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We study the tails of the density of states of particles subject to a random magnetic field with nonzero mean
with the optimum fluctuation method. Closer to the centers of the Landau levels, the density of states is found
to be Gaussian, whereas the energy dependence is nonanalytic near the lower edge of the spectrum.
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The problem of a charged quantum particle constrained to
move in a two-dimensionals2Dd static random magnetic
field sRMFd has attracted considerable theoretical and ex-
perimental interest in the past few years. The model plays an
important role within the composite fermion picture of the
fractional quantum Hall effect.1 Furthermore, it is supposed
to describe states with spin-charge separation in high-Tc
superconductors.2 It is also relevant to the understanding of
the properties of a two-dimensional electron gass2DEGd in
lattice-mismatched InAs/ InGaAs heterostructures in mag-
netic fields.3 In the latter systems the electron gas is nonpla-
nar due to the lattice-mismatched epitaxial growth. When a
uniform magnetic fieldB is applied, the electrons experience
an effective inhomogeneous field perpendicular to the non-
planar 2DEG.3 In addition, a static RMF in 2D inversion
layers can be experimentally realized in several ways. One
possibility is to use a type-II superconductor with a disor-
dered Abrikosov flux lattice in an external magnetic field as
the substrate for the 2DEG.4 Alternatively, a magnetically
active substrate such as a demagnetized ferromagnet with
randomly oriented magnetic domains may be used.5 Re-
cently, static RMFs in 2DEGs were created by applying
strong magnetic fields parallel to GaAs Hall bars decorated
with randomly patterned magnetic films.6

The most fundamental quantity for understanding the
electonic properties of a random system is the density of
energy levels. The standard method to estimate the density of
statessDOSd is to calculate the imaginary part of the trace of
the single-particle Green’s function by diagrammatic tech-
niques. However, this approach fails in the tails of an energy
band where multiple scattering up to infinite order has to be
considered in order to take into account correctly the effect
of localization of electrons. Also, numerical approaches are
bound to fail in the asymptotic tails since here the eigenstates
are determined by rare statistical fluctuations of the random-
ness. Moreover, in the case of RMF, the perturbative ap-
proach is also fundamentally problematic since one has to
deal with the nondiagonal part of the Green’s function,
which is not gauge invariant. In addition, the calculation of
the Green’s function is plagued by infrared divergencies7–11

that are due to the long-range nature of the correlations of the
vector potential, even if the spatial correlations in the RMF
are short ranged. It has been suggested that these divergen-
cies are due to the nongauge invariance of the Green’s func-
tion and therefore unphysical,9 although, recently, a physical

interpretation has been proposed.11 In order to avoid such
difficulties, E. Altshuleret al.9 and Mirlin12 calculated the
DOS of a charge in a RMF using the semiclassical approxi-
mation. This is valid when the energyE is much larger than
the cyclotron energy"vc corresponding to the mean mag-
netic fieldB. Also, it should exceedG, the disorder induced
width of the Landau levelssLL d. A field theoretical approach
has been used to determine the DOS in a RMF with zero
mean value near the band edge.8 The tail of the DOS in a
system of randomly distributed flux tubes of fixed strength
was considered.13 There are also several numerical studies of
the spectrum with different mean and correlation lengths.14

Recently, mathematically rigorous results have been
obtained.15,16 In particular,15 upper and lower bounds for the
logarithm of the integrated DOS nearE=0 of some simple
Gaussian RMFs with zero mean values have been estimated.
For RMFs with nonzero mean values, the limit whenE is
smaller than"vc and, more generally, the tails of the lower
Landau bands have not been considered analytically so far.

It is our purpose to provide nonperturbative results for the
DOS in the tails of the lower Landau bands, as broadened by
a static RMF. We show that the optimum fluctuation method
sOFMd,17,18 being nonperturbative and free from divergen-
cies, can be extended to treat this RMF problem. We con-
sider noninteracting fermions in a RMF with nonzero mean,
B+bsr d, with bsr d Gaussian distributed andkbsr dl=0. The
Hamiltonian

H =
1

2me
Sp −

e

c
AD2

s1d

has a sharp lower edge of the energy spectrum atE=0. We
concentrate on the energy region near the first Landau band.
Since the OFM is especially designed to grasp rare fluctua-
tions, it allows us to calculate the energy andB dependence
of the leading terms of the DOS. The correlation function of
the Gaussian RMF is assumed as

kbsr dbsr 8dl = bsur − r 8ud s2d

with bsur −r 8ud→0 as ur −r 8u→`. The random field is er-
godic, i.e., the correlations between different regions decay
to zero with increasing distance. We also assume thatbsrd is
characterized by a single scalerc, the correlation length of
the RMF. The probability density for a specific realization
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bsr d with correlators2d is Pfbsr dg=N exph−Sfbsr dgj, where
N is the normalization constant andSfbsr dg, the action of the
RMF, is

Sfbsr dg =
1

2
E bsr db−1sr − r 8dbsr 8ddrdr 8. s3d

The kernelb−1sr −r 8d has the property

E dr 8b−1sr − r 8dbsr 8 − r 9d = dsr − r 9d. s4d

For a d-correlated RMF, the action reduces toSfbsr dg
=1/b0eb2sr ddr . The configurationally averaged DOS is

rsEd =E Dbsr dPfbsr dgrhE;fbsr dgj. s5d

In the low energy tail of the first Landau band states are
expected to be localized near strong, exponentially rare fluc-
tuations ofbsr d. Therefore, the average in Eq.s5d over all
configurations, yielding states at energyE is dominated by
the most probable realization ofbsr d. The functional integral
in Eq. s5d can be evaluated using the saddle point approxi-
mation. Furthermore, only fluctuations in which the lowest
level E0 is equal toE have to be taken into account since a
configuration in whichE corresponds to an excited level is
less probable. Within logarithmic accuracy,17–22

− ln rsEd , min
bsr d

Sfbsr dguE0fbsr dg=E. s6d

Before we present a rigorous treatment, let us first give an
intuitive estimate for the DOS closer to the band center,
DE!"vc, where E="vc/2−DE. For short-range RMF,rc
! lB, with lB=s"c/eBd1/2 the magnetic length related toB, an
optimal configuration near the band center is likely to be a
circular magnetic well with depthDb!B. The corresponding
action isS<pDb2R2/b0, whereR is the radius of the well.
The ground-state energyE0 of a charged particle in a circular
magnetic well of radiusR, where the magnetic field is dif-
ferent from the constant magnetic field B, is known.23 The
radii Ropt of the optimal wells with lowest actionSminsDEd,
are proportional tolB and independent onDE. Moreover, the
depthsDbopt!B of these wells are proportional toDE and do
not depend onB,

Ropt , 1.6 lB ~ B−1/2, DE ~ Dbopt. s7d

The action of the optimum fluctuation withE0=E is then

SsDEd ,
Ropt

2 Dbopt
2

b0
,

lB
2DE2

b0
. s8d

From Eqs.s6d and s8d we obtain

rsEd , exps− DE2/Gd,0
2 d, s9d

with Gd,0=a"eb0
1/2/ smeclBd, wherea,1.5·10−2 is a numeri-

cal factor. The variance of the Gaussian is thus proportional
to B. Our simple arguments are expected to be valid when
the energetic distance from the center of the lowest LL fulfils
Gd,0!DE!"vc. A completely analogous argument holds for
the right tail of the first LL, near the band center. In this case

the optimal fluctuations are magnetic circular humps with
heightDb!B and radiusR~ lB and the leading exponential
term of the DOS in the right tail shows the same dependence
on the energy shift andB as s9d.

With long-range RMFs, the analysis of the DOS near the
band center is simpler: The localization radius of a typical
state of the order oflB is much shorter than the radius of an
optimal potential well. The correlation lengthrc, and the en-
ergy E of such a state is, in leading order, equal to the first
LL energy in the total fieldB−Db. The energy shift is thus
proportional toDb, and the RMF acts exactly like a random
electrostatic potential. Since for long-range RMFs the radius
of the well is the largest length scale, the probability distri-
bution s3d can be approximated as

PfDbg , expf− Db2/bs0dg. s10d

Hence,

− ln rsEd ,
DE2

G0
2 , s11d

with G0="ebs0d1/2/mec, and the exponent of the DOS does
not depend onB, as long as the inequalitylB! rc is fulfilled.
Equation s11d is valid if G0!DE!"vc. Similar consider-
ations are expected to yield a Gaussian DOS also in the tails
of higher Landau bands, in the regionsGn! uE−sn
+1/2d"vcu!"vc, whereGn is the width of thenth LL. In
these regions, the DOS resembles the one of independent
charged particles in a Gaussian electrostatic potential.22,24

Due to the sharp band edge atE=0 the DOS is expected
to approach zero more rapidly for energiesE!"vc. For
short-range RMF, states with arbitrarily small energies can
be obtained when they are localized in regions of areaA,
inside whichb<0 and outside whichb<B. The action of
these fluctuations is

S, AB2/b0, s12d

and the ground-state energy scales like the one in a potential
well, E,"2/2meA. Thus, 1/A~E and the DOS becomes a
nonanalytic function ofE,

rsEd , exps− K0B
2/b0Ed, s13d

with K0,p"2/2me. The above picture is analogous to the
argument used by Lifshitz to estimate the tail of the DOS of
a particle subject to a Poissonian random potential generated
by short-range, repulsive impurities in zero magnetic
field.18,20,25The argument holds for a Poissonian distribution
of magnetic fluxes, too.13

Intuitively, for large correlation lengthrcù lB, there is a
right neighborhood ofE=0 such that, each corresponding
optimum well has a radius much larger than the correlation
length R@ rc. Equivalently, E!"2/ smerc

2d. The larger the
correlation length, the closer to the band edge the energies of
the optimal states must be in order to fulfil this inequality.
Defining
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b0 ;E bsjdd2j , bs0drc
2, s14d

the action ofbsr d is still given by Eq.s12d and the DOS by
Eq. s13d. Hence, forE→0, the DOS becomes independent of
the correlation lengthrc.

In order to obtain exact expressions for the DOS, we now
derive the variational equations which determine the shape
of the optimal fluctuations and wave functions.19,21 Accord-
ing to Eq.s6d, we must search for the maximum of the prob-
ability distribution Eq.s3d under the constraintE0=E. For
the weaker constraint

dethHfbsr dg − Ej = 0, s15d

or, equivalently,En=E for some energy levelEn, the opti-

mum fluctuationb̄sr d of the RMF must satisfy

E b−1ss− s8db̄ss8dds8 + mUddethHfbsr dg − Ej
dbssd

U
b=b̄

= 0,

s16d

wherem is a Lagrange multiplier. Using

dethHfbsr d − Ej = expstr lnhHfbsr dg − Ejd, s17d

and assuming that the ground-state energyE0fb̄sr dg is equal
to E, we find

E b−1ss − s8db̄ss8dds8 + m8sEdUdE0fbsr dg
dbssd

U
b=b̄

= 0 s18d

with m8sEd;mPn=1
` sEn−Ed. In the Coulomb gauge, we can

write the Hamiltonian as a function ofbsr d and calculate
dE0/dbssd. The variational Eq.s18d yields

b̄ssd = − m8sEd
e

c
E d2s8bss− s8d E d2r j 0 ·aFsr − s8d,

s19d

where

aFsr − sd =
1

2p

z̃3 sr − sd
ur − su2

s20d

and j 0=C0
*PC0/2me is the ground-state current,P is the

kinetic momentum of the particle. Equations19d, together
with

1

2me
P2C0 = EC0 s21d

determines the optimal magnetic fieldbsr d and ground-state
wave-functionC0sr d.

We have solved Eqs.s19d ands21d iteratively both in the
caserc! lB and in the caserc@ lB for RMFs with Gaussian
correlators

bsr − r 8d =
b8

2prc
2expS−

ur − r 8u2

2rc
2 D . s22d

Since the RMF distribution function is rotationally invariant,
circular symmetry is assumed.

For short-range RMFs the result for the DOSrsEd is
shown in Fig. 1 as a function of energyE, where SsEd
=−ln rsEd. At the band edge we find indeed that the action of
the optimum fluctuation shows the characteristic behavior as
a function of the energyE, S,E−1 while closer to the band
center it changes toS~DE2. This reflects the physical origins
of the corresponding typical wave functions, and is consis-
tent with the qualitative arguments, given above.

Figure 2 shows the optimal fluctuations near the band
center and the band edge for short-range fluctuations. Near
the center, the typical fluctuations are shallow wells, com-
pared toB, with relatively steep wallssthe change inb is
about 0.3Db on length scales oflB, whereDb is the depth of
the welld. In the case of long-range fields, near the band
center, the radius of the ground state is much smaller than the
size of the well.

In experiments some kind of random electrostatic poten-
tial is always present. Let us assume that the RMF and the
random potentialsRPd are independent random quantities
and that they are both long ranged. For a weak RP,Ws0d1/2

!"ebs0d1/2/ smcd swhere Wsr d=kVs0dVsr dld, the RMF is
dominant in the tail at positive energies except for a narrow
region close toE=0. At E!"vc the action of an optimal

FIG. 1. Behavior of the effective actionSsEd=−ln rsEd in a
short-range RMF,rc=0.1lB. Energies are in units of"vc and G0

,10−4"vc. Left and right insets: energy dependence ofS near the
band edge and near the band center, respectively.

FIG. 2. Optimum magnetic wellsbsrd ssolid lined and the cor-
responding ground-state wave functionsCsrd sdashed lined for cor-
relation lengthrc=0.1lB. Left: closer to the center of the band, en-
ergy shift DE=3.6·10−2"vc. Right: near the band edge; ground-
state energyE=1.8·10−2"vc. r is in units of lB and bsrd in units
of B.
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well of the RP isSRP,sE−"vc/2d2/2Ws0d,"2vc
2/4Ws0d,

whereas SRMF,"2vc
2/ s2mErc

2dvc
2d, where dvc=ebs0d1/2/

mc and rc is the correlation length of the RMF. The RMF
will dominate on the RP ifSRMF,SRP; therefore, the expo-
nent of the DOS will be proportional to 1/E if 1 !R2/ rc

2

!"2dvc
2/Ws0d, with R2,"2/mE. Hence, the results pre-

sented in this paper break down at energyEc,Ws0d /
mrc

2dvc
2. For large, negative energiesE→−`, the RMF be-

comes irrelevant and the DOS is purely classical, −lnrsEd
=E2/2Ws0d.

In conclusion, we have determined the density of states of
a charged particle in a spatially correlated, randomly varying
magnetic field with nonvanishing average. The latter pro-
vides Landau levels which are broadened into Landau bands
by the RMF, well separated for sufficiently small disorder. In
the regions of the tails of the Landau bands which are acces-
sible neither by perturbative multiple scattering expansions
nor by numerical calculations, we have found that the aver-
age DOS is determined by thetypical configuration of the
magnetic field. This is reflected in the energy dependence of
the effective actionSsEd and the fact that the latter is propor-
tional to the logarithm of the DOSrsEd, which is found to be
asymptotically singular at the lower edge of the energy spec-

trum and becomes quadratic as a function of the energy
closer toward the center of the band. In order to determine
the preexponential factor of the DOS, one integrates over the
fluctuations of the magnetic field around the saddle point
configuration satisfying Eq.s19d.21,22,26As a final remark, we
want to discuss briefly the relevance of our work to the CF
description of the fractional quantum Hall effect. Within this
model, electrons are replaced by fermions experiencing a
fictitious magnetic field proportional to the particle density in
addition to the external one. In the presence of a random
impurity potential, at the mean field level, the particle den-
sity is spatially inhomogeneous due to screening and the fic-
titious magnetic field has thus a spatially stochastic
component.1 However, since the random impurity potential
and the RMF are not independent random quantities, our
theory cannot be straightforwardly applied to the CF model.
This issue is subject to future work and will be published
elsewhere.
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