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We compute exactly the low-energy single-electron Green’s function, the impurity and electron self-
energies, and the resistivity for the two-channel Anderson impurity model. These results are obtained by
exploiting the boundary conformal field theory identified from the Bethe ansatz solution of the model. Using
that solution we can make contact with the parameters of the original Hamiltonian and provide the detailed
crossover between the two integer valence limits. Our results generalize those obtained previously in the
context of the two-channel Kondo model.
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I. INTRODUCTION ends up considering the minimal scenario dfjpadrupolar
I'; doublet representation of the cubic group as the lowest-
Multichannel impurity physics is a well-established route energy multiplet in U* and a Kramers doubldfs as the
to non-Fermi-liquid behavior. Its appeal is therefore under{fowest-energy configuration in . These levels hybridize
standable as an essential ingredient in many of the variougith those electrons from the conduction band effectuating
theories that try to explain the unusual characteristics of nuthe transition from one doublet to the other. Starting from the
merous systems ranging from heavy fermfoimsmesoscopic  full electron field¥(X), one carries out an expansion in har-
point contact&. In this context, the two-channel Anderson monics Corresponding to cubic symmetry, retaining on|y
impurity model occupies a central place. It was first intro-y__(r) which has the appropriate symmetry to couple to the
duced by Cox in an attempt to model the physics of certainmpurity, with a=+ denoting the quadrupolar degrees of
U-based heavy fermioris,among which the compound freedom ando=1,| denoting magnetidspin degrees of
UBe, 3 is a prime example. Following that line of thought, a freedom.
dilute concentration of uranium in a ThBematrix will cor- We then proceed to write the field in terms of 1D right
respond to a metallic system with a feeble concentration ofieft) moving fields i, (#.,), representing the incoming

two-channel impurity centers. Impurity corrections to the gytgoing radial components of the 3D electron fields that
different transport properties of that system should d'5p|a360uple to the impurity

fractional power laws indicative of non-Fermi-liquid behav-
ior. For instance, corrections to the resistivity would display
VT dependence at low temperatudresd should constitute a V() =—F=
particular experimentally accessible observable. 2\ 2
Indeed, transport measurements are good candidates for
experiments, since they can also be performed in mesoscopiéth a “free-electron” boundary conditiof ,,(0) = ¢r.,(0)
systems for which bulk thermodynamic measurements, podmposed at the origim=0.1°
sible for heavy fermions and other materials, are ineffectual. The Hamiltonian is then given by
In this context, the two-channel Anderson model was already
used successfully as the starting point of noncrossing ap- H = Hpuic + Hion + Hnybors (2
proximation (NCA) calculations to model the temperature
dependence of the differential conductance of Cu poinwhere
contacts>®
The two-channel Anderson impurity mod& describes
the interaction of three-dimension&D) electrons with a Hbulk:f
local impurity carrying both spin and quadrupolar degrees of
freedom. These degrees of freedom correspond to the lowest- €]
energy configurations of a uranium impurity in charge states
U** (5f2) and UP* (5f%). Taking into account spin-orbit cou- : )
pling and crystal-field splitting in a cubic background one Hion = €sf ot + €450z (4)

[e_ikFr wLa(r(r) - eik,:l’ wRa(r(r)]i (1)

dr[: l/l-ltag—(r)(i ar) l/lLa(T(r):_ :‘p;ag—(r)(i ar)l/lRaO'(r) :] ’
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thbr:V[¢Ia‘r(o)bT;fU+ f:ferLM(o)]_ (5) self-ene_rgy of the impurit_y, and in Sec. IV we report on the
calculation of the resistivity. Section V contains a summary

. o . . . and a discussion of our results.
The conduction electrons here hybridize with the impurity

via a matrix element/,'! with the impurity modeled by a
quadrupolamagneti¢ doublet of energy, (eJ), created by Il. GREEN'S FUNCTION
a bos'or(fgrmm.n) operatorblf(f;).ﬂ Strong C'oulomb repul- At sufficiently low energiegor large distancgs quantum
S'OP implies single occupancy of the localized Ie\{eﬂgstt, impurity interacting with conformali.e., linear dispersion
+bgbz=1. The free part of the Hamiltoniai,, defines a glectrons can be represented by a conformally invariant
linearized spectrum around the Fermi level. The Fermi vehoundary condition—this is the key idea of the BCFT for-
locity is set to unity, with the resulting 1D density of states mulation of a quantum impurity probleff. For the two-
p=1/(2m). Normal ordering is taken with respect to the channel Anderson model, this boundary condifiatich su-
filled Fermi sea. persedes the trivial “free-electron” boundary condition

The model in Eq.(2) was recently solved by two of us ¢, ,.(0)=¢r,,(0)], is most easily described via a “gluing
using a Bethe ansat?. A complete description of spectrum condition” on the charge, spin, and flavor conformal towers
and thermodynamics was given, and it was found that at lowhat make up its spectrurtfor details, see Ref. 24 The
temperatures the theory is attracted to a line of fixed pointgiependence on the new boundary conditialias the impu-
parametrized by the impurity charge valente(wheren,  rity) is picked up by the time-ordered left-right single-
:<f:r,f(,> measures the average charge localized at the impwelectron Green’s functions
rity site). Near integral charge valencg=1 (n.=0) a mag- . +
netic (quadrupolar moment forms at intermediate tempera-  CLR(T:T1.12) = Gri(TiT1,12) = (YLao( 7.7 Yrao(012))
tures. This moment is then screened by the conduction (6)
electrons as the temperature is lowered, leading to a zer
temperature entropg""=kg In v2 and impurity specific heat
C{,f“p~TIn T, typical of two-channel Kondo physics. In the S)(wp) = % Cy)(wp). (7)
mixed-valence regime one finds the same low-temperature
behavior, but without the formation of a magnetic or quadru-HereC;)(wg) is the amplitude for a single electron to scatter
polar moment at intermediate temperatures. elastically off the impurity at the Fermi levebg, and ¢

In previous work we constructed the boundary conformal= §(wg) is the corresponding single-electron scattering phase
field theory (BCFT), which describes the approach to shift. At large (mean distances from the boundary,—r,|
criticality.!* The leading scaling operators were identified—> a, with a some characteristic microscopic scale, one finds
including the exactly marginal operator that generates thehat®
line of fixed points—and all physical scales and BCFT pa-
rameters were determined explicitly via a numerical fit to the GLa(TiT ) ~ Sty)(@e)
exact solution in Ref. 13. This allowed us to go beyond the LR rki(r 41y
Bethe ansatz approach and derive the critical exponents of ) , ,
the Fermi edge singularities caused by time-dependent hy.huS, at the level of the left-right Green's function, the
bridization between conduction electrons and impurity. Ourfoundary condition that emulates the presence of the impu-
results challenged those obtained by more conventional, aply iS coded byS(D(‘_"F)- In contrast, the large-distance left-
proximate scheme&ee, e.g., Ref. 15 left (LL) and right-right (RR) Green's functions

In the present work we take the BCFT formulation oneGmm 7:1,72) = (#imao(7,1 1) s, (0,12)) With m=L,R are in-
step further and extract the exact space- and time-dependesgnsitive to the particular boundary condition impo$ed:
single-electron Green'’s function of the model. This allows us

?\-Nith 7 imaginary time via the one-particlé&s-matrix

(8)

to calculate the self-energies of the conduction electrons anas, | (7:r,,r,) = G*RR(T;fl,fz) ~ ; Iri—r, > a.
of the impurity, as well as the zero-temperature resistivity THi(r =1y
and leading temperature-dependent term. (9)

The analysis is most easily performed by generalizing that . . , .
of the multichannel Kondo model in Refs. 16 and 17. In fact, 1Urning now to the thTe 3D electron field Green's function
the very structure of the Green’s function, as well as that of/(7:71:72) =(Vao(7,r)¥,,(0,rz)) and expressing it in
the leading terms of the resistivity, can be read off directlyterms of the 1D propagators in Ed§) and(9) one obtains
from the corresponding result for the two-channel Kondo = orike(ry=ry) + dke(rmrp)
modell®17 The only essential new element in the analysis js(mrure) =@ Culnryra) +€ Cra(7l1,12)

how to properly introduce the scales and amplitudes that + e KEMTIG (7,1, 1) + ERFTTIG (7,1 ,15).
determine the influence from the magnetic and quadrupolar (10)
degrees of freedom as one moves away from the integer

valence limits. Continuing the 1D electron fields analytically to the full line

In the next section we combine results from Ref. 14 and-®<r <o [With r..(7,1)=¢4,(7,-T)], averaging over
Refs. 16 and 17 to obtain the single-electron Green’s funcimpurity locations(thus restoring translational invariance
tion of the model. In Sec. Il we use this result to derive theand exploiting a T-matrix formulationt® the Fourier-
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transformed Green'’s function in E¢LO) can be cast in the 1
standard form S(wy) == Ly sgrwy), (17)
T
GlwpK) = 1 (11) wheren; and g are defined after Eq12). We should here
’ o= €= 2(w,)’ stress that impurity-impurity interactions have been ne-
glected in Eq.(17). As discussed in Ref. 16 this type of
with the self-energy(w,) given by analysis is applicable only at temperatures high enough so

that any remnant effects from interimpurity interactions are
sgn(w,) (12) washed outbut Iovv_ enough SO thaft the theory is critical and
270k - the BCFT formulation remains validAlso note that the ex-

pressions for the 1D propagators in E(®. and (9) pick up

Here n; is the density of a dilute random distribution of corrections wherr;—r,|<a,?® implying that the result in
impurities, ge is the 3D “free-electron” density of states Egs. (11) and (17) gets modified when probing boundary
at the Fermi level, and s@m,) is the sign function, with correlations with large momenta.
w,=2m(n+1/2)kgT, Nn=0,+1,+2,..., Matsubara frequen- To obtain the leading finite-temperature and frequency
cies. In order to tie the self-ener@(w,) to the two-channel corrections to Eq.(17) we need to consider the theory
Anderson model in Eq.(2) we need to determine slightly off the line of boundary fixed points. The scaling
the S'matrix in Eq.(7) that is associated with the hybridiza- HamiltonianHgc,jng that governs the critical behavior close
tion interaction in Eq.(5). The amplitudeCj;(wg) can to the fixed line was identified in Ref. 14 as
be determined in exact analogy with the two-channel Kondo .
problem in Ref. 16. Within the BCFT formalisrT;(wg) Hscaling= H +2oJ(0) + A0(0) +1,07(0)
gets expressed as a certain combination of so-called + subleading terms. (18
“modular S matrices??

—@%C.(w
S () = - in o —l@e) &rCy(w)

Here H" is the critical Hamiltonian that represertt, in

Eqg. (2), subject to the boundary condition that emulates the
impurity termsHj,, and Hy,,, in Egs. (4) and (5), respec-
tively. These terms, which break particle-hole symmetry, also
with structure and allowed values of the quantum number§!Ve rse to t:ge exactly marginal tergJ(0) in Eq. (18), with
j1,j1=0,1/2, 1determined by the S(@), Kac-Moody sym-  J(0)=Z4; ¥a,1as(0): being the charge current at the impu-

gi= % il (2] + 1(2j; + D/4], (13
;

metry of the flavor sectdf* Specifically, rity site and with), its conjugate scaling field. This is the
operator that generates the line of stable fixed poDfsthe
S}g% fixed line the termsH;,, andHyyy, allow for additionalirrel-
Ci(wp) = < g7 (14)  evant boundary operators to enter the stage. Of these,
/2

AO®(0) and \;0N(0), both of scaling dimensioh=3/2,

are the leading ones. The spin boundary oper&éi(0) is

the same operator that drives the critical behavior in the two-
Cy(wp) = 0. (15) channel spin Kondo problem and is obtained by contracting

BEF the spin-1 field¢®(0) with the vector of S(2), raising

Thus, the outgoing scattering state has no single-electropperators)®: 09(0)=J3%- ¢9(0). The flavor boundary op-

component after interaction with the impurity. This extremeeratorh;0'"(0) has the same structure. In obvious notation:

non-Fermi-liquid behavior is the same as for the two-channe@(f)(O):J(_fi-¢(f)(0).

spin Kondo modét (n.=1 limit of the two-channel Ander- In the case of the two-chann@pin Kondo problem the

son model andis not modified as one moves into the mixedflavor operator is effectively suppresd&dOf the two avail-

valence regime with w0, 1. As seen from Ed7), the im-  able energy scales, th@ndwidth Dand theKondo tempera-

purity valencen,, connected to the phase shit via the ture Ty [whereTy sets the scale for the crossover from weak

and it follows from Eq.(13) that

Friedel-Langreth sum ruté coupling (high-temperature phasdo strong renormalized
coupling(low-temperature phasg only D enters the expres-

5= o (16) sion for the flavor scaling field;. This is so since the Kondo

Fmgq © temperature is dynamically generated in the spin se@t®r

indicated by the infrared divergences in perturbation theory
could only influence the scattering if there were a finiteand hence cannot influence the scaling of the flavor degrees
single-electron cross section at the Fermi level. However, asf freedom. On dimensional grounds one concludes Xhat
Ci(wg)=0 independent of, this does not happefiNote  ~O(1/\D), whereashs~O(1/\Ty). For a small Kondo
that the phase shiff- is that of an electron with spior and  coupling, call it\, T¢x~D exp(-1/A)<D, and the critical
flavor indexa, hence the unconventional factor of 1/4 in Eq. behavior is therefore driven b§®(0) alone. As we showed

(16).19] in Ref. 14, the picture for the two-channel Anderson model is
To summarize the analysis thus far: The zero-temperaturmore involved. There are hetwo dynamically generated
single-electron Green’s function is given by E@0), with temperature scalesi(e), both parametrized by=e€;-¢;
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and thus varying with the position on the fixed line via the

dependence of the impurity valencg on €. The scaling
fields \s¢ are parametrized accordingfy

har= 2L, 19
V’Ts,f

with Bg¢ dimensionless constants. The precise dependence
Asf ON € was extracted in Ref. 14 from a fit to the numerical
solution of the thermodynamic Bethe ans&lBA) equa-
tions of the modet? In the magnetic moment regime where
e<u—I" [two-channel(spin Kondo limit] Ts<T; and A\
dominates. A increased andT; approach each other and
become equal whee=u (maximal mixed valence with no
moment formatioh Continuing along the fixed line, the two

scales trade places, and eventually, at the quadrupolar critic

end point(e> u—TI") one finds thafg> T;. It follows that in
the two-channel Anderson modbbth boundary operators
O®(0) and©"(0) come into play, with their relative impor-

tance changing continuously as one moves along the fixeg

line.
Going back to the scaling Hamiltonian in E(L8), the
effect of the exactly marginal teri,J(0) is easily obtained

PHYSICAL REVIEW F1, 195107(2005
g\72
SGR(T,Ty,T2) =T(NN; + Xst)ez"sp(E>

8
“J
0

3/2
(—i sinz[r+i(r1+r2)]>
dr’ B
-

52
of (sing(r’ - T—irl)sin%(r’ +ir2))
(22)

In the n,=0 (quadrupolar limit where A ¢— 0 and §=0,*
the theory is invariant under charge conjugatigarticle-
hole symmetry. Adapting an argument from Ref. 16 we may
use this property to determine the phaseNafand together
with an explicit calculation ofN¢|? one finds the value

N; = 3/\8. (23

he value of\? is fixed via Eq.(23) by the vanishing of the
four-point functiort®

via the observation that it samples the local charge at the <¢IW(T1+ifl)lﬂRaa(Tl‘ifl)lﬂEw(Tz’fifz)'ﬂRw(Tz‘if2)>

impurity site, with the scaling fieldh.=—n./4 measuring
the impurity valence per spin and flavor degree of freedbm.
By the Friedel-Langreth sum rule in E¢L6), the resulting
shift of the charge content of the critical bulk Hamiltonian
H", Q—Q-n, shows up as a phase shift==n./4 on

the electrons that scatter off the impurity charge potentia

at r=0. In other words,  ,,— exp(—i7n./4)¢ ,, and

Ve — EXPI TN/ 4) ¥, IMPplying that the left-right propa-
gators GLR:G;L get phase shifted by &=mn./2, as

indicated in Eq(8).

32
= (NF+ N)(rqrp2———, (24)
9|7'1— T
F\nd one concludes that
3
Ny=-i—=, 25
s 7 (25

To probe the effects from the spin and flavor boundary ) o _ )
operators in Eq(18) requires a perturbative approach. Pass-With the negative sign in E¢25) following from the condi-

ing to a Lagrangian formalism, the correctiéB to the Eu-
clidean fixed point action due t®"(0) and ©9(0) in Eq.
(18) can be written as

B
8S= 2 xkf dr'd% - ¢M(7,0),
k=f,s 0

(20)

with B=1/kgT. To leading order in a perturbative expansion

this leads to the following correction for the left-right propa-
gator:

B
OayOsp0G(TiT1,15) = E )‘kf d7"<‘//Lag(T,f1)J(—k£ - ¥
k=f,s 0
X (7,00, (0,1 )7 (21)

The indexT that appears in Eq21) refers to the “finite¥
geometry” T*={w=r+ir}, connected to the half-plane

tion that the expression faiG, g in Eg. (22) collapses to that

for the two-channel Kondo modélin the n,— 1 limit. The
scaling fields\; and\¢ are the same as those that parametrize
the thermodynamics and can thus be fitted to the exact TBA
solution of the modéf (see the next sectipnWith this fit
8GR in Eq. (22) will be completely specified. Note that by
time reversal invarianceiGg, = 6G, .

Turning to the chiral propagators in E(), it is easy to
verify that the corrections to these frods vanish identi-
cally: 5G|, (6GgR) is also given by the integral expression in
Eqg. (22) but with ry—=ry(r;—-ry). All zeros of the de-
nominator are located in the upp@éower) half plane, and the
integration contour can be deformed to > —oo(+%) with-
out crossing any singularity; hen@&, | = 5Ggg=0.

The integral expression faiG, g= bG;L in Eq. (22) differs
from that for the two-channgbpin) Kondo model in Ref. 16
only by having a prefactof\;—i\€™? instead of a single
scaling field\g (=N in Ref. 16. (It follows trivially that the

C*={lmz>0} used at zero temperature via the conformalresult for the chiral propagators is the same for the two mod-

mappingw=(B/ m)arctariz).
The three-point functions in Eq21) are completely de-

termined by conformal invariance up to multiplicative con-

stantsN; and N, (Ref. 16:

els) From this point on we can therefore carry over the
analysis intact from Ref. 16, at the end simply taking
A — (\—iN€™2, This gives, for the finite-temperature and
frequency self-energ}y,
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_nsgney)) 3 -<w,2>nc(2_w)”2
S(wy) = 2igr {1 &()\f iN€ 3

1
X f du[uﬁ\anZﬂ'u—UZ(l _u)1/2F(u)
0

-T23/2u Y41 - u)’3’2]} , (26)

whereF(u) is the hypergeometric functiof(3/2,3/2,1p).

To summarize this section: to leading order in temperature
and frequency, the exact single-electron Matsubara Green
function G(w,,k) of the two-channel Anderson model for a
dilute distribution of impurities is given by E¢10) with the o0 -0.20
self-energy2(wy,) in Eq. (26). These are bulk-electron quan-
tities; in the next section we make an aside to discuss their
connection with the impurity response.

0.10 0.20

sgn(e)|w/T "

FIG. 1. Imaginary part of the zero-temperature impurity self-
energy as a function of frequency. Different curves correspond to
different values of the impurity configurational energy splittirzg

Il IMPURITY SELF-ENERGY The frequencies are scaled with the Kondo temperafyre

For the sake of simplicity, we will carry out this discus- =41/ 7272/ js the two-channel Kondo temperatdfe.
sion at zero temperature. By analytic continuation to real |n Fig. 1 we show the imaginary part of the retarded im-
frequencies, purity self-energy as a function of frequen@caled with the

: _<R Kondo temperatupefor different values of the energy split-

lim 3 (wn) =20), @7 ting €. Only the curves for positive values of this parameter
are shown in the figure, since for negative values one simply
one obtains from Eq(26) an integral expression for the re- has to use the relation @ (w,—e):Im Eianp(—w,E) to ob-
tarded electron self-energy(w). By taking theT—0 limit  tajin the corresponding curves. These resullts are in fair agree-
and approximating the integral as done in Ref. 16 one findgnent with the ones obtained recently using the numerical
that* renormalization groupNRG) method?® Additionally, notice
{ that the figure required knowledge df, and.A, as functions

iwn—>a)+i0+

SR ()= 1+ _(,41+ iAy) of &; we shall comment on this in the next section.

N

2m 'QF
IV. RESISTIVITY

X[1~isgnw)] le”z}, (28)
Given the retarded electron self-ene®¥(w), defined by
with Eqgs.(26) and(27), one can readily obtain the resistivityT)
of the model to leading order in temperature. Adapting the
{Al()\f,xs, N.) = A\ coN.7/2) + \gSin(n.m/2), argument in Appendix C of Ref. 16, the assumption that the
- ; impurity-electron interaction is well described using the two-
AolhiRs M) = A SiNNe/2) = A cOLNe7/2). chznneylsrwave decomposition in Eq.l) implies tk?at the
(29 resistivity can be expressed directly in terms of If{(w).

Writing down the relevant equations of motion, one canrom Eqs.(26) and(27) one obtains

make a connection between the self-energy in 28) and _ )\ 12
the impurity Green’s functio”® Defining the latter one fol-  Im 3R(w) = - 1 3( ) A1\, hgNe)
lowing the same conventions as in Ref. 26, the relation reads 2mGr B

2 1

SR(w) = Ny v R, (30) X J du{cod Bw(In u)/27u (1 - u)Y2F(u)

270 0
Parametrizing the impurity Green’s function with a spectral = T23/Qu™H1 - u)™¥% + Ax(\p, A Do)
weight equal to 1/2, a hybridization amplitddd” = mpV/?, 1
and a self—energii'ﬁm(w), we can extract f dusin Be(In u)/27uY3(1

0

R L n; -
Zimpl @) = E+'F< 2mige ) l)' (3D —u)l’ZF(u)”’ (32)

The resulting formula for the impurity self-energy inherits
from 3R(w) a range of validity for|w|<Tgk, where T«  We have here used the property thaf“l27sgr{w,)
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— €09 (Bw/2m)In u]-i sin(Bw/27)In u] under the analytic 19 - - - -
continuationi w,— w+i0".
As shown in Ref. 25 for this class of problems, vertex
corrections to the resistivity involves-wave correlations
which vanish identically. It follows that the Kubo formula for §
the resistivity contains only the quasiparticle lifetimewith E
no weighting over large-angle scattering processes. With =
local orbital channelsa=+) of charge conduction, the Kubo
formula thus read$
o A f ok {_ dnp(ek)} )
M= ) Gl gl [T (39
Heree andm, are the electron charge and mass, respectively
n=(e) is the Fermi distribution function, and(e) is the o 0.20 0.40 0.60 0.60
lifetime of a quasiparticle of energg,=k?/2m,, T
1 FIG. 2. Resistivity vs temperature curves for different values of
(€)== E['m SR ™ (34) the microscopic Hamiltonian parameter Positive and negative
values ofe fall on top of each other; from left to right the curves
Combining Eqs(32)—(34), it follows that correspond tde|=0.0, 0.5, 0.8, 1.1, 1.4, 1.8, and 2.1. The curves
) Uz e corresponding to_ the last t_wo _valuesafall on top of ee_tch other_ in
p(T) = 4m(egvE) {1 + 3<7_T> f dx the scale of the figure, which illustrates the collapse into a universal
3n; B 4 COSH(X/z) curve as the system goes away from mixed valence.
1 was obtained from a fit of the low-temperature thermody-
X {Al()\f,)\s, nC)J du{cogx(In u)/2mJut?2 namics to the results of the TBA solutiéhBut the thermo-
0 dynamics involves only the squares of the scaling fields and
X (1 - u)Y2F(u) - T2(3/2)u™Y4(1 - u) 32 t_he_ sigr_1 remains therefore undetermined. However, in the
) limit of integer valence we have
+ A\, Ae o) J du{sinx(In u)/27]u™/? /}im+ Ai(\i(€),As(€),nc(€)) = Nt s(e), (39
0 el

and in that limit the model maps onto the weak-coupling
X (1 —u)l’ZF(u)}] , (35)  two-channel Kondo modél, <J*, with J* the Kondo fixed
point under renormalization to low energigsr which the
_ . sign of A;4(e) is known to be negativéit is expected to
\(’ég;arexafk/kBT' \tNe have heref usetihth[alc:ﬂnplqik] ml E?I' _reverse sign ford>J").1° Since the combined BCFT and
. rapidly goes to zero away from the Fermi Ievel, allow- g\ analysis indicates that the scaling fields vary continu-
ing us to approximate the momenta that appear in the inte

& . ) ously and do not change sign, we conclude that the coeffi-
gral byke (=me). (Note that previously was set to unity.  jent 4, is always negative. Hence, the resistivity is a mono-

We still use units wherdi=1.) Carrying out the integrals tonjcally decreasing function of temperature for all values of
over x and subsequently over (this second integral has to ¢, In the case of,, the Bethe ansatz solution provides di-
be done numerically, but to machine accuracy the result igectly an expression that relates it ¢33

found to be a rational number and expected to be gxéct With these considerations the values4f ,(¢) are com-

one finally obtains, for the low-temperature resistivity, pletely determined, which allowed us in the previous section
12 to plot the impurity self-energy. It is interesting to point out

p(T) = p(O)[l + 4(7—7) Al()\f,Ns,”c)}, (36)  that a positive sign for the scaling fields; ¢ will hamper
B the comparison of that plot with the NRG results. Moreover,
with a positive sign will spoil the causal properties of the self-
energy and is therefore unphysical for the Anderson model

3n; (even in the mixed-valence regime
p(0)= Am(egevp)? (37) Away from e~0, we can use Eq19) and our results of

) Ref. 14 to derive an approximate expression for the resistiv-
Since both\; and\g on the one harid andn. on the other ity that highlights its scaling properties,

hand? are known to be functions af the expression for the —
!eadin_g Iow-te_mpe_ratur_e de_perjdence is related to the original p(Tp(0) =1 —ﬂ[cos(ncw/Z) + sin(ng/2)] \/E
impurity Hamiltonian via this single parameter. 3 Ty
This behavior is illustrated in Fig. 2. While we have plot- (39)
ted the curves over the full interval<OT<Ty, we should
alert the reader that our results are exact only in the scalinglere T=min{T;, T¢} is the BCFT Kondo scale and the pref-
regime T<<Ty. The explicit connection betweexys ande  actors are in correspondence with the precise definition of
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this scale as given in our previous work. It is important toand discussed its asymptotic low-temperature thermodynam-
remark again that the asymptotic expansion for small temics. In that context we were able to make the connection with
peratures is valid only fof <Tg. For consistency, the same the full solution obtained using the thermodynamic Bethe
definition of the Kondo scalé was used for both plots in ansatz formalism and could explicitly match the scaling
Figs. 1 and 2Athe prefactors in the definition are of course fields with the microscopic parameters of the lattice Hamil-
not universal and depend on the particular convention tonian. Here we completed the task by calculating
It is here interesting to discuss the experimentally meadynamical- and transport-related quantitiéthe single-
sured lowT resistivity of the thoriated UBg compound, electron Green's function, the electron and impurity self-
mentioned in the Introduction, which shows\@ behavior energies, and the resistivityJsing our previous results from
but with a positive coefficient. As discussed in Refs. 4 andRef. 14, these quantities are parametrized directly in terms of
27, this would imply that in thesingle-impurity Kondo  the energy difference between impurity configurations in the
model framework this system exhibits a strong electron-original Hamiltonian(e). We have shown, in particular, how
impurity coupling (Jx>J"). It was speculated that such a our analytic expression for the impurity self-energy captures
regime was achievable near mixed valence in the context dhe low-frequency behavior in agreement with the results of
the (single-impurity two-channel Anderson modétee Ref.  other nonperturbative techniques like Wilson's numerical
7 for a review. Our results, however, do not support thoserenormalization group methd As we mentioned in the In-
ideas. Perhaps, since LTh,Be;5 with x=0.1 is far from the troduction, having reliable access to transport quantities is of
dilute limit, lattice effects might play a role in reversing the crucial importance for the comparison and interpretation of
sign of that coefficient. While later measurements on theexperiments that continue to seek indisputable realizations of
same compound have confirmed th'bbghavior with a posi- multichannel Kondo physics. The work presented here fur-
tive coefficient?® on the other hand, &aT scaling of the re- thers our understanding of two-channel Kondo physics in
sistivity with a negative coefficient has been recently ob-mixed-valent scenarios, thus widening the range of possible
served in a different uranium-based heavy-fermion materiatandidate systems for experimental realizations.
Sc_U,Pd; (but only for large dopingsx~0.352° when a
single-impurity description of the low-temperature physics is ACKNOWLEDGMENTS
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