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Chiral symmetry breaking in three-dimensional quantum electrodynamics in the presence
of irrelevant interactions: A renormalization group study
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Motivated by recent theoretical approaches to high temperature superconductivity, we study dynamical mass
generation in three-dimensional quantum electrodynat@dsDs;) in the presence of irrelevant four-fermion
quartic terms. The problem is reformulated in terms of the renormalization group flows of certain four-fermion
couplings and charge, and then studied in the limit of a large number of fermion flslvé¥e find that the
critical number of fermion$\; below which the mass becomes dynamically generated depends continuously on
a weak chiral symmetry breaking interaction. One-loop calculation in our gauge-invariant approach yields
N,=6 in pure QER. We also find that chiral symmetry preserving mass cannot become dynamically gener-
ated in pure QER
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I. INTRODUCTION sizes of the systems considered in the lattice calculations
may still not be close enough to the thermodynamic lihit.

It has been proposed recently that the low-energy theorn fact, due to the essential singularityMN,, the value of
of gapless quasiparticles in a two-dimensiotavave super- the mass aiN=2, if finite, should be rather small and the
conductor(dSQ with strong phase fluctuations can be rep-results of numerical simulations are not necessarily in con-
resented by the two-flavor massless quantum electrodynanflict with the values obtained from the Schwinger-Dyson
ics in three dimensionQEDs).12 The coupling constarfor ~ equations%12
the “charge) in such an effective theory is the vortex con- In the context of high-temperature superconductivity,
densate, i.e., the order parameter dual to the usual supercdmewever, an additional issue arises. Chirally symmetric, Lor-
ducting order parameter. It is well known that QB in-  entz invariant QEBR emerges only asymptotically at low en-
herently unstable toward the dynamical mass generation, ergies, when all the irrelevant perturbations may be ignored.
which in the context ofl-wave superconductivity implies the For example, large anisotropy between the two characteristic
transition into one of several possible insulating groundvelocities of the dSC, although marginally irrelevafiti>re-
states. Each of the insulators corresponds to a broken geduces the (#) symmetry of the two-flavor theory to the
erator of the W4) chiral symmetry of QER, which emerges U(2) ® U(2) over a wide crossover regiérThe (irrelevany
at low energies in the standard d3€.Most important repulsive interaction between electrons breaks ed@éh fdc-
among the insulating ground states is the spin-density waveor per flavor further down to (1)@ U(1). It is presently
which turns out to be favored by the repulsive interactiths. unclear how, and if at all, the presence of these irrelevant
This approach then provides a viable unified description operturbations affects the value bE, in the more complete
the known low-temperature phases of underdoped hightheory. This is the issue we wish to address in the present
temperature superconductors. paper.

Dynamical mass generation, however, occurs only if the We apply the momentum-shell renormalization group
number of Dirac fermion$N in QED; does not exceed the (RG)to QED; theory withN fermion flavors, and with four-
critical numberNg,. If the value ofNy turns out to be less fermion interactions which break the(2) symmetry per fla-
than the number of Dirac fermions, which for a single-layervor. The gauge-invariang functions for the charge and the
dSC isN=2, then quantum disordering of the phase of thefour-fermion couplings are computed to the leading order in
dSC will yield a spin liquid, instead of a spin-density wave 1/N. The value ofN, may be obtained from the RG flow
insulator. It is thus of importance to establish whether QED simply by inverting the dependence of the critical cou-
with N=2 lies below or above the critical value for sponta- pling(s) g on N. In case of symmetry breaking interaction we
neous chiral symmetry breaking in the theory. show thatN, obtained this way is necessarily a monotonic

The estimates o, at the moment strongly disagree, function of the interaction coupling, i.e., that an infinitesimal
however. Early studies of Schwinger-Dyson equations ininteraction, although irrelevant, alters the valuéNpf In par-
largeN approximation gaveNy=32/m?~3.24% Vertex ticular, this suggests that evenNE,<2 in pure QED, the
corrections, or the next-to-leading-order terms in theNL/ low-energy theory of underdoped cuprates with repulsive in-
expansiofi did not changeN, significantly, and if anything, teractions includetis likely to lie below the(shifted critical
only increased its value. On the other hand, Appelgetist.  point for dynamical mass generation. The flow of the chirally
have argued thall,,<3/2° Adding to the controversy, re- symmetric interactions, on the other hand, suggests that the
cent lattice calculations have found no decisive signal forchirally symmetric mass cannot get spontaneously generated
chiral symmetry breaking foN=2, but did detect a signifi- in pure QEDR.
cant fermion mass foN=119 It has been argued, however,  Our method relies on identification of the RG runaway
that although greatly increased compared to early studies, tifeow of the chiral symmetry breaking interaction coupling
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constant with the dynamical mass generation. This conjec- Let us first consider the case of single fermion species,

ture is supported by the exact solution in the lilditcc and  and then generalize td>1. To construct the quartic inter-

of zero charge. The idea is rather general, however, and simaction that breaks the S(2) symmetry down to (1) we

lar to the standard way of determining a spontaneously brorotice that the three-component objects,

ken symmetry in statistical physics: first allow a weak ex-

plicit symmetry breaking perturbation, take the thermo- A= (TP, TiyW, ViysV),

dynamic limit, and only then take the perturbation to zero. 4)

Thermodynamic limit would, in the RG language, corre- — — —

spond to letting the momentum cutoff go to zero. B = (Wy,yss¥, Wiy, sV, Viy,yWV),
The article is organized as follows: In Sec. Il we introduce

the symmetry breaking and the symmetry preserving four

fermion interactions. In Sec. Il we formulate the problem of

dynamical mass generation in the RG language. In Secs. | i

and V the RG flows are derived in the full theory with all the €rator of the Si(2). In this case, these ar&¥ and

important quartic interactions taken into account. Concluding¥ y,, y5s¥ which remain invariant under the action ¢s.

remarks are given in Sec. VI, and some technical details ar€hus, the required quartic chiral symmetry breaki@$B)

are the only triplets under the chiral group. Upon breaking
the symmetry to (1), we look at the projection oA and
\I;M along the direction corresponding to the remaining gen-

presented in the Appendix. interaction will have the form
Il. QED 3 AND QUARTIC INTERACTIONS g — g —
UEDANDQ Lose= n (W) + 8 (W, 752 )
We begin by reviewing briefly the spin sector of the low-
energy theory of the phase-disorderedd-wave On the other hand, the two S(2) singlets
superconductat,described by the actioB=[d*xL, with the
Lagrangian C,=Vy, W, Cy=VysW, (6)

L=L +Li+L : ;
QED; ™ ™int * =hd» may be used to construct the chiral symmetry preserving

(1) (CSP quartic interactions, as

— 1
LQED3 = \I’,’)/M((?M + IaM)\Ifi + E(V X a)2. N — N —
Lesp= N(‘l’735‘1')2 + N(‘I’VM‘I’)Z- (7)
v, i=1,2 represent the electrically neutral spin-1/2 fermions
(spinong, W=WTy,, y,'s are the usual Dirac gamma matri- For a generaN we will therefore define the following

ces(1=0,1,2 and we defineys=y,y172ys and yss=iysys  U(N) @ U(N) symmetric theory
for later us€’ The charges®~ [(®)|?, whered is the vortex

loop condensaté’® The complementary charge sector of the L=Loep, *Lesa* Lesp

theory may be shown to be describing an insulator.

The short-range repulsive interaction may be written in _ 1 g —
terms of Dirac fermions as =\ Viy (9, +ia, ) ¥+ @(V X a)?+ N(\Ifi\lfi)z
Line = UG ys 712, (2 g — N — N
+ (Wi, 7358+ S (WiyasW) 2+ (W, W) 1,
Higher derivatives in the kinetic energy, similarly, take the NRRCEE R VA EC R VR RO
form
— i=1, ...,N. 8
Lna~ W71 f(P) - 7,9(A W, 3 ®

In principle, one could imagine other interaction terms
S . h satisfying the required symmetry. However, it can be shown
of the quaspamcl(_e dispersion near the no%ie's. o that these would have to be a linear combination of the al-

The velocity anisotropy neglected in Eq) in principle ready introduced quartic terms. For example, tidambu-

reduces the full ) symmetry of QER to U2)®U(2).  j5n4.| asinio} interactiong,|A[?+g,|B,,|? can be written as a
Each U2)=U(1) ® SU,(2) factor is generated by the algebra jinear combination ofc? and CZ,. This follows from Fierz

{1, 73,75, 733 where SU(2) is the chiral symmetry subgroup jgentities which imply that there are only two linearly inde-
generated by the last three generators. Inclusiobypfand  pendent quartic terms invariant under thé2N). For U(N)

Lng reduces the SW2) symmetry further down to the 1) & y(N) theory, the number of independent couplings doubles
generated bys, which is simply the generator of translations ¢ four, which are precisely the introducegdg’, A, and\’.

in the nodal direction in this language. Since the mass thatsr 5 more detailed discussion we refer the reader to the
turns out to be dynamically generated $his m~(¥¥),  Appendix.

where the function$(z) andg(z) come from the expansion

which preservesys it will prove more convenient to con- In the next section we focus on a single four-fermion
sider interactions that directly preserve that particular geninteraction and try to understand the spontaneous chiral sym-
erator. metry breaking within the renormalization group approach.
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IIl. DYNAMICAL MASS GENERATION IN THE RG
LANGUAGE

An exactly solvable case of the theory in Ef) is in the
limit of infinite number of fermion flavors and of zero charge
(e=0). Let us first consider a single CSB interaction term,
(g/N)(¥W)?, and setg’=A=\"=0 (i.e., the Gross-Neveu
mode). For N— o, such interaction gives rise to a dynami-
cally generated massn~(¥VWV), determined by the gap
equation

g k1 ©
g J @7+
which after the integration gives
4gA<m LA )
l=—5|—t —=1], 10
2 \A 2 (10

with A>m being the assumed ultraviol@V) cutoff. De-
mandingm to be invariant under the change of cutoff
— A/b, the B function at N=c is readily obtained to be
exactly

dg

“dinb

where g has been rescaled agM/ m°—g. We see that a
weak couplingg is irrelevant, but that the flow fog<g-
-1, which represents the infraréiR) unstable fixed point,
is toward negative infinity. Since the same valueg gfield

By -g-¢°, (1)

a finite mass from the gap equation, it is natural to identify

the runaway flow ofg with the dynamical mass generation.
Note that the same E@l1) can alternatively be obtained in
the standard Wilson’s momentum-shell one-loop RG.

The second solvable limit of the theory is pure QED
without any four-fermion interactions, again in the linhit
—o0. The flow of the charge is then

de?

e,

e€-N

(12

where the dimensionless charge is defined
(413)[€?/(2m°A)]— €. Although the theory is free in the
UV region, there is a nontrivial IR stable fixed point et
=1/N. (Notice that the quartic interactions, even when
present, cannot appear fa to the leading order in largd as

a consequence of the Ward-Takahashi identity.

Next, we want to consider the interplay of the chasge
and the quartic coupling, and in particular to examine the
influence of a weak charge on the valuegef One expects
the effect of the gauge field o, to be

dg _
dinb

to the leading order i and 1N. In particular, 84(g=0)

=0 even where# 0, since otherwise it would be possible to
generatethe CSB interaction in the chirally symmetric
theory. Sog=0 is alwaysa fixed point. Since at the fixed
point e2=1/N, decreasing\ is the same as increasing the
charge in Eq(13). Since the factor in front of the last term is

g- g+ (const)e’g, (13)
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FIG. 1. The phase diagram in the interaction-charge plane, for
the chiral symmetry breaking interaction. The value of the charge is
e?=1/N. N, is a continuous function of the symmetry breaking
interaction, as a consequence of the existence of the fixed point at
g=0 at any charge.

expected to be positivi@s it indeed turns out to be the case
decreasindN will reduce the absolute value of the nontrivial
critical couplingg-, until it eventually merges with the trivial
fixed point, permanently located @ 0. There will therefore
exist a critical chargeﬁzl/Nco, above which arinfinitesi-

mal symmetry breaking interaction suffices to cause the run-
away flow ofg. We identify this point with thespontaneous
chiral symmetry breaking in pure QEDThe phase diagram
with this structure has been depicted in Fig 1.

WhenN <= the terms with an expliciN dependence in
By such agy®/N, should also be included. These terms may
be understood as contributing to theNL¢orrections taN¢
in the following way. One can expand the critical charge
(corresponding to the double root gf atg=0) in powers of
1/N as

(14)
0

as

Since €2=1/Ng+O(1/N%) from S, this effectively gener-
ates then the IN expansion foNg.
One may analogously consider the CSP interaction

(NMN)(Wy5c¥)?, which when alone leads to the dynamically

generated mage~ (¥ y35¥) for A <-1, in theN— oo limit.

In presence of the charge, however, there is a crucial differ-
ence between thg, andg,. Since the CSP interaction term
has the same full chiral symmetry as the pure QHihite
charge may, and in fact doegeneratethe coupling\. This
manifests itself as the* contribution in,, which will now
take the form

dA

-\ —\%+ (const)eé®\ + (const)e*.  (15)

dinb

With the last term, howeven =0 is not a fixed point any
longer. Further, the sign of the# term turns out to bgosi-
tive, so that the critical coupling actuallincreaseswith
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(a) (CSB) (CSP)
i k j
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i k /
(b) (CSB) (CSB)
i K j j i (@ , .
FIG. 3. Diagrams contributing to the renormalized couplings to
A B . the leading order in IM.
i k /
(c) (CSP) (CSP) Theorem II: There are no-\e? or ~\'€? terms inf3, or

FIG. 2. Particle-hole diagrams to the leading order iN1/ By nor ~ge and~g’€e? terms inB, andp,., to the leading
order in 1N.
charge. We interpret the latter feature as that the spontaneous Proof: A&* and\’€” terms obey the full chiral symmetry,
dynamical generation of the chiral symmetry preservingand thus cannot generate a CSB interaction. To prove the
mass in pure QERis not possible. This would be in agree- equivalent statement for the CSB couplings, we notice that to

ment with conclusions of the earlier studiég? the leading order in IM the g&* andg'e” terms differ from
the Ne? and \'€? terms by a singley;s matrix, and thus
IV. RG FOR CSB INTERACTIONS AND THE VALUE necessarily break the chiral symmetry. They therefore cannot
OF Ngo generate a CSP coupling.

The previous theorems allow us to significantly reduce the
number of relevant Feynman diagrams. The straightforward
order in 1N, however, the calculation simplifies consider- calculgtlon of the_ diagrams in Figs. 3 and 4 _Ieao_ls to the
ably. In the following two theorems we show that tie fpllowmg B functions for the symmetry breaking interac-
functions for the CSB and CSP interactions are completel!Ons:
decoupled in this limit. . ' de?

Theorem |: To the leading order in IN and for e=0, m=ez—Ne4,
different 8 functions decouple.

Proof: Only particle-hole diagrams, as in Fig. 2 contribute

In general, the3 functions for all four quartic interactions
will be coupled and the flow is nontrivial. To the leading

:g leading order in largd&l. Such diagrams are proportional d(ljr?b = —g-g?+4e%g + 187G, (18)
Oads - f g THCAG(ATEG(®) = TH(TAl'e).  (16) do:g’b =g +g?+ %ezg,

Here,I'y andI'g's are the matrices in the kernel of the qua-

dratic form accompanying eithey, or gg, with conveniently rescaled parameters

TaTg e {1,,},”,,)/35,)/#,735}. (17) 4gA/7TZ~> 0, 4g’A/(37TZ) —4q, Zez/(?ﬂTZA) — e
It is easy to see that these diagrams are zero uglesgg. (19)
For diagrams that mix CSB and CSP interactions in Fig),2 Note that the coupling’ becomes generated lgyande even
Eqg. (16) contains the trace of an odd numberpMatrices if absent initially, so in principle it must be included into the
and thus yields zero. For the CSB—CSB or CSP—-CSP diaanalysis. A notable feature of the previg8unctions is also
grams in Figs. @) and Zc), the identities Tty,y,)=46,,
and Ty, y3s)=0, imply that all the mixing terms are zero
unlessu=v, i.e., go=0g.

So, to the leading order, the coupling between different
quartic interactions in th@ functions can only be mediated
through charge. One may easily see, however, that the sym- )
metry requires that thg functions for the CSB and CSP
couplings still remain decoupled. We will state it in the form  FIG. 4. Diagram contributing to the wave function
of the following theorem: renormalization.

184519-4



CHIRAL SYMMETRY BREAKING IN THREE-... PHYSICAL REVIEW B 71, 184519(2005

1.4} . <
12} A : |
; | >
Y
04l 1
02} ; ; |
or S : BB t
02 . . ; . ; . . FIG. 6. The diagrams that give term in 3,.
5 1 05 0 05 1 15 2 25

-9
FIG. 5. The RG flow(dashed linesin the plane of the two symmetry. Although somewhat artificial from the point of

symmetry breaking interactionsandg’ for N=c. Full lines mark view of the effective theory for underdoped cuprates, this

the evolution of the four fixed points with decreaseNof exercise underlines the important role of symmetry in the
phase diagram. The diagrams are still the same as in the CSB
their independence on the gauge-fixing paramétahis de- case, with the addition of th.e two diagrams in Fig. 6. These
rives from the exact cancellation between the gaugepew termsgeneratethe coupling, and thus change the evo-
. P lution of the flow diagram withN in an important way, as
dependent part of the diagrams in Fig. 3 and the wave func-_ . : . . . S
tion renormalization factoZ (Fig. 4): mentioned in the introduction and depicted in Fig. 7. We

obtain the followinggB functions for the couplings, \’, and

Z:1+(§—§)ezln b. (20)
, , de
The flow diagram on thg—-g’ plane forN=o (e?=0) is dnb =&~ N¢',
given in Fig. 5. FoiN< o, the fixed point value of the charge n
becomese?=1/N, and the locations of all the fixed points,
except the trivial one at the origin, shift in the directions as d\
indicated. The point at which the RG trajectory that starts anb- A =N+ 4e\ + 182\ + ON€', (23)
at the purely repulsive fixed poinfinitially at (-1,1)]
and terminates at the “Gross-Neveu” fixed pdinitially at
(-1,0] intersects they axis determines the location of the d\’! 2
phase boundary in thg—€? (g’ =0) plane. At small charge b N N2+ 5927\-
we obtain such a phase boundary at

g=-1+4e?+0(e%, (21)  Notice that the flow equations for the CSB and CSP cases are
identical, apart from the positive* term. This term, how-
ever, prevents the fixed point that was located-dt,0) for
1 1, 2 N=o0 to ever merge with the Gaussian fixed point, and con-
g=- E(é - 92) +0 (E — € ) . (22 sequently, no spontaneous generation of the chiral symmetry
preserving mass should be allowed in pure QED
Numerical solution at a general coupling is given at Fig. 1.
The critical point in pure QER N, is determined by the 1.4
value of N for which Gross-Neveu fixed point reaches the
origin. For N>N, the flow beginning at an infinitesimal
negativeg andg’ =0 then runs away to infinity. To the lead- L et
ing order in 1N, this criterion yieldsN,=6. At N=N, the 08l
other two nontrivial fixed points are still at finite values. The "<
role of g’ is therefore only to modify the phase boundary in 9871
the g—€? plane and the value dfl,, quantitatively, but not 04l
qualitatively. Neglecting the flow off’ entirely would lead,
for example, td\=4. This would correspond to the value at
which the dimension of the coupling at the charged fixed ) TR ——
point changes sign.

whereas at lowg

1.2r

0.2f

V. RG FOR CSP INTERACTIONS

We now turn to the analysis of the theory in E§) with FIG. 7. The evolution of the chiral symmetry preserving fixed
g=g'=0, i.e., when the quartic terms respect the full chiralpoints in thex—\’ plane with the increase of charge.
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VI. CONCLUSION 1N2—1

In conclusion, by reformulating the problem of dynamical N5ab5cd+ 2 > Naphcd = GadSeo- (A1)
mass generation in QEDwith four-fermion interactions in “
terms of the renormalization group flows, we found that the As the special case of (@), using Pauli matrices, Eg.
critical number of fermions\. is a continuous function of (A1) simplifies to
the chiral symmetry breaking interaction. By taking the limit
of vanishing interactions, we estimated tiN=6 in pure SapOed+ > O g0 ed= 28adOch- (A2)
QED;. Our analysis of the chiral symmetry preserving inter- a
actions suggests that the chiral symmetry preserving ma
cannot become dynamically generated in pure QED

The result that theN, may depend on an infinitesimal
symmetry breaking interaction should be contrasted with th
previous studies of Schwinger-Dyson equations in QED
with symmetry preserving interactiofithe “gauged Nambu- X
Jona-Lasinio mode)’ There, theN, was found to depend on W= ( i )
the quartic interaction only if the latter is larger than a certain ¢
value?® In the RG language this would correspond to thelt is then possible to apply the previous completeness rela-
merger of the two fixed points, like the Gaussian and thejons to the quartic terms of the form
“Gross-Neveu” fixed points in our case, atfiaite value
of the coupling. In fact, we find that occurring in Eq&3) > OENXL Ol (A4)
for CSP interactions: the “Gaussian” fixed pojititially at a
(0,0)] and the “Thirring” fixed point[initially at (0,1)] for
N=4.83 meet a(1.78,0.43. For N>4.83, both couplings
become complex, and the flow that begins at the \ird® is
always toward infinite\’. It is tempting to identify this run-
away flow with the phase with broken chiral symmetry and
the dynamically generated mass, as proposed in Ref. 21. We 1\ - -
refrain from doing so, however, since the runaway flow for (1 +N>(XX)2+ 2 (xo0?+ 2 OA*x)?=0, (A5)
N >1 ate=\=0 (the “Thirring model) actually does not “ @

correspondi to the broken symmetry pha'\se,.as one can eas{hhere we have suppressed both the spinor and fldaage
check by directly solving the gap equation in this casél at N) indices for convenience, and replackdwith 2N, since

=0, The transition in the Thirring model occurs only at the QED; is U(2N) symmetric. Similarly, beginning with the
order of 1N,?? and so we suspect that the above runawa

Youarti
flow of A" may be an artifact of thBl= limit. This issue is quartic term
left for future studies. —iya iRy @ |
N ok AT X ) » A6

Finally, although our scheme provides a systematic way %(Xa i17ap¥xo) (Xehdcoxa) (A6)
of computingNy, for example, it becomes rapidly compli- ) )
cated. To the next order in I/ CSP and CSB coupling it is easy to derive the other ident#y,
constants mix in the8 functions. Since the couplings and 1 1
N\ get ge_nerated by the charge, and then mix 'ﬁ&o one > (y)\agﬂx)u > 0N Y2+ = (YUMX)ZJr (4 + _)
necessarily has to track the flow of all four couplings. an @ N*, N

%ﬁsing the previous relations, one can derive the requisite
linear relationship between different quartic terms. First, it is
convenient to represent th&l4component spinow in terms

%f 2N-component ones as

(A3)

where y' stands for bothy' and ¢'. (The spinor index is
indicated by subscripts Applying Eq. (A2) for spinor de-

grees of freedom and E@A1) for flavor degrees of freedom,
one ends up with the following identity

X(xx)?=0. (A7)
The previous identities applied to a(2N)-symmetric

This work was supported by NSERC of Canada. K.K.theory with theS;, of the form
thanks B. Seradjeh for helpful discussions.
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APPENDIX: FIERZ IDENTITIES AND GENERALITY leave only two of the terms as independ_ent. Noticing that
OF THE INTERACTION LAGRANGIAN the Eq.(A8) is equivalent to the interaction term written

in 4N-component representatiorg,|A[?+g,|B,,|>+gs|C,,|?

In this appendix, we will construct the linear relationship +g,|C,4?, we can see that our choice 6f, and C;5 as the
between the quartic terms invariant under a unitafN\)lU most general CSP quartic terms is justified.
group, known as Fierz identities. These are the direct conse- The CSB case is not very different. One can consider the
guences of the completeness relation for the generators of tlieteraction of the form in Eq(A8) for each UN) sector
symmetry group. separately(i.e., y and ¢). Repeating the same argument

Defining T(A-B) as the inner product between matrides would reduce the number of independent interaction cou-
andB, we write down the completeness relation for the basiglings in each sector to two, so that the overall number of
constructed out of generators of dNJ group,{\®,1}, as independent couplings will be four, as assumed in By.
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