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Tails of the density of states in a random magnetic field
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We study the tails of the density of states of particles subject to a random magnetic field with nonzero mean
with the optimum fluctuation method. Closer to the centers of the Landau levels, the density of states is found
to be Gaussian, whereas the energy dependence is nonanalytic near the lower edge of the spectrum.
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The problem of a charged quantum particle constrained tinterpretation has been proposédn order to avoid such
move in a two-dimensional2D) static random magnetic difficulties, E. Altshuleret al® and Mirlinl2 calculated the
field (RMF) has attracted considerable theoretical and exDOS of a charge in a RMF using the semiclassical approxi-
perimental interest in the past few years. The model plays amation. This is valid when the ener@yis much larger than
important role within the composite fermion picture of the the cyclotron energyiw, corresponding to the mean mag-
fractional quantum Hall effectFurthermore, it is supposed netic field B. Also, it should exceed, the disorder induced
to describe states with spin-charge separation in figh- width of the Landau leveléL). A field theoretical approach
superconductor&lt is also relevant to the understanding of has been used to determine the DOS in a RMF with zero
the properties of a two-dimensional electron §2BEG) in mean value near the band edgehe tail of the DOS in a
lattice-mismatched InAs/InGaAs heterostructures in maggy qiom of randomly distributed flux tubes of fixed strength
netic fields? In the latter systems the electron gas is nonpla—WaS consideredf There are also several numerical studies of

nar due to the lattice-mismatched epitaxial growth. When 3 L )
, N . . X he spectrum with different mean and correlation lendths.
uniform magnetic field is applied, the electrons experience Receﬁtly mathematically rigorous results have ébeen

an effective inhomogeneous field perpendicular to the non ; .
g perp obtained>® In particulart® upper and lower bounds for the

planar 2DEG In addition, a static RMF in 2D inversion _ . .
layers can be experimentally realized in several ways. Oni29arithm of the integrated DOS ne&r=0 of some simple

possibility is to use a type-il superconductor with a disor_Gaussian RMFs with zero mean values have been estimated.

dered Abrikosov flux lattice in an external magnetic field asFor RMFs with nonzero mean values, the limit whers
the substrate for the 2DE6Alternatively, a magnetically Smaller thamiwg and, more generally, the tails of the lower
active substrate such as a demagnetized ferromagnet witfdndau bands have not been considered analytically so far.
randomly oriented magnetic domains may be usdE- It is our purpose to provide nonperturbative results for the
cently, static RMFs in 2DEGs were created by applyingDOS in the tails of the lower Landau bands, as broadened by
strong magnetic fields parallel to GaAs Hall bars decorateé@ static RMF. We show that the optimum fluctuation method
with randomly patterned magnetic filrfis. (OFM),"18 being nonperturbative and free from divergen-
The most fundamental quantity for understanding thecies, can be extended to treat this RMF problem. We con-
electonic properties of a random system is the density osider noninteracting fermions in a RMF with nonzero mean,
energy levels. The standard method to estimate the density &+b(r), with b(r) Gaussian distributed ang(r))=0. The
stategDOS) is to calculate the imaginary part of the trace of Hamiltonian
the single-particle Green’s function by diagrammatic tech- )
niques. However, this approach fails in the tails of an energy H= i(p _ EA) (1)
band where multiple scattering up to infinite order has to be 2mg c

considered in order to take into account correctly the effec

of localization of electrons. Also, numerical approaches arebas a sharp lower edge of the energy spectrus=l. We

bound to fail in the asymptotic tails since here the eigenstate anentrate on the energy region near the first Landau band.

are determined by rare statistical fluctuations of the random= Ince _the OFM is especially designed to grasp rare fluctua-
tions, it allows us to calculate the energy @ddlependence

ness. Moreover, in the case of RMF, the perturbative ap- ; . .
proach is also fundamentally problematic since one has t f the Iead_mg terms of the DOS. The correlation function of
e Gaussian RMF is assumed as

deal with the nondiagonal part of the Green’s function,
which is not gauge invariant. In addition, the calculation of (b(r)b(r")y=B(r =r’]) 2)

the Green’s function is plagued by infrared divergencigs

that are due to the long-range nature of the correlations of th@ith B(|r—r’[)—0 as|r-r’| . The random field is er-
vector potential, even if the spatial correlations in the RMFgodic, i.e., the correlations between different regions decay
are short ranged. It has been suggested that these divergda-zero with increasing distance. We also assume iatis

cies are due to the nongauge invariance of the Green'’s funcharacterized by a single scalg the correlation length of
tion and therefore unphysicklthough, recently, a physical the RMF. The probability density for a specific realization
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b(r) with correlator(2) is P[b(r)]=N exp{-9b(r)]}, where
Nis the normalization constant asth(r)], the action of the
RMF, is

9b(r)]= % J b(r)BX(r = r")b(r")drdr’. (3)
The kernelg™(r —r’) has the property
fdr’,B‘l(r =r)Br" =r") =8 —r"). (4)

For a &-correlated RMF, the action reduces ®b(r)]
=1/, b?(r)dr. The configurationally averaged DOS is

p(E) =f Db(r)P[b(r)]p{E;[b(r)]}. 5

In the low energy tail of the first Landau band states ar
expected to be localized near strong, exponentially rare fluc-

tuations ofb(r). Therefore, the average in E¢p) over all
configurations, yielding states at energyis dominated by
the most probable realization bfr). The functional integral
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the optimal fluctuations are magnetic circular humps with
height Ab<B and radiusR« Iz and the leading exponential
term of the DOS in the right tail shows the same dependence
on the energy shift anB as(9).

With long-range RMFs, the analysis of the DOS near the
band center is simpler: The localization radius of a typical
state of the order difg is much shorter than the radius of an
optimal potential well. The correlation length, and the en-
ergy E of such a state is, in leading order, equal to the first
LL energy in the total field—Ab. The energy shift is thus
proportional toAb, and the RMF acts exactly like a random
electrostatic potential. Since for long-range RMFs the radius
of the well is the largest length scale, the probability distri-
bution (3) can be approximated as

P[Ab] ~ exf— Ab%/B(0)]. (10)

ence,

2

A
-Inp(E) ~ —-,
p(E) 2

11

in Eq. (5) can be evaluated using the saddle point approxi-

mation. Furthermore, only fluctuations in which the lowestwith I'y=feB(0)*2/ms, and the exponent of the DOS does
level Eq is equal toE have to be taken into account since anot depend oiB, as long as the inequalitg<r. is fulfilled.
configuration in whichE corresponds to an excited level is Equation(11) is valid if I'y<<AE<fiw.. Similar consider-

less probable. Within logarithmic accurady??

=In p(E) ~ TQE?S{b(T)HEO[b(r)]:E- (6)

ations are expected to yield a Gaussian DOS also in the tails
of higher Landau bands, in the regionE,<|E-(n
+1/2hw <fiw., wherel', is the width of thenth LL. In
these regions, the DOS resembles the one of independent

Before we present a rigorous treatment, let us first give allpargeq particles in a Gaussian electrostatic poteRiAl.

intuitive estimate for the DOS closer to the band center,

AE<hw;, where E=fiw./2-AE. For short-range RMF;,
<lg, with Ig=(%c/eB)*? the magnetic length related By an

Due to the sharp band edgeE&t0 the DOS is expected
to approach zero more rapidly for energiEs<7iw.. For
short-range RMF, states with arbitrarily small energies can

optimal configuration near the band center is likely to be g,e gptained when they are localized in regions of afea

circular magnetic well with depthb<B. The corresponding
action isS= wAb?R?/ B,, whereR is the radius of the well.
The ground-state enerdyy of a charged particle in a circular
magnetic well of radiusk, where the magnetic field is dif-
ferent from the constant magnetic field B, is knowWrnhe
radii Ry, of the optimal wells with lowest actiofy,(AE),
are proportional tdg and independent oAE. Moreover, the
depthsAb,,< B of these wells are proportional toE and do
not depend orB,

Ropt~ 1.61g % B2, AE o Aby,. (7)

The action of the optimum fluctuation with,=E is then

Ro,AD  1BAE?
AE) ~ ~ . 8
SAE) Bo Bo ®
From Egs.(6) and (8) we obtain
p(E) ~ exp(= AEYTS), (9)

with T 5 o= afieBy?/ (mclg), wherea~1.5- 102 is a numeri-

inside whichb~0 and outside whictb~B. The action of
these fluctuations is
S~ AB?B,, (12

and the ground-state energy scales like the one in a potential
well, E~#%2/2m.A. Thus, 1/A=E and the DOS becomes a
nonanalytic function ok,

p(E) ~ exp(- KoBBoE), (13)
with Ko~ 7:2/2m,. The above picture is analogous to the
argument used by Lifshitz to estimate the tail of the DOS of
a particle subject to a Poissonian random potential generated
by short-range, repulsive impurities in zero magnetic
field.*820.25The argument holds for a Poissonian distribution
of magnetic fluxes, to&®

Intuitively, for large correlation length.=Ig, there is a
right neighborhood ofE=0 such that, each corresponding

cal factor. The variance of the Gaussian is thus proportiona®ptimum well has a radius much larger than the correlation
to B. Our simple arguments are expected to be valid whefength R>r.. Equivalently, E<#2/(mgr?). The larger the

the energetic distance from the center of the lowest LL fulfilscorrelation length, the closer to the band edge the energies of
I's0<AE<fo.. A completely analogous argument holds for the optimal states must be in order to fulfil this inequality.
the right tail of the first LL, near the band center. In this caseDefining
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Bo= f B&A?E~ BO)rZ, (14)

the action ofb(r) is still given by Eq.(12) and the DOS by
Eq.(13). Hence, folE— 0, the DOS becomes independent of
the correlation length...

In order to obtain exact expressions for the DOS, we now Ly
derive the variational equations which determine the shape

of the optimal fluctuations and wave functiot{gt Accord-
ing to Eq.(6), we must search for the maximum of the prob-
ability distribution Eq.(3) under the constrainE,=E. For
the weaker constraint

de{H[b(r)]-E}=0, (15

or, equivalently,E,=E for some energy levek,, the opti-

mum fluctuationb(r) of the RMF must satisfy

sdefH[bO)I-E}  _
a(s) bb

f B (s=s)b(s)ds' +
(16)

whereu is a Lagrange multiplier. Using
det{H[b(r) — E} = exptr In{H[b(r)] - E}), (17

and assuming that the ground-state endig{\l;(r)] is equal

to E, we find

SE([b(r)]
ob(s)

J B Ys-5)b(s')ds' + ' (E) =0 (18

b=b

with u'(E) = ulIl_,(E,—E). In the Coulomb gauge, we can
write the Hamiltonian as a function di(r) and calculate
SOEy/ 8b(s). The variational Eq(18) yields

b(S)=—,u’(E)§fdzs’ﬁ(s—s’)fdzrjo-aq,(r -9g'),
(19
where
_172X(r-y9
agp(r-9)= 2m -2 (20)

and jo=WI1¥,/2m, is the ground-state current] is the
kinetic momentum of the particle. Equatidt9), together
with

1
—I1?¥,=EV¥, (21
2m

determines the optimal magnetic figdr) and ground-state
wave-functionWy(r).

We have solved Eq$19) and(21) iteratively both in the
caser.<lg and in the case.> |y for RMFs with Gaussian

correlators
,3’ % |r _ r/|2>
r—r')y=_—exp - . 22
A ) 2712 2r? (22

Since the RMF distribution function is rotationally invariant,
circular symmetry is assumed.

PHYSICAL REVIEW B1, 193302(20095

2.0

——
49 (o 5~

§ 2.0
\*t 15 20 25 3.0
07105 ,\ 5 1026t 1.60

0.0 . . M P
0.0 01 0.2 0.3 0.4 0.5

FIG. 1. Behavior of the effective actioB(E)=-Inp(E) in a
short-range RMFy.=0.1g. Energies are in units ofw. and I’y
~10%w,. Left and right insets: energy dependenceSafear the
band edge and near the band center, respectively.

For short-range RMFs the result for the DQEE) is
shown in Fig. 1 as a function of enerdy, where S[E)
=-In p(E). At the band edge we find indeed that the action of
the optimum fluctuation shows the characteristic behavior as
a function of the energf, S~ E* while closer to the band
center it changes t8= AE2. This reflects the physical origins
of the corresponding typical wave functions, and is consis-
tent with the qualitative arguments, given above.

Figure 2 shows the optimal fluctuations near the band
center and the band edge for short-range fluctuations. Near
the center, the typical fluctuations are shallow wells, com-
pared toB, with relatively steep wall§the change irb is
about 0.3Ab on length scales df, whereAb is the depth of
the wel). In the case of long-range fields, near the band
center, the radius of the ground state is much smaller than the
size of the well.

In experiments some kind of random electrostatic poten-
tial is always present. Let us assume that the RMF and the
random potential(RP) are independent random quantities
and that they are both long ranged. For a weak \R@)*?
<heB(0)2/(mo (where W(r)=(V(0)V(r))), the RMF is
dominant in the tail at positive energies except for a narrow
region close toE=0. At E<%w, the action of an optimal

0.00 0.0
b(r) b(r)
-0.07 1-05
-0.14 -1.0

15 20

FIG. 2. Optimum magnetic wellb(r) (solid line) and the cor-
responding ground-state wave functiokigr) (dashed lingfor cor-
relation lengthr.=0.1lg. Left: closer to the center of the band, en-
ergy shift AE=3.6-10%w,. Right: near the band edge; ground-
state energyE=1.8-10%w,. r is in units of Iz and b(r) in units
of B.

193302-3



BRIEF REPORTS PHYSICAL REVIEW F1, 193302(2009

well of the RP isSgp~ (E-fiw./2)?/2W(0) ~ #2w?/4W(0),  trum and becomes quadratic as a function of the energy
whereas Sgye~ 2wl (2MERSw?), where do.=eB(0)Y?/  closer toward the center of the band. In order to determine
mc andr. is the correlation length of the RMF. The RMF the preexponential factor of the DOS, one integrates over the
will dominate on the RP ifSgyr < Szp therefore, the expo-  fluctuations of the magnetic field around the saddle point
nent of the DOS will be proportional to E/if 1<R*/r;  configuration satisfying Eq19).21222°As a final remark, we
<#i%6w¢/W(0), with RP~h?/mE Hence, the results pre- want to discuss briefly the relevance of our work to the CF
sented in this paper break down at enerBy~W(O0)/  gescription of the fractional quantum Hall effect. Within this
mrcdwe. For large, negative energiés— -, the RMF be-  mnodel, electrons are replaced by fermions experiencing a
comes irrelevant and the DOS is purely classical, ptB) fictitious magnetic field proportional to the particle density in
=E/2W(0). ] . . addition to the external one. In the presence of a random
In conclusion, we have determined the density of states ofnyrity potential, at the mean field level, the particle den-

a charged particle in a spatially correlated, randomly varyingsjyy is spatially inhomogeneous due to screening and the fic-
magnetic field with nonvanishing average. The latter proc-ﬂ%

. _ . ious magnetic field has thus a spatially stochastic
vides Landau levels which are broe_ld_ened Into La_ndau ban mponent. However, since the random impurity potential
by the RMF, well separated for sufficiently small disorder. In

h . f the tails of th dau bands which and the RMF are not independent random quantities, our
the regions of the tails of the Landau bands which are acce?ﬁeory cannot be straightforwardly applied to the CF model.

sible neither by perturbative multiple scattering expansionsyyis jssye is subject to future work and will be published
nor by numerical calculations, we have found that the averggayhere

age DOS is determined by thgpical configuration of the

magnetic field. This is reflected in the energy dependence of The authors acknowledge useful discussions with M.
the effective actiorS(E) and the fact that the latter is propor- Raikh, A. Struck, and E. Mariani. This work has been sup-
tional to the logarithm of the DOS(E), which is found to be  ported by the EU via the RTN HPRN-CT2000-00144 and by
asymptotically singular at the lower edge of the energy specthe DFG and the DFG-Schwerpunkt “Quanten-Hall-Effekt.”
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