverse (determined by LU decompositipn
g Mz e _g koe—e Mo (123 o IG|,|G’|<GE, and the Jacobi preconditiof&r

Pi;=6;/(M; — o) for the part of the matrix corresponding to
larger G vectors. The choice of the preconditioning cutoff
:kg[nz(nl,nz)hﬁ(nl,nz)](;, (12b) chut determines the sizblp of the exactly inverted square,
where Eq.(12b) follows from Eq.(12a by the convolution ~and minimizing the total time taken bgMRES involves a
theorem, and the quantities labelém,n,) are stored and trade-off between the number GMMREs iterations, the time
multiplied together pointwise on discrete grids of the form oftaken to perform the exact inversi¢scaling as\?), and the
Eq. (8) in real space. It is clear from EL23 that to obtain  time required to apply the precondition@caling adNz). We
an exact representation of the matrix-vector multiplication inhave found in previous work using this mettibé*°that for
Eq. (6) we require components? at G-vector magnitudes Single unit cells a size dil,~100 is optimal, and for super-
up to a maximum of @, In practice, however, we find that Cells Np~2000 is optimal.
convergence is improved by extending the circular cutoffs of
both n? andh, to the edge of the same FFT grid.

D. Analysis
The transformation to real space and back to reciprocal ) ) , ) )
space requires 1 FFT fo and 1 FFT forhY. The term inMs In nonmagnetic materials, Maxwell's equations require
(and similarly that inM,) is evaluated as thatH,A X E, andn-¢E are conserved across any boundary
with normal vectorfi. In PCF, wheres varies only in the
> M3h’|§’G, => (Gy - Gy)(k, + Gy)[In nz]G_G,hEVG, transverse plane, conservationfok E implies conservation
G’ G’ of £712-V,x h,,1° which in turn implies that any discontinu-
- X ity in the dielectric function inevitably leads to a discontinu-
=[(ky + G)hy g H(n.n2) ous gradient of,.
x{(Gy - G/)[IN N} (NN ]e (13) The truncated Fourier representation of a function that is
vy~ Sy - ' '

discontinuous in any of its derivatives suffers the appearance

where the quantities ifi } are evaluated in reciprocal space of Gibbs’ phenomenoft This can cause slow convergence
and then transformed to real space, and the quantity]iis  or numerical instability when using the plane-wave method
transformed to reciprocal space following the pointwise reato solve Maxwell's equations, but can be prevented with
space multiplication. By combining ternbeforetaking FFTs  smoothing; we apply Gaussian smoothing to the dielectric
the total number of FFTs required for all the operationdlin ~ function, but other methods are also in §8The choice of
is 5. smoothing width is crucial. A large smoothing width givés

The components of both? and Inn? are also generated values which are perturbed from their true values, but facili-
by FFT. For a calculation to be carried out ultimately with antates faster convergence with respect to plane-wave cutoff; a
Nx N FFT grid, we sampl@? on afinereal-space gridusu-  narrower smoothing width gives more accurgtealues but
ally of size=8Nx 8N), then Fourier transform to reciprocal makes convergence slower. We discuss this effect quantita-
space. Smoothing is then applied by multiplication of thetively with reference to a test system in Sec. IV.
Fourier components by a Gaussian envelope, for the reasons Because we use FFTs to create a sampled representation
to be discussed in Sec. Il D. The resulting smoothed composf functions in real space, we can consider the effect of
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smoothing on plane-wave convergence qualitatively in termefficients in reciprocal space which now have a position-

of the sampling theorem. We can expect a reasonable level aiependent effective cutomemf;gx) o« 1/AX(X). It is therefore

convergence to occur only when there is on average at leapbssible to enhance the convergence of plane-wave calcula-

one real-space sampling point in the smoothed interface reions by choosing to increase the effective cufoff, equiva-

gion in any given direction normal to the interface, and solently, the density of real-space grid poini® regions of

either increasing the smoothing width or the density of gridinterest.

points in real space enhances convergence. This approximate o B _

“convergence, in principle” argument suggests that increas- A The plane-wave basis in curvilinear coordinates

ing the density of sampling points at the dielectric interfaces Following the method of Gydi!/?8 we consider the arbi-

will enhance convergence. trary curvilinear coordinaté, a vector of two Cartesian com-
However, the FFT createsumiformly spacedyrid of real-  ponentst! and &, and define &-space lattice to have primi-

space sampling points, as shown in E8). This has been tive lattice vectorsR, and R, identical to those of the

noted as a problem in Ref. 9; it leads to a loss of compactperiodic structure under consideration. A transformation be-

ness in the representation of the dielectric function. If there isween curvilinear coordinates and Euclidean coordinates

rapid variation inn? only in a localized area of the unit cell x=(x*,x?) is defined by

(i.e., at the dielectric interfacgsit is reasonable to expect

that convergence as the FFT grid size is increased is largely X(&) = &+ 2 XcexpliG - &), (15

due to the increased number of points in those areas, and it G

follows that the additional points in regions of constait \yhere the set of vectolG,; and G, are identical to those of
are unnecessary. It would therefore be beneficial to increéasge reciprocal lattice in Euclidean space. The coefficiagts
the den23|_ty of sampling pointnly in regions of the unit cell 1y define the transformation, and can be obtained easily by
wheren® is most rapidly varying. _ . two FFTs of the quantitieéxP—£P). No restriction is placed
Perhaps surprisingly, it is possible to obtain a position-

) ~'"on the transformation except that it be invertiie., a 1:1
dependent plane-wave cutaffind, equivalently, a nonuni- mapping betweem and £).

form real-space grid spacingvhile still using the plane- It is useful to define two quantities related to the coordi-
wave methodand retaining the use of FFTs. This is made pa¢e transformation: the Riemannian metric tensor, defined
possible by reformulating the plane-wave method in arbitrar

curvilinear coordinates; our key finding in this paper is that )

ultimately we can use this method to allow less smoothing XK gxk
and a smaller number of basis states to be used while retain- Opa= > Ep@ (16)
ing all of the computational benefits of the plane-wave k=l
method. and the “geometric vector potentiak,:
19
lll. THE FIXED-FREQUENCY PLANE-WAVE METHOD IN Ap= :m_ép'” g, an

GENERALIZED CURVILINEAR COORDINATES

, _ _ , whereg=detg,,?® Both can be calculated simply from the
_ It is sometimes convenient to express Maxwell's equaset of coefficientss using FFTs; they are stored numerically
tions in generalized curvilinear coordinatésCCsg, for in- at a uniform set of points irg space for future use. The
stance when using the f|n|te-d!fference metﬁ%(gratlng _elements[g,,] form a position-dependent and symmetric 2
theory?* and, recently, perturbation-matched coordinates iNe > matrix. We may also define another position-dependent

coupled mode theor??® The reformulation of the plane- symmetric matri{gPi=[g,,] " by inversion at any point in

wave method in arbitrary curvilinear coordinates was ﬂrStspace' this is used below in the evaluation of Wematrix
proposed in the field of electronic structure in 1992 by '

: : > . element.
Gygi?"?®We report here the first application of this method ™5 consider the set of basis functions given by
to the modal solution of Maxwell’'s equations. A
In order to understand the GCC method, first consider the Xk.c(X) = g H4(x) kG 00, (18
conventional formulation of the plane-wave method. AcutoffUSing the propertydx=gL2d?¢ to transform the area ele-

condition|G| < Grgyis imposed to create a finite set of basis ment, it can be seen that this set of functions is orthonormal

functions, which are connected by the FFT to an equivalen&nd complet&® The magnetic field and dielectric function
repr_esentation ona real-spac_e grid with uniform spacing Pr%an be repres.ented as a sum over these basis functions, but
portlona! 10 1 Gpax Suppose instead t_hat the real-spacg "®Phote that the coefficients are different from those obtained
resentation of a function was not uniform in the Euchdeanusing the conventional plane-wave methfiggs. (4) and
coordinatex, but in another coordinaté, related tox by a G)]: '

smooth and invertible mapping—x(£). The grid of x '

points corresponding to the uniforg grid is nonuniform; h(x) =g Y4x) > hL cexdi(k + G) - £x)], (19
thus by choice of coordinate transformation we can increase G

the density of grid points 1Ax at chosen locations ix space

while retaining uniformity in& space. A function stored on n?(x) = g~ ¥4(x) >, ngexdiG - &(x)]. (20)

the &-space grid may be Fourier transformed to a set of co- G
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B. Operations in curvilinear coordinates Thus, by use of a total of 6 FFTs for eachtgfandh?, the
¥?h, operation is evaluated. It is worth noting that tih’
andVh' terms can be combined before carrying out the FFTs
required forV2h' [for instance, adding?h’ in real space to
EpApUip before taking the transform in the second term of
Eg. (25], and hence no additional FFTs are needed to in-
clude these terms.
This increase in number of FFT%2 vs 5 needed for each
matrix-vector operation highlights one of the disadvantages
_ 2 . of the GCC formulation: while convergence with respect to
[Vhlg==- 2 | dX2 h ok, +Gy=iA)) the number of plane-wave coefficients may be enhanced, the
p.a=1 G’ speed of operations for a given number of plane-wave coef-
ficients is reduced. It is also inevitable that the convergence
rate of the iterative linear equation solver will be reduced;
that is, a greater number of iterations will be needed. This is
[M*he :J d2§n2(§)2 hik Glei(e’—e)-g, (21b) a consequence of making the _math'rk more dense—in ef-
P fect, “spreading out” the matrix elements away from the
leading diagonal—which in turn makes it harder to invert.
This manifests itself in a decrease in effectiveness of the

The reciprocal-space representation of the vector wav
equation given as E@6) is modified when curvilinear coor-
dinates are used. Equivalents of tWe¢h; and tht matrix
elements are published in Ref. 29, but we find it helpful to
derive the gradient operation explicitly in the Appendix. The
three required operatiori$rom which all operations in Eq.
(6) can be constructgdare

XgPUky + G +iAEC C)E, (219

i 2 P
[ﬂ] =i> | DN ,0_§(k +G+iA,)gC 0%, preconditioner, and larger number of iterations needed by
XK ls p1 py KGlgxd TP TR TP GMRES
(210
The application of the Maxwell operator in the conventional C. Optimization of coordinates

formulation is carried out in two parts: the differential opera-  The theory presented is exact for any invertible coordinate
tors in reciprocal space, and the “potential” multiplication in transformation. We are therefore free to choose any conve-
real space as described in Sec. Il B. In the GCC formulationpjent mappingé— £(x) and can expect exact results when
all operations make use of both spaces. As an example, COBonverged with respect to the number of plane waves, pro-
sider theV? operation on the componeht, rearranged here viding there is no aliasing or truncation error in the set of
for clarity: transformation coefficientgg or the metric functions de-

2 rived from them. Careful choice of the mapping, however,
[V2h]e=- > ek, + Gy - iAp)gpqe‘iG'fTé, (22)  can enhance plane-wave convergence; a logical starting point

p.g=1 is to concentrate grid points in the regions of the unit cell

P where the dielectric function, and hence the magnetic field
whereT is given by and its gradient, vary most rapidly.

T,;: D (ko + Gé)hL]G,eiG'-ng iAqE h:(’G,eiG’-g_ (23) The original method used by Gygi to determine an appro-

priate mapping considered the coordinate transformation as a
variational parameter, and involved updating the coordinates
The sums here are evaluated as inverse FFTs ab minimize an energy functional as a calculation procé@ds.
(kq+G(’4)hL’G, (one FFT for each of|=1,2), andhLyG,. These Similar methods have become popular in the mathematics
are combined in real space to obtain the two functitpand community to study systems where large solution variations
T, stored on a real-space grid. The sum ogamay then be ~occur over spatial scales that evolve in time, particularly

performed, to obtairUiP:ququi, and the matrix element “blowup” solutions of nonlinear partial differential
becomes equations®3In these cases the mapping itself is evolved as

time steps in the simulation proceed.

In the case of eigenmode determination in PCF, only a
static mapping is required: we choose to concentrate grid
points in regions where the dielectric function varies most

G’ G’

2
[VZh']g=- > dzf(kp +Gp— iAp)Uipe_iG.g' (24)
p=1

which is evaluated as follows: rapidly. A simple way to do this, which we have found ef-
2 fective, is to define and then minimize a “fictitious energy”
[V2hi]G —_ 2 {(kp +Gp) j d2§e—iG-§Uip} functional
p=1
2 E[x(§)]= J - |V P x(&)]] + pudetg?d+ udr gPid¢,
+i f dReedC € A UP. (25)
= (26)

The first integral is performed by two FFTs, by transformingwhere the first term represents a “negative” energy favoring
U (one FFT for each op=1,2); the second integral is points in regions whergVn? is largest, and the second two
evaluated by a single FFT of the summed quardipp,U'". terms, following Gyg#® give “compression” and “shear” en-
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ergy associated with the distortion that control the maximun -
effective cutoff. In practice we need use only one of thesq -
terms, and choose to sgt=0. We minimize the energi '
using Powell’s direction-set meth&dwith a finite number of
variable coefficientsg [as defined in Eq(15)].

IV. ATEST SYSTEM

We use as a test system a glass of refractive inde}
n=1.5 containing a triangular array of circular air holes:
(n=1) with radius 0.48,, where A is the lattice pitch(air-
filling fraction 73%. This forms a PCF cladding structure .
that is perfectly periodic. A typical value ¢§A=10 is cho- |
sen, together witt{for simplicity) Bloch wave vectoik =0.
This simple system was chosen such that exact results f¢-
comparison were obtainable from an alternative method.

We create a coordinate transformation suitable for the teg:
structure by optimizing the energy functional of EQ6)
while enforcing full P6mm symmetry. A circular cutoff is |
obtained by using the first three stars in reciprocal space ¢
xg [as defined in Eq(15)]; symmetry constrains components
in each star such that, of the total of 25 components and
25x3 components, there are only three independent vari- FIG. 1. Grid of real-space sampling points generated for an
ables. array of cylindrical air holes of radius 0.45in silica as described

For the grid generation, we use a Gaussian smoothing dh Sec. IV, calculated here with FFT grid size 22828. To show
n? in Eq. (26) with full-width half maximum (FWHM) of  the grid clearly, every fourth point is plotted to obtain a grid of
0.03A, and sefu.=0.097,us=0; these parameters are chosendimension 32 32. The unit cell is marked.
empirically to obtain a grid with the desired characteristics.

(Note that for accurate mode solving we use a much smallegpproximate equivalence to Gaussian smoothing to be ob-
smoothing, but the grid generation and eigenmode determigined. We show an interface smoothed with each method in
nation are performed separatglflhe resulting real-space Fig. 2.

grld is used for all Subsequent CalCUlationS, and is shown in The GCC method provides great|y enhanced convergence
Fig. 1. Relative to a uniform grid with an equal number of of ejgenmodes with respect to the basis set size or, equiva-
sampling points, the density of poirfiger unit areais modi-  |ently, the size of the FFT grid usdthe equivalence is de-
fied by a factor of betweer-13 (at the dielectric interfacgs  scribed in Sec. Il R To demonstrate convergence, we calcu-
and%012(at the center of the hOI}ESNOte that conservation late the e|ght h|ghe$. modes of the test system previous]y

of the total number of grid points places an upper limit ongdescribed, and observe the convergence of these with respect
the amount of distortion that can be achieved.

Once a suitable grid has been generated, it is necessary t~ ,,
generate the set of coefficient§ of the dielectric function
to be used in the mode-solving calculation. However, the usi 22
of GCCs introduces a complication in the way in which
smoothing is applied to the sharp boundaries of this function
In the conventional representation, smoothing is carried ou 18}
by multiplication of the reciprocal-space components of the
dielectric function by a Gaussian envelope. The convolutior's
theorem ensures that this is equivalent to convolving the di
electric function by a Gaussian in real space, and the FWHN
of this function can easily be chosen to give the requirec 12}

18 F

*/ Smoothed dielectric function

amount of smoothing. It is unnecessary to perform the com

putationally expensive convolution in real space explicitly. In 10 - Exact Gaussian smoothing =----=- i

the GCC representation there is no simple method to perforr g L . L

Gaussian smoothing working in reciprocal space only, bu 944 0.445 0.450 0.455 0.450
we wish to avoid performing a slow real-space convolution. A

We instead set up a Gaussian funct®fx(£)] in real space FIG. 2. Smoothed dielectric function of the test system de-

and take the FFT, producing a set of coefficients in reciprocadcribed in Sec. IV plotted in a direction normal to the dielectric
space which are then multiplied by the unsmoothed coeffiinterface; the radiusis measured from the center of the hole. Exact
cients né. This does not give Gaussian smoothing, but itGaussian smoothing of comparable widEAWWHM 2.8x 1073A) is
provides control over the smoothing width and allows an arshown.
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12.29 11.10 to the exact(unsmootheg values, which have been calcu-

’ lated here by a KKR-based meth&tf* Note that the pertur-
L o8 bation in B introduced by the smoothing varies between
= \BE e 12 modes; for example, the most smoothed conventional-

' ' method curve forBA=9.0148 is not visible on the scale
12.23 11.04 shown: it reaches 9.0529 at FFT size 128. This uncertainty in
the accuracy of results is reduced by using smaller smooth-
10.47 9.06 ing widths throughout.

- We can understand qualitatively the reason for the im-
| 9.04 provement introduced by GCCs in terms of the “convergence
= par 002 |/ in principle” argument of Sec. Il D. As the FFT grid size is

-l oo Y ',-'0.- increased, the density of real-space grid points increases;
10.41 Y b6 KL Yo only when our approximate criterion of having at least one
sampling point in the interface region is met can we expect
9.05 8.05 to see convergence of thg@ values. In the conventional
plane-wave case we expect this at an FFT size of roughly 64
0% 8.03 for smoothing FWHM 10%A, but we do not expect calcula-
= S . i Ve tions with smaller smoothmg widths to be converged. This
/ . can be observed clearly in Fig. 3, where the curves generally
899 L 8 799 L do not begin to flatten out until greater FFT grid sizes are
used. With curvilinear coordinates, we reach the “converged
8.04 7.82 in principle” criterion at smoothing FWHM 1I8A with an
FFT size of roughly 48 because the spacing of sampling
g —EL L points is greatly reduced at the interface. Again, this is vis-
= B0h _3 278 __ ible clearly in Fig. 3: the GCC curves are all generally flat at
‘. 3O greater FFT sizefon the scale shown
7.98 o 7.76 — In summary, we find that for a constant FFT grid size a
3 43 6 60 8o TEIER 32 48 64 80 96 112128 raqyction in smoothing width always worsens plane-wave
FFT grid size FFT grid size

convergence, because the interface regions are narrower and

FIG. 3. Convergence of the eight highgstmodes of the test hence less We_II Sampled: By 'InterUCIng a position-
system of Sec. IV as FFT grid size is increased. In each plot thélépendent density of sampling points in real space, the cur-
solid horizontal line is the result from a KKR-based method correctVilinear coordinate method allows convergence to be reached
to 4 d.p.(Refs. 33,34, the dashed lines show convergence of thefor narrower smoothing widths. Equivalently, the method al-
conventional method, and the mixed dot/dash lines show the GC®Wws smaller basis sets to be used while keeping the smooth-
results. The Gaussian smoothing widths for the conventional resulig width constant.
are (in order of increasing dash lengti03A, 6x1073A, and
1072A. The approximate equivalent widths for the GCC curves are
(again in order of increasing dash lengt03A and 2.5< 1073A.
Inset figures show Poynting vector magnitud&rge in black re-
gions. The modes apBA=12.2654, 11.0734, 9.0329, 8.0086, and
7.7931 are degenerate pairs; only one of each pair is shown.

V. DISCUSSION

We have demonstrated that the reformulation of the fixed-
frequency plane-wave method in curvilinear coordinates
matched to the structure under consideration provides a large
to the FFT grid size when different levels of smoothing areenhancement of basis set convergence. For the test system
applied. In Fig. 3 we plot the calculated value @A for a  considered, this allows a reduction in FFT grid size from
range of FFT grid sizes, using three different Gaussiargreater thar=128X 128 to =48X 48 while still obtaining
smoothing widths for the conventional calculations and twoBA values accurate to within 2 d.p. This represents an order
widths for GCC calculations. of magnitude decrease in the number of basis states needed

We find that, for all modes examined, ti#evalues of the for a well-converged solution; we expect a similar improve-
GCC method converge significantly more quickly with re- ment in other structures.
spect to basis size than those produced by the conventional As with all plane-wave calculations, there is a trade-off
method. (We are not aware of any reason for the GBC between accuracy of results and speed/memory require-
values converging from below, rather than from above as donents. It is important to consider that, while smoothing per-
the conventional plane-wave result€omparison of the two turbs theg values, this is an error that can be controlled.
least smoothed curvegsvhich are approximately equivalent However, calculations that are unconverged with respect to
in smoothing width makes the enhanced convergence bebasis set size do not have easily quantifiable errors; Fig. 3
havior of the GCC method particularly clear. The rapid con-shows that both the magnitude and the rate of convergence
vergence of the GCC method allows the use of smallewvaries considerably between modes. This can be seen with
smoothing widths while retaining plane-wave convergenceteference to, for example, the modes & =9.0148 and
Consequently, the set ¢f values from the GCC method are BA=8.0217: even at the largest FFT size shown, the conven-
consistently closer than those from the conventional methotlonal plane-wave calculations are clearly unconverged for
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ax

d Y
_ ~-l/4 | i(k+G')-
axjg GE’ hk’G,e ¢

some levels of smoothing. However, if convergence were tdn GCCs, the plane-wave basis functions are

be gauged by examining, for instance, only the mode af c(X)=g 4(x)é**®)4X) and so thed derivative of a field

BA=8.0086, the erroneous conclusion thak values are hi at reciprocal lattice vectd® is

correct to within 2 d.p. even at FFT size 32 would be _

reached. Convergence is also strongly dependent on the di- {‘th] — hi

electric system under consideratitiniVe therefore consider x| g kG k

it essential to be certain of plane-wave convergence in all

calculations of this type, and consider the GCC formulation a = f dx g V4erik+G)¢

useful way to ensure convergence with considerably smaller

basis sets than are needed with the conventional method. (A1)
Although we have studied a range of grid distortions us-

ing the functional of Eq(26), the choice of parameteyss  We now use the chain rule to change variables in the deriva-

and u in this functional is empirical and cannot be guaran-tive

teed to be optimal. In fact, although good results have been _ 5

obtained _Wlth this funcylonal _form OE, it is pOSSIbl_e that a_h' = [ oy g eikeorE ﬁ_gpi _1/a

other choices oE or entirely different methods of grid gen- X | = xg-e =~ 9 (?gpg

eration may yield coordinate transformations that provide =

even greater improvements. Grid generation is an area of x> hLG/ei(k+G’)-§’ (A2)

much current interest in the numerical analysis community, s

and we intend to make further study of the method of grid o )

generation to effect additional improvements in efficiency. then evaluate the derivativevhere the left-hand side has
Afurther issue that has arisen in the course of our work i€en omitteg

the decrease in effectiveness of the preconditioner described 2

in Sec. Il C. This can be understood qualitatively by consid- szx g—1/4e—i(k+G)-§2 ﬁg—lm

ering the structure of the matrid: the set of Fourier coef- p=1 OX

ficients in the GCC representation provides a more compact

description of the dielectric function than the conventional {_iﬂﬂ(k +G’)}E hi ek CE  (A3)
representation, and hence the elementMoaway from the 49 9¢&P PP G’ kG '

leading diagonal contain more structural information. The

negative effect of using a more compact representation i§ollecting the factors ofy™** and usingd®x=g"/%d?¢ pro-
therefore that the linear problem solved GyRes becomes  Vides the change of variables

less well conditioned. A further direction of our future work P

will be to improve the method of preconditioning for these szé g1 GES ‘9_5?
problems. p=1 X
In summary, we have outlined the formulation of the
fixed-frequency plane-wave method in curvilinear coordi- _iﬂ“(k +G) (D h ., d®CE (Ag)
nates for solving Maxwell’s equations in PCF, and have dem- 4g9&° PP o kG’ '

onstrated that this provides a considerable increase in effi-
ciency that is highly desirable in calculations of this type. WeThe definition ofA, in Eq. (17) can be rearranged as
anticipate that further research in this area will lead to more

accurate and rapid calculation of modal solutions in PCF. We A = lim g= 199 (A5)
also note that although the ideas used here have been applied Pag 499’

to the fixed-frequency plane-wave method, they are equall

applicable to the fixed-wave-vector approach and also t nd hence, by substitution into E¢4),

fully three-dimensional systems. P 2 o8P
—| =i 2D h, o (K, + G, +iA)elC )%
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operatorV?h' can be derived using this result by applying
APPENDIX: GRADIENT OPERATOR IN CURVILINEAR Green’s first theoref (neglecting the boundary term be-
COORDINATES cause of periodic boundary conditions

In this appendix, we give the derivation of the gradient _ ‘
operator in reciprocal space in the GCC representation. <Xk,G|V2|hL>:‘Jd2XVXk,G' Vv hy. (AT)
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