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We report photonic crystals with two different rod atoms in the unit cell, the relative configuration of which
is carefully regulated to optimize the photonic band structuresstwo-dimensional binary-compound photonic
crystalsd. The photonic band gaps between any bands are found to be tuned by introducing the second atom at
an appropriate position in the unit cell. In particular, by elaborately searching for the optimal position of the
second atom, we can determine the atomic configurations that maximize the photonic band gaps.
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Periodic dielectric structures, which we call photonic
crystalssPCsd, have attracted much interest in recent years.1,2

The principal feature exhibited by the PCs is the creation of
photonic bandgaps, i.e., the frequency regions in which all
optical modes are forbidden to exist. Since most applications
of the PCs rely on the existence of photonic band gaps, it is
desirable that we could design the PC structures to create the
photonic band gaps with a desired width at a desired fre-
quency position. The large photonic band gaps will increase
the tolerance for designing PC optical devices and also aug-
ment the anomalous dispersions near the photonic band
edges.3 The creation of large photonic band gaps therefore
has been one of the continued primary interests in theoretical
and experimental investigations. A variety of theoretical ap-
proaches have been carried out for searching for large pho-
tonic band gaps.4–12As a natural consequence of the consid-
eration on the gap formation mechanisms, the approach
conducted first was to find the optimums for the crystal lat-
tice types, the filling factor of atoms in the unit cell, and the
dielectric-constant contrast between atoms and background.4

The introduction of anisotropy into the PCs, such as using
the anisotropic dielectric constants5 and the dielectric con-
stants that are different between two light-polarizations,6 has
also shown to be useful to tailor the photonic band gaps. The
third attempt was to use the double-layered atoms to create
photonic band gaps.7,8 The symmetry reduction of the PC
structures was also found to be efficient to tune the photonic
band gaps, because it lifted the degeneracy of highly sym-
metric points in the band structures and as a result enlarged
the photonic band gaps in some cases.9–12 In this attempt, the
symmetry reduction was carried out either by introducing
another atom at the center of the unit cell9–11 or by twisting
the atoms.12

This paper reports binary-compound photonic crystals
that contain two different atoms in the unit cell. In this PC,
the relative configurations of two atoms in the unit cell are
carefully adjusted so that the photonic band structures be
optimized. This is obviously an analog of the binary-
compound semiconductorsse.g., GaAsd, the atoms of which,
however, have a certain fixed configuration because of the
natural crystals. In contrast, the PCs that are artificial crystals
make it possible to place atoms at arbitrary positions. Al-
though this proposal is similar to the last attempt mentioned
in the preceding paragraph, it has an advantage that enables
us to more precisely design the band structures by utilizing

additional arbitrary parameterssthe second atom positiond.
To the authors’ knowledge, this kind of approach has not
been reported, and hence it will prove useful in designing
photonic band-gaps of a variety of photonic crystals.

In this report, we consider the two-dimensionals2Dd PCs
and use the plane-wave expansion method for calculating
photonic band structures. Since this method has been re-
ported in many literatures,13 we here mention it briefly. We
focus on theE polarization, for which the electric fieldE is
parallel to the rod axis, i.e.,E=f0,0,Ezsr dg, wherer =sx,yd
is the 2D position vector. The electric fieldEzsr d can be
expanded into the Fourier series of the Bloch type with the
expansion coefficientsEzsGd. The Maxwell equation for
Ezsr d then reduces to the eigenvalue problem forEzsGd

o
G8

uK + GuuK + G8u«−1sG − G8dEzsG8d = Sv

c
D2

EzsGd,

s1d

where K is the Bloch wave vector. Here, the summation
extends over all reciprocal lattice pointsG8=n1b1+n2b2,
whereb1 andb2 are primitive reciprocal lattice vectors, and
n1 and n2 are arbitrary integers. In Eq.s1d, «−1sGd is the
Fourier transform of the inverse dielectric function«−1sr d in
the real space and is given by

«−1sGd = «b
−1dG,0 + s«a1
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−1 − «b

−1de−iG·Pf2
2J1sGR2d

GR2
, s2d

for the binary-compound PC that contains in its unit cell the
first rod fradiusR1, dielectric constant«a1, and filling factor
f1=psR1/ad2g and the second rodfR2, «a2, and f2

=psR2/ad2g with the background of«b. Here, J1sxd is the
first-order Bessel function, andP indicates the position of the
second rod in a unit cell viewed from the first rod at the
origin. In this report, the square lattice with primitive lattice
vectors ofa1=as1,0d and a2=as0,1d is assumed with the
reciprocal lattice vectors given byb1=2p /as1,0d and b2

=2p /as0,1d, where a is the lattice constant. The material
parameters used are«a1=10 and«a2=15 andR1=0.1a and
R2=0.1a for the two rods, and«b=1. The frequency eigen-
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valuesv are obtained by diagonalizing the relevant matrices.
The study of the eigenvalue convergence revealed that the
49349 reciprocal lattice points were sufficient to diagonal-
ize the matrices for any configurations of two rod atoms in
the unit cell. In all figures in this report, the angular fre-
quencyv is normalized in units of 2pc/a. This report dis-
cusses the so-called quality factor of the band gap defined by
Qij ;Dvi j /vi j , whereDvi j =v j −vi is the band gap between
the two bands with indicesi and j si , j = i +1, andvi is the
top of bandi and v j is the bottom of bandjd and vi j =svi

+v jd /2 is the middle frequency in the gap. Here, we put
Qij =0 whenvi ùv j, i.e., there is no gap. It is recommended
that the readers should look at the results forQij sFig. 2d and
those for the band structuressFigs. 1 and 3d, and compare
them appropriately.

Prior to investigating the effects of atomic configurations
on the photonic band gap formation, we first calculated the
PCs with a single atom in the unit cell. Figure 1 shows the
photonic band diagrams for the PCs with a single atom of
«a1=10 andR1=0.1a ssolid lined and «a1=15 andR1=0.1a
sdotted lined. These atoms are the same elements as those
which will be used in the study of the binary-compound PCs.
The two diagrams in Fig. 1 are similar to each other because
of the difference only in the dielectric constants: the first
band gapsthe gap between bands 1 and 2d opens while no
other band gaps open. Since the rod radius is not optimized,
the quality factorQ12 of this band gap is not very high:
Q12=0.082 for the first PCssolid lined andQ12=0.22 for the
second PCsdotted lined. Even by changing the rod radius
from 0 to 0.5a sthe possible maximum valued, the 2-3 band
gap does not open though the 3-4 and 4-5 band gaps open
slightly. The PC with a single atom in the unit cell of the
square lattice has the symmetry operations that belong to
the C4n point group: their operations are denoted as
sE,C4,C4

−1,C2,sx,sy,sd8 ,sd9d.14 Owing to the high symme-
try of this PC, bands 2 and 3 are still degenerate atM point
while other bands 1 and 4 are split off from the original
degenerate levelsthese four bands were degenerate atM
point for the free-photon square latticed. The similar situation
occurs for the four bandss2 to 5d at G point and a new
degeneracy occurs at a middle point on theX-M line. These
multiple degeneracies appear to make this PC fail to create
any band gaps except the 1-2 photonic band gap.

Starting with the first kind of PC mentioned abovesa
single rod atom with«a1=10 and R1=0.1ad, we consider
what occurs by adding a second atom with«a2=15 andR2
=0.1a at an arbitrary position in the unit cell of the above
PC. In the following paragraphs, we investigate how the
band structures and the band gaps are evolved by carefully
tuning the second-atom position. Our primary purpose is to
clarify the variations of the quality factorQij between bands
i and j as a function of the position of the second rod atom in
the binary-compound PC.

Figure 2 shows the contours of the quality factor, which
displays theQij level for the second-atom center being lo-
cated at a point in the unit cell of the square latticesi.e., the
large square in Fig. 2d. The results for the band gap between
the firsts1d and seconds2d bands are shown in Fig. 2sad, and,
in a similar manner, those between bands 2 and 3, bands 3
and 4, and bands 4 and 5 are shown in Figs. 2sbd, 2scd, and
2sdd, respectively. The dark quarter circles on the four cor-
ners are the first rod atoms, and the gray zones are the dead
areas where the second-atom center cannot exist to avoid the
overlap between the two rods. In the brightest regions, no
band gaps open, i.e.,Qij =0. TheQij level increases as the

FIG. 1. Photonic band structures forE-polarized light in two-
dimensional square lattice PCs in the air with a single rod atom in
the unit cell with dielectric constants of«a=10 ssolid lined and «a

=15 sbroken lined. Open circles indicate the degenerate points. The
angular frequencyv is normalized in units of 2pc/a.

FIG. 2. Contours of the quality factorQij ssee text for its defi-
nitiond for the photonic band gap between bandsi and j as a func-
tion of the position of the second rod atom in the unit cell of the
square lattice in two-dimensional binary-compound PCs. These fig-
ures correspond to the band gaps between bandssad 1 and 2sQ12d,
sbd 2 and 3sQ23d, scd 3 and 4sQ34d, and sdd 4 and 5sQ45d. The
brightest area indicatesQij =0, that is, no band gap, and theQij

value increases as the shade gets darker. The first atom is shown by
the four closed quarter circles on the corners. The open circle indi-
cates the second-atom position that maximizes theQij value. In the
gray area, there are no data ofQij since the second atom is not
allowed to be placed in this area to avoid the overlap between
atoms.
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shade gets darker, i.e., the band gaps opensQij .0d for these
tones. Here, the second atoms can be considered everywhere
in the unit cell, but those indicated by open circles are the
second-atom positions which exhibit the maximumQij level
and moreover are the closest to the lower-left lattice points.
The photonic band structures for these optimized configura-
tions are shown in Fig. 3.

Let us first look at Fig. 2sad for the Q12 contours. As
shown in Fig. 2sad, theQ12 factor reaches a maximums0.27d
for the configuration in which the second atom contacts with
the first one, which occurs at four equivalent positions in the
unit cell. This configuration may be virtually regarded as a
single atom with the increased radius and dielectric constant.
Since the light waves involved in the formation of the lowest
band gap are primarily those of wavelengthl,2a, the sim-
plest configuration like this may work best to create the 1-2
band gap. As the second atom becomes more distant from the
lattice points, theQ12 factor decreases and finally disappears
near the central region of the unit cell. Introducing the sec-
ond atom near the central region is thus known to eliminate
the 1-2 band gap, which was open in the absence of the
second atomsthough it was narrow, see the solid lines in Fig.
1d. Therefore, we must unfortunately conclude that, for the
formation of the 1-2 band gap, the introduction of the second
atom is not very effective, but the optimization of the single
atom may rather work better. This phenomenon will be dis-
cussed later in connection with the results in Fig. 2sbd. Fig-
ure 3sad shows the band structure for the PC with the maxi-
mum Q12. The introduction of the second atom at the
position shown by an open circle in Fig. 2sad reduces the
symmetry operations of this PC tosE,sd8d. This symmetry
reduction lifts the degeneracy atG andM points and newly
opens the 2-3 band gap.

Figure 2sbd shows theQ23 contours for the 2-3 band gap.
As we see dark patterns throughout this figure, this band gap
is always generated for any positions of the second atom in
the unit cell. This is in great contrast to the PC with a single
atom sFig. 1d, which did not give a glimpse of the gap be-
tween bands 2 and 3. Considering that, as remarked before,
the single-atom PC did not produce the 2-3 band gap for any
combinations of dielectric constants and filling factors, we
should mention that this band gap is generated for the first
time by employing binary-compound PCs. TheQ23 value
increases, contrary toQ12, as the second atom becomes dis-
tant from the first one, and it reaches the maximum at the
center of the unit cell. In this case, the maximum occurs only
at this point and hence no other equivalent points. The maxi-
mumQ23 value is estimated at 0.32, which is higher than that
obtained forQ12. The band structure of this PCfFig. 3sbdg
shows the degeneracy at four points, because of the recov-
ered same symmetry as that for the original single-atom PC.
That the 2-3 band gap opens despite many degenerate points
will be explained in the subsequent paragraph.

Here, we pay attention to the fact thatQ12 vanishes while
Q23 achieves the maximum for the configuration that locates
the second atom at the unit cell center. Note that the first and
second atoms used here are similar to each other because of
the same radii though there is a difference in the dielectric
constants. So let us assume for a while that the second atom
is identical to the first one. The primitive lattice vectors of
that PC are no morea1=as1,0d anda2=as0,1d defined be-
fore, buta18=sa1−a2d /2 anda28=sa1+a2d /2. In other words,
the unit cell of the square lattice is shrunk into the one de-
fined bya18 anda28 with the area reduction by a factor of 2.
This implies that the Brillouin zonesBZd for the new unit
cell is enlarged by a factor of 2: We here call it the new BZ
and the original one the old BZ. When the band diagram is
depicted in the form folded in the old first BZ, its BZ edge
son theX-M lined does not create any band gaps since it is
not the actual BZ edge but nothing other than a band point
within the new first BZ. From this, we recognize that the 1-2
band gap disappears when we look at it in the old BZ. This
effect, however, will not reveal itself in the distinct form in
our PC since it has different rod atomss«a1=10 and «a2
=15d. For this reason, bands 1 and 2 must not coincide per-
fectly on theX-M line sBZ edged, but come close to each
other fsee Fig. 3sbdg and hence no 1-2 band gap. We thus
know that the 1-2 band gap does not open around the second-
atom positions where the large 2-3 band gap is observed.

The results of theQ34 contours for the 3-4 band gap are
shown in Fig. 2scd. The area creating this band gap is ex-
tremely confined: Only narrow regions near the dead zones
are the positions of the second atom for this gap formation.
The maximumQ34 occurs at the center of the small island
with Q34=0.014, which has eight equivalent positions in the
unit cell. Although theQ34 value obtained is small, it comes
to have a positive value for the first time by adding the
second atom to the single-atom PC. We recognize no degen-
erate points in the photonic band diagram of this PCfFig.
3scdg because of the very asymmetric atomic configuration:
only the identity operationsEd exists. Owing to this nonde-
generacy, the band gaps between any bands are found to
open. The created band gaps, however, are not very large

FIG. 3. Photonic band structures of the PCs with the second
atoms indicated by open circles in Fig. 2. Hence, these figures
shown bysad, sbd, scd, andsdd correspond to those same symbols in
Fig. 2. Open circles indicate the degenerate pointssonly points
which bands 1 to 6 are involved in are shownd. The angular fre-
quencyv is normalized in units of 2pc/a.
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compared with those obtained for the former configurations.
This suggests that the mere reduction of the symmetry and
the resultant lifting of band degeneracies are not always ef-
fective to enlarge the band gaps.

The final results studied here are for theQ45 contours for
the 4-5 band gapfFig. 2sddg. The positions maximizing the
Q45 value s0.045d are given by four equivalent points in the
unit cell sone of them is indicated by an open circled. See
also Fig. 3sdd, where the 4-5 band gap is shown to open due
to the reduced symmetry operationssE,syd for this PC. Fig-
ure 2sdd exhibits somewhat intricate patterns compared with
those for the former three. This suggests that the band gaps
of higher indices such as 4-5 are more sensitive to the
second-atom position. The formation of band gaps of higher
indices implies the involvement of light-wave harmonics of
higher orders. The harmonics, the wavelengths of which are
much shorter than the lattice constanta, may require us to

minutely tune the second-scatterer positions for the bandgap
formation.

In conclusion, we have investigated the effects of relative
configurations of two different rod atoms on the formation of
photonic band gaps forE-polarized light in two-dimensional
binary-compound photonic crystals. The photonic band gaps
between any bands are found to be tuned by placing the
second atom at an appropriate position in the unit cell. In
particular, by elaborately searching for the optimal position
of the second atom, we succeeded in determining the atomic
configurations that maximize the photonic band gaps. Since
this method is valid for another polarizationsH polarizationd
also, the combination of the studies for these two polariza-
tions will facilitate the formation of absolute band gaps. We
believe that this kind of approach will prove useful in de-
signing photonic band gaps of a variety of photonic crystals.

1Photonic Crystals, edited by K. Busch, S. Lölkes, R. B. Wehr-
spohn, and H. FöllsWiley-VCH, Weinheim, 2004d.

2Photonic Band Gaps and Localization, edited by C. M. Soukoulis
sPlenum Press, New York, 1993d.

3S. Nojima, J. Appl. Phys.90, 545 s2001d.
4See, for example, P. R. Villeneuve and M. Piché, Phys. Rev. B

46, 4969s1992d.
5I. H. H. Zabel and D. Stroud, Phys. Rev. B48, 5004s1993d.
6Z.-Y. Li, B.-Y. Gu, and G.-Z. Yang, Phys. Rev. Lett.81, 2574

s1998d.
7X. Zhang and Z.-Q. Zhang, Phys. Rev. B61, 9847s2000d.
8A. Moroz and C. Sommers, J. Phys.: Condens. Matter11, 997

s1999d.
9D. Cassagne, C. Jouanin, and D. Bertho, Phys. Rev. B53, 7134

s1996d.
10C. M. Anderson and K. P. Giapis, Phys. Rev. B56, 7313s1997d.
11N. Malkova, S. Kim, T. DiLazaro, and V. Gopalan, Phys. Rev. B

67, 125203s2003d.
12T. Trifonov, L. F. Marsal, A. Rodríguez, J. Pallarès, and R. Alcu-

billa, Phys. Rev. B69, 235112s2004d.
13See, for example, S. Nojima, Jpn. J. Appl. Phys., Part 137, 6418

s1998d.
14K. Sakoda,Optical Properties of Photonic CrystalssSpringer-

Verlag, Germany, 2001d.

BRIEF REPORTS PHYSICAL REVIEW B71, 193106s2005d

193106-4


