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Band structures for solid rare gasessNe, Ard have been calculated using theGWapproximation. All electron
and pseudopotentialab initio calculations were performed using Gaussian orbital basis sets and the dependence
of particle-hole gaps and electron affinities on basis set and treatment of core electrons is investigated. All
electronGW calculations have a smaller particle-hole gap than pseudopotentialGW calculations by up to
0.2 eV. Quasiparticle electron and hole excitation energies, valence bandwidths and electron affinities are
generally in very good agreement with those derived from optical absorption and photoemission
measurements.
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I. INTRODUCTION

Optical spectra and band structures of rare gas solids
sRGSd have been studied, both experimentally and theoreti-
cally, for over 40 years. Their importance lies in the simplic-
ity of their crystal structure, the nearly atomic character of
valence states versus extended character of conduction states,
and the fact that they have strong many-body effects in their
optical spectra. They are an important testing ground for
electronic structure methods and as electronic structure
methods have developed, they have been applied to RGS.
Early electronic structure studies included applications of
density-functional theory,1–3 sDFTd, Hartree-Fock theory4–7

sHFTd, and self-interaction corrected DFT.8 Some of these
studies have included correlation effects in the band structure
via many-body perturbation theory.1,2,5,7,9

In this paper we present results ofab initio all electron
and pseudopotential many-body calculations of the band
structures of solid Ne and Ar using Gaussian orbital basis
sets. Band structures are calculated using theGW
approximation10–13 and the dependence of particle-hole gaps
and electron affinities on basis set and treatment of core elec-
trons is investigated. In another paper14 we will present re-
sults of calculations of optical spectra of these solids using a
Bethe-Salpeter formalism.9 Calculations were performed in a
Gaussian orbital basis using theEXCITON code,15 which is
interfaced to theCRYSTAL code.16 Single-particle wave func-
tions, energy eigenvalues, and matrix elements of the
exchange-correlation potential fromCRYSTAL are used byEX-

CITON to performGWand exciton calculations. The principal
parameters of the band structures of RGS, which have been
obtained experimentally, are the particle-hole band gapEG,
the valence bandwidthWV, and the electron affinityEA. The
particle-hole gap is the energy difference for particle and
hole excitations at the conduction-band minimum and
valence-band maximum. It has been obtained experimentally
from absorption spectrum17 and photoemission
measurements.18,19

The GW approximation is a many-body perturbation
theory and therefore contains corrections to a simpler, single-
particlesSPd Hamiltonian. It was originally applied to semi-
conductors using a DFT Kohn-Sham Hamiltonian, a plane-
wave basis set, and pseudopotentialsPPd approximation for

core electrons12 and was found to give excellent agreement
with experiment for relatively narrow band-gap materials,
such as Si, where DFT results in an indirect band gap that
underestimates the experimental value by,0.7 eV.

All electron GW calculations have been performed re-
cently for a variety of crystalline solids, including Si.20–24

Most all electronGW calculations of indirect band gaps of
Si20,22,23underestimate the experimental value of 1.17 eV by
0.2–0.3 eV. There has been some debate whether this is due
to incompleteness of the basis25 or explicit inclusion of the
core electrons sall electron rather than PP
approximationd.20–23,26However, one self-consistent all elec-
tron GWcalculation24 finds excellent agreement with the ex-
perimental band gap in Si. In the present work we compare
results for the RGS using both all electron and PP approxi-
mations for the core electrons.

The remainder of this paper is organized as follows: in
Sec. II theGW formalism used here is outlined, in Sec. III
results ofGW band-structure calculations are compared to
experiment and earlierGW calculations on Ne and Ar. Fi-
nally, conclusions are given in Sec. IV. The basis sets and
their convergence are presented in the Appendix.

II. GW APPROXIMATION

A. Quasiparticle energies

Conceptually, single electron and hole excitations are de-
scribed by

Hsrdcm
QPsrd +E Ssr,r8,Edcm

QPsr8ddr8 = emcm
QPsrd. s1d

The self-energy operator,Ssr ,r8 ,Ed, is non-Hermitian, and
therefore eigenvaluesem have real and imaginary parts, the
real part being the quasiparticle energyEm

QP and the imagi-
nary part being related to the quasiparticle lifetime. In this
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work the self-energy operator was computed within theGW
approximation,10 in which the self-energy operator is ob-
tained from convolution of the noninteracting single-particle
Green’s functionG0 and the screened Coulomb interactionW

Ssr,r8,Ed =
ı

2p
E e−ıv0+

G0sr,r8,E − vdWsr,r8,vddv. s2d

G0 is constructed from DFT single-particle orbitalscn
SP and

eigenvaluesEn
SP of the Kohn-Sham operator

G0sr,r8,vd = o
n

cn
SPsrdcn

*SPsr8d
v − En

SP+ ı0+signsEn
SP− EFd

. s3d

For light elements it has been found that quasiparticle ampli-
tudes are well approximated by DFT wave functions.12 Thus,
quasiparticle energies are simply given by

Emk
QP = Emk

SP + kcmk
SPuSsEmk

QPd − Vxcfnvgucmk
SPl. s4d

In this case only diagonal elements of the self-energy matrix
and exchange-correlation potentialVxcfnvg are required.
Vxcfnvg is the exchange-correlation potential of the valence
electron densitynv from the initial DFT calculation. Equa-
tion s4d is solved using a scheme given by Hybertsen and
Louie.12 For convenience later on we define the operatorDS
to beDSsr ,r8 ,Ed=Ssr ,r8 ,Ed−Vxcfnvg.

B. Self-energy matrix elements

The screened Coulomb interaction is computed from the
dielectric function and the bare Coulomb interaction

Wsr,r8,vd =E e−1sr,r9,vdvsr9,r8ddr9. s5d

Two-point functions in a crystal lattice, such as the screened
interaction, have the propertyfsr +R,r8+Rd= fsr ,r8d, where
R is a Bravais lattice vector, owing to translational symme-
try. They may be represented as a Fourier transform as,12

fsr,r8d = o
q,G,G8

eısq+Gd·r fGG8sqde−ısq+G8d·r8, s6d

whereG is a reciprocal lattice vector andq is a wave vector
in the first Brillouin zone. Fourier coefficients of the
screened potentialWGG8 are given by

WGG8sq,vd =
4pe2

V

1

uq + Guuq + G8u
«GG8

−1 sq,vd, s7d

whereV is the crystal volume and«GG8
−1 is the inverted, sym-

metrized RPA dielectric matrix. Numerical evaluation ofW
andS fEqs.s2d ands7dg requires calculation and inversion of
the dielectric matrix at many values ofv. Such schemes have
been carried out within PPsRef. 27d and all electron
calculations.26 Here, however, the screened interactionW is
approximated using a plasmon-pole model, and the integral
in Eq. s2d is evaluated analytically. This is applicable for
simple systems with onlys- and p-type orbitals occupied,
such as Ne and Ar. The main shortcoming of the plasmon-
pole model is that it is not suitable for accurate calculation of
self-energy matrix elements of high energy bands. However
this will not be a major concern here since we are mainly
interested in valence bands and the lowest conduction bands
for excitonic optical spectra calculations.14 We adopt a
plasmon-pole model based on the work of von der Linden
and Horsch,28 which uses the concept of dielectric band
structure29 to approximate the frequency dependence of the
dielectric matrix. The model assumes that all frequency de-
pendence is projected onto eigenvalues of the inverted di-
electric matrix,«ql

−1svd through the approximation,

«ql
−1svd = 1 +

zqlvql

2
S 1

v − vql + ı0+ −
1

v + vql − ı0+D . s8d

zql are pole strengths,vql are plasmon frequencies, and 0+ is
a positive infinitesimal. Eigenvalues of the inverted dielectric
matrix determine the pole strengths, and a plot of their dis-
persion with wave vector is known as the dielectric band
structure;29 the dielectric band structure for fcc Ar was re-
ported previously.30 Plasmon pole frequencies are calculated
using the Johnson sum rule.31 This leads to two contributions
to the self-energy: an energy independent, Hartree-Fock ex-
change term,

kmkuSxumkl = −
4pe2

V
o
q,G

o
n

occ ukmkue−ısq+Gd·runk + qlu2

uq + Gu2
, s9d

where the sum over bandsn extends only over occupied
states. The second, dynamic part

kmkuScsEdumkl =
4pe2

V
o

q,G,G8
o
n

occ kmkue−isq+Gd·runk + qlknk + queisq+G8d·r8umkl
uq + Guuq + G8u

3o
l

Vl,−Gs− qdVl,−G8
* s− qdFz−qlv−ql

2

1

E − Enk+q + v−qlsignsEF − EnkdG , s10d

contains correlation energies of electron or hole quasiparticles.32 Vl,−G are eigenvectors of the static, symmetrized dielectric
matrix «GG8sq,v=0d.
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C. Numerical details

The starting point in our approach is to generate noninter-
acting single-particle Green’s functions of anN-electron sys-
tem. We use density functional theory33 sDFTd within the
Perdew-Wang generalized gradient approximation34

sPWGGAd to obtain eigenvectors and eigenvalues of the
Kohn-Sham Hamiltonian. For this part of the calculation we
employ theab initio packageCRYSTAL,16 which uses the
linear-combination-of-atomic-orbitalssLCAOd approach to
expand the Bloch functions. In order to investigate conver-
gence criteria within the Gaussian orbital framework and ef-
fects of core electrons, we performed both all electron and
PP calculations for each solid. Basis sets with 52 and 53
functions per atom were developed for PP and all electron
calculations, respectively, for Ne. The PP and all electron
basis sets for Ar contained 56 and 66 functions, respectively.
Details of basis sets are given in the Appendix. Pseudopoten-
tials from Barthelatet al.35 were used in PP calculations.
Experimental lattice constants36 were used. Convergence of
results with respect to basis set was investigated by develop-
ing several smaller basis sets. Positions of valence-band
maximumsG15vd and conduction-band minimum statessG1cd,
valence bandwidths,Wv and band gaps,Eg, were evaluated
using several basis sets and results are given in Table I. The
most sensitive dependence on the choice of basis set is the
conduction-band mimimum position inGW calculations.
However the difference in that level for the largests53 AOd
and smallests44 AOd basis sets for Ne is only 0.04 eV. The
conduction-band minimum for Ar differs by 0.16 eV be-
tween the 66 AO and 61 AO basis sets, but the difference in
the fundamental gap is,0.1 eV for these two basis sets,
which suggests that the 66 AO basis set converges the band-
gap well. The valence bandwidth is well converged in allGW
and DFT calculations. The sum overq points in Eqs.s9d and
s10d as well as integration over the Brillouin zone in the
dielectric matrix calculation is performed using
Monkhorst-Pack37 special points. The singularity in Eqs.s9d
ands10d of 1/q2 type forq→0 andG=G8=0 was integrated
out using the auxiliary function technique of Gygi and

Baldereschi,38 while the singularity in Eq.s10d of 1/q type
was neglected since the final result is not affected if it is
neglected.21 Two special points in the irreducible Brillouin
zone were used for calculation of self-energy matrix ele-
ments and an 83838 grid in the full Brillouin zone was
used for the dielectric matrix calculation. Up to 400s8000d G
vectors are required to achieve convergence of the Hartree-
Fock part of the self-energyfEq. s9dg for PP sall electrond
basis sets for second row elements. In the summation overG
andG8 vectors in Eq.s10d, 65 vectors gave well converged
results for all solids.

D. Core-valence exchange-correlation decoupling

When matrix elements of theDS operator are evaluated,
contributions from core electrons to the valence electron self-
energy must be considered.11,12We compare results from two
alternative approximations for the energy independent part of
the DS operator, which were applied recently in all electron
GW calculations on Si.21 The first approximation is to com-
pute matrix elements of the DFT exchange-correlation poten-
tial using the valence electron density only and to restrict the
sum on occupied states in Eq.s9d to valence states only,

kmkuDSumkl = kmkuSc
valumkl + kmkuSx

valumkl

− kmkuVxcfnvgumkl. s11d

The second approximation is to replace matrix elements of
the valence-density-only exchange correlation potential,
Vxcfnvg, in Eq. s11d by

kmkuVxcfnc + nvgumkl − kmkuSx
coreumkl. s12d

The notationkmkuSx
coreumkl and kmkuSx

valumkl indicates that
the sum onn in Eq. s9d is limited to core or valence states
only. Matrix elements of the LDA exchange potential and
Hartree-Fock exchange operator for valence-band maximum
and conduction-band minimum states in silicon obtained by
Arnaud and Alouani21 using a projector augmented wave
sPAWd method and in this work usingCRYSTAL are compared

TABLE I. DFT andGWdata for different all electron basis sets. The row labeled AO indicates the number of atomic orbitalssAOd in the
basis set.

DFT seVd GW seVd

Neon

AO 44 48 53 44 48 53

G15v −13.16 −13.16 −13.18 −19.05 −19.05 −19.07

G1c −1.16 −1.41 −1.42 1.37 1.01 0.97

Wv 0.69 0.69 0.79 0.91 0.91 0.91

Eg 12.00 11.75 11.76 20.42 20.07 20.13

Argon

AO 57 61 66 57 61 66

G15v −10.12 −10.14 −10.27 −12.91 −12.92 −13.02

G1c −0.16 −0.64 −0.76 1.62 0.96 0.80

Wv 1.31 1.32 1.32 1.80 1.82 1.83

Eg 9.96 9.50 9.51 14.54 13.89 13.82
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in Table II. Remarkably good agreement was found between
LDA exchange potential matrix elements from either method
sdifferences in matrix elements are only 0.01 eV in three out
of four casesd and good agreement between Hartree-Fock
exchange matrix elements is also obtainedswithin 0.1 eVd.
The shortcoming of the latter approachfEq. s12dg is slow
convergence of the Hartree-Fock exchange operator for core
states,kmkuSx

coreumkl.

III. RESULTS AND DISCUSSION

One of the aims of this work is to compare results ofGW
calculations on simple atomic solids which treat core elec-
trons either by a PP or by explicitly including them in an all
electron calculation. Energies of states at valence-band
maxima and conduction-band minima are given in Table III,
as well as fundamental band gaps and valence bandwidths
within DFT andGWapproximations and experiment.GWall
electron quasiparticle energies obtained by the two core-
valence electron decoupling methods outlined in Eqs.s11d
ands12d are given in columns labeledEs1d

QP andEs2d
QP. DFT-PP

calculations underestimate experimental band gaps by 45%

for Ne and by 35% for Ar.GW-PP calculations show signifi-
cantly improved agreement with experimental data in each
solid; the band-gap error is reduced to 6% in Ne and 2% in
Ar; slight underestimation of band-gaps in RGS is similar to
that in semiconductors where a plasmon pole approximation
has been applied. For example, the band gap is underesti-
mated by 4% in Si.39 The reason for good agreement be-
tween quasiparticle energies,E1

QP and E2
QP, for Ne and Ar

sthis workd and Si21 is that the energy-independent part of the
DS operator is Sx

val−Vxcfnvg for E1
QP and it is Sx

core+val

−Vxcfnc+nvg for E2
QP; the difference in these two quantities is

of order 0.1 eV and results in nearly equal quasiparticle en-
ergies,E1

QP and E2
QP. There is good agreement between PP

and all electron DFT calculations for Ne; the bottom conduc-
tion sG15vd and top valence bandsG1cd energies and valence
bandwidthssWvd differ by less than 0.1 eV.G15v and G1c
quasiparticle energies from all electron calculations lie
slightly above PP values. The absolute value of theG1c
conduction-band energy, which determines the electron affin-
ity, has the correct sign in GW calculations and lies just
0.4 eV below the experimental value for the electron affinity,
whereas DFT calculations predict larger electron affinities of
the wrong sign.GW calculations result in valence band-

TABLE II. Matrix elements of the Hartree-Fock exchangesSxd and LDA exchange potentialsVxd operators for self-consistent DFT wave
functions at valence-band maxima and conduction-band minima for Si. The symbolsnc+nv, core, andnv denote whether core plus valence,
core-only, or valence-only states are included in the operators.

Vxfnc+nvg Sx
core Vxfnvg

G15c
a −11.75 −1.32 −10.18

G15c
b −11.74 −1.40 −10.19

G258v
a −13.55 −1.80 −11.45

G258v
b −13.45 −1.85 −11.46

aThis work.
bReference 21.

TABLE III. DFT eigenvalues andGWquasiparticle energies at valence-band maxima and conduction-band minima, valence bandwidths,
and energy gaps for Ne and Ar RGS. Calculations were performed using pseudopotentialsssecond and third columnsd and all electron basis
setssfourth to sixth columnsd. The fifth column,Es1d

QP gives all electronGWdata whenVxcfnvg is calculated explicitlyfEq. s11dg and the sixth
column gives quasiparticle energies whenVxcfnvg is calculated using Eq.s12d. The last column gives experimental data. Experimental data
is taken from Ref. 17 unless cited differently. Energies are given in electron voltsseVd.

PP All-electron

Exp.DFT EQP DFT Es1d
QP Es2d

QP

Neon

G15v −13.14 −19.37 −13.18 −19.07 −19.10 −20.21

G1c −1.35 0.86 −1.42 0.97 1.03 1.3

Wv 0.71 0.93 0.79 0.91 0.93 1.3a

Eg 11.99 20.23 11.76 20.04 20.13 21.51

Argon

G15v −9.74 −13.15 −10.27 −13.02 −13.00 −13.75

G1c −0.60 0.72 −0.76 0.80 0.81 0.4

Wv 1.35 1.73 1.32 1.83 1.85 1.7a

Eg 9.13 13.89 9.51 13.82 13.81 14.15

aReference 19.
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widths ,0.9 eV, which are smaller than the experimental
value of 1.3 eV,19 but are in agreement with the value of
0.99 eV obtained by Bacaliset al.2 The two methods used
for core-valence decouplingsTable III, columns 5 and 6d
result inG15v andG1c quasiparticle energies which differ by
only ,0.05 eV.

TheG15v valence-band maximum state in all electron DFT
calculations on Ar is lower than in PP calculations by
0.53 eV, whereas theG1c conduction-band minimum state is
lower by 0.16 eV. HoweverGW quasiparticle energies for
these states using either all electron or PP basis sets are in
good agreement, the maximum difference being only
0.13 eV. TheGW G1c conduction-band energy exceeds the
experimental electron affinity by,0.4 eV, whereas the DFT
G1c energy again predicts an electron affinity with the wrong
sign. GW valence bandwidths of 1.73sPPd and 1.83 eVsall
electrond agree very well with the experimental value of

1.7 eV.19 The two methods used for core-valence decoupling
also result in very similar quasiparticle energies for Ar.

GWband structures alongD andS symmetry lines for Ne
and Ar are shown in Fig. 1. Self-energy corrections toGW
band structures in both Ne and Ar are relatively independent
of wave vector, leading to ascissor-type opening of the band
gap on going from DFT toGW energy bands. DFT band
structures are not shown in Fig. 1 for clarity. Tables IV and V
give a direct comparison of all electron DFT energy eigen-
values andGW quasiparticle energies at high-symmetry
points for Ne and Ar and include results from Bacaliset al.2

and experiment. The band gap for Ne from a DFT calculation
that used the PWGGA functionalsthis workd is in good
agreement with the value reported by Bacaliset al.2 for Ne;
however, the band gap of 9.51 eV for Ar exceeds the value
of 8.09 eV from Bacaliset al.,2 significantly. The major dif-
ference between our calculation and that in Ref. 2 is use of

FIG. 1. GW band structure for Nesleft paneld
and Ar sright paneld.

TABLE IV. Energy eigenvalues in electron volts at high-symmetry points for solid Ne. The reference energy is the valence-band
maximum energy. Results in the second and third columns were obtained using an all electron basis set and valence-core electron decoupling
was done using the method outlined in Eq.s11d. Results in the fourth and fifth columns are from all electron projector augmented wave
sPAWd calculations.2 The last column presents experimental values.

This work PAWa

Exp.DFT GW DFT GW

G15v 0.0 0.0 0.0 0.0 0.0

G1c 11.76 20.04 11.40 16.56 21.51b

X4v8 −0.61 −0.82 −0.67 −0.88

X5v8 −0.21 −0.29 −0.23 −0.30

L2v8 −0.69 −0.91 −0.75 −0.99 −1.3c

L3v8 −0.07 −0.10 −0.07 −0.09

G25c8 −G1c 17.85 18.57 18.12 20.51

X1c−G1c 6.78 6.66 6.82 8.12

L1c−G1c 5.57 5.91 6.03 7.21

aReference 2.
bReference 17.
cReference 19.
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the PWGGA functional in this work, while the LDA was
used in the latter. Replacing the PWGGA by the LDA in our
calculation, the valence-band maximum shifts from
−10.27 eVssee Table IIId to −9.23 eV, while the conduction
bands were nearly unaffected, leading to lowering of the
band gap from 9.51 eV to 8.55 eV, which agrees reasonably
well with value of 8.09 eV obtained by Bacaliset al.2 When
DFT and quasiparticle energies for Ne atX andL points are
comparedsTable IVd, we find a widening of the valence
bands by approximately 30%. Our results for valence band
energies and widths are in very good agreement with those
reported earlier by Bacaliset al.2 A similar pattern of valence
band widening forGW valence bands in Ne is found in Ar,
and our results are again in good agreement with those of
Bacaliset al.2 The energy difference of the first and second
conduction bands at theG point sG25c8−G1cd in our GW cal-
culation is,2 eV smaller than in the projector augmented
wavesPAWd2 calculation for Ne, while the value of 8.21 eV
for Ar agrees well with the value of 8.44 eV obtained by
Bacaliset al.This energy difference is sensitive to complete-
ness of Gaussian orbital basis setsssee the Appendixd as the
G25c8 state has significant amplitude in octahedral interstitial
regions. Inclusion of interstitial functions in basis setssAp-
pendixd and optimization of the most diffuse functions re-
duced theG25c8−G1c energy difference significantly, while
basis sets with no interstitial functions result in a larger con-
duction band separation and fundamental gap.

IV. CONCLUSIONS

Band structures of solid Ne and Ar have been calculated
using theGW approximation. Calculations were performed
using experimental lattice constants. Gaussian orbital basis
sets were used throughout and core electrons were treated
either explicitly with all electron basis sets or by pseudopo-
tentials. Results of all electron and pseudopotential calcula-

tions are in good agreement, although the fundamental band
gap predicted by all electron calculations is smaller than that
in pseudopotential calculations by up to 0.2 eV. Positions of
conduction band minima for Ne and Ar inGW calculations
are in good agreement with experimental electron affinities
so that absolute positions of quasiparticle energy levels in Ne
and Ar are reliably predicted in theGWapproximation. Fun-
damental band gaps for Ne and Ar are in good agreement
with experimental gaps from photoemission and optical ab-
sorption data where shifts in the gap due to electron-hole
attraction have been subtracted.
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APPENDIX: BASIS SETS

The construction and use of an appropriate basis set con-
stitutes a critical factor inab initio calculations and is par-
ticularly important within a Gaussian orbital framework.
Apart from minimizing the total energy, which is necessary
for a good quality basis set, one has to ensure that the basis
set contains a sufficient number of basis functions to gener-
ate the virtual space. The need for a large number of conduc-
tion bands for a well-converged self-energy has been empha-
sized again recently.25 The number of conduction bands can
be increased by includingf- and g-type functions into the
basis set, but these are not yet available in theCRYSTAL code.
Alternatively, extra sets of orbitals were added at interstitial
sites of the crystal. This improves the flexibility of the basis

TABLE V. Energy eigenvalues in electron volts at high-symmetry points for solid Ar. The reference energy is the valence-band maximum
energy. Results in the second and third columns were obtained using an all electron basis set and valence-core electron decoupling was done
using the method outlined in Eq.s11d. Results in the fourth and fifth columns are from all electron PAW calculations.2 The last column
presents experimental values.

This work PAWa

Exp.DFT GW DFT GW

G15v 0.0 0.0 0.0 0.0 0.0

G1c 9.51 13.82 8.09 11.96 14.15b

X4v8 −1.19 −1.65 −1.28 −1.73

X5v8 −0.42 −0.50 −0.46 −0.63

L2v8 −1.31 −1.83 −1.41 −1.92 −1.7c

L3v8 −0.14 −0.20 −0.16 −0.20

G25c8 −G1 6.85 8.21 7.43 8.44

X1c−G1c 2.02 2.04 2.63 3.10

L1c−G1c 2.25 2.56 2.94 3.50

aReference 2.
bReference 17.
cReference 19.
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set through the unit cell and attempts to reproduce the highly
nodal structure of free-electron conduction band states.

Two techniques were used for constructing basis sets:
First, starting from two decay constants, 0.15 and 2.0, geo-
metrical expansion was used to generate more localized or-
bitals, interstitial functions were added and the most diffuse
functions were adjusted to minimize the total energy. The
second approach used valence exponents from conventional,
contracted quantum chemistry basis sets. Several Gaussian

functions are combined into a single basis function in a con-
tracted basis function by fixing their weights. Here the same
exponents as used in contracted basis functions were used,
but relative weights of different exponents were determined
during the self-consistent field DFT calculation. The basis set
used for PP Ne and ArsBasis set 1d and all electron Ne
calculations was of the first type, while all electron Ar cal-
culations were performed using a basis set of the second type
sBasis set 2d. These are shown in Table VI.
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