
Adaptive curvilinear coordinates in a plane-wave solution of Maxwell’s equations in photonic
crystals

G. J. Pearce,* T. D. Hedley, and D. M. Bird
Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom

sReceived 20 December 2004; published 19 May 2005d

A method is described to compute the modes propagating at a given frequency in dielectric systems that are
periodic in two dimensions and uniform in the third dimension, using a plane-wave basis expressed in a system
of generalized curvilinear coordinates. The coordinates are adapted to the structure under consideration by
increasing the effective plane-wave cutoff in the vicinity of the interfaces between dielectrics, where the
electromagnetic fields vary most rapidly. The favorable efficiency and convergence properties of the method
are shown by comparison with the conventional plane-wave formulation of Maxwell’s equations. Although the
method is developed to study propagation in photonic crystal fibers, it is also applicable more generally to
plane-wave modal solutions of structured dielectrics.
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I. INTRODUCTION

Photonic crystals, materials whose structure varies on the
scale of the wavelength of light, have been an area of great
interest in recent years.1,2 By means of a periodic variation in
structure, it is possible in such materials to introduce “pho-
tonic band gaps” that forbid propagation of light over a range
of frequencies or wave vectors, providing control of the op-
tical properties of the material. Photonic crystal fiberssPCFsd
are a class of photonic crystals that are invariant in one spa-
tial dimension but structured in two dimensions.3,4 Similar to
conventional optical fibers, PCFs are usually fabricated from
glasses such as silica but the microstructure, consisting of air
holes running along the length of the fiber, leads to a wide
range of new physical properties. In particular, the ability of
PCFs to guide light in an airsrather than solidd core has been
demonstrated.5 These hollow-core PCFs open up a wide
range of novel opportunities,3,4 including enhanced nonlinear
effects resulting from their long interaction lengths with
gases,6 and particle guidance.7 There has been a correspond-
ing increase in the need for computational modeling tools,
largely owing to the failure of the theoretical techniques pre-
viously used with conventional fibers to describe PCF ad-
equately. Our aim in this paper is to present a method for
solving Maxwell’s equations to understand the physics of
light propagation in PCF. Although the method is formulated
specifically for PCF, the ideas behind it are applicable more
generally to other types of photonic crystals.

The solution of Maxwell’s equations in photonic systems
can be approached by a variety of means. Methods generally
fall under the broad class of either time-domain or
frequency-domain methods, each of which is more ideally
suited to different problems. In time-domain methods, such
as finite-difference time domainsFDTDd,8 fields are repre-
sented on a real-space grid and, by using Maxwell’s equa-
tions, are evolved over time; both the grid spacing and time
interval must be sufficiently fine to ensure that the solutions
are physically accurate. This is a flexible and general ap-
proach that is well suited to dynamical problems, but it is
less suited to determining eigenmodes. Frequency-domain

methods instead rely on expanding fields in basis states of a
definite frequency. A cutoff is imposed to make the basis set
finite sbut sufficiently large to give physically accurate re-
sultsd, and the resulting eigenproblem is solved to yield the
eigenmodes of the system.

In the case of modeling PCF, and often more generally in
photonics, it is the eigenmodes of a given structure that are
needed in order to determine the position of band gaps and
hence guidance properties. Such optical eigenproblems lend
themselves naturally to frequency-domain methods. How-
ever, there is generally a choice of variable in using such
methods. One method is to fix the wave vector of lightk and
compute a set of modes characterized by frequencyv sthe
“fixed-wave-vector” methodd. The other possibility is instead
to fix v and, for ad-dimensional calculation,sd−1d compo-
nents ofk, and compute a set of the remaining component
sthe “fixed-frequency” methodd. Although the fixed-wave-
vector method is in common use,9 we choose here to develop
the fixed-frequency method, as it is a natural approach when
studying PCF. In experiments, light enters PCF at a given
frequency, and it is of interest which modesseach character-
ized by the component ofk along the length of the fiberd
may propagate. Working at a fixed frequency has the addi-
tional advantage of simplifying the inclusion of material dis-
persion. If the dielectric constant in a material is a function
of frequency, we simply choose the dielectric constant rel-
evant to the chosenv.

Defining thez direction as that along the axis of the fiber,
the translational invariance of PCF along its length allows us
to write the magnetic fieldH as

H = sht + hzẑdexpsibzd, s1d

whereb is thez component of the wave vectorsthe “propa-
gation constant”d, htsx,yd andhzsx,yd are the transverse and
longitudinal components of the magnetic field, respectively,
and a time dependence of the forme−ivt is implicit through-
out. Providing we assume the medium is linear and nonmag-
netic f«=«0n

2sx,yd, m=m0g, Maxwell’s equations forht in
this geometry take the form10
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h=t
2 + n2k0

2 + =tln n2 3 =t 3 jht = b2ht, s2d

where=t
2 is the transverse Laplacian operator,k0=v /c is the

free-space wave vector, andnsx,yd is the refractive index.
The longitudinal componenthz and the electric field can be
derived fromht.

10 We hold k0 sand hence frequencyd con-
stant, and the eigenvalues of the equation are a set of allowed
b2. Unlike in the fixed-wave-vector method,9 this eigenprob-
lem is not Hermitian, and therefore a generalized complex
eigensolver must be used. This precludes the use of many
well-developed variational methods for Hermitian systems,
but it brings the advantage that the method, once imple-
mented, can handle materials with complex dielectric con-
stants with no additional effort. The need to develop nonva-
riational methods also simplifies the process of finding
interior eigenvalues, as discussed in detail in Sec. II A.

To solve Eq.s2d computationally, the fields must be ex-
panded in a finite basis set. Issues to consider when choosing
the basis set include generalityfi.e., placing as few restric-
tions onn2sx,yd as possibleg, the compactness of the repre-
sentation of the fieldssi.e., the number of basis functions
needed for accurate resultsd, and the speed and memory ef-
ficiency of the computation. A natural choice in studying
photonic crystals is to use plane waves as the basis. This
choice brings several advantages: it is implicitly periodic; it
is general, placing no restrictions onn2sx,yd other than pe-
riodicity; and, crucially, it allows the use of the fast Fourier
transformsFFTd to perform rapid calculations in real space
in addition to reciprocal space, as is described below in Sec.
II B. Although the plane-wave basis is not particularly com-
pact in terms of basis states, the speed increase brought about
by using FFTs outweighs this problem. For these reasons, the
plane-wave basis is frequently used in photonics,9,11 and also
in other areas of physics such as electronic structure
computation.12

The implicit periodicity of the plane-wave basis makes it
ideal to study propagation in PCF cladding, i.e., the periodic
structure that surrounds the central region of the fiber.
Knowledge of, for example, the density of photonic states
and the location of band gaps in a cladding structure is im-
portant to understand the guidance properties of PCF.13 How-
ever, real PCFs have a different microstructure at their center
se.g., an air core3d which can be thought of as a defect in the
periodic cladding structure. To model the effect of defects in
the PCF cladding, it is still possible to use the plane-wave
method by employing a supercell approximation. A supercell
is a large “unit cell” containing a single defect and many
repeated unit cells of cladding; the exponential decay of
fields in the cladding region ensures that the interaction be-
tween adjacent defect imagessintroduced by the periodicity
of the supercell latticed is minimal. Of course, this false pe-
riodicity introduced by the supercell prevents the computa-
tion of radiation losses of a realsfinite-sizedd fiber. Ap-
proaches such as the transfer matrix14 and multipole15

methods, which use field expansions localized to defects, are
better suited to such confinement loss calculations. However,
they do not have the flexibility or speed of the plane-wave
method for accurate modal calculations.

An important feature of plane-wave methods that make
use of FFTs is that functionssi.e., n2 andhtd are represented
on a uniform grid of points in real spacessee Sec. II Bd. In
PCF sand other photonic crystalsd there are usually large re-
gions of space with no variation inn2 separated by sharp
interfaces. Although the fields vary in the regions of constant
n2, it is at the interfaces where the most rapid variation oc-
curs. The grid points in uniform regions therefore tend to be
“wasted,” implying a loss of computational efficiency. The
aim of our work is a reformulation of the fixed-frequency
plane-wave method in generalized curvilinear coordinates
that allows aposition-dependentplane-wave cutoff to be
used sor, equivalently, a nonuniform grid spacing in real
spaced while retaining all of the desirable properties of the
plane-wave basis outlined above. We demonstrate that by
making an appropriate choice of coordinates adapted to the
structure of interest, this provides a considerable increase in
computational efficiency.

In Sec. II, we describe the conventional fixed-frequency
plane-wave method. The formulation of the method in gen-
eralized curvilinear coordinates is presented in Sec. III, and a
demonstration of its application to a test system is described
in Sec. IV. The method and results are discussed in Sec. V.

II. THE CONVENTIONAL FIXED-FREQUENCY
PLANE-WAVE METHOD

A brief outline of the conventional fixed-frequency plane-
wave method has been published previously in Ref. 11. Al-
though our key result is the development of the method in
curvilinear coordinates, it is useful to set this in the context
of the conventional approach. The iterative eigensolver, the
use of FFTs, and the need for preconditioning which are
described in this section are all common to the formulation
in generalized curvilinear coordinates given in Sec. III. We
therefore begin with a more detailed description of the
method of Ref. 11.

A dielectric function that is periodic in 2D with primitive
lattice vectorsR1 and R2 sdefining either a unit cell or su-
percelld satisfies

n2sxd = n2sx + Rd, s3d

whereR= l1R1+ l2R2, l1, l2PZ, andx=sx,yd is the 2D posi-
tion vector. Defining primitive reciprocal lattice vectors by
Ga ·Rb=2pdab sa ,b=1,2d, the dielectric function can be
expanded in a plane-wave basis set as

n2sxd = o
G

nG
2 eiG·x, s4d

whereG=m1G1+m2G2 and m1,m2PZ. Similarly, with the
inclusion of a Bloch wave vectork in the transverse plane,
the transverse magnetic fieldht=shx,hyd may be written

hisxd = o
G

hk,G
i eisk+Gd·x. s5d

Substitution into Eq.s2d yields the vector wave equation in
reciprocal-space form
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o
G8

SMxx Myx

Mxy Myy
DShk,G8

x

hk,G8
y D = b2Shk,G

x

hk,G
y D , s6d

where the elements ofM sshowing manifestly the non-
Hermitian nature of the eigenproblemd are

Mxx = − uk + G8u2dG,G8 + k0
2nG−G8

2

+ sGy − Gy8dsky + Gy8dfln n2gG−G8, s7ad

Myy = − uk + G8u2dG,G8 + k0
2nG−G8

2

+ sGx − Gx8dskx + Gx8dfln n2gG−G8, s7bd

Myx = − sGy − Gy8dskx + Gx8dfln n2gG−G8, s7cd

Mxy = − sGx − Gx8dsky + Gy8dfln n2gG−G8. s7dd

Note that the terms inuk +G8u2 arise from the=2 operation in
Eq. s2d, those innG−G8

2 from n2k0
2, and the remainder from the

=tln n23=t3 operation. Equations6d is solved numerically
by imposing a finite circular cutoffGcut for the reciprocal-
space components ofhx and hy such that onlyG vectors
satisfying uGu,Gcut are included. This creates a matrix
eigenproblemM ·v=b2v, where the vectorv comprises
reciprocal-space components of bothhx andhy.

A. Iterative solution

For sufficiently small plane-wave cutoffs, the matrixM
can be diagonalized directly using standard techniques, re-
quiring OsNPW

3 d operations for anNPW3NPW matrix. NPW is
the number of plane waves used in Eq.s5d, and is typically
of the order of 1000 and 100 000 for single cell and supercell
calculations, respectively. Diagonalization is not practical for
large supercells because the scaling is so poor. However,
when modeling PCF, we generally require only a few eigen-
values ofM . In particular, for hollow-core PCF, the eigen-
values of interest haveb<k0, which corresponds to modes
that can propagate in airsi.e., in the hollow cored but where
a band gap may exist in the cladding. These areinterior
eigenvalues, and consist of only a small fraction of the ei-
genvalue spectrum: smallerb corresponds to the continuum
of unbound modes free to propagate in the air holes of the
cladding, and largerb to index-guided modes that are peaked
in the glass regions. Although a considerable increase in ef-
ficiency can be made by using an iterative eigensolver to
locate only these states of interest, many methods currently
in use are restricted to findingextremaleigenvalues. The use
of variational methods for interior eigenvalues generally re-
quires squaringM , which worsens the convergence of itera-
tive solvers.9 Our method does not use a variational scheme
and is ideally suited to determining interior eigenvalues.

The transformed eigensystemsM −sI d−1v=mv has iden-
tical eigenvectorsv to those ofM , and eigenvalues related
by m=1/sb2−sd. Thus it is possible to transform the interior
eigenvaluesb2 to extremal eigenvaluesm by appropriate
choice ofs se.g., for hollow-core PCFs=k0

2d. We use the

implicitly restarted Arnoldi methodfimplemented inARPACK

sRef. 16dg to locate the eigenvalues; this requires only the
result of the matrix-vector multiplicationsM −sI d−1u for ar-
bitrary vectorsu. In this method, repeated multiplication of a
random starting vector bysM −sI d−1 builds up a Krylov sub-
space from which extremal eigenvalues are extracted.17 Typi-
cally, we have found that between 4–10 multiplications per
eigenvalue are required.

ARPACK requires the results ofsM −sI d−1u. We can pro-
vide this by noting that each matrix inversion is equivalent to
solving the set of linear equationssM −sI dw=u for the vec-
tor w givenu. We have tested a wide range of iterative linear
solvers, and conclude that theGMRES sRef. 18d solver gives
particularly rapid convergence. To determinew, GMRES re-
quires only matrix-vector multiplications of the form
sM −sI dy for arbitrary vectorsy. We have found that for
well-conditioned problemsssee Sec. II Cd, typically 10–40
multiplications may be needed for eachsM −sI d−1u evalua-
tion. It follows that of the order of 100 matrix-vector multi-
plication operations are required for each eigenvalue. This
compares well with Hermitian variational schemes for exte-
rior eigenvalues, and very favorably with variational
schemes for interior eigenvalues.

In summary, providing we are able to perform the opera-
tion sM −sI dy on any given vectory, we can efficiently lo-
cate interior eigenvalues ofM even for non-Hermitian sys-
tems. The problem is reduced to that of performing this
operation quickly, even for largeM ; in Sec. II B below we
describe how FFTs can be used to do this efficiently without
explicitly forming M .

B. Matrix-vector multiplication by FFT

TheOsNPW
2 d storage and computational time requirements

of storing the matrixM and carrying out matrix-vector mul-
tiplications can be avoided by use of FFTs. The FFT is a
discrete Fourier transform, which creates a real-space repre-
sentation of a functionf on a uniformN13N2 grid from a set
of reciprocal-space componentsF:

fsn1,n2d =
1

N1N2
o

m1=0

N1−1

o
m2=0

N2−1

Fsm1,m2deiG·x. s8d

Here, fsn1,n2d= fsx=n1R1/N1+n2R2/N2d and Fsm1,m2d
=FsG=m1G1+m2G2d. In our casef may ben2,hx, or hy.
Any geometry of unit cell or supercell is allowed by Eq.s8d,
as grid sizesN1 and N2 corresponding to any basis vectors
R1 and R2 can be included. In practice, PCFs tend to be
based on hexagonal lattices, in which case it is natural to
takeN1=N2=N. By choosing a circular cutoff for the recip-
rocal space components ofhi as described previously, we are
able to preserve all symmetries exactly; to use the FFT in
this case we extend the cutoff to the nearest edge of the FFT
grid and set any unfilled elements on the grid to zero. It
follows that the linear FFT grid sizeN and the number of
basis states are related byN2~NPW. The FFT can be evalu-
ated in OsN2log Nd time, or equivalentlyOsNPWlog NPWd
which compares very favorably with theOsNPW

2 d of direct
matrix-vector multiplication.
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To demonstrate the use of FFTs in performing matrix-
vector operations, consider thehx component of Eq.s6d,
which is

o
G8

sM1 + M2 + M3dhk,G8
x + M4hk,G8

y , s9d

where

M1 = − uk + G8u2dG,G8, s10ad

M2 = k0
2nG−G8

2 , s10bd

M3 = sGy − Gy8dsky + Gy8dfln n2gG−G8, s10cd

M4 = − sGy − Gy8dskx + Gx8dfln n2gG−G8. s10dd

The term inM1 can clearly be carried out in reciprocal space

o
G8

M1hk,G8
x = − uk + Gu2hk,G

x , s11d

but the term inM2 is best performed as follows:

o
G8

M2hk,G8
x = o

G8

k0
2nG−G8

2 hk,G8
x s12ad

=k0
2fn2sn1,n2dhk

xsn1,n2dgG, s12bd

where Eq.s12bd follows from Eq. s12ad by the convolution
theorem, and the quantities labeledsn1,n2d are stored and
multiplied together pointwise on discrete grids of the form of
Eq. s8d in real space. It is clear from Eq.s12ad that to obtain
an exact representation of the matrix-vector multiplication in
Eq. s6d we require componentsnG

2 at G-vector magnitudes
up to a maximum of 2Gcut. In practice, however, we find that
convergence is improved by extending the circular cutoffs of
both n2 andht to the edge of the same FFT grid.

The transformation to real space and back to reciprocal
space requires 1 FFT forhx and 1 FFT forhy. The term inM3
sand similarly that inM4d is evaluated as

o
G8

M3hk,G8
x = o

G8

sGy − Gy8dsky + Gy8dfln n2gG−G8hk,G8
x

= fhsky + Gy8dhk,G8
x jsn1,n2d

3hsGy − Gy8dfln n2gG−G8jsn1,n2dgG, s13d

where the quantities inh j are evaluated in reciprocal space
and then transformed to real space, and the quantity inf g is
transformed to reciprocal space following the pointwise real
space multiplication. By combining termsbeforetaking FFTs
the total number of FFTs required for all the operations inM
is 5.

The components of bothn2 and lnn2 are also generated
by FFT. For a calculation to be carried out ultimately with an
N3N FFT grid, we samplen2 on afine real-space gridsusu-
ally of size<8N38Nd, then Fourier transform to reciprocal
space. Smoothing is then applied by multiplication of the
Fourier components by a Gaussian envelope, for the reasons
to be discussed in Sec. II D. The resulting smoothed compo-

nents are transformed back to real space and the logarithm is
taken to create the function lnn2, which is then transformed
to reciprocal space. Components of bothn2 and lnn2 with
uGu,Gmax swhere Gmax corresponds to the smallerN3N
FFT gridd are extracted for use in the mode-solving calcula-
tion. This oversampling procedure ensures that the compo-
nents ofn2 and lnn2 remain consistent with one another after
smoothingsi.e., the samen2 is described in each cased.

C. Preconditioning

The linear problemsM −sI dw=u may be solved by suc-
cessive application ofsM −sI d to vectors provided by
GMRES, but it is generally the case that convergence when
using this method is either slow or fails entirely. This behav-
ior can be rectified by preconditioning,19 which in this case
involves multiplying by a preconditionerP:

PsM − sI dw = P ·u, s14d

where P is chosen to be an approximate inverse of
sM −sI d.

A good preconditioner has been found to be an
exact inverse sdetermined by LU decompositiond
for uGu , uG8u,Gcut

P and the Jacobi preconditioner19

Pij =di j / sMii −sd for the part of the matrix corresponding to
larger G vectors. The choice of the preconditioning cutoff
Gcut

P determines the sizeNP of the exactly inverted square,
and minimizing the total time taken byGMRES involves a
trade-off between the number ofGMRES iterations, the time
taken to perform the exact inversionsscaling asNP

3d, and the
time required to apply the preconditionersscaling asNP

2d. We
have found in previous work using this method11,13,20that for
single unit cells a size ofNP<100 is optimal, and for super-
cells NP<2000 is optimal.

D. Analysis

In nonmagnetic materials, Maxwell’s equations require
that H ,n̂3E, andn̂ ·«E are conserved across any boundary
with normal vectorn̂. In PCF, where« varies only in the
transverse plane, conservation ofn̂3E implies conservation
of «−1ẑ·=t3ht,

10 which in turn implies that any discontinu-
ity in the dielectric function inevitably leads to a discontinu-
ous gradient ofht.

The truncated Fourier representation of a function that is
discontinuous in any of its derivatives suffers the appearance
of Gibbs’ phenomenon.21 This can cause slow convergence
or numerical instability when using the plane-wave method
to solve Maxwell’s equations, but can be prevented with
smoothing; we apply Gaussian smoothing to the dielectric
function, but other methods are also in use.9,22 The choice of
smoothing width is crucial. A large smoothing width givesb
values which are perturbed from their true values, but facili-
tates faster convergence with respect to plane-wave cutoff; a
narrower smoothing width gives more accurateb values but
makes convergence slower. We discuss this effect quantita-
tively with reference to a test system in Sec. IV.

Because we use FFTs to create a sampled representation
of functions in real space, we can consider the effect of
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smoothing on plane-wave convergence qualitatively in terms
of the sampling theorem. We can expect a reasonable level of
convergence to occur only when there is on average at least
one real-space sampling point in the smoothed interface re-
gion in any given direction normal to the interface, and so
either increasing the smoothing width or the density of grid
points in real space enhances convergence. This approximate
“convergence, in principle” argument suggests that increas-
ing the density of sampling points at the dielectric interfaces
will enhance convergence.

However, the FFT creates auniformly spacedgrid of real-
space sampling points, as shown in Eq.s8d. This has been
noted as a problem in Ref. 9; it leads to a loss of compact-
ness in the representation of the dielectric function. If there is
rapid variation inn2 only in a localized area of the unit cell
si.e., at the dielectric interfacesd, it is reasonable to expect
that convergence as the FFT grid size is increased is largely
due to the increased number of points in those areas, and it
follows that the additional points in regions of constantn2

are unnecessary. It would therefore be beneficial to increase
the density of sampling pointsonly in regions of the unit cell
wheren2 is most rapidly varying.

Perhaps surprisingly, it is possible to obtain a position-
dependent plane-wave cutoffsand, equivalently, a nonuni-
form real-space grid spacingd while still using the plane-
wave methodand retaining the use of FFTs. This is made
possible by reformulating the plane-wave method in arbitrary
curvilinear coordinates; our key finding in this paper is that
ultimately we can use this method to allow less smoothing
and a smaller number of basis states to be used while retain-
ing all of the computational benefits of the plane-wave
method.

III. THE FIXED-FREQUENCY PLANE-WAVE METHOD IN
GENERALIZED CURVILINEAR COORDINATES

It is sometimes convenient to express Maxwell’s equa-
tions in generalized curvilinear coordinatessGCCsd, for in-
stance when using the finite-difference method,23 grating
theory,24 and, recently, perturbation-matched coordinates in
coupled mode theory.25,26 The reformulation of the plane-
wave method in arbitrary curvilinear coordinates was first
proposed in the field of electronic structure in 1992 by
Gygi.27,28 We report here the first application of this method
to the modal solution of Maxwell’s equations.

In order to understand the GCC method, first consider the
conventional formulation of the plane-wave method. A cutoff
conditionuGu,Gmax is imposed to create a finite set of basis
functions, which are connected by the FFT to an equivalent
representation on a real-space grid with uniform spacing pro-
portional to 1/Gmax. Suppose instead that the real-space rep-
resentation of a function was not uniform in the Euclidean
coordinatex, but in another coordinatej, related tox by a
smooth and invertible mappingj°xsjd. The grid of x
points corresponding to the uniformj grid is nonuniform;
thus by choice of coordinate transformation we can increase
the density of grid points 1/Dx at chosen locations inx space
while retaining uniformity inj space. A function stored on
the j-space grid may be Fourier transformed to a set of co-

efficients in reciprocal space which now have a position-
dependent effective cutoffGmax

eff sxd~1/Dxsxd. It is therefore
possible to enhance the convergence of plane-wave calcula-
tions by choosing to increase the effective cutoffsor, equiva-
lently, the density of real-space grid pointsd in regions of
interest.

A. The plane-wave basis in curvilinear coordinates

Following the method of Gygi,27,28 we consider the arbi-
trary curvilinear coordinatej, a vector of two Cartesian com-
ponentsj1 andj2, and define aj-space lattice to have primi-
tive lattice vectorsR1 and R2 identical to those of the
periodic structure under consideration. A transformation be-
tween curvilinear coordinates and Euclidean coordinates
x=sx1,x2d is defined by

xsjd = j + o
G

xGexpsiG · jd, s15d

where the set of vectorsG1 andG2 are identical to those of
the reciprocal lattice in Euclidean space. The coefficientsxG
fully define the transformation, and can be obtained easily by
two FFTs of the quantitiessxp−jpd. No restriction is placed
on the transformation except that it be invertiblesi.e., a 1:1
mapping betweenx andjd.

It is useful to define two quantities related to the coordi-
nate transformation: the Riemannian metric tensor, defined
by

gpq = o
k=1

2
]xk

]jp

]xk

]jq , s16d

and the “geometric vector potential”Ap:

Ap =
1

4

]

]jpln g, s17d

whereg=detgpq.
28 Both can be calculated simply from the

set of coefficientsxG using FFTs; they are stored numerically
at a uniform set of points inj space for future use. The
elementsfgpqg form a position-dependent and symmetric 2
32 matrix. We may also define another position-dependent
symmetric matrixfgpqg=fgpqg−1 by inversion at any point in
space; this is used below in the evaluation of the=2 matrix
element.

Now consider the set of basis functions given by

xk,Gsxd = g−1/4sxdeisk+Gd·jsxd. s18d

Using the propertyd2x=g1/2d2j to transform the area ele-
ment, it can be seen that this set of functions is orthonormal
and complete.28 The magnetic field and dielectric function
can be represented as a sum over these basis functions, but
note that the coefficients are different from those obtained
using the conventional plane-wave methodfEqs. s4d and
s5dg:

hisxd = g−1/4sxdo
G

hk,G
i expfisk + Gd · jsxdg, s19d

n2sxd = g−1/4sxdo
G

nG
2 expfiG · jsxdg. s20d
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B. Operations in curvilinear coordinates

The reciprocal-space representation of the vector wave
equation given as Eq.s6d is modified when curvilinear coor-
dinates are used. Equivalents of the=tht and =t

2ht matrix
elements are published in Ref. 29, but we find it helpful to
derive the gradient operation explicitly in the Appendix. The
three required operationsffrom which all operations in Eq.
s6d can be constructedg are

f¹2higG = − o
p,q=1

2 E d2jo
G8

hk,G8
i skp + Gp − iApd

3gpqskq + Gq8 + iAqdeisG8−Gd·j, s21ad

fn2higG =E d2jn2sjdo
G8

hk,G8
i eisG8−Gd·j, s21bd

F ]hi

]xjG
G

= io
p=1

2 E d2jo
G8

hk,G8
i ]jp

]xj skp + Gp8 + iApdeisG8−Gd·j.

s21cd

The application of the Maxwell operator in the conventional
formulation is carried out in two parts: the differential opera-
tors in reciprocal space, and the “potential” multiplication in
real space as described in Sec. II B. In the GCC formulation,
all operations make use of both spaces. As an example, con-
sider the=2 operation on the componenthi, rearranged here
for clarity:

f¹2higG = − o
p,q=1

2 E d2jskp + Gp − iApdgpqe−iG·jTq
i , s22d

whereTq
i is given by

Tq
i = o

G8

skp + Gq8dhk,G8
i eiG8·j + iAqo

G8

hk,G8
i eiG8·j. s23d

The sums here are evaluated as inverse FFTs of
skq+Gq8dhk,G8

i sone FFT for each ofq=1,2d, andhk,G8
i . These

are combined in real space to obtain the two functionsT1
i and

T2
i stored on a real-space grid. The sum overq may then be

performed, to obtainUip=oqg
pqTq

i , and the matrix element
becomes

f¹2higG = − o
p=1

2 E d2jskp + Gp − iApdUipe−iG·j, s24d

which is evaluated as follows:

f¹2higG = − o
p=1

2 Hskp + Gpd E d2je−iG·jUipJ
+ i E d2jeiG·jo

p=1

2

ApU
ip. s25d

The first integral is performed by two FFTs, by transforming
Uip sone FFT for each ofp=1,2d; the second integral is
evaluated by a single FFT of the summed quantityopApU

ip.

Thus, by use of a total of 6 FFTs for each ofhx andhy, the
=2ht operation is evaluated. It is worth noting that then2hi

and=hi terms can be combined before carrying out the FFTs
required for¹2hi ffor instance, addingn2hi in real space to
opApU

ip before taking the transform in the second term of
Eq. s25dg, and hence no additional FFTs are needed to in-
clude these terms.

This increase in number of FFTss12 vs 5d needed for each
matrix-vector operation highlights one of the disadvantages
of the GCC formulation: while convergence with respect to
the number of plane-wave coefficients may be enhanced, the
speed of operations for a given number of plane-wave coef-
ficients is reduced. It is also inevitable that the convergence
rate of the iterative linear equation solver will be reduced;
that is, a greater number of iterations will be needed. This is
a consequence of making the matrixM more dense—in ef-
fect, “spreading out” the matrix elements away from the
leading diagonal—which in turn makes it harder to invert.
This manifests itself in a decrease in effectiveness of the
preconditioner, and larger number of iterations needed by
GMRES.

C. Optimization of coordinates

The theory presented is exact for any invertible coordinate
transformation. We are therefore free to choose any conve-
nient mappingj°jsxd and can expect exact results when
converged with respect to the number of plane waves, pro-
viding there is no aliasing or truncation error in the set of
transformation coefficientsxG or the metric functions de-
rived from them. Careful choice of the mapping, however,
can enhance plane-wave convergence; a logical starting point
is to concentrate grid points in the regions of the unit cell
where the dielectric function, and hence the magnetic field
and its gradient, vary most rapidly.

The original method used by Gygi to determine an appro-
priate mapping considered the coordinate transformation as a
variational parameter, and involved updating the coordinates
to minimize an energy functional as a calculation proceeds.28

Similar methods have become popular in the mathematics
community to study systems where large solution variations
occur over spatial scales that evolve in time, particularly
“blowup” solutions of nonlinear partial differential
equations.30,31 In these cases the mapping itself is evolved as
time steps in the simulation proceed.

In the case of eigenmode determination in PCF, only a
static mapping is required: we choose to concentrate grid
points in regions where the dielectric function varies most
rapidly. A simple way to do this, which we have found ef-
fective, is to define and then minimize a “fictitious energy”
functional

Efxsjdg =E − u = n2fxsjdgu + mcdetgpq + mstr gpqd2j,

s26d

where the first term represents a “negative” energy favoring
points in regions whereu=n2u is largest, and the second two
terms, following Gygi,28 give “compression” and “shear” en-
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ergy associated with the distortion that control the maximum
effective cutoff. In practice we need use only one of these
terms, and choose to setms=0. We minimize the energyE
using Powell’s direction-set method32 with a finite number of
variable coefficientsxG fas defined in Eq.s15dg.

IV. A TEST SYSTEM

We use as a test system a glass of refractive index
n=1.5 containing a triangular array of circular air holes
sn=1d with radius 0.45L, whereL is the lattice pitchsair-
filling fraction 73%d. This forms a PCF cladding structure
that is perfectly periodic. A typical value ofk0L=10 is cho-
sen, together withsfor simplicityd Bloch wave vectork =0.
This simple system was chosen such that exact results for
comparison were obtainable from an alternative method.

We create a coordinate transformation suitable for the test
structure by optimizing the energy functional of Eq.s26d
while enforcing full P6mm symmetry. A circular cutoff is
obtained by using the first three stars in reciprocal space of
xG

1 fas defined in Eq.s15dg; symmetry constrains components
in each star such that, of the total of 25xG

1 components and
25 xG

2 components, there are only three independent vari-
ables.

For the grid generation, we use a Gaussian smoothing of
n2 in Eq. s26d with full-width half maximum sFWHMd of
0.03L, and setmc=0.097,ms=0; these parameters are chosen
empirically to obtain a grid with the desired characteristics.
sNote that for accurate mode solving we use a much smaller
smoothing, but the grid generation and eigenmode determi-
nation are performed separately.d The resulting real-space
grid is used for all subsequent calculations, and is shown in
Fig. 1. Relative to a uniform grid with an equal number of
sampling points, the density of pointssper unit aread is modi-
fied by a factor of between<13 sat the dielectric interfacesd
and<0.12sat the center of the holesd. Note that conservation
of the total number of grid points places an upper limit on
the amount of distortion that can be achieved.

Once a suitable grid has been generated, it is necessary to
generate the set of coefficientsnG

2 of the dielectric function
to be used in the mode-solving calculation. However, the use
of GCCs introduces a complication in the way in which
smoothing is applied to the sharp boundaries of this function.
In the conventional representation, smoothing is carried out
by multiplication of the reciprocal-space components of the
dielectric function by a Gaussian envelope. The convolution
theorem ensures that this is equivalent to convolving the di-
electric function by a Gaussian in real space, and the FWHM
of this function can easily be chosen to give the required
amount of smoothing. It is unnecessary to perform the com-
putationally expensive convolution in real space explicitly. In
the GCC representation there is no simple method to perform
Gaussian smoothing working in reciprocal space only, but
we wish to avoid performing a slow real-space convolution.
We instead set up a Gaussian functionGfxsjdg in real space
and take the FFT, producing a set of coefficients in reciprocal
space which are then multiplied by the unsmoothed coeffi-
cients nG

2 . This does not give Gaussian smoothing, but it
provides control over the smoothing width and allows an an

approximate equivalence to Gaussian smoothing to be ob-
tained. We show an interface smoothed with each method in
Fig. 2.

The GCC method provides greatly enhanced convergence
of eigenmodes with respect to the basis set size or, equiva-
lently, the size of the FFT grid usedsthe equivalence is de-
scribed in Sec. II Bd. To demonstrate convergence, we calcu-
late the eight highest-b modes of the test system previously
described, and observe the convergence of these with respect

FIG. 1. Grid of real-space sampling points generated for an
array of cylindrical air holes of radius 0.45L in silica as described
in Sec. IV, calculated here with FFT grid size 1283128. To show
the grid clearly, every fourth point is plotted to obtain a grid of
dimension 32332. The unit cell is marked.

FIG. 2. Smoothed dielectric function of the test system de-
scribed in Sec. IV plotted in a direction normal to the dielectric
interface; the radiusr is measured from the center of the hole. Exact
Gaussian smoothing of comparable widthsFWHM 2.8310−3Ld is
shown.
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to the FFT grid size when different levels of smoothing are
applied. In Fig. 3 we plot the calculated value ofbL for a
range of FFT grid sizes, using three different Gaussian
smoothing widths for the conventional calculations and two
widths for GCC calculations.

We find that, for all modes examined, theb values of the
GCC method converge significantly more quickly with re-
spect to basis size than those produced by the conventional
method.sWe are not aware of any reason for the GCCb
values converging from below, rather than from above as do
the conventional plane-wave results.d Comparison of the two
least smoothed curvesswhich are approximately equivalent
in smoothing widthd makes the enhanced convergence be-
havior of the GCC method particularly clear. The rapid con-
vergence of the GCC method allows the use of smaller
smoothing widths while retaining plane-wave convergence.
Consequently, the set ofb values from the GCC method are
consistently closer than those from the conventional method

to the exactsunsmoothedd values, which have been calcu-
lated here by a KKR-based method.33,34Note that the pertur-
bation in b introduced by the smoothing varies between
modes; for example, the most smoothed conventional-
method curve forbL=9.0148 is not visible on the scale
shown: it reaches 9.0529 at FFT size 128. This uncertainty in
the accuracy of results is reduced by using smaller smooth-
ing widths throughout.

We can understand qualitatively the reason for the im-
provement introduced by GCCs in terms of the “convergence
in principle” argument of Sec. II D. As the FFT grid size is
increased, the density of real-space grid points increases;
only when our approximate criterion of having at least one
sampling point in the interface region is met can we expect
to see convergence of theb values. In the conventional
plane-wave case we expect this at an FFT size of roughly 64
for smoothing FWHM 10−2L, but we do not expect calcula-
tions with smaller smoothing widths to be converged. This
can be observed clearly in Fig. 3, where the curves generally
do not begin to flatten out until greater FFT grid sizes are
used. With curvilinear coordinates, we reach the “converged
in principle” criterion at smoothing FWHM 10−3L with an
FFT size of roughly 48 because the spacing of sampling
points is greatly reduced at the interface. Again, this is vis-
ible clearly in Fig. 3: the GCC curves are all generally flat at
greater FFT sizesson the scale shownd.

In summary, we find that for a constant FFT grid size a
reduction in smoothing width always worsens plane-wave
convergence, because the interface regions are narrower and
hence less well sampled. By introducing a position-
dependent density of sampling points in real space, the cur-
vilinear coordinate method allows convergence to be reached
for narrower smoothing widths. Equivalently, the method al-
lows smaller basis sets to be used while keeping the smooth-
ing width constant.

V. DISCUSSION

We have demonstrated that the reformulation of the fixed-
frequency plane-wave method in curvilinear coordinates
matched to the structure under consideration provides a large
enhancement of basis set convergence. For the test system
considered, this allows a reduction in FFT grid size from
greater than<1283128 to <48348 while still obtaining
bL values accurate to within 2 d.p. This represents an order
of magnitude decrease in the number of basis states needed
for a well-converged solution; we expect a similar improve-
ment in other structures.

As with all plane-wave calculations, there is a trade-off
between accuracy of results and speed/memory require-
ments. It is important to consider that, while smoothing per-
turbs theb values, this is an error that can be controlled.
However, calculations that are unconverged with respect to
basis set size do not have easily quantifiable errors; Fig. 3
shows that both the magnitude and the rate of convergence
varies considerably between modes. This can be seen with
reference to, for example, the modes atbL=9.0148 and
bL=8.0217: even at the largest FFT size shown, the conven-
tional plane-wave calculations are clearly unconverged for

FIG. 3. Convergence of the eight highest-b modes of the test
system of Sec. IV as FFT grid size is increased. In each plot the
solid horizontal line is the result from a KKR-based method correct
to 4 d.p. sRefs. 33,34d, the dashed lines show convergence of the
conventional method, and the mixed dot/dash lines show the GCC
results. The Gaussian smoothing widths for the conventional results
are sin order of increasing dash lengthd 10−3L, 6310−3L, and
10−2L. The approximate equivalent widths for the GCC curves are
sagain in order of increasing dash lengthd 10−3L and 2.5310−3L.
Inset figures show Poynting vector magnitudeslarge in black re-
gionsd. The modes atbL=12.2654, 11.0734, 9.0329, 8.0086, and
7.7931 are degenerate pairs; only one of each pair is shown.
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some levels of smoothing. However, if convergence were to
be gauged by examining, for instance, only the mode at
bL=8.0086, the erroneous conclusion thatbL values are
correct to within 2 d.p. even at FFT size 32 would be
reached. Convergence is also strongly dependent on the di-
electric system under consideration.11 We therefore consider
it essential to be certain of plane-wave convergence in all
calculations of this type, and consider the GCC formulation a
useful way to ensure convergence with considerably smaller
basis sets than are needed with the conventional method.

Although we have studied a range of grid distortions us-
ing the functional of Eq.s26d, the choice of parametersms
andmc in this functional is empirical and cannot be guaran-
teed to be optimal. In fact, although good results have been
obtained with this functional form ofE, it is possible that
other choices ofE or entirely different methods of grid gen-
eration may yield coordinate transformations that provide
even greater improvements. Grid generation is an area of
much current interest in the numerical analysis community,
and we intend to make further study of the method of grid
generation to effect additional improvements in efficiency.

A further issue that has arisen in the course of our work is
the decrease in effectiveness of the preconditioner described
in Sec. II C. This can be understood qualitatively by consid-
ering the structure of the matrixM : the set of Fourier coef-
ficients in the GCC representation provides a more compact
description of the dielectric function than the conventional
representation, and hence the elements ofM away from the
leading diagonal contain more structural information. The
negative effect of using a more compact representation is
therefore that the linear problem solved byGMRES becomes
less well conditioned. A further direction of our future work
will be to improve the method of preconditioning for these
problems.

In summary, we have outlined the formulation of the
fixed-frequency plane-wave method in curvilinear coordi-
nates for solving Maxwell’s equations in PCF, and have dem-
onstrated that this provides a considerable increase in effi-
ciency that is highly desirable in calculations of this type. We
anticipate that further research in this area will lead to more
accurate and rapid calculation of modal solutions in PCF. We
also note that although the ideas used here have been applied
to the fixed-frequency plane-wave method, they are equally
applicable to the fixed-wave-vector approach and also to
fully three-dimensional systems.
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APPENDIX: GRADIENT OPERATOR IN CURVILINEAR
COORDINATES

In this appendix, we give the derivation of the gradient
operator in reciprocal space in the GCC representation.

In GCCs, the plane-wave basis functions are
xk,Gsxd=g−1/4sxdeisk+Gd·jsxd, and so thexj derivative of a field
hk

i at reciprocal lattice vectorG is

F ]hi

]xjG
G

;Kxk,GU ]

]xj Uhk
i L

=E d2x g−1/4e−isk+Gd·j ]

]xj g
−1/4o

G8

hk,G8
i eisk+G8d·j.

sA1d

We now use the chain rule to change variables in the deriva-
tive

F ]hi

]xjG
G

=E d2x g−1/4e−isk+Gd·jo
p=1

2
]jp

]xj

]

]jpg−1/4

3o
G8

hk,G8
i eisk+G8d·j, sA2d

then evaluate the derivativeswhere the left-hand side has
been omittedd

E d2x g−1/4e−isk+Gd·jo
p=1

2
]jp

]xj g
−1/4

3H−
1

4g

]g

]jp + iskp + Gp8dJo
G8

hk,G8
i eisk+G8dj. sA3d

Collecting the factors ofg−1/4 and usingd2x=g1/2d2j pro-
vides the change of variables

E d2j e−isk+Gdjo
p=1

2
]jp

]xj

3H−
1

4g

]g

]jp + iskp + Gp8dJo
G8

hk,G8
i eisk+G8dj. sA4d

The definition ofAp in Eq. s17d can be rearranged as

Ap =
1

4

]

]jpln g =
1

4g

]g

]jp , sA5d

and hence, by substitution into Eq.sA4d,

F ]hi

]xjG
G

= io
p=1

2 E d2jo
G8

hk,G8
i ]jp

]xj skp + Gp8 + iApdeisG8−Gdj,

sA6d

i.e., Eq. s21cd. The reciprocal-space form of the Laplacian
operator¹2hi can be derived using this result by applying
Green’s first theorem21 sneglecting the boundary term be-
cause of periodic boundary conditionsd:

kxk,Gu¹2uhk
i l = −E d2x = xk,G · = hk

i . sA7d
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