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We explore the possibility of tuning photonic crystal properties via order-disorder transition. We fabricated
a photonic bandgap material consisting of a three-dimensional array of conducting magnetizable spheres. The
spheres self-assemble into ordered state under external magnetic field, in such a way that the crystalline order
can be continuously controlled. We study mm-wave transmission through the array as a function of magnetic
field, i.e., for different degrees of order. This was done for the regular crystal, as well for the crystal with the
planar defect which demonstrates resonance transmission at a certain frequency. We observe that in the or-
dered, “crystalline” state there is a well-defined stop band, while in the completely disordered, glassy or
“amorphous” state, the stop band nearly disappears. We relate the disappearance of the stop band in the
disordered state to the fluctuations in the particle area density. We develop a model which predicts how these
fluctuations depend on magnetic field and how they affect electrodynamic properties of the whole sample. The
model describes our results fairly well.
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I. INTRODUCTION

Photonic bandgap materials are ordered arrays of scatter-
ers that do not allow electromagnetic wave propagation in
some frequency ranges named gaps.1 The important chal-
lenge in the field of photonic crystals is tunability, in other
words, the possibility to control the depth, width, and posi-
tion of these frequency gaps. This can be achieved by vari-
ous means such as liquid crystal infiltration,2 temperature,3

elastic strain,4 and magnetic field.5–14We explore here a very
special route to achieve tunable photonic bandgap materials:
magnetic-field-inducedorder-disordertransition.

Since the gaps in photonic bandgap materials arise from
their periodically ordered structure, we woulda priori expect
that disorder destroys the gaps. However, it is well known
that disorder by itself may result in wave localization, i.e., it
may create the gap.15 Hence the effect of disorder on photo-
nic bandgap materials may be multidirectional and it comes
to no surprise that it has been studied so intensively recently.
Numerous analytical and numerical studies showed that the
gaps in photonic crystals are robust,16–18 i.e., they do not
disappear under weak and moderate disorder. More specifi-
cally, it was found that under weak disorder the gap edges
become smeared,19–25 the higher-order gaps become more
shallow,26 while the depth of the first stop band remains al-
most unaffected.17,18,20–22,24,26Under moderate disorder the
first stop band becomes more shallow.19,25 Under strong dis-
order there appear localized states in the gaps, which are
characterized by enhanced transmission.20,21,24 Theoretical
predictions indicate that the effect of disorder is most pro-
nounced at the gap edges and is minimal in the passbands, at
the frequencies corresponding to the so-called Bragg rem-
nant or antigap.26–29 Various kinds of disorderspositional
disorder, size disorder, fluctuations in refraction index, etc.d
produce almost the same qualitative effect. The only excep-
tion is sliding disordersor stacking faultsd which can in-
crease the depth of the gap.22,23

There are only a few experimental studies of the wave
propagation in photonic bandgap materials with disorder.

Reference 21 studied microwave propagation through the
two-dimensional arrays of rods and found bandgap smearing
upon increasing positional disorder, while Ref. 30 studied
microwave transmission through random assemblies of
spheres and observed wave localization and stop band result-
ing from disorder. Introduction of small controlled disorder
sin fact, “quasicrystalline” orderd into two-dimensional pho-
tonic bandgap material yields a full photonic stop band in the
near infrared.31,32

In this work we explore possibility of tuning of photonic
bandgap materials bycontinuousvariation of the degree of
disorder. This is done in the mm-wave range with a model
system of metallic magnetizable spheres whose lateral posi-
tion is controlled by external magnetic field. This resembles
the polymer-dispersed liquid crystals where fluctuations in
the optical birefringerence are controlled by electric field.33

A similar idea salthough based on particle reorientation
rather than motion in magnetic fieldd has been suggested
with respect to photonic bandgap materials.8

II. EXPERIMENTAL SETUP

A. Photonic crystal with tunable disorder

We build our photonic crystal from the 2 mm diameter
steel spheres. In the presence of magnetic field each sphere
acquires magnetic moment proportional to the fieldM
=3xVH/2, whereH is external magnetic field,V is the vol-
ume of the sphere, andx is the magnetic susceptibility. We
used SQUID magnetometer to measure particle magnetiza-
tion in the fields up to 500 Oe and found coercive force of 5
Oe and volume susceptibilityx=0.15.

We put 397 spheres into a 0.67-mm-thick plexiglas con-
tainersFigs. 1 and 2d and mounted several such containers in
the stack. The interlayer spacing is 3.5–4.5 mm, while the
nearest-neighbor distance in a single layer is 3 mm. The
stack is mounted inside the Helmholtz coils. In the presence
of external magnetic field the spheres become magnetized in
the direction perpendicular to the layers, in such a way that
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the spheres in each layer repel each other. The out-of-plane
attraction between the spheres is small compared to the in-
plane repulsion.

The static particle configuration in each layer is deter-
mined by the interplay betweensid magnetic forces andsii d
static friction forces between the spheres and the substrate.
Understrongmagnetic field, magnetic forces exceed friction
forces and the particles self-assemble into hexagonally or-
dered crystalline lattice whose orientation is determined by
the container shape. Since we use the hexagonally shaped
container, and the total number of particles corresponds to
the perfect hexagonal packing, the resulting lattice is almost
perfect at strong magnetic fieldfFig. 1sadg. At the intermedi-
ate magnetic fieldfFig. 1sbdg, the friction forces deform this
crystalline lattice, in such a way that it splits on several crys-
talline grains separated by grain boundaries. In the weak
magnetic field, the friction forces dominate, the particles are
in the disorderedsamorphous or glassyd statefFig. 1scdg and
may touch one another.

To characterize disorder we took images of the particle
configuration using a CCD camera and then performed digi-

tal Fourier-transform of the images. In the strong field we
observe sharp Bragg peaksfFig. 1sad, right panelg indicating
on crystalline order; at the intermediate field the intensity of
these peaks decreases and the diffuse background appears
fFig. 1sbdg; in the weak magnetic field the Bragg peaks dis-
appear, indicating on the absence of the crystalline order
fFig. 1scdg.

The images of our arrayssFig. 1d are very similar to the
snapshot of the particle configuration in the system of inter-
acting magnetic dipoles at finite temperature.35 However, in-
stead of temperature, the disordering agent in our case is
static friction between the particles and the substrate.

B. mm-wave transmission measurements

We measured mm-wave transmission through our device
at normal incidence and in the range of 20–50 GHz. We used
a HP850C Vector Network Analyzer as a source and two
standard gain horn antennae to which we attached home-
made collimating teflon lensessFig. 2d. The inner curvature
of the lens is 15 cm, the outer curvature is 30 cm, the dis-
tance between antennas is 28 cm, and the beam diameter is 6
cm. The height of the device is 4–5 cm. To prevent diffrac-
tion at the edges of the stack, we put two apertures above and
below the stack. The aperture size is slightly smaller than the

FIG. 1. Particle arrangement in a container at different values of
magnetic field. The container is made of a 0.67-mm thin plexiglas
plate with the hexagonally shaped walls. The side of a hexagon is
30 mm and there are 397 steel spheres of 2 mm diameter. The left
panel shows grey scale images of the particle configuration as ob-
tained by the CCD camera.fThe illumination was from above,
therefore the actual diameter of the spheres exceeds the diameter of
the small white circles in the real space images. In reality, the
spheres inscd touch one another.g Note gradual transition from the
ordered to disordered state upon decreasing magnetic field. The
right panel shows corresponding Fourier transform image. Note
gradual disappearance of sharp peaks and appearance of diffuse
rings upon increasing disorder.

FIG. 2. Measurement setup. A stack of 6–10 layers with steel
spheres is mounted inside Helmholtz coils which produce magnetic
field perpendicular to the layers. The mm-wave transmission
through the stack is measured using standard gain microwave horns
connected to HP 8510C Vector Network Analyzer. The antennas are
equipped with collimating teflon lenses.
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container diameter. The receiving antenna accepts radiation
in the angle of 25°, hence it measures forward transmission
and small angle scattering as well. The noise floor of our
setup is250 dB smeasured by replacing a sample with a
conducting foil of the same diameterd. Calibration was per-
formed without a sample. The size of the particles, the dis-
tance between them and the distance between the layers was
carefully chosen in such a way as to achieve a wide and deep
stop band in the accessible frequency range. This was done
by computer simulations usingANSOFT software.

We studied transmission through the stack of 6–10 layers
as a function of magnetic field, i.e., at different degrees of
in-plane disorder. The measurements were performed as fol-
lows. We applied a certain magnetic field to initially disor-
dered array and either gently vibrated it or sent a short cur-
rent pulse s“magnetic stirring”d to achieve equilibration.
Then we measured mm-wave transmission through the stack.
At the next step we switched off the magnetic field and vi-
brated the stack once again to recover initial, disordered
state. Then we repeated the measurement for another value
of magnetic field and so on. While there exist many particu-
lar configurations corresponding to a certain value of the
external magnetic field, the mm-wave transmission through
these metastable configurations differ only in minor details.
Therefore, we performed 3–10 vector transmission measure-
ments at the same value of magnetic field and for different
particle configurations; and vectorially averaged the results.
We also checked experimentally that the transmission
through the stack is almost independent of the polarization of
the incident wave. A small lateral shift of one of the layers
with respect to anotherssliding disorderd was also found to
be unimportant.

III. EXPERIMENTAL RESULTS

A. Magnetic field dependence of the mm-wave transmission

Figure 3 shows mm-wave transmission through the six-
layer stack at two extreme values of magnetic field: one cor-
responding to completely ordered state, and another corre-
sponding to completely disordered state. In the ordered state
there is a well-defined stop band at 24–44 GHz. For the stack
with only six layers, the transmission in the stop band is very
small, T=35 dB. Reflectivity in the stop band is close to
unity snot shown hered.34 Transmission in the pass band can
be as high as21–2 dB, indicating on negligible absorption
losses. This is not surprising since the losses are determined
by the ratio of the skin depthd in the material of the sphere
to its radiusr. For the mm-wave frequencies this ratio is so
small,10−3, that the spheres can be considered ideally con-
ducting, i.e., lossless. The spikes in the stop band in the Fig.
3 do not arise from the noise of the measurement system.
They are related to the finite number of layers and to the
resonant transmission. The spikes in the magnitude of trans-
mission are accompanied with the similar features in the
phasesnot shown hered.

Upon decreasing magnetic field, the stop band becomes
smeared and eventually disappears. Transmission monoto-
nously decreases with decreasing field at all frequencies. The
strongest effect of magnetic field is at the stop band edges

where it achieves 30 dB; while inside the stop band the mag-
netic field effect is negligible. Magnetic field effect in the
pass band is also quite pronounced. To study it in more detail
we prepared a similar stack but with increased interlayer
separation. Here, the stop band is shifted to lower frequen-
cies in such a way that the frequency range above the first
stop band becomes “visible.” Figure 4 shows the effect of
magnetic field on the mm-wave transmission in this crystal.
The magnetic field effect in the stop band may achieve 15
dB. Note the broad transmission peak between the first and
the second stop band in the disordered state, in the frequency
range corresponding to the pass band in the ordered state.
This peak of enhanced transmission is known as Bragg rem-
nant or antigap.27–29

FIG. 3. sColor onlined Mm-wave transmission through the six-
layer stack for different values of magnetic field. The interlayer
separation isd=3.5 mm. Note stop band at 25–44 GHz and atH
=290 Oe sordered stated and its disappearance in the disordered
statesH=0d.

FIG. 4. sColor onlined Mm-wave transmission for the similar
stack but with increased interlayer distancesd=4.5 mmd. In the
ordered statesH=290 Oed note first stop band at 21–36 GHz and
the edge of the second stop band at 46 GHz. Note smearing of the
stop band in the disordered state and broad transmission peak at 39
GHz santigapd.
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Figure 5 shows magnetic field dependence of the mm-
wave transmission for the sample of Fig. 4 and at few dif-
ferent frequencies, corresponding to the midgap, gap edge,
and antigap. Although the overall variation of transmission
strongly depends on frequency, the field dependence is much
more the same: strong linear increase below 60 Oe followed
by saturation at higher field. The only exception is the mid-
gap frequency where the overall change in transmission is so
small that its functional dependence cannot be reliably deter-
mined.

This can produce a false impression that the mm-wave
transmission is totally insensitive to magnetic field for the
frequencies corresponding to the midgap. However, this is
not exactly so. Figure 6 shows mm-wave transmission
through the stack in which we introduced a planar defect,
i.e., we displaced two halves of the stacksFig. 1d in such a

way that the distance between two central layers is increased
as compared to other interlayer distances. This results in a
sharp transmission peak inside the stop band at 34.7 GHz.
Upon decreasing magnetic field this peak decreases and com-
pletely disappears atH=0. The effect of magnetic field on
transmission at the resonance frequency amounts to 30 dB.
Therefore, magnetic field can strongly affect transmission in
the stop band provided this transmission is resonant.

B. Dispersion relations in the ordered and disordered states

Magnetic field affects not only the magnitude of the trans-
mission sFigs. 3–6d but the phase as well. This means that
the phase and group velocity can be magnetically tuned.
These velocities are determined from the dispersion relation
ksfd, wherek is the wave vector andf is the frequency. To
determineksfd we performed vector transmission measure-
ments at fixed field and for the stack with varying number of
layersN. The real and imaginary parts of the wave vector
were found from the experimental data using the following
relations:

Reskd =
1

dz

df

dN
, Imskd =

1

2dz

d ln T

dN
, s1d

whereT is the power transmission coefficient,f is the phase
shift upon transmission, anddz is the unit cell period in the
direction of propagation. Figures 7sad and 7sbd show our re-
sults. In the ordered state, the Imskd is very small beyond the
stop band, as expected in the lossless material. This is in
contrast to the disordered state where the Imskd is more or
less the same at all frequencies. Note the gap in Reskd in the
ordered state and the absence of the gap in the disordered
state. The group velocity isvg=dk/df. In the disordered state
it is fairly frequency independent, while in the ordered state
it demonstrates strong frequency dependence, in particular,
vg→0 at the stop band edges. Therefore, group velocity can
be continuously tuned by magnetic field.

IV. MODELING

Although particle configuration in each layer strongly de-
pends on magnetic field, to understand how the changes in
configuration affect the mm-wave transmission through the
whole sample is not an easy task. Indeed, to explain the
appearance of the stop band for the certain direction of
propagation in a three-dimensional photonic bandgap mate-
rial, it is usually enough to represent it as a multilayer with
periodicity only in the direction of propagation. In this rep-
resentation the layers are assumed spatially uniform and the
details of the particle arrangement in each layer are of little
importance. Our idea is that any deviation from the in-plane
crystalline order leads to fluctuations in the area density of
particles. Therefore, the layer can be no more considered as
uniform.

The purpose of our modeling is to find how the in-layer
disorder affects the electromagnetic wave propagation per-
pendicular to the layers. We attribute the effect of lateral
disorder to the area density fluctuations. The modeling is
performed in three steps. First we estimate fluctuations of the

FIG. 5. Magnetic field dependence of the mm-wave transmis-
sion through the sample of Fig. 4 and at fixed frequencies.f
=34.7 GHz corresponds to the high-frequency edge of the first stop
band, f =39.1 GHz corresponds to the antigap, andf =46.3 GHz
corresponds to the low-frequency edge of the second stop band.

FIG. 6. sColor onlined Mm-wave transmission for the same
stack as in Fig. 3 but with planar defectsthe stack shown in Fig. 1
was split in two parts separated by 6 mmd. Note a sharp peak at 34
GHz inside the stop band which corresponds to the resonant trans-
mission. The curves are displaced for clarity.
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particle area density as a function of magnetic field. Sec-
ondly, we calculate refraction index and reflectivity of a
single layer of spheres with fluctuating area density. Thirdly,
we consider wave propagation through the stack of such lay-
ers.

A. Magnetic-field-dependent disorder in a layer of
magnetizable spheres

Particle configuration in our array is determined by the
interplay between magnetic and friction forces. Consider first

magnetic forces. The potential energy of induced magnetic
dipole-dipole repulsion is

Uij =
MiMj

ur i − r ju3
, s2d

wherer i is the particle position andMi is the particle mag-
netic moment. Magnetic forcesFmagn

i =o js]Uij /]r id drive
particles into equilibrium hexagonally ordered state where
magnetic repulsion energy is minimized andFmagn

i =0. The
lattice constant of this array is determined by the number of
particles and the size and shape of container.12 Since mag-
netic susceptibility of our spheres is not high, we assume
M ~H whereH is externalfield srather than the sum of the
external field and the induced field of other particlesd.

To achieve equilibrium, the particles should move later-
ally. Here, static friction forces become important. Indeed, to
push a hard sphere on flat substrate out of equilibrium re-
quires application of some mimimal force, exceeding static
friction forceFfr =mfrP, whereP is normal force on a particle
and mfr is the rolling friction coefficient which depends on
the radius of the sphere and on the nature of contacting sur-
faces. In the presence of static friction the particles start to
move only whenFmagn.Ffr and come to rest whenFmagn
øFfr. To characterize the interplay between magnetic and
friction forces we introduce “magnetic length” 2lH that rep-
resents a minimal distance between two isolated magnetized
spheres on substrate with friction. We find it from the rela-
tion Fmagns2lHd=Ffr. Equations2d yields

lH = S 3M2

16Ffr
D1/4

. s3d

In this work we are interested in the magnetizable particles
sM ~Hd, hence lH~H1/2. The magnetic length should be
compared to the average distance between the particles. The
latter is conveniently characterized by the Wigner-Seitz ra-
diusa=sprd−1/2, wherer is the area density of the particles.
Note thatlH is controlled by magnetic fieldfEq. s3dg while a
is field independent. In what follows we consider different
regimes, defined by the relation betweenlH anda.

1. Strong magnetic field (crystalline state)

Here lH@a. Magnetic repulsion tends to keep the par-
ticles at equal distances. For confined array and at high
enough field this results in the hexagonally ordered “crystal-
line” state. The whole array is a single crystalliteswith prob-
ably few point defectsd which is deformed by friction forces.
In the absence of point defects such as dislocations and
disclinations,36,37 we estimate the area density fluctuations
arising from elastic deformations as follows. The condition
of static equilibrium of the elastically deformed planar crys-
talline lattice is

]sik

]xk
+ rf i = 0. s4d

Here sik is the stress tensor andf i is the density of bulk
external forces which in our case are friction forces. The
magnitude of these forces isFfr. We assume that their corre-

FIG. 7. sColor onlined Dispersion relations for the ten-layer
stack s331 sphere in each layer, interlayer distance is 4.3 mmd.
Filled symbols show Reskd and open symbols show Imskd, wherek
is the wave vector. The dashed line showsk0- the wave vector in the
uniform medium with the same refraction index as our photonic
crystal. sad The ordered stateH=160 Oe.sbd The disordered state
H=0. Note the gap between 24 and 36 GHz in the ordered state and
its absence in the disordered state.
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lation radius is the Wigner-Seitz radiusa. By integrating Eq.
s4d over unit cell, we findusiku<rFfr a. The compressional
deformations areuull u,rFfr a/K, while the shear deforma-
tions areuuiku,rFfr a/m, si Þkd. Here,K is the bulk com-
pression modulus andm is the shear modulus. For the planar
hexagonal lattice of parallel magnetic dipoles36

m =
2.147M2

a5 , K = 10m. s5d

Equationss3d and s5d yield fluctuations of the deforma-
tions uull u<2.75310−3sa/ lHd4, uuiku<10uull u. The corre-
sponding density fluctuations are very small:

dr2

r2 , ull
2 ~ S a

lH
D8

~ H−4. s6d

2. Intermediate field (polycrystalline state)

HerelH.a. In this regime, the friction forces between the
particles and the substrate are strong enough to split the crys-
talline lattice onto separate grains with well-defined grain
boundaries. To estimate the grain sizeR, we follow Larkin-
Ovchinnikov treatment of the pinned vortex lattice in super-
conducting films.38 The maximum energy, associated with
one particle in the lattice pinned by friction force, is,Ffr a.
Since the friction forces are randomly oriented, the average
pinning energy for the grain of areapR2, containing Zg
=sR/ad2 particles, is,Ffr aZg

1/2=FfrR. These pinning forces
lead to displacement of the grain boundary by,a. The elas-
tic energy associated with this displacement is,ma2. The
excess energy per unit area of such lattice is

dE

S
,

ma2 − FfrR

pR2 . s7d

SinceK@m we neglect here the elastic energy due to com-
pressional deformations. Minimization of Eq.s7d yields the
equilibrium grain sizeR=2ma2/Ffr. Using Eqs.s3d and s5d
we find the grain size

R< 22.4
lH
4

a3 ~ H2. s8d

To estimate density fluctuations we note that the lattice in
the grains is almost perfect, while the particle configuration
at grain boundaries is distorted and strong deformationsuik
occur therefFig. 1sbdg. In other words,uik!1 in the grains
anduik,1 at grain boundaries. The relative concentration of
grain boundary particles isZB<2a/R. The average fluctua-
tion of the deformations in the areaS, containingZS=rS
particles, is

uik
2 ,

ZB

ZS
,

0.09

ZS
S a

lH
D4

~ H−2. s9d

3. Weak magnetic field (amorphous state)

Here lH!a. The particle arrangement reminds a glass or
amorphous solid consisting of impenetrable spheres with the
radiuslH. The area density fluctuation in the areaS contain-
ing ZS particles is39

dr2

r2 =
DZS

2

ZS
2 =

1 +E n ] S

ZS
, s10d

wheren is the pair correlation function. Following Ref. 40,
we assume that the correlation function for the dense disor-
dered planar array of impenetrable spheres of radiusr is such
thaten]S<−prr2. We substituter by lH, r by 1/pa2, intro-
duce these values into Eq.s10d and find

dr2

r2 =

1 −
lH
2

a2

ZS
. s11d

Since lH~H1/2, the Eq.s11d yields density fluctuations lin-
early decreasing withH. Note, that if lH, r, wherer is the
radius of the sphere, the magnetic forces are too small as
compared to friction forces, and magnetic field is inopera-
tive.

B. Electrodynamic parameters of a planar array of
conducting spheres

We consider first an ordered planar array of ideally con-
ducting spheres of radiusr, such thatr ,l /2p, wherel is
the wavelength of the incident wavessuch spheres can be
considered as Rayleigh scatterersd. The average nearest-
neighbor distance is smaller thanl /2. When the planar elec-
tromagnetic wave is incident on such a layer, it is not ab-
sorbed but scattered. The scattering occurs mostly in the
backward and forward directions, while the scattering in ob-
lique directions is strongly suppressed. Therefore, for the
normally incident plane wave this layer can be considered as
a uniform nonabsorbing medium with thicknessd=2r, effec-
tive refraction indexn and admittanceY.41 For dilute arrays
of scatterers the Refs. 42 and 43 yield

n . 1 − i2p
rSs0d
k3d

, s12d

Y . 1 − i2p
rSs180d

k3d
. s13d

Here,r is the area density of particles; and admittanceY is
normalized to the admittance of free space. TheSs0d and
Ss180d are the forward and backward scattering amplitude of
a single particle, correspondingly, which are related to their
electricaE and magneticaH susceptibilities as follows:42,43

Ss0d = ik3saE + aHd, Ss180d = ik3saE − aHd. s14d

The susceptibilities depend on particle concentration due to
Lorentz field. Indeed, the susceptibility of a polarizable di-
pole in the array of identical dipoles is

a =
a0

1 − A
a0

a3

. s15d

Here a0 is the susceptibility of an isolated particlesfor a
small isolated ideally conducting sphere,aE=r3, aH=−r3/2d;
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a=sprd−1/2 is the Wigner-Seitz radius, andA is a local field
factor.44 To find refraction index and admittance of a planar
ordered array of ideally conducting spheres, we substitute
Eq. s15d into Eqs.s12d–s14d and find

n . 1 +
x2s1 + 2Ax3d

s1 − Ax3ds2 + Ax3d
, s16d

Y . 1 +
3x2

s1 − Ax3ds2 + Ax3d
, s17d

wherex=r /a. Note thatn, Y depend on densitysthroughx
andad.

To find refraction index and admittance of the planar dis-
ordered array of ideally conducting spheres we represent it
by the ordered array with the spatially varying densityr
=r0+dr. The Taylor expansion of Eqs.s16d and s17d with
respect tor yields

nsrd . nsr0d +
dn

dr
dr +

d2n

dr2

dr2

2
¯, s18d

Ysrd . Ysr0d +
dY

dr
dr +

d2Y

dr2

dr2

2
¯. s19d

To find n, Y in the disordered state we use the same Eqs.s18d
ands19d and substitutedr2 by area density fluctuations. Then
we average over the areaSwhich scatters coherently. Its size
is S=zl wherez is the distance to the observation point and
l is the wavelength.sWhen the averaging is performed over
whole array,kdrl=0, but kdr2lÞ0.d

The above approach reduces the effect of disorder onn, Y
to the area density fluctuations. When the array of particles is
ordered, this corresponds to compressional deformations.
However, disorder introduces shear deformations as well.
These deformations change local crystalline symmetry and
this affects refraction index and admittance through the local
field factor A.40,44 In principle, the effect of shear deforma-
tions may be treated along the same lines by considering
Taylor expansion of Eqs.s16d and s17d with respect toA.

C. Electrodynamic parameters of the multilayer with
in-plane disorder

We represent our sample as a multilayer consisting of
alternating layers of conducting spheres and air spacings be-
tween them. Wave transmission through multilayers is most
easily accounted for by the matrix method.45,46 Here, each
layer is characterized by two matrices:sid the phase matrix
representing the phase shift upon transmission through this
layer andsii d the reflectivity matrix which is determined by
the ratio of admittances at the reflecting interface and is in-
dependent of the layer thickness. Transmission through the
multilayer is the product of all these matrices. We relate the
effect of disorder on transmission through our multilayer to
the area density fluctuations in the layers of conducting
spheres. We assume that the lateral size of important fluctua-
tions corresponds to the area that radiates coherently, as seen
from the next interface, i.e.,S,ldz wheredz is the unit cell

period in the direction of propagation andl is the wave-
length. In what follows we consider the effect of area density
fluctuations in different frequency ranges.

1. Antigap

The antigap is the narrow frequency range in the passband
where the layer of spheres may be represented as a half-
wavelength plate, i.e., the phase shift on propagation through
this layer is a muliple ofp. Transmission through such layer
is close to unity due to destructive interference of the waves
reflected from both interfaces and is almost independent on
the layer admittance. Transmission at the antigap frequency
is, therefore, determined mostly by refraction index fluctua-
tions across the layersfEq. s18dg. The latter result in the
phase shift fluctuationsc=c0+dc. The power transmission
through the multilayer decreases by the Debye-Waller factor
Tdisorder/Torder=e−dc2

.47 What is important here is the relative
deviation of the phase shift when going from one layer to
another. Hence, the averaging in the exponent is for different
layers, i.e. for different realizations of the disordered state.
Sincec=k0nd, wherek0 is the free space wave vector, then
dc=k0ddn=k0dsdn/drddr. Hence, the ratio of transmit-
tances for theN-layer stack is

Sln
Tdisorder

Torder
D

antigap
= − NSk0d

dn

dr
D2

dr2. s20d

Note that the ratio of transmittances is~k0
2, i.e., increases

with frequency. Therefore the effect of disorder is more pro-
nounced in the higher-order passbands.

2. Midgap

In the midgap the reflected waves from all interfaces sum
up in phase, hence the reflectivity is maximal and transmis-
sion is minimal. For simplicity, we restrict ourselves to the
first stop band and to the quarter-wavelength stack. Trans-
mission through such stack isT<1/Y2N,46 where N is the
number of layers. The average admittance of each layer in
the disordered state isYdisorder=Yorder+sd2Y/dr2ddr2 where
the averaging is performed over the whole layer. This results
in

Sln
Tdisorder

Torder
D

midgap
= −

N

Y

d2Y

dr2 dr2. s21d

3. Stop band edges

To account for the effect of disorder on the transmission
at gap edges we draw analogy to the optical properties of
disordered semiconductors. Upon increasing disorder, the
gap in semiconductors becomes smeared and there appear
exponential transmission tails at gap edgessUrbach tailsd.
The frequency dependence of optical transmission through
semiconductors and at the gap edge is48

] ln T

] f
~ daL

2, s22d

where daL
2 is the lattice constant variation which can arise

from structural or temperature fluctuations. We rewrite Eq.
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s22d for a single frequency, and note thatdaL /aL=dr /2r.
Then Eq.s22d yields the ratio of the transmissions in the
ordered and disordered states at any frequency corresponding
to the gap edge as

Sln
Tdisorder

Torder
D

edge
~ dr2. s23d

4. Scattering

In addition to the frequency-selective effects considered
in previous subsections, there is also scattering that decreases
transmission at all frequencies.24,49 These extinction losses
are also proportional to density fluctuations42

Sln
Tdisorder

Torder
D

scattering
~ dr2. s24d

We observe that Eqs.s20d, s21d, s23d, ands24d—all yield
exponential dependence of the transmission on density fluc-
tuations

ln
Tsf,Hd

Tord
= − Bsfd

dr2sf,Hd
r2 , s25d

whereTord is the transmission in the completely ordered state
andBsfd is the frequency-dependent prefactor. Equations25d
assumes monotonous dependence of transmission on disor-
der. This is valid only for the relatively weak disorder, while
for the strong disorder this dependence can be nonmonoto-
nous in certain frequency ranges.19

V. COMPARISON TO EXPERIMENT

A. Magnetic-field dependent order-disorder transition

We explore magnetic field dependence of the in-plane dis-
order. We quantify disorder through the intensity of diffuse
rings in the Fourier transform imagessFig. 1d. As it is well-
known from the x-ray structure analysis,Idiff is directly re-
lated to the lattice constant fluctuations, which are closely
related to the density fluctuations, i.e.,Idiff ~dr2/r2. At Figs.
8 and 9 we plotIdiff in dependence of magnetic field. Here,
we setIdiff =1 in the completely disordered state, i.e., atH
=0. In the weak field the data can be well approximated by
the linear dependenceIdiff =1−bH as predicted by Eq.s11d
for the amorphous state. At higher field, the data are fairly
well approximated by the 1/H2 dependencessee also Fig. 9d,
as predicted by Eq.s9d for the polycrystalline state.60 The
crossover between these two regimes occurs atH
=50–60 Oe. This corresponds to the field when the Bragg
peaks in the Fourier transform image are replaced by diffuse
rings sFig. 1d and is suggestive of some kind of melting or
glass transition.50–54

B. mm-wave transmission through the regular crystal

To verify relation between transmission and area density
fluctuations, as predicted by Eq.s25d, we plot them together
versus magnetic fieldsFigs. 8 and 9d. Both IdiffsHd andTsHd
dependences collapse on one curve. This means thatTsHd is

indeed proportional toIdiff and to the density fluctuations, as
predicted by Eq.s25d. This is the central result of our paper.

The absolute value of the fluctuations in the completely
disordered state may be estimated as follows. Equations11d
predicts that atH=0, dr2/r2<1/ZS. Since ZS=rdzl, we
substituter=0.17 mm−2, dz=4.5 mm,l=6–15 mm, and find
ZS<5–11 depending on frequency. This corresponds to
dr2/r2=0.1–0.2.

Since our model accounts fairly well for the magnetic
field dependence of the mm-wave transmission, in what fol-
lows we only estimate the prefactorBsfd in Eq. s25d. To this
end we compare the ratio of transmittances in the completely
ordered and in the completely disordered states and for cer-

FIG. 8. sColor onlined Mm-wave transmission at 46.3 GHz for
the sample of Fig. 5sfilled circlesd and the intensity of diffuse
background sopen rhombsd Idiff estimated from the Fourier-
transform images of Fig. 1. Straight solid line shows linear depen-
dence as predicted by Eq.s11d for the glassy state; the thin curved
line shows 1/H2 dependence as predicted by Eq.s9d for the poly-
crystalline state. The vertical line delineates the strong field region
swhere Fourier transform imaqe of Fig. 1 shows sharp Bragg peaks,
indicating on crystalline stated, from the weak field regionshere
Fourier transform imaqe of Fig. 1 shows sharp diffuse rings indi-
cating on amorphous or glassy stated.

FIG. 9. sColor onlined A different representation of the high-
field data of Fig. 8. Filled circles show mm-wave transmission at
46.3 GHz for the sample of Fig. 5, open rhombs show the magni-
tude of area density fluctuationsIdiff . Straight solid line shows linear
dependence on 1/H2 as predicted by Eq.s9d.
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tain frequencies. In particular, for the antigap, we substitute
into Eq. s20d N=6, f =46 GHz, dr2/r2=0.2, a=1.37 mm,
x=0.73, A=0.5, n=1.4, rdn/dr=0.7 and find
ln Tdisorder/Torder=−24 dB. This should be compared to the
experimentally observed value of210–15 dBsFig. 4d. For
the midgap, we substitute into Eq.s21d, N=6, f =27 GHz,
dr2/r2=0.12, x=0.73, A=0.5, Y=1.9, r2d2Y/dr2=0.4 and
find ln Tdisorder/Torder=−2.5 dB. This should be compared to
the observed value of,−5 dB sFigs. 3 and 4d.

We conclude that our model qualitatively predicts field
dependence of the transmission through disordered photonic
crystal. To achieve better quantitative agreement, there is
need in a more advanced model of the kind suggested by
Ref. 55. This model should go further than Eqs.s12d, s13d,
s16d, ands17d which assume low concentration of scatterers
and Rayleigh scattering regime. The model should also ac-
count for the quadrupole interactions between magnetized
particles.

C. mm-wave transmission through the crystal with a
planar defect

The microwave transmission through the crystal with a
planar defect can be treated following the same lines. We
consider the photonic crystal split on two halves, as two
photonic crystals coupled through the Fabry-Perot resonator.
Transmission through this device is34

TFP=
eis2pfD/cdS12

2

eis4pfD/cd − S11
2 , s26d

whereD is the spacing between the mirrors andS12 andS11
are complex transmission and the reflection coefficients for
each of the halvessnote thatS11 andS12 are interrelated and
both are affected by disorderd. The resonant transmission
through such a crystal is possible provided the denominator
of Eq. s26d is small, i.e., 1−uS11u2!1. Even small disorder
strongly affects this condition, hence the transmission
through the defect drops dramatically in the disordered state
sFig. 6d.

VI. DISCUSSION AND CONCLUSIONS

Continuous variation of electromagnetic properties of our
samples when external magnetic field goes to zero closely
resembles the change of optical properties of liquids upon

approaching the critical point. Indeed, the optical transmis-
sion at the critical point is very small due to enhanced den-
sity fluctuations. According to Einstein’s theory, the density
fluctuations inversely depend on compressibility which goes
to zero at the critical point.47 The compressibility of our ar-
ray of magnetizable spheres,K−1,1/H2 fEq. s5dg, also di-
verges whenH→0. The density fluctuations, as it is shown
by Eq. s9d, increase accordingly.

Our experiments bear some resemblance to the studies of
electromagnetic wave propagation through ferrofluids.56,57

Indeed, in the absence of magnetic field the particles in fer-
rofluid are in the disordered state, while in the presence of
magnetic field they self-assemble into chains. This results in
field-induced anisotropy which strongly affects the polariza-
tion of the electromagnetic wave propagating through such a
media. However, in 3D, magnetic field does not induce the
long-range order in ferrofluids, hence the field-induced an-
isotropy is frequency independent. This is very different
from our present experiment where magnetic field drives the
particle array into crystalline state with a long-range order,
and this has a strong frequency-selective effect on the micro-
wave transmission. However, two-dimensional ferrofluid
layers58,59 bear strong resemblance to our system.

In summary, we demonstrate a metallodielectric photonic
crystal exhibiting stop band in the mm-wave range. Mm-
wave transmission through this crystal can be controlled by
external magnetic field through magnetic field-induced
order-disorder transition. We develop a physical model
which describes our experimental data fairly well. Our con-
cepts may be useful in interpretation of the effect of disorder
in photonic bandgap materials. Our results can be useful for
the fabrication of tunable planar photonic crystals, based on
surface waves, in particular surface plasmons. If the surface
is covered with the liquid layer containing movable magnetic
particles,sespecially when this layer represents a photonic
crystal with a tunable lattice constantd the propagation of the
surface waves can be effectively monitored.
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