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Motivated by recent theoretical approaches to high temperature superconductivity, we study dynamical mass
generation in three-dimensional quantum electrodynamicssQED3d in the presence of irrelevant four-fermion
quartic terms. The problem is reformulated in terms of the renormalization group flows of certain four-fermion
couplings and charge, and then studied in the limit of a large number of fermion flavorsN. We find that the
critical number of fermionsNc below which the mass becomes dynamically generated depends continuously on
a weak chiral symmetry breaking interaction. One-loop calculation in our gauge-invariant approach yields
Nc0=6 in pure QED3. We also find that chiral symmetry preserving mass cannot become dynamically gener-
ated in pure QED3.
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I. INTRODUCTION

It has been proposed recently that the low-energy theory
of gapless quasiparticles in a two-dimensionald-wave super-
conductorsdSCd with strong phase fluctuations can be rep-
resented by the two-flavor massless quantum electrodynam-
ics in three dimensionssQED3d.1,2 The coupling constantsor
the “charge”d in such an effective theory is the vortex con-
densate, i.e., the order parameter dual to the usual supercon-
ducting order parameter. It is well known that QED3 is in-
herently unstable toward the dynamical mass generation,3,4

which in the context ofd-wave superconductivity implies the
transition into one of several possible insulating ground
states. Each of the insulators corresponds to a broken gen-
erator of the Us4d chiral symmetry of QED3, which emerges
at low energies in the standard dSC.2,5 Most important
among the insulating ground states is the spin-density wave,
which turns out to be favored by the repulsive interactions.2,6

This approach then provides a viable unified description of
the known low-temperature phases of underdoped high-
temperature superconductors.

Dynamical mass generation, however, occurs only if the
number of Dirac fermionsN in QED3 does not exceed the
critical numberNc0. If the value ofNc0 turns out to be less
than the number of Dirac fermions, which for a single-layer
dSC isN=2, then quantum disordering of the phase of the
dSC will yield a spin liquid, instead of a spin-density wave
insulator. It is thus of importance to establish whether QED3
with N=2 lies below or above the critical value for sponta-
neous chiral symmetry breaking in the theory.

The estimates ofNc0 at the moment strongly disagree,
however. Early studies of Schwinger-Dyson equations in
large-N approximation gaveNc0=32/p2<3.24.4 Vertex
corrections,7 or the next-to-leading-order terms in the 1/N
expansion8 did not changeNc0 significantly, and if anything,
only increased its value. On the other hand, Appelquistet al.
have argued thatNc0,3/2.9 Adding to the controversy, re-
cent lattice calculations have found no decisive signal for
chiral symmetry breaking forN=2, but did detect a signifi-
cant fermion mass forN=1.10 It has been argued, however,
that although greatly increased compared to early studies, the

sizes of the systems considered in the lattice calculations
may still not be close enough to the thermodynamic limit.11

In fact, due to the essential singularity atN=Nc, the value of
the mass atN=2, if finite, should be rather small and the
results of numerical simulations are not necessarily in con-
flict with the values obtained from the Schwinger-Dyson
equations.10,12

In the context of high-temperature superconductivity,
however, an additional issue arises. Chirally symmetric, Lor-
entz invariant QED3 emerges only asymptotically at low en-
ergies, when all the irrelevant perturbations may be ignored.
For example, large anisotropy between the two characteristic
velocities of the dSC, although marginally irrelevant,13–15re-
duces the Us4d symmetry of the two-flavor theory to the
Us2d ^ Us2d over a wide crossover region.2 The sirrelevantd
repulsive interaction between electrons breaks each Us2d fac-
tor per flavor further down to Us1d ^ Us1d. It is presently
unclear how, and if at all, the presence of these irrelevant
perturbations affects the value ofNc in the more complete
theory. This is the issue we wish to address in the present
paper.

We apply the momentum-shell renormalization group
sRGd to QED3 theory withN fermion flavors, and with four-
fermion interactions which break the Us2d symmetry per fla-
vor. The gauge-invariantb functions for the charge and the
four-fermion couplings are computed to the leading order in
1/N. The value ofNc may be obtained from the RG flow
simply by inverting the dependence of the critical cou-
plingssd g on N. In case of symmetry breaking interaction we
show thatNc obtained this way is necessarily a monotonic
function of the interaction coupling, i.e., that an infinitesimal
interaction, although irrelevant, alters the value ofNc. In par-
ticular, this suggests that even ifNc0,2 in pure QED3, the
low-energy theory of underdoped cuprates with repulsive in-
teractions included2 is likely to lie below thesshiftedd critical
point for dynamical mass generation. The flow of the chirally
symmetric interactions, on the other hand, suggests that the
chirally symmetric mass cannot get spontaneously generated
in pure QED3.

Our method relies on identification of the RG runaway
flow of the chiral symmetry breaking interaction coupling
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constant with the dynamical mass generation. This conjec-
ture is supported by the exact solution in the limitN=` and
of zero charge. The idea is rather general, however, and simi-
lar to the standard way of determining a spontaneously bro-
ken symmetry in statistical physics: first allow a weak ex-
plicit symmetry breaking perturbation, take the thermo-
dynamic limit, and only then take the perturbation to zero.
Thermodynamic limit would, in the RG language, corre-
spond to letting the momentum cutoff go to zero.

The article is organized as follows: In Sec. II we introduce
the symmetry breaking and the symmetry preserving four-
fermion interactions. In Sec. III we formulate the problem of
dynamical mass generation in the RG language. In Secs. IV
and V the RG flows are derived in the full theory with all the
important quartic interactions taken into account. Concluding
remarks are given in Sec. VI, and some technical details are
presented in the Appendix.

II. QED 3 AND QUARTIC INTERACTIONS

We begin by reviewing briefly the spin sector of the low-
energy theory of the phase-disorderedd-wave
superconductor,2 described by the actionS=ed3xL, with the
Lagrangian

L = LQED3
+ Lint + Lhd,

s1d

LQED3
= C̄igms]m + iamdCi +

1

2e2s¹ Ã ad2.

Ci, i =1,2 represent the electrically neutral spin-1/2 fermions

sspinonsd, C̄=C†g0, gm’s are the usual Dirac gamma matri-
ces sm=0,1,2d and we defineg5=g0g1g2g3, and g35= ig3g5

for later use.2 The chargee2,ukFlu2, whereF is the vortex
loop condensate.2,16 The complementary charge sector of the
theory may be shown to be describing an insulator.17

The short-range repulsive interaction may be written in
terms of Dirac fermions as

Lint = UsiC̄ig5g1Cid2. s2d

Higher derivatives in the kinetic energy, similarly, take the
form

Lhd , C̄ig5fg1fs]2d − g2gs]2dgCi , s3d

where the functionsfszd andgszd come from the expansion
of the quasiparticle dispersion near the nodes.2

The velocity anisotropy neglected in Eq.s1d in principle
reduces the full Us4d symmetry of QED3 to Us2d ^ Us2d.
Each Us2d=Us1d ^ SUcs2d factor is generated by the algebra
h1,g3,g5,g35j where SUcs2d is the chiral symmetry subgroup
generated by the last three generators. Inclusion ofLint and
Lhd reduces the SUcs2d symmetry further down to the Ucs1d
generated byg5, which is simply the generator of translations
in the nodal direction in this language. Since the mass that

turns out to be dynamically generated inS is m,kC̄Cl,
which preservesg35,

6 it will prove more convenient to con-
sider interactions that directly preserve that particular gen-
erator.

Let us first consider the case of single fermion species,
and then generalize toN.1. To construct the quartic inter-
action that breaks the SUcs2d symmetry down to Ucs1d we
notice that the three-component objects,

A = sC̄C, C̄ig3C, C̄ig5Cd,
s4d

Bm = sC̄gmg35C, C̄igmg3C, C̄igmg5Cd,

are the only triplets under the chiral group. Upon breaking
the symmetry to Ucs1d, we look at the projection ofA and
Bm along the direction corresponding to the remaining gen-

erator of the SUcs2d. In this case, these areC̄C and

C̄gmg35C which remain invariant under the action ofg35.
Thus, the required quartic chiral symmetry breakingsCSBd
interaction will have the form

LCSB=
g

N
sC̄Cd2 +

g8

N
sC̄gmg35Cd2. s5d

On the other hand, the two SUcs2d singlets

Cm = C̄gmC, C35 = C̄g35C, s6d

may be used to construct the chiral symmetry preserving
sCSPd quartic interactions, as

LCSP=
l

N
sC̄g35Cd2 +

l8

N
sC̄gmCd2. s7d

For a generalN we will therefore define the following
UsNd ^ UsNd symmetric theory

L = LQED3
+ LCSB+ LCSP

=HC̄igms]m + iamdCi +
1

2e2s¹ 3 ad2 +
g

N
sC̄iCid2

+
g8

N
sC̄igmg35Cid2 +

l

N
sC̄ig35Cid2 +

l8

N
sC̄igmCid2J ,

i = 1, . . . , N. s8d

In principle, one could imagine other interaction terms
satisfying the required symmetry. However, it can be shown
that these would have to be a linear combination of the al-
ready introduced quartic terms. For example, thes“Nambu-
Jona-Lasinio”d interactiong1uA u2+g2uBmu2 can be written as a
linear combination ofCm

2 and C35
2 . This follows from Fierz

identities which imply that there are only two linearly inde-
pendent quartic terms invariant under the Us2Nd. For UsNd
^ UsNd theory, the number of independent couplings doubles
to four, which are precisely the introducedg, g8, l, andl8.
For a more detailed discussion we refer the reader to the
Appendix.

In the next section we focus on a single four-fermion
interaction and try to understand the spontaneous chiral sym-
metry breaking within the renormalization group approach.
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III. DYNAMICAL MASS GENERATION IN THE RG
LANGUAGE

An exactly solvable case of the theory in Eq.s8d is in the
limit of infinite number of fermion flavors and of zero charge
se=0d. Let us first consider a single CSB interaction term,

sg/NdsC̄Cd2, and setg8=l=l8=0 si.e., the Gross-Neveu
modeld. For N→`, such interaction gives rise to a dynami-

cally generated mass,m,kC̄Cl, determined by the gap
equation

−
1

g
= 8E d3k

s2pd3

1

k2 + m2 , s9d

which after the integration gives

1 =
4gL

p2 Sm

L
tan−1 L

m
− 1D , s10d

with L@m being the assumed ultravioletsUVd cutoff. De-
manding m to be invariant under the change of cutoffL
→L /b, the b function at N=` is readily obtained to be
exactly

bg =
dg

d ln b
= − g − g2, s11d

where g has been rescaled as 4gL /p2→g. We see that a
weak couplingg is irrelevant, but that the flow forg,g*
=−1, which represents the infraredsIRd unstable fixed point,
is toward negative infinity. Since the same values ofg yield
a finite mass from the gap equation, it is natural to identify
the runaway flow ofg with the dynamical mass generation.
Note that the same Eq.s11d can alternatively be obtained in
the standard Wilson’s momentum-shell one-loop RG.

The second solvable limit of the theory is pure QED3
without any four-fermion interactions, again in the limitN
→`. The flow of the charge is then

be =
de2

d ln b
= e2 − Ne4, s12d

where the dimensionless charge is defined as
s4/3dfe2/ s2p2Ldg→e2. Although the theory is free in the
UV region, there is a nontrivial IR stable fixed point ate*

2

=1/N. sNotice that the quartic interactions, even when
present, cannot appear inbe to the leading order in largeN as
a consequence of the Ward-Takahashi identity.d

Next, we want to consider the interplay of the chargee
and the quartic couplingg, and in particular to examine the
influence of a weak charge on the value ofg* . One expects
the effect of the gauge field onbg to be

dg

d ln b
= − g − g2 + sconst.de2g, s13d

to the leading order ine2 and 1/N. In particular,bgsg=0d
=0 even wheneÞ0, since otherwise it would be possible to
generate the CSB interaction in the chirally symmetric
theory. Sog=0 is always a fixed point. Since at the fixed
point e*

2=1/N, decreasingN is the same as increasing the
charge in Eq.s13d. Since the factor in front of the last term is

expected to be positivesas it indeed turns out to be the cased,
decreasingN will reduce the absolute value of the nontrivial
critical couplingg* , until it eventually merges with the trivial
fixed point, permanently located atg=0. There will therefore
exist a critical chargeec

2=1/Nc0, above which aninfinitesi-
mal symmetry breaking interaction suffices to cause the run-
away flow ofg. We identify this point with thespontaneous
chiral symmetry breaking in pure QED3. The phase diagram
with this structure has been depicted in Fig 1.

WhenN,` the terms with an explicitN dependence in
bg, such asg3/N, should also be included. These terms may
be understood as contributing to the 1/N corrections toNc0
in the following way. One can expand the critical charge
scorresponding to the double root ofbg at g=0d in powers of
1/N as

ec
2 = a0 +

a1

Nc0
+

a2

Nc0
2 + ¯ . s14d

Sinceec
2=1/Nc0+Os1/Nc0

2 d from be, this effectively gener-
ates then the 1/N expansion forNc0.

One may analogously consider the CSP interaction

sl /NdsC̄g35Cd2, which when alone leads to the dynamically

generated massm,kC̄g35Cl for l,−1, in theN→` limit.
In presence of the charge, however, there is a crucial differ-
ence between thebl andbg. Since the CSP interaction term
has the same full chiral symmetry as the pure QED3, finite
charge may, and in fact does,generatethe couplingl. This
manifests itself as thee4 contribution inbl, which will now
take the form

dl

d ln b
= − l − l2 + sconst.de2l + sconst.de4. s15d

With the last term, however,l=0 is not a fixed point any
longer. Further, the sign of thee4 term turns out to beposi-
tive, so that the critical coupling actuallyincreaseswith

FIG. 1. The phase diagram in the interaction-charge plane, for
the chiral symmetry breaking interaction. The value of the charge is
e2=1/N. Nc is a continuous function of the symmetry breaking
interaction, as a consequence of the existence of the fixed point at
g=0 at any charge.
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charge. We interpret the latter feature as that the spontaneous
dynamical generation of the chiral symmetry preserving
mass in pure QED3 is not possible. This would be in agree-
ment with conclusions of the earlier studies.18,19

IV. RG FOR CSB INTERACTIONS AND THE VALUE
OF Nc0

In general, theb functions for all four quartic interactions
will be coupled and the flow is nontrivial. To the leading
order in 1/N, however, the calculation simplifies consider-
ably. In the following two theorems we show that theb
functions for the CSB and CSP interactions are completely
decoupled in this limit.

Theorem I: To the leading order in 1/N and for e=0,
different b functions decouple.

Proof: Only particle-hole diagrams, as in Fig. 2 contribute
to leading order in largeN. Such diagrams are proportional
to

gAgB ·E d3q TrsGAGsqdGBGsqdd ~ TrsGAGBd. s16d

Here,GA andGB’s are the matrices in the kernel of the qua-
dratic form accompanying eithergA or gB,

GA,GB P h1,gm,g35gm,g35j. s17d

It is easy to see that these diagrams are zero unlessgA=gB.
For diagrams that mix CSB and CSP interactions in Fig. 2sad,
Eq. s16d contains the trace of an odd number ofg matrices
and thus yields zero. For the CSB–CSB or CSP–CSP dia-
grams in Figs. 2sbd and 2scd, the identities Trsgmgnd=4dmn

and Trsgmg35d=0, imply that all the mixing terms are zero
unlessm=n, i.e., gA=gB.

So, to the leading order, the coupling between different
quartic interactions in theb functions can only be mediated
through charge. One may easily see, however, that the sym-
metry requires that theb functions for the CSB and CSP
couplings still remain decoupled. We will state it in the form
of the following theorem:

Theorem II: There are no,le2 or ,l8e2 terms inbg or
bg8, nor ,ge2 and,g8e2 terms inbl andbl8, to the leading
order in 1/N.

Proof: le2 andl8e2 terms obey the full chiral symmetry,
and thus cannot generate a CSB interaction. To prove the
equivalent statement for the CSB couplings, we notice that to
the leading order in 1/N the ge2 andg8e2 terms differ from
the le2 and l8e2 terms by a singleg35 matrix, and thus
necessarily break the chiral symmetry. They therefore cannot
generate a CSP coupling.

The previous theorems allow us to significantly reduce the
number of relevant Feynman diagrams. The straightforward
calculation of the diagrams in Figs. 3 and 4 leads to the
following b functions for the symmetry breaking interac-
tions:

de2

d ln b
= e2 − Ne4,

dg

d ln b
= − g − g2 + 4e2g + 18e2g8, s18d

dg8

d ln b
= − g8 + g82 +

2

3
e2g,

with conveniently rescaled parameters

4gL/p2 → g, 4g8L/s3p2d → g8, 2e2/s3p2Ld → e2.

s19d

Note that the couplingg8 becomes generated byg ande even
if absent initially, so in principle it must be included into the
analysis. A notable feature of the previousb functions is also

FIG. 2. Particle-hole diagrams to the leading order in 1/N.

FIG. 3. Diagrams contributing to the renormalized couplings to
the leading order in 1/N.

FIG. 4. Diagram contributing to the wave function
renormalization.
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their independence on the gauge-fixing parameterj. This de-
rives from the exact cancellation between the gauge-
dependent part of the diagrams in Fig. 3 and the wave func-
tion renormalization factorZ sFig. 4d:

Z = 1 +Sj −
2

3
De2 ln b. s20d

The flow diagram on theg−g8 plane forN=` se2=0d is
given in Fig. 5. ForN,`, the fixed point value of the charge
becomese2=1/N, and the locations of all the fixed points,
except the trivial one at the origin, shift in the directions as
indicated. The point at which the RG trajectory that starts
at the purely repulsive fixed pointfinitially at s−1,1dg
and terminates at the “Gross-Neveu” fixed pointfinitially at
s−1,0dg intersects theg axis determines the location of the
phase boundary in theg−e2 sg8=0d plane. At small charge
we obtain such a phase boundary at

g = − 1 + 4e2 + Ose4d, s21d

whereas at lowg

g = −
144

13
S1

6
− e2D + OFS1

6
− e2D2G . s22d

Numerical solution at a general coupling is given at Fig. 1.
The critical point in pure QED3, Nc0, is determined by the
value of N for which Gross-Neveu fixed point reaches the
origin. For N.Nc0, the flow beginning at an infinitesimal
negativeg andg8=0 then runs away to infinity. To the lead-
ing order in 1/N, this criterion yieldsNc0=6. At N=Nc0 the
other two nontrivial fixed points are still at finite values. The
role of g8 is therefore only to modify the phase boundary in
the g−e2 plane and the value ofNc0 quantitatively, but not
qualitatively. Neglecting the flow ofg8 entirely would lead,
for example, toNc0=4. This would correspond to the value at
which the dimension of the couplingg at the charged fixed
point changes sign.

V. RG FOR CSP INTERACTIONS

We now turn to the analysis of the theory in Eq.s8d with
g=g8=0, i.e., when the quartic terms respect the full chiral

symmetry. Although somewhat artificial from the point of
view of the effective theory for underdoped cuprates, this
exercise underlines the important role of symmetry in the
phase diagram. The diagrams are still the same as in the CSB
case, with the addition of the two diagrams in Fig. 6. These
new termsgeneratethe couplingl, and thus change the evo-
lution of the flow diagram withN in an important way, as
mentioned in the introduction and depicted in Fig. 7. We
obtain the followingb functions for the couplingsl , l8, and
e2:

de2

d ln b
= e2 − Ne4,

dl

d ln b
= − l − l2 + 4e2l + 18e2l8 + 9Ne4, s23d

dl8

d ln b
= − l8 + l82 +

2

3
e2l.

Notice that the flow equations for the CSB and CSP cases are
identical, apart from the positivee4 term. This term, how-
ever, prevents the fixed point that was located ats−1,0d for
N=` to ever merge with the Gaussian fixed point, and con-
sequently, no spontaneous generation of the chiral symmetry
preserving mass should be allowed in pure QED3.

FIG. 5. The RG flowsdashed linesd in the plane of the two
symmetry breaking interactionsg andg8 for N=`. Full lines mark
the evolution of the four fixed points with decrease ofN.

FIG. 6. The diagrams that givee4 term in bl.

FIG. 7. The evolution of the chiral symmetry preserving fixed
points in thel–l8 plane with the increase of charge.
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VI. CONCLUSION

In conclusion, by reformulating the problem of dynamical
mass generation in QED3 with four-fermion interactions in
terms of the renormalization group flows, we found that the
critical number of fermionsNc is a continuous function of
the chiral symmetry breaking interaction. By taking the limit
of vanishing interactions, we estimated thatNc0=6 in pure
QED3. Our analysis of the chiral symmetry preserving inter-
actions suggests that the chiral symmetry preserving mass
cannot become dynamically generated in pure QED3.

The result that theNc may depend on an infinitesimal
symmetry breaking interaction should be contrasted with the
previous studies of Schwinger-Dyson equations in QED3
with symmetry preserving interactionssthe “gauged Nambu-
Jona-Lasinio model”d. There, theNc was found to depend on
the quartic interaction only if the latter is larger than a certain
value.20 In the RG language this would correspond to the
merger of the two fixed points, like the Gaussian and the
“Gross-Neveu” fixed points in our case, at afinite value
of the coupling. In fact, we find that occurring in Eqs.s23d
for CSP interactions: the “Gaussian” fixed pointfinitially at
s0,0dg and the “Thirring” fixed pointfinitially at s0,1dg for
N=4.83 meet ats1.78,0.43d. For N.4.83, both couplings
become complex, and the flow that begins at the linel=0 is
always toward infinitel8. It is tempting to identify this run-
away flow with the phase with broken chiral symmetry and
the dynamically generated mass, as proposed in Ref. 21. We
refrain from doing so, however, since the runaway flow for
l8.1 at e=l=0 sthe “Thirring model”d actually does not
correspond to the broken symmetry phase, as one can easily
check by directly solving the gap equation in this case atN
=`. The transition in the Thirring model occurs only at the
order of 1/N,22 and so we suspect that the above runaway
flow of l8 may be an artifact of theN=` limit. This issue is
left for future studies.

Finally, although our scheme provides a systematic way
of computingNc0, for example, it becomes rapidly compli-
cated. To the next order in 1/N, CSP and CSB coupling
constants mix in theb functions. Since the couplingsl and
l8 get generated by the charge, and then mix intobg, one
necessarily has to track the flow of all four couplings.
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APPENDIX: FIERZ IDENTITIES AND GENERALITY
OF THE INTERACTION LAGRANGIAN

In this appendix, we will construct the linear relationship
between the quartic terms invariant under a unitary UsNd
group, known as Fierz identities. These are the direct conse-
quences of the completeness relation for the generators of the
symmetry group.

Defining TrsA·Bd as the inner product between matricesA
andB, we write down the completeness relation for the basis
constructed out of generators of a UsNd group,hla ,1j, as

1

N
dabdcd +

1

2 o
a

N2−1

lab
a lcd

a = daddcb. sA1d

As the special case of Us2d, using Pauli matrices, Eq.
sA1d simplifies to

dabdcd + o
a

sab
a scd

a = 2daddcb. sA2d

Using the previous relations, one can derive the requisite
linear relationship between different quartic terms. First, it is
convenient to represent the 4N-component spinorC in terms
of 2N-component ones as

C = Sxi

fi D . sA3d

It is then possible to apply the previous completeness rela-
tions to the quartic terms of the form

o
a

sx̄a
i li j

axa
j dsx̄b

klkl
axb

l d, sA4d

where xi stands for bothxi and fi. sThe spinor index is
indicated by subscripts.d Applying Eq. sA2d for spinor de-
grees of freedom and Eq.sA1d for flavor degrees of freedom,
one ends up with the following identity

S1 +
1

N
Dsx̄xd2 + o

m

sx̄smxd2 + o
a

sx̄laxd2 = 0, sA5d

where we have suppressed both the spinor and flavorslarge
Nd indices for convenience, and replacedN with 2N, since
QED3 is Us2Nd symmetric. Similarly, beginning with the
quartic term

o
a,m

sx̄a
i li j

asab
m xb

j dsx̄c
klkl

ascd
m xd

l d, sA6d

it is easy to derive the other identity,23

o
a,m

sx̄lasmxd2 + o
a

sx̄laxd2 +
1

N
o
m

sx̄smxd2 + S4 +
1

N
D

3sx̄xd2 = 0. sA7d

The previous identities applied to a Us2Nd-symmetric
theory with theSint of the form

g̃1sx̄xd2 + g̃2sx̄laxd2 + g̃3sx̄smxd2 + g̃4sx̄smlaxd2, sA8d

leave only two of the terms as independent. Noticing that
the Eq. sA8d is equivalent to the interaction term written
in 4N-component representation:g1uA u2+g2uBmu2+g3uCmu2
+g4uC35u2, we can see that our choice ofCm and C35 as the
most general CSP quartic terms is justified.

The CSB case is not very different. One can consider the
interaction of the form in Eq.sA8d for each UsNd sector
separatelysi.e., x and fd. Repeating the same argument
would reduce the number of independent interaction cou-
plings in each sector to two, so that the overall number of
independent couplings will be four, as assumed in Eq.s8d.
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