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We explore the physical properties of a unified microscopic theory for the coexistence of superconductivity
and charge-density wavéSDWs) in two-dimensional transition-metal dichalcogenides. In the case of particle-
hole symmetry, the elementary particles are Dirac fermions at the nodes of the charge density wave gap. When
particle-hole symmetry is broken, electr@mle) pockets are formed around the Fermi surface. The supercon-
ducting ground state emerges from the pairing of nodal quasiparticles mediated by acoustic phonons via a
piezoelectric coupling. We calculate several properties irstivave superconducting phase, including specific
heat, ultrasound absorption, nuclear magnetic relaxahdhR), and thermal and optical conductivities. In the
case with particle-hole symmetry, the specific-heat jump at the transition deviates strongly from ordinary
superconductors. The NMR response shows an anomalous anisotropy due to the broken time-reversal symme-
try of the superconducting gap, induced by the triple CDW state. The loss of the lattice inversion center in the
CDW phase leads to anomalous coherence factors in the optical conductivity and to the appearance of an
absorption edge at the optical gap energy. In addition, optical and thermal conductivities display anomalous
peaks in the infrared when particle-hole symmetry is broken.
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[. INTRODUCTION nested Fermi surfaces. In 2D systems, the nesting is not per-

The quasi-two-dimensiondPD) transition-metal dichal- fect and some parts of the Fermi surface may not be gaped.
cogenides(TMD) 2H-TaSe, 2H-TaS, and 2H-NbSg are Earyly band structure calculqtlo’r"?sndmated that thé" cen-
layered compounds whesawave superconductivity coexists t€réd sheeté) are nested with th centered oneS,) by
with a charge-density wavéCDW)L2 at low temperatures, the Q; (i=1,2,3 wave vectors of the triple-CDWsee Fig.
and whose transport properties are highly anisotropic in thd). The value of the CDW wave-vectojQ;|~ 5TK, mea-
high temperature CDW phageThere is vast literature re- sured by neutron diffractidh’? and some recent scanning-
porting anomalous effects in the CDW phase, including nontunneling microscopySTM) experiment§-® confirm the
linear Hall effect, anomalous impurity effects in the super-plausibility of a nesting scenario. An alternative theory pro-
conducting(SC) phasé, stripe phase3and different regimes posed by Rice and Scéttis based in a Fermi-surface-
of commensurabilit§. Recent angle-resolved photoemissionindependent CDW mechanism, where the CDW wave vec-
experiments(ARPES reveal that the quasiparticles of the tors connect the saddle pointsdicated in Fig. 1, around
TaSe crystal have a non-Fermi-liquid lifetimeThis sce- %FK) of the transition metatl bands, generating a logarith-
nario becomes a little more exciting with the verification thatmic divergence in the electronic susceptibility. However, the
some of the TMD properties, such as the linear growth of thesaddle-point energy in Nbges too large (~50 meV) in
normal resistivity with temperatufeand the strong aniso- comparison to the CDW ordering thermal eneksfcpw
tropy in the in-plane and out-of-plane transport are similar to~3 meV to allow a saddle-point driven instabilfy.In
the same properties in the high-temperature superconductofaSe, however, ARPES has observed an extended saddle
(HTc). HTc do not show a CDW gap, butcawave pseudo- band alongI'K. This band is nearly flat and closer to the
gap coexisting with the superconducting phase. In bothFermi energy than the band calculations prediétgdAs the
cases, the transport and thermodynamic properties amaddle points are not well defined in this case, it is question-
weakly dependent on the application of external fields in theable to justify the CDW wave-vector measured with neutrons
normal/pseudogap phase, and strongly dependent on themliy some mechanism related to special parts of the saddle
the SC phas®.Furthermore, the application of pressure in bands. More experimental studies are required to elucidate
TMD favors the superconductivity in a broad range and supthis point.
presses the CDW pha8en close analogy with the HTc Although these arguments seem to rule out at least a con-
phase diagram temperature vs doping level. In contrast to theentional saddle-point mechanism, a consensus on the origin
HTc, however, the TMD are very clean crystals. The anomaef the CDW instability has not been reached. STM scans at
lous TMD properties are sample independent and can help #.2 K in TaSg, TaS,, and NbSg show that the amplitude of
clarify the physics behind a whole class of exotic low-the CDW gap isAcpw~ 80, 50, and 34 meV, respectivef.
dimensional superconductors. The ability of ARPES to measure the SC gAp~1 meV

The interpretation of the experimental data in TMD is, <Acpw in NbSe, combined with the complete failure of
however, still very controversial. Within the Peierls theory, ARPES to detect traces of the CDW gap in the Brillouin
the CDW gap formation in 1D systems is usually due tozone of TaSgand NbSeg (Refs. 7 and 2llwere interpreted
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point of view, while the usual electron-phonon coupling is
irrelevant under the R& Based on dight-binding descrip-
tion of the electronic orbital® and on the assumption of
imperfect nesting between different Fermi surface sheets, the
model of Ref.?* proposes af-wave symmetry CDW gap
with lobes along the saddle-point directions and six nodes at
the points where the gap is zetsee Fig. 1L The proposed
CDW gap is odd in the Brillouin zone due to the symmetry
of the electron-phonon couplirfd,and due to the absence of
the inversion symmetry in the CDW phase, changing sign in
each node. The superconductivity emerges from Cooper pair-
ing between the Dirac fermions mediated by acoustic
phonons via a piezoelectric coupling. We propose that the
Fermi surface is fully gaped by the superposition of the
CDW and thes-wave superconducting order parameters.
Q, This model is able to correctly explain some of the anoma-
lous properties of the TMD such as the marginal quasiparti-
cles lifetime in TaSg the dependence of the normal-SC
Q phase transition with the lattice parameters and the metallic
1 behavior of the resistivity in the CDW pha&e.

FIG. 1. Schematic representation of the TMD Fermi surface. 1 N€ geometry of the proposed CDW gap is similar to the
TheT centered shed§) is nested with th& centered onets,) by ~ Brillouin zone of graphite, where the nodes represent the
the CDW wave vectorg;. A CDW gap develops in the two sheets, PoInts where the conduction and valenedands cross each
except in the nodal points, indicated by the black filled circles. Thedther?” In contrast to graphite, the lattice inversion symme-
empty circles are the saddle points. The thick solid line around théry is broken in the distorted phase and piezoelectricity can
S sheet is the proposed CDW gap. The dashed lines indicate tharise. As it is usually observed in insulators since metals
nodes connected b®;. screen the polarization fields, one may ask, “is it actually

possible to find piezoelectricity in a superconductor?” To an-
as an evidence that the Fermi surface is weakly covered bgwer this question, we should first consider that in a nodal
the CDW. We observe that the photoemission results seem juid the density of state€OS) goes to zero in the nodes,
be in contradiction with the STM data, and cannot explainand therefore the electrons cannot effectively screen electric
the non-Fermi-liquid transport in the TaSaystal. One pos- fields. Hence, one can conciliate a metallic the@vith gap-
sibility is that the ARPES data are obscured by the strongess quasiparticle excitationsvith the piezoelectricity. The
dependence of the CDW gap with the directions of the Bril-rigorous vanishing of the DOS in the Fermi surface, how-
louin zone combined with the formation of pockets in theever, is not essential for the piezoelectricity to appear. It is
points of the Fermi surface wher& (k)=0 (ma{A.(k)]  sufficient to consider that the electrons of low-lying momen-
=Acpw). Another possibility is that the ARPES electronic tum (for example, in a small pocket around the ngdase
dipole matrix elements vanish for certain states in the CDW'slow” enough to couple with the acoustic phonons of the
phase due to the broken spacial inversion symmétis-  polarized lattice.
tected in neutron scatterijig forbidding the observation of If the piezoelectricity and the metallic character are not
some bands. mutually excluding, it remains a question of how the polar-

The strong resemblance of the normal CDW phase resigzation vector affects the phase coherence of the condensate.
tivity of TaSe, with the HTE2 and the anomalous quasipar- The answer to this second question can be found in the col-
ticle lifetime decay, given by the inverse of the imaginary lective modes. The electromagnetic gauge invariance of the
part of the electronic self-energim (kg w) = 7-51+ blw|, in-  SC state is provided by the longitudinal response of the col-
dicates that a marginal Fermi liquidFL) theory’® should lective excitations, which screen the electrons through a
be developed as the basis of a minimal model unifying thecloud of virtual plasmong Only the plasmons respond to
CDW and SC phases in TaS&he experimental verification the longitudinal fields, and give rise to screening. Since the
that kgTcpw<<Acpw for all the TMD crystals(in TaSe for  piezoelectricity involves electric fields only, it does not affect
exampleKkgTcpw~ 120 K=12 meV gives a good indication the phase coherence of the electrons. In a previous #Work,
that a strong-coupling CDW theory is required. we have shown by means of a semiclassical calculation that

One of us(A.H.C.N)?* has recently proposed a unified that piezoelectricity is not only consistent with the stability
picture for the CDW and SC phases where the elementargf the condensate as it is possibly behind the quantum criti-
particles are Dirac fermions that are created in the regioral points (QCP3 observed experimentally in the TaSe
where the CDW gap vanishes, leading to the generation of phase diagram, separating tie=s0 commensurate phases
nodal liquid. According to neutron-diffraction studies, the in- from the stripe phase as a function of the applied pressure.
version center of the crystal is lost in the CDW ph#&e, The organization of the paper is as follows. In Sec. Il we
allowing for the possibility of piezoelectric effects.In a sys- introduce the minimal model Hamiltonian of theCDW and
tem with nodal quasiparticles, the piezoelectric coupling is &5C phase. In Sec. Il we derive the SC gap equation. Section
marginal coupling from the renormalization groyRG) IV is devoted to the thermodynamics of the SC phase, while
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in Sec. V we calculate the acoustic attenuation rate and the
nuclear magnetic relaxatiofNMR) response. In Sec. VI we
calculate the optical and thermal conductivities, in Sec. VII
we discuss the Meissner effect. Finally, in Sec. VIII we
present our conclusions.

Sy

II. THE HAMILTONIAN

The nodal system is composed of two subsystems define:
by the nodes of the CDW state which are connected by the
triple-CDW wave vector®); (i=1,2,3. It is convenient to
introduce the spinors

C Do o(K) FIG. 2. Nesting condition in the two shee$ and S, of the
v, (k) :( ko ) = ( o >, TMD Fermi surface. The momentuk outsideS is mapped by a
' CrrQo i o(K) CDW wave vector displacement intotQ, inside S,. As the free

- electron dispersiorg, is odd with respect to the Fermi surface
where+, — indicate the two nodal spaces, aniqn(cky(,) are P ) P

) e i sheets, we have,=—e¢.q.
creation(annihilation operators for electrons with momen-
tum k and spinc=1,|. The electronic Hamiltonian in the

normal CDW phase is made of two terms ons which follow the 2D massless Dirac Hamiltonian, simi-

larly to the two-band electronic description of grapHite.
Hepw=He+ Hee. The broken lattice inversion symmetry due to the CDW
gap allows piezoelectricity in the crystal. We propose that the
electron-phonon coupling is piezoelectric, giving rise to a
pairing of Dirac fermions in the singlet state through the
triple-CDW superstructure. In contrast to the usual Cooper
pairs, whose electrons are paired across the Fermi surface,
these pairs are formed by electrons located in different nodes
:} s (ﬂ‘r_ (K) linked by a CDW wave vecto®; (see Fig. 1L The pairing

2 alao approximation consists of assuming a condensate of pairs

ab al whose center-of-mass has moment@mand zero spin. This

X[(& + eiq)mo + (6 = €k+Qi)773b]¢b,i,a(k), (1) assumption clearlyiolates the time-reversal symmetry of
the superconductor order parametédry. According to
Anderson®® the strong insensibility of the BCS supercon-
ductors to impurities is due to the tendency of electrons to be
in the state of highest possible degeneracy in the condensate,

H. is the Hamiltonian of the free electrons in the vicinity of
the nodes,

— T T
He= E [€CokCok + €k+Qng,k+QiCa,k+Qi]

K,o,

k,a,b,o,i

where 7, (v=0,1,2,3 are Pauli matrices that act in the
nodal indexes,b=4%, and¢, is the free electron dispersion.
In our convention,z, is the identity andv=1,2, 3 indexes
the x,y,z directions, respectively. The second term in the; . L i L :
A o Lo implying pairing each electron with its symmetric in spin and
Hamiltonian, He_, is the CDW exchange Hamiltonian be- PYing p g y b

. . . momentum. In such a case, the scattering channels promote
tween electrons situated in two different nodes connected by i \atween two degenerated states, keeping the sys-

Qi tem coherent. The absence of time-reversal symmetry should
Ho =S Acl coun +He, d_estroy the co_ndensate in the presence of a very small impu-
ee % ckHkoHk+Q; rity concentratior?! In the case of TMD, however, the CDW
scattering does not affect the degeneracy of the condensate
= > Agl (K7 (K, (2)  as far as the Dirac fermion®; living in different nodal sub-
ikoab spaces indexed by the three CDW directiong , 2, 3remain

where A, is the CDW gap, with odd parity in the nodal decoupled. For this reason, we may drop thaedex from
space due to the loss of the lattice inversion symmetry. Thi§OW on. _ L
term arises from the scattering of the electronic wave func-, After tracing the phonons, the piezoelectric pair interac-
tion by the CDW periodic superstructure. tion has the forrff

Applying thenestingconditione, + €,.o=0 (see Fig. 2in

Eqg. (1), and taking the long-wavelength, low-energy limit, Ho = — ab_cd t yul (- k
the Hamiltonian in the CDW phase reads, P gk}k:, a’b%’d 72172 Y (), (= k)
Hopw= 2 Wi (K)[vek, 73+ vskyul Wi o) (3) X, (K )y (K,
k,o,i

wherek, andk; are the momentum components in the nor-whereg is the piezoelectric coupling constant. The choice of
mal and parallel directions to the Fermi surface, respectivelythe antisymmetric Pauli matrix, incorporates the broken
ve is the Fermi surface velocity, and =dA./dk;. The CDW  symmetry of the superconductor gap. In the mean-field ap-
elementary excitations around the nodes are therefore fermproximation, the pairing Hamiltonian reads,
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A
Hp= 2 X [AL (K) 3% (- k) + H.c] + ES’
k ab

where

Ag==92 2 (W (K) 73, (- K))

k ab

is the complex superconductor order parameter.

(4)

5
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So far, we have discussed the problem with particle-hole
symmetry, that is, the chemical potentjalis exactly at the
Dirac point («=0). In order to include the situation where
particle-hole symmetry is broken, we have added to(Bpa
chemical potential term

H,=— 1 ¢l (K aolK). (6)

vekimeV)

This term introduces an electronig.>0) or hole (u<0)

pocket around the Dirac point producing a finite density of FIG. 3. Dirac fermions dispersion in the pocket with the opening

states. of the SC gap for\,u|=gAS:1 meV. Each band has two pocket
In order to diagonalize the problem, it is convenient tobranches indicated by the dotted and thick solid lines. The thin solid

extend the spinorial notation to the Nambu space

lines with the vertex abovébelow) the Fermi energ¥=0 represent
the holelike(particlelike) branches of the Dirac cone in the normal

i 1(K) CDW phase.
v 2| P
(k) = g (k) | (7) except for a constant equal t&2u, integrated in the vol-
T ! K ume of the Dirac cone. The optical gap of the bands in the
Y-y (=) SC phase is éM2+A§, as one can see from Fig. 3.

with k defined with respect to the nodes. We introduce a
new set of Pauli matrices, which operates in the space

(Tk, L —k). Denoting7, 7, as the tensor product between the To calculate th i istenl the standard
Nambu and nodal spaces, it is not difficult to see that the full o cajculate e, gap seli-consistently, we use the standar
Hamiltonian is written as many-body Green’s function method. Since the Hamiltonian

(8) is in the quadratic fornH==, V1@V, its corresponding
H=2 WT(K)[vek, 773+ vakimom + Asmim = wrsmol W (K).
k

Ill. GAP EQUATION

Green function in & 4 space is

(8) G(k,iw,) =- J dren™(T[P¥T]) = (i, — @) 72,
0

Notice that the gauge symmetry of the problefa- y€'?, _ _ _ o .
and A€??— A, is broken at the mean-field level. With this WhereT_ is the time-ordering operator in imaginary time,
notation, the SC order parameter is given by are the fermionic Matsubara frequencigs; 1/(kgT) is the
inverse of temperaturdg is the Boltzmann constant, and
A== g2 (W'(K) 1 7,¥ (K)). (9)
k

W =vpTo7 K+ Agmy 75— ur3mo (1)

=veky 73tvak 7. EX-
ploring the anticommutative property of the Pauli matrices,
the Green function which is systematically used in our cal-
culation is

The diagonalization of the Hamiltonian above leads to fourig tne dispersion tensor with7-
branches of excitations

+E ., = * \(opk® w)?+ A2,

(10)

wherek =K, +(v,/vp)K, is the in-plane anisotropic momen-
tum, with k=|k|. In the normal phase, we identify two

branches of excitationave assumew>0):

a0 |+vek+u (holelike branch,
iEk,i,u—>

+yek— u (particlelike branch,

2, E/2+ 2 > k—
a’nz k2 szFT32 12
[wn + Ek,,u][wn + Ek,—,u]

GlwnK) = = (iw + &)

where

E/2 =02k + u?+A2= Eﬁ‘i# - ZUF(i,LL)E

Noting that (¥!(k)W4(k)) is the retarded part of the

which are related to holelike and particlelike pockets aroundsreen functionGg,(k,7— 0.), we see from Eq(9) that the
the CDW nodegfor <0, the nomenclature is exchanged amplitude of the mean-field gap is written in the Nambu
The two branches are physically equivalent to each othepinorial notation as
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oo 4 L
g <
ZAS:—EE > TrimnGlwn k)],
kK wp=—»
Evaluating the trace yields 8t
A Ak E As

2AS=gULSE f dk tanf(,B k"”‘), (13 o 27

205 g=21Jo Bkou 2

whereA is a momentum cutoff associated with the lineariza-
tion of the dispersion close to the CDW nodes.

For ©=0, the gap equation is rather simple and reads ——/
0

2
AS(T,g,u=O)=Ecosh‘l(coslimmvFB/gc]e‘"”A”FB’g), -2 °h(9)1 2 3 4

(14) FIG. 4. Scaling of the zero temperature gap equation vs the
whereg,=2mv,/ A is the zero-temperature critical coupling coupling constant parametatg) = (g;*~g™)/| ul.
constant. In fact,
most all the applications, the results are not seriously af-
A(T=0,0,u=0)= ZWUAUFg;l<1 - g_°> i (15)  fected by the details of the cutoff if the gaj is sufficiently
small in comparison ta. The T=0 gap equation becomes

Notice that for g<g., we find A(T=0,9<g.,u=0)=0.

Hence, theu=0 gap equation has a quantum critical point 2A = %ASE S”% K

(QCB), indicating that superconductivity occurs only above a VA o=x1do 2TE o,

minimal couplingg.. This is a general property of the nodal >

liquid, due to the absence of the background Fermisea. Ina _ __ 9 Al 20 - 2VAZ+ 2= uin VAS+Hu —u
Fermi liquid (where the Fermi surface is large in comparison 270U, Vs TR H VAZ+ 24+ 4 :

to all other energy scalgsthe Fermi sea is unstable to the 17
formation of Cooper pairs between two electrons mediated a7

by an attractive potential, even for infinitesimal couplfdg. We rescale all the quantities by defining A¢/|u| and
In this case, the Pauli exclusion principle of the background

electrons plays the role of the interaction, making the con- g;l—g‘l
densate stable even in the weak coupling Ii#aiT.he zero h(g) = 2mvevy |
temperature gapl5) equals the energy cutoff=vgA in the
g—o° limit. The T=0 scale invariant equation is
; / 2 _
A. Zero-temperature analysis Flxh(g)] = T+ } In( \"1 +X 1) —h(g)=0.
To see how the pocket affects the QCP whpng, we 2 \\V1+x2+1

analyze the gap equation in the zero-temperature limit. At (18)
this point, we introduce a more suitable cutoff, given by the
momentas, that define the surfaces of constant energy in thalVe see in Fig. 4 that Eq18) has two distinct coupling
Dirac cone regimes(i) the strong-coupling sectg> g., where the mar-
ginal physics develops, witHu|<A(0,9,u) for g>g.

o = UEA?= (ugs; + ) + Ag= const, (16)  (strong-coupling limit and (ii) the weak-coupling sectay
This new definition of the cutoffbasically replacingh by ~ <dc, Where the energy scale of the pocket is large in com-
s,, With o=1) is convenient because it simplifies the integra-parison to the gafi.e., |u/>A4(0,9, »)] wheng/g.— 0.
tion, allowing us to find simple analytical expressions for the In the latter, the system flows in the direction of a Fermi
gap. This kind of approximation is fairly reasonable, sinceliquid in the weak-coupling limit(g<g.), while in the
the results of this model are not to be taken literally when former the nodes are well defined fge>g., resulting in a
andAg are comparable to the energy cutoff of the caneén nodal liquid description. We notice that the quasiparticle
which case the contribution of the high-energy states canngiroperties are strongly affected by the coupling consgant
be neglected. On the other hand, we should be warned by thwhich separates the marginal Fermi liquilFL) sector
fact that this new momentum cutcdf doesnot conserve the from the “Fermi-liquid” one, where the pocket plays the role
number of states of the normal phase. When calculating theef the Fermi surface, raising the density of states in the
modynamic functions, the correct cutoff i, which cor-  nodes.
rectly maps the volume of the Dirac cone and avoids prob- For convenience, we denote the zero-temperature gap
lems such as losing states in the SC phase, which woulds(0,9,u) by Ag, from now on. In the strong-coupling limit
certainly have an effect in the condensation energy. For alu|/Aq,<1), we may write Eq(17) as

184509-5



UCHOA, CABRERA, AND CASTRO NETO PHYSICAL REVIEW Br1, 184509(2005

05

04t
04
03}
A 03 A
a a
02t
02
0.1 01+t
0 0
(a)
FIG. 5. Dependence of the zero temperature (@&pmalized by 0.0

the cutoff a) with the coupling constang. Solid lines: numeric
solution of the gap equatiofi8); dotted: strong coupling approxi-
mation (|u|<Ao,); dashed: weak coupling ongu|>A,,). We
have sefu|/a=0, 0.1, and 0.3 from the bottom to the top. Notice 0.15
that the QCP aju=0 is suppressed by the pocket formatigp|

>0). A
01
2
1= (A i)
TTUAU

AVF s 0.05
whose solution is \
9>0c A — \l

Ag, ——— 2L +\1+2u2AY), (19) 0 . :
2 0.02 004 006 008 01 012 0.14

T/a

whereAy=A(T=0,g,u=0) is given by Eq.(15). In the op- !
posite IimitAOM/|,u <1 in the weak-coupling sector, we see  FIG. 6. Top: SC gap\(T,g, ) vs the coupling constarn/gL.
that Eq.(18) can be expanded in leading orderningiving Solid lines: numeric solution of the gap equatid®); dotted lines:
Y0 strong coupling solution(analytig. From left to right: kgT/«

F[x,h(g)] 1+ |n<§) -h(g) =0.005,0.1,0.2 andju|/«=0.2,0.2,0.1, respectively. Bottom: SC
2 gap vs temperature. The scales are normalized by the energy cutoff

a of the Dirac cone. Dotted line(|u|/@=0.06 g/g.=1.2); solid:

As g'-9g" (1l @=0,g/ge=1.2); dashed{||/ a=0.06 g/ge=1.1).
=1+Inl D | - 2mvpuy,——— — =0,
2l |l 2
yielding COSHBAJ/2)e B 1antpAJ2)I(4Ag)
o 11y = coshimu yveBlgc) e ™A, (21)
Aoy 2| | €011 = 2| | @2orvalGe g DIl 1

(200 The quantity tanfBA¢/2]/ A changes very little with3 in

the whole temperature interval. In a first approximation, we
can obtain the analytical expression of the low-temperature
irdap by replacing the gap inside the exponential above by its
zero-temperature valug,,. This substitution leads to:

Although the strong-coupling approximation is rigorously

coupling range of their respective sectéas shown in Fig.
5) provided thatu/« is small. However, to find sensible
results, one should consider that the valid coupling range of 2
the theory is limited not too far above the critical coupling A(T,g,1) ~ — cosh Y cosi v ,veB/9.)
e in order to keep the ratid,,/a small (see Fig. 5. B
~7m0 AUEBIg it ?B tant(BA g, /2)/(4Ag )
B. Finite temperature X € Tatr e o o],
Let us return to Eq(13). After some algebraic manipula-
tion (see the details in Appendix)Athe gap equation in the valid at strong coupling for smajl./ a. Close to the phase
strong-coupling regime assumes the form transition, Eq.(13) yields
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|80 IS 1/2
A(T) —— -1/2
1( 7403 1 12
|55 | 02 |uliAg, > 1,
Bl 87  2B%u 0.06
22
0.04
wheret=(T,-T)/T, is the reduced temperature afiis the
Zeta function. The critical temperature is also calculated 0.02
from the gap Eq(13) in the A;— 0 limit, giving ' 0 05 1
T,
°% 0.2 0.4 0.6 0.8 1
[Ao+VAS+ 2 In 4], |ul/Ag, <1, ' Crme '

2kgIn4

FIG. 7. Solid line: critical fieldH, dependence with tempera-
ture, in units ofy(«?/g) for u=0 andg/g.=1.1; dotted: empirical
law HC(O)[l—TZITg]. The difference between the two curves is

(23)  shown in the inset.

%yea(l_gc/g)ﬂ_l_l, |ILL|/AOIJ— > 1,
B

where Iny~0.577 is the Euler constant. In the particle-hole 1
symmetric caséu=0), we haveT,=Ay/(kgIn 4) and A(T Qo(T) = - EE In[2 + 2 cosiBEy ;,.)]
—T¢,9,0=2A,tY?/In 2 (see Appendix A for detai)s ko .

We see that the existence of a pocket suppresses the QCP = —
(T=0) separating the normal and SC pha&e= Fig. 5. This =" WBUAZ. fo dkkIn[2 +2 COSK"BEK’UM)]'
effect is due to the establishment of the background Fermi
sea, which stabilizes the Cooper pairs for an arbitrarily small (24

coupling. The thermal effect on the gap recovers the paray () is the thermodynamic potential in the normal phase, the
metric phase transition with the coupling constgnas dis- energy of condensatioﬁn(O)—QO(0)=H§(O)/(87T) is given
played in Fig. 6(top) by noting the presence of a minimal j, tarms of the zero-temperature critical fihtl, shown in
coupling [say, go(T, ), with go(0,0)=gc], below which  giq 7 The internal energ=E,+A2/g is given by
AJg<gp,)=0. The explanation can be found in the strong s
dependence of the critical temperatiigwith g, as shown in EoT)= > YEk o
Fig. 6 (bottom). At a given nonzero temperatufea minimal k.0
coupling is required to satisfy.(g>goy) >T. Ve

A [
> dkkEk,Uﬂtan%%’i). (25)

TUA ¢ JO 2

V. THERMODYNAMICS wheren)=(e”&.ox+1)71 is the Fermi-Dirac distribution in-

In this section, we calculate the thermodynamic functionsdexed ina, y=+1.

starting from the partition functioZ of the nodal fermions. _/According to the usual thermodynamic relations, the spe-
The partition function is defined as usual from the originalCific heat is defined by
Hamiltonian (8), written in a diagonal basis of eigenstates ds ds
indexed byk, y=+1 (for the two particle-hole branches C=T 7= Bgs (26)
o=+1, and with eigenvaluegi=+E, ,,, p
where S=(E-Q)/T=-(6Q/JT)y is the electronic entropy
7 = e B0 — e hH due to the Dirac fermions. At low temperature, the gap is
practically independent of temperature. It is easy to check
1.2 ! aa that the specific-heat dependence with temperature in this
=PI A X (nfle PR ng) limit for 4=0 is given by:
k@ =0 T<T, Ex
152 Cy—0s ! J dEE3secﬁ<@>
— B9 ASKH (1+e B rEan), v 2m0rs) s, 5
O
. . . . . A 6I(B 2_—BA
where () is the thermodynamic potential. The Hamiltonian —_— AZePls,

includes the term&ﬁ/g, in order to give the correct conden- TURUA

sation energy. The thermodynamic potenfiat )+ Aﬁ/g is  leading to the expected exponential behavior with the gap. A
given by more interesting result is related to the jump of the specific

184509-7



UCHOA, CABRERA, AND CASTRO NETO PHYSICAL REVIEW Br1, 184509(2005

A. Acoustic attenuation

The ultrasound attenuation results from the resonant ab-
sorption of the longitudinal phonons in the solfdThe ab-
sorption rate is proportional to the imaginary part of the
charge susceptibiliy

agq) =-\% limOE Im x°(q.w)] (29)

in the q—0 limit, since the phonon wavelength is much
larger than the typical electronic wavelength. This property is
connected to the superconductawherence factorswhich
basically define the probability amplitude of quasiparticle
025 05 075 1 195 15 transitions between two states represented by the pairs space
T/T. (k1,—k |).3338 These factors conserve the time reversal
- S symmetries of the interaction involved in the transition. They
FIG. 8. Specific heaCy X 1/T vs temperature for=0, in units — gre ysually divided into type I, for interactions which pre-
of kg/g. The jump occurs akgT=Ao/In 4. Dashed line: normal  gepye the time-reversal symmet@s in the electron-phonon
behavior in the absence of the SC gap. coupling and type Il when this symmetry is broken, as in the
spin-exchange interaction. The charge susceptibility is de-
heat in the normal-SC phase transition. The calculation ifined in terms of the time-ordered charge-density correlation
given in Appendix B for the weak- and strong-coupling re- function. All the correlation functions used in this article are
gimes. It results in two well defined limits: the marginal one defined in Appendix C. Using the spinor defined(#) the

(lulB.<1), charge-density operator is given by
2 2 - Pk =
2| o 2'—”4(| 4+/3c_“) =035, @)= 3 Lk~ a2 (k12
Covlr, 9403 2 o8
=2 Uik - q/2) 37 (k +q/2). (29)
where the equality holds fge=0, and the Fermi-liquid limit k et q
Acy| _ 3 1 143 (o7) We define G,=G(k+q/2,iwy+iw) and G.=G(k
Covlr 277403 1 -q/2,iw,), so that the electronic charge susceptibility reads
VT )
8w 285 1« = =
. _ X0, iw) = =Tr X GyranG-Ta7p. (30)
which recovers the BCS result fg&,|u|>1. The jump ob- K,

served in the NbSecrystaP*—3¢(AC/C,~2) is a good indi- _ _ _ _ _ _
cation in favor of a conventional Fermi liquid and BCS be- 't IS convenient to define the gapless Dirac fermions disper-
havior. In TaSg however, where the transport is marginal sion by g =vgk, and the quantitye®=\v3(k*+q?/ 4). After

and the quasiparticles are not well defined in the Landagvaluating the trace and the sum over the fermionic Matsub-
sensé& (rw<1, wherer ! is the scattering rajethe picture ara frequencies, the imaginary part of the susceptibility
can be very different. In the nodal liquid case, the specificteads:

heat jump is strongly attenuated due to the vanishing density

of stategDOS) in thf Fermi surface, resulting in the univer- Im (.o — 0) = iiJA S an(EQ )

sal constaniAC,,/C,,=0.35. The plot of the specific heat dis- €q2 a0 —1 &Egﬂ

played in Fig. 8 shows that the temperature dependence of 0

the normal CDW phase is quadratic. As the DOS is raised by « £ tou \Jr(e())zﬁ (31)
a pocket around the nodes, the jump grows in the direction of EOE‘;# ‘ a2

the BCS value of 1.43, which corresponds to the weak-

coupling limit. However, we notice that the nodes cease to bwhereE?m: V(+ a,u)2+A§, andn is the Fermi-Dirac distri-
well defined in the presence of large pockets. In this case, thieution. Replacing Eq.31) into Eq.(28), we obtain the ultra-
pairing ansatz adopted in Sec. Il and the role of piezoelecsound attenuation rate

tricity in the electron-phonon coupling are questionable.

-0 1 A\ * dee n(E,,)
g—— —— —(e+ow) :
V. COHERENCE FACTOR EFFECTS €q/2 TUAVF g=21 J 0 Eo',u 5E(m

In this section we calculate two basic properties of theThe temperature dependence is displayed in Fig. 9 and
superconductor: the acoustic attenuation and the nucleashows a power-law behavior near the phase transition. This
spin-relaxation rate in the absence of impurities. result is compared with the BCS curug/ a,=2/(ef4s+1).33
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1 ,
2 S@=5 2 ¥a, k=207 Yo,k +0/2)
11 koo'a
1
o8| =5 > Vik-a/2anmlk+a/2), (34)
keipz
2
wherei=1,2,3 are thespin directionsk is summed in the
half Brillouin zone, andr, o’ =1 | are the spin indexes. It is
not difficult to check that the Hamiltonia(8) written in the
BW space is given bysee Appendix D

H= > ‘PT(k)[UFUoToﬁ'E‘AsasTlﬂz‘MUoTsﬂo]‘l’(k)-
kelpz
2

02 04 06 08 1 1.2
/T, (35

FIG. 9. Temperature dependence of the acoustic attenuation raehe matrix inside the parenthesis defines the new dispersion
normalized by the normal phase rate. Solid: this mdget0 and tensora, of the Green functiorf12), é’:(iwn_g;)—l_ Notice

9/g.=1.); dashed: BCS model. that the BW Green function is very similar to the previous

one, except for the size of the Hamiltonian space, which is
B. NMR relaxation now 8x 8.

The NMR relaxation has its origin on the hyperfine inter- ~ The pairing term brings something new because of the
action between the nuclear spins and the electrons. The réroken time-reversal symmetry of the SC phase, expressed
laxation rate measures the nuclear-spin time variation along the antisymmetric property of the Pauli matrps under
an arbitrary direction of the spin space, sfayThe conden- N€ transpositiong, — 7, . We will soon explore the physi-
sate exhibits no paramagnetism in the singlet channel, whe?aI consequences 9f this bquen symmetry. From ()
the total spin of the pairs is zero. Since the Zeeman an € spin susceptibility tensor is given by
hyperfine energies are usually small in comparison to the . 1 - -
gap, the only processes that contribute to the spin relaxation Xi (0 iw) = 4—Tr 2 2 GoimonG-oimone.  (36)

are thermally excited quasiparticles. The inverse of the spin ke%BZ @n
relaxation is proportional to the local magnetic susceptibility - -
projected along, Notice that the product;my7,Goiro7,=G for i=3. For

i=1,2, the anticommutative matricesy, lead to a sign
1 , 1 change in the gap term af inside the Green function, mean-
LAY — 2 = S
Ti'(b)=-\3X ‘lv'Lno[ ® Im Xb(q"")]' (32 ing A.—-A, Thus, thei=1,2 (i.e., x,y) directions have the
d same coherence factors of the charge susceptibility
whereXE(w) is given in terms of the normal directions of the

1
spin space beE(w):Zij((S”—b‘bJ)Xisj(w), with i,j=1,2,3 Xix(q,w):Xf/y(q’“’)zz)(c(q'“’)' (37
rc(:e)?resentmg the, y,z directions, respectiveljsee Appendix This property is better illustrated in the=0 case, where
Before defining the spin-density operator, we must intro- s 1l (E&-A)-wwtw) |
duce the spin degrees of freedom in the spinor representa- Xxx > =

=2 2, 2 2,21 Xy
tion, Eq.(7). This is naturally done in the Balian-Werthamer Brwp Lon + EZ][(wq + 0)° + E]

(BW) spacé®

" (k) XS :12 (g—'g++A§)_wn(wn+w)
at 7 Bican [07+ E2ll(wn + )P+ EZ)
ga(k) lr/fal(k) —
Wak) = —ioyli(-k) l W (—K) (33 with & =vek and the indexes * representing the momentum
zoa o +—k+q/2. Notice the sign difference in front af? be-
Yar(=K) tween thezzand the other two components. This gives rise to
which contains an additional spin subspace an axial anisotropy in the direction of the spin space. This
anisotropy is a consequence of the broken time-reversal sym-
(k) metry induced by the finite momentum of the pa@s which
¢k) = (k) defines the CDW wave vectors. This broken symmetry is

reflected in the appearance of the spin structure oriented in
inside the regular Nambu spadék, | —k). We have defined  the z direction of the spin spacgndicated by ther; matrix)
a new set of Pauli matrices,=(09,0) which operates in in the pairing term of the BW Hamiltonia(85). Therefore,
this new space. The general spin-density operator is we conclude that the direction of the spin space corre-
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(37)]. This is easily understood by a qualitative argument
with the aid of Eq.(39). Consider the CDW directio®, for
the moment. The&), direction (or, equivalently, thd =2z di-
rection for the spin, according to our previous discussion
affects the electronic spin correlations in the normal direc-
tions to Q,, meaning thexy plane. The NMR directiorb
=Z is affected by the susceptibility components and xy,
but not by they,,one[see Eq(39)]. The CDW introduces an
additional time-reversal broken symmetry to the spin corre-
lations in theQ; (xy) plane, explaining why the related co-
herence factors have the same symmetry of the charge inter-
actions. On the other hand, the planes which are normal to
the Q, plane are affected by thg,, component, which con-
serves the odd symmetry of the spin interactions. In sum-
mary, the NMR relaxation in thB=Q, direction(in k space

FIG. 10. Temperature dependence of the NMR relaxation rate> therefore asso_mated todnargellk(_asymmetry, as |_n th?
normalized by the normal phase relaxation §Jig.=1.1. Dashed phc_)non attenuation response, _Wh'le the NMR d'reCF'o_nS
(w=0) and dotted(|u|/«=0.09 lines: NMR response along the which are normal t@), have a mixed symmetry and t_exhlblt
in-plane directiong ¢=/2 case of Eq.(40)]; solid (x=0) and @ More intense response. The same analysis applies to the

dot-dashed|u|/@=0.05) lines: NMR response along the normal Q2,3 vectors separately. The NMR patternkrspace for the
c-axis (¢=0). The pocket produces a small Hebel-Slichter peak,SC planes results from the superposition of the contributions

indicated by the dot-dashed line. due to each vectd®; (i=1,2,3 of the triple CDW. As each
vector Q; is rotated with respect to the other two byr/3

sponds to the CDW directio, in thek space, since it is the and 4r/3 (see Fig. 1, if we define the contribution of ea_tch
only rotational symmetry broken in the crystal. The calcula-CDW wavevector to the NMR response along an arbitrary

0.2 0.4 0.6 0.8 1
T/Te

tion of the imaginary part of thgS, susceptibility reads direction b, as T;}(b)=T;X(b+4), with 6=0,27/3,4/3
< respectively fori=1,2,3, it is not difficult to very from Eq.
Im X340, w — 0) (39) that
A T 2 2
on(E) 202 €2, - 3 N
ZEEJ dk (~)—~S~2§2 > EL(B):—@\ZI S9iim 2
47TUA 0 JE EkE K~ M i Tl,i 2 0 27T w—0W
06 — | & + 0(u| —€)ul [ 1
XRe XM (G+ X530 + Zsif @ Im (x5 = X35 |
|: \“/(65/2_ MZ)(‘&& _ 63/2) (Xxx Xxx) 2 ¢ (Xxx Xzz)
ox ME) B, N @P-dpl g (40
o OEY, (€+ou)  epe ' whereg is the angle thab makes with the normal direction
to the SC planes. We notice that despite the broken rotational
where symmetry of the triple-CDW state, the total NMR response is

rotationally invariaint in the planes and shows an anisotropic

'Ek=Re\r’€§+62/2—,u,2, . . . . . .
direction along the normal-axis, as displayed in Fig. 10

q
E(=VE&+A2, ande®, E2 follow the definitions of the previ-

ous subsection. Thgf(x,yy can be obtained from the substitu- VI. TRANSPORT

tion of Eq.(31) into Eq. (37). Noting thatx,= x3,=xj,=0, In this section we calculate the optic and thermal conduc-
the contribution of each CDW wavevectQ; (j=1,2,3 to  tivities of the SC phase in the clean limit. The transport
the NMR relaxation rate along a given directibrgives calculation for ad-wave-order parameter with and without

= L d-wave superconductivity has been done by Yang and
dg_. (1 2 s Nayak*' Here, we shall repeat this calculation for a CDW
g lim [ 2 (b 1)Imx“} (39) gap with nodes coexisting withsawave SC order parameter.
We ignore the effects of scattering centers such as impurities
In Fig. 10 we distinguish the two principal directions, for and disorder from the CDW fluctuations motivated by two
in-planeb vectors and out-of-plane ones directed along thdacts: (1) the TMD are very clean materials aii@) the ex-
normal c-axis. A small Hebel-Slichter peak is formed for tremely low temperatures where the SC phase appears in
finite u, but no peak is observed far=0. 2H-TaSe (T=0.1 K), where conventional thermal disorder
The zz component of the susceptibility carries coherencean the CDW phase should play no relevant role in the trans-
factors with the symmetry of the spin interactione., they  port.
are odd by interchanging— —k), while thexx andyy com- The thermal current is defined p9=jE-(w/e)j,%° where
ponents are analogous to the charge susceptiljdie Eq. jE is the energy curreni, is the electrical current, and is

1 -~
—(b)=2}
T]_ 0 w—0| W i
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the chemical potential. Experimental measurements of the Applying this procedure to the HamiltonidB), it is easy
thermal conductivityx require zero electric current flow in to see that the magnetic part of the Hamiltonian is
the sample, and we may assume §%jE .The Kubo for- o o
mulas for frequency-dependent thermal conductivity) He=-V'(K)| ve=A, 1om3 + va~Amom [P(K),
and the optical conductivity(w), are3® c c
1 written in terms of 7y instead ofr;, as one could naively
Kij(w) = = o lim Im 1550, @) + TS (w)oy(w), (41)  expect from the straight substitutidn— k - (e/c) 75A.
@l a=0 The current density operatpfk)=—cV,H is given by

1 j(K) =W¥T(k)[veerons@, +vaerome]W(k). (45
o(w) = = = lim Im TI; (q, o), (42) j (k) (K)[veeronse, +vyerome ¥ (k) (45)
@ q-0 The current-current density correlation function defined in
where Appendix C is given by:
2
E ) vee? - -
Sj(w) =- 1 lim [Im_H'JM} (43) IT,(g,iw) = > G, 79m3G_7973,
T g0l Im I1;;(q, w) B ke,
is the thermoelectric conductivityfalso known as ther- v2e? . .
mopowej S=-AV/AT, that measures the current voltagé IIy(q,iw) = 22T GuromGorom,
produced by a temperature gradies¥, andIl, 155, andIIE B ke,

are, respectively, the electric, thermal, and thermoelectri
current correlation functions, which we define in Appendix
C. The second term in Eq40) guarantees the zero current
flow condition to the charge carriers.

fvhere L and| are the normal and parallel directions to the
Fermi surface for a given nodeee Fig. 2 Applying the
Kubo formula(41) to the imaginary part of the correlation
functions above, we find that the optical conductivity is sepa-

A. Optical conductivity rated into two parts: the Drude term
To incorporate the magnetic field into Hamiltoni&), we oc, . Ug€ D “ A2 \n(E,,)
proceed with the Peierls substitutidn—k —(e/c)mA. We ol (w)=- 20, ) o dee| 1 - E2 JE.,
assume that the vector potenti&(k) is symmetric with re- o'=¢1 o' T
spect to momentum inversion inside the nodal space. For this (46)

reason, we must use thg Pauli matrix, which operates in
the usual Nambu space. Notice that a given Hamiltonia
density for spin% fermions in the forrrE(,f(k)t/JL(k)%(k) is

and an extra term due to the interband excitations of the
'birac fermions,

equivalently written in the Nambu space as () = ZUFeZA_§|:n<_ M) _ n(Mﬂ
fi = 2
0, v ( mmwm 0 >(¢ﬁm ) vy 2 2
1K)y gy (= _f(_ t_ ey ) —s e Au?
0 f=k) A\ (=k) X 0| o] = 2V 2+ A2) + UZF wvo(l—iz>

The associated matrix above is clearlyif f is a symmetric va @
function ink and 7y if f is antisymmetric. As the Dirac fer- lo| ) 1
mions dispersion is antisymmetric in the cone, we should be X1 6\ lul = 3 a[“(Eo,w) = N(Eo,)]

especially careful with the usual Peierls substitution, since it "

introduces an even terta 73A), which violates the odd sym- el 55 1 e

metry of the zero-field dispersion dependence itlror a 0 2 VA ®+[n(E°"‘) n(=Bo.-)]
given Hamiltonian in the general form

T—0 2 2
H=S e ¥ (K) W (K), e Ez[(l -‘i) wro ‘L‘O}
k 20, o’) 0, o
the correct Peierls substitution involves the separation of X 0| w| = 2Vu? + A2), (47
symmetric(S) and antisymmetri¢A) components irk,
where
e e
e(k)mp— GA(k - —T3A>’To + es(k - —7'3A)7'3, (44) ® N
C C L40) = — 1- 2 = 2 (48)
2 w =4
where
and
k- Sra | = 2| el k-Sra ) + o k- Srp
€ CT3 - 2 € CT3 € CT3 ®i:|(|V0|_M)EO,/Li(|VO| +1U“)E0,—,LL|
with E5 ,,=(|vo| +)?+AZ. In order to calculate the parallel
6A<k _ ?TgA) _1 e(k _ ETsA) _ 6(_ K — ETgA) _ components; we just have to exchangs- andv,. For u
c 2 c C =0, the interband conductivity is given by:
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FIG. 11. Temperature dependence of the Drude conductivity in-
tegrated in w, for g/g.=1.1 and w/a=0.1. o in units of
v,:ezal(ZvA). 15
v 4A2 w 1.25
Y w)=—|1+—=2]|1-2n[ < || 6(]w| - 24y).
ZUA w 2 1
(49
. . . . . 7 075
The conductivity(46) is considerably simpler in the nor-
mal CDW phase. Setting the gak, to zero, we havey, 05
— /2 andEg ., —||w|/2+ |, leading to '
2 0.25
e || |o]
ot 2[5
reow(@) =5 2 M 2 K 0
= 025 05 075 1 125 15 175 2
o —”Fez(f(M—l I) 50 ® e
2UA 2

o FIG. 12. Top: optical conductivityo, vs frequency. For
Analogously, the Drude part of the conductivity becomes  |u|/(2A5)=0.9: dashed lin¢T=0) and solid[kgT/(2A9)=1.2]; dot-
) ted line: =0 andT=0. Bottom: optical conductivityr, vs tem-

perature, forg/g.=1.1 and|u|/a=0.1. Dashed lines: 04, <
<1.4Ag,; solid: @=2.3Ag,; dotted: 2.8, <w<4Ag,. In both
plots, o is in units ofvge?/ (2v,).

e2 a + o'
Do) = U;UA’Bé(w) > deesecﬁ(ﬁe ;’u

o'=+170

2
=0 pee? In(2)—, for u=0, real part of the conductivity. In conventional superconduct-
— 8w X B . X . . .
va ors, there is no absprptlon at=0 in the infrared region,
|ul, for w#0. where the photons with energy<<2A¢ cannot break a Coo-

(51) per pair. At finite temperature, the excitation channels are
) ) . gradually recovered and photons with energy smaller than
Notice that in the absence of SC we find th&®“(T  2A_ have a finite probability of been absorbed. We should
—0) is constant and proportional {e. In the SC case, Ed. stress that the coherence factors in those superconductors
(45) shows thate®“(T—0) vanishes independently of the (say, BCS typgare finite only in the dirty case, where the
pocket size(as shown in Fig. 11 The presence of a Drude processes conserve energy but do not conserve momentum.
conductivity o°¢x &(w), results from an infinite electron The first important distinction of the traditional supercon-
mean free path due to the absence of scattering centers. If vaictors to the Dirac fermion ones is in the presencénaf
consider that the electrons in TgS®ave a finite scattering bands, resembling the spectrum of small gap semiconductors
rate'=1/m(w),%” the Drude peak will be broadened around (see Fig. 3. In the nodal liquid superconductor, made out of
»=0. The normal transport in the presence of an order pacooper pairs of Dirac fermions, the clean limit absorption
rameter with nodegsuch as the CDW, in our case the  process comprehends the excitation of an electron from the
dirty limit is given in Ref. 41. lower to the upper band, transferring energy equal to the the
Photon absorption involves quasiparticle excitations angbhoton energy» but with no momentum transfer. In the situ-
results in the formation of in-phase currents with the electrication where the lower band is completely filled=0), there
field*2 The absorption rate is therefore proportional to theare no thermal channels of quasiparticle excitatitsiace
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FIG. 13. Schematic representation of the photon absorption pro- = 0.1 | Laeeerersr 2?0000 e .
cess in the channel of thermal excitations of the condensate, withir |77 LLaeeenenn I T .
the absorption window| < 2|u| of the holelike brancfisee Fig. 3 | .77 -
w is the photon frequency, represents the thermal excitations, and : 0.2 0.4 0.6 0.8

w indicates the Fermi level. T/T.

DS ST
PRI S

ey

tEe thgrmally eXC'ted electrons occupy the upper ba”‘?', where FIG. 14. Meissner spectral weight as a function of tempera-
there is no absorption due to momentum conservaizon ture. Curves drawn for € |u|/ @< 0.15, from the bottom to the top,

the photon_is absorbed only when its energy is suffici_ent 8n fixed intervals of 0.03A in units of ve€?al (2v,), with g/g;
break a pair(|w|>2Ay), producing quasiparticle excitations _

directly from the condensatgair-breaking channelswhen

the system exhibits particle-hole symmetry, the clean limit

absorption is totally independent of the temperature in thé:'g'.12 (top)] displaces the a_bsorpt|on edge t.OW"%rdS _the ul-
infrared, forw< 2A.. traviolet as the temperature is reduced. In this situation, we

The second important distinction is that the optical con-expect that some of the absorption channels at a given energy

ductivity shows an anomalous absorption edge dn slightly to the right of the edge will be abruptly suppressed if
:ZV"JLMHAZ (see Fig. 12 This energy corresponds to the the temperature is sufficiently reduced, i.e., if the edge is
< .

optical gap of the two bands shown in Fig. 3. The presencgummemly displaced to the right in Fig. 1®ottom.

of the edge is a consequence of the broken lattice inversion

symmetry in the CDW distorted phase, which affects the 1. Spectral weight

coherence factors of the infrared conductivity our case, According to thef sum rule one should have

type |, similar to the charge interaction¥vhen the particle-

hole symmetry is lost by shifting the chemical potential from * me?

the vertex of the Dirac cone, new thermal channels of qua- fo o(w)dow = om (52

siparticle excitations emerge, giving rise to an absorption
peak in the infrared. To see this effect, we illustrate in Fig. 13 B Y nc c: i
the thermal excitation process of the holelike branch, whergg:jvégeirrfft%f’ng}?nzlr?] dui?ldtire tshg Clrjn;ses+l(r71Athles ggn hase
photons with energies smaller thafuRare able to promote SRR P o P '
.however, there is a “missing” area in comparison to the nor-

the thermally excited electrons occupying the empty states in .
the top of the lower band to the upper band. As in the case d al phase. The difference between the two areas corresponds

superfluid Hé, the superconductor is an electronic liquid to the w=0 spectral weight, responsible for the diamagnetic

composed of two “fluids,” where there is a one-to-one corSupercurrents in the Meissner effé¢fThis part of the spec-

respondence between the excited states in the SC and in tﬁrgl weight (Wh'Ch properly def!ngs a supercondugtole-
normal phases. The thermal excitations promote electro ends on a dlfferent_o_rde_r of limits bet_vveanand d, and_
from the condensate to the empty states above the pock Pes_r_lot appear explicitly n fchelcalculatlon. Thus, a required
Fermi surface of the holelike branch. The optical channels O%:ondmon for superconductivity is
absorption through the thermally excited electrons are there- .., o
fore limited to the windoww| < 2|u/| (in the clean limi}, as J [0°%(w) + 0"Y(w)]dw < J [0°%(w) + ") ]dw.
shown in Figs. 12top) and 13. o ° o )

The temperature dependence of the optical conductivity,
displayed in Fig. 13bottom), shows a clear distinction be- From now on, we call the difference between thend s
tween the two absorption channels. The dashed lines reprereas the Meissner spectral weight.
sent the thermal channels, which vanishratO. The dotted It is not difficult to see that fou=0 at zero temperature
lines indicate the pair-breaking channels. These channels dere haveol“=0L°=0, and that the curves in the AC sector
pend on the number of electrons in the condensate and ateveexactlythe same area. This behavior is depicted in Fig.
more effective as the temperature is reduced. The solid lin&4 for different values oft, showing an anomalous suppres-
in the same figure represents a pair-breaking channel whickion of the Meissner spectral weight at low temperatures for
is abruptly suppressed by lowering the temperature. This ismall u. A superficial analysis would indicate that there is no
understood by noting that the optical gam??+A§(T) [see spectral weight due to the condensate and therefore the
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_superconductiv_ity is not stable. Th[s anal_ysis_, however, is 5:‘I’T(X)[iCTsﬂo&o—ivFToﬂsﬁa—iUAToﬂlﬁl—AsTMz

incompatible with the thermodynamic verification that there

is a finite zero-temperature critical field,(0) (see Fig. 7, + 73] (X)), (54)

resulting in a finite condensation energy. . . . . .
The origin of the problem has connections with the specVN€recd= 'CﬂTEW'th 7as the imaginary time. The conserved

tral weight shift from the high- to the low-energy states of €N€rgy current (X)=cTp gives

the band as the temperature is reduced, which has been ob-

served experimentally in the crystal of Tag$#lIn this com- oL

pound, part of the spectral weight around 60 meVof the JE(X) = ———Cdo ¥ = VT (X)[ve707s8, +vaTom& )3,V (X)

order of the cone cutoffat 300 K is displaced towards the Y

infrared at temperatures of the order of the SC phase transi- .

tion. Apparently, the opening of the gap attracts states be?" equivalently,

yond the cone approximation. In lowest order, the nonlinear

states in the CDW spectrum yieldsoc[k—(e/c)A]?. These _ iE(q,n = - S vk - q/2,D[veTomse,

states are the only ones that contribute to the diamagnetism, K

which results from terms<A? in the energy. We conclude N

that the cone approximation excludes the “diamagnetic” +UATo718 Dk +q2 Y (K +0/2,7), (55

states of the band, and for this reason tkeum rule is not . . . : .

able to correctly incorporate the diamagnetic spectral weightVhere the time evolution of the Dirac fermioNsis

especially at low temperature, where the contribution of the

high-energy states is more pronounced. The zero-field prop- V(q,7) = e-ﬂﬁqqf(q),

erties which are not directly related to the Meissner effect,

however, are not so sensitive to the absence of the highwith & defined in Eq(8).

energy states and give satisfactory results within the cone we are interested in the diagonal components of the

approximation. This analysis is confirmed later in Sec. VII,current-current polarizationdEE =115 and 1§, =115 given

when we discuss the Meissner effect in the London limit. .

B. Thermal conductivity

The energy current is a conserved quantity defined by the 2 . .
nondiagonal components of the momentum-energy tefgor NE5(q,iw) = —£Tr Y, Gu707:@.G_1om300-,
defined a¥ B o,

e OE V=L (53
TC i v

2
, vZe - e
5 (q,iw) = %TFE G 797130,G_7y73.

k,wn

According to the usual relatiod =[dL/ (V) ]dW - L, the
Lagrangian associated to the Hamiltoni&é®) in the real
space representation is We find that

VEw “ AZ \an(E, ) v 4u?
Im HEE(O,w):iAé(w) > fo deeEi,ﬂ(l—Ez—s>—“——Fw2V0 1-— JEo,Eo

o'=£1 ' E”/'“' ZN
o[ 1 o] 5\ 1
X{ ‘9<|M| - %)E[H(EOM) - n(Eo,—|M|)] + 0(% - \’MZ + Ag)a[n(Eo,#) -n(- Eo,—#)]}
R I B
20, 2 2

and
Ay? w 1
Im 115 (0,0) = 7 wzlvOl(l - %){ 6('“' - |_z|>[E°'M ~Borulg (o) ~N(Eo)]
- 0(% —ul+ Ag)[Eo,M + Eo,—#]@)i[n(Eo,n) -n(- EO'—#)]}

+2—FAEA§{n<— %) —n('—;")}a(|w|—2w2+A§). (57)
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wherev, andE, ,, are defined as in Eq47) In contrast to  ever, the amount of heat carried by the quasiparticles is of
the thermal polarization, the thermoelectric one does nothe order of the pocket energy and vanishesuatd. The
have a Drude part. The thermal conductivity follows from atemperature dependence ofis shown in Fig. 15bottom).
straightforward substitution of the previous resus), (55), The solid lines represent the thermal channels of quasiparti-

and(56) into the Kubo formula(40). cle excitation, while the dotted lines indicate the pair break-
Let us analyze these results fa=0. We have ing channels. As in the case of the optical conductivity, some
£ 2 of the latter channels which are slightly above the optical gap
1 Vg A A —o [ 2 A2
S ImIER0,0) =t 8w | dE3|1-=S energy wpo=2Vu-+Ag are suppressed at low temperatures
© v E? (see Fig. 1p At T=0 the thermal conductivity is zero for
) AN |w| < w, and infinity for || > w,.
n(E) U_F<9) (1 +_S> Let us verify the normal CDW propertigd(=0) in the
JE  2v5\2 w? transport. The thermoelectric spectral functi@®) is given
by
{1 Zn(| |)]0(|w|—2AS) (58
1Iml'[ (0,0) = UFew{n( |w|+ ) n<|w|+ )]
w - - - .
and LCDW 20, 2 2 K 2 M
1 . e @ 4A2 Comparing the expression above with the optical conductiv-
—ImIIT0,w)=-—Z|1+— ity of the normal phasé49), the thermoelectric coefficient
1) vp 2 D) ;
yields
{1 m(' |>}6(|w|—2AS). (59 s (@)= ®
| cDW®@) = 26T’

Replacing Egs(48) and (58) into Eqg. (42), the ©=0 ther-
mopower yields as in the SC particle-hole symmetric cd56). Returning to
Eq. (55, and settingA;=0, we have

1im HE(O,w) 1)
LT Tim (Ow):E" (60) 1 EE UF 2
119, wImHlCDW(Ow)—— E - u
Substituting Eqgs(48), (57), and (59) into Eq. (40), we oA
find that the only contribution comes from the Drude term [ n(@ + M)}
2

2
-_VF o 4 _As)nE)
Ky (w) = UATé(“’)L dEE<1 EZ) E (61)  The thermal conductivity therefore yields:

wherek*¢=0 for zerou. When the system exhibits particle- Keow(®) = kCow(®) + Keow(),
hole symmetry, the exact cancellation of the interband con-
tributions to the thermal conductivity is due to the fact that"
the total heat carried _bylthe particle-hole pair is zero. The vpé(w) n on(E,. )
argument is the following? the interband excitation process Ko@) = E

involves the annihilation of an electron with negative energy
in the lower band, and the creation of a particle with positive
energy £, +w=+E; in the upper band, where is the pho- 9{(3),for u=0
ton energy and E, is the energy of the annihilated electron.
Destroying a particle with negative energy, momentuand
chargee is equivalent to create a hole with momenturh —
and charge e at the energy costB. The energy current (62)
carried by the quasiparticle formed by the particle-hole pair

is KE, +(—k)(E,)=0. On the other hand, the charge current isand

where

finite, ke+(-k)(—e)=2ek, explaining why the quasiparticles
are able to transport charge but not heat when the pocket is Kﬁ%DW(w) 2t _VF_ { (_ M +M> _ n(M )]
absent. 20,T 2 2
When the particle-hole symmetry symmetry is lost, the
thermal current due to the pair breaking channels is equal to -0 , UF ||
Ex .(K)+(Ex -,)(=k), or equivalently to 2k in the normal — U Eﬁ( 5 |M|) (63

CDW phase, when the ground-state electrons are promoted
to the upper band. As a second effect, the thermal channels The verification of the Wiedmann-Fraf@/F) law can be

of quasiparticle production give rise to an infrared peak fordone in two cases. Fr=0, despite the optical conductivity
|w|<2|u| as shown in Fig. 15top), analogously to the op- is dominated in the low temperature region by the interband
tical conductivity. In contrast to the charge transport, how-conductivity
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. V€
lim O'CD\N((O,O) = F ,
w—0 UA

03 ¢ violating the WF law. We should stress, however, that this

relation is typically valid in the dc limito— 0, which is well
defined forBw<1 but not forBw> 1. This is easily seen by
noticing that aff=0 the quasiparticle excitation energydo
not have a scale and the ac and dc sectors cannot be distin-
guished from one another.

For finite u, it is immediate to check that the WF relation
is verified exactly as in a metal,

kcow(0,T) 772<k3>2'

«T 0.2 ¢

0.1+

e

T—0 TO—CDW(OIT) - 3

VII. MEISSNER EFFECT

The nonlocal electrodynamic is described in the London
limit where the vector potential functioA(k) — Ay=const.,
under the assumption that the field variations are slow in
comparison to the coherence lengthin this limit, the cur-
rentj and the vector potential obey the London equation

ol ] =3+ QAL

valid in the Coulomb gaugle-A =0, wherg “™is the current
due to the momentum of the pair center-of-mass. For all
purposes, we neglect this effect and consider only the re-
sponse to the magnetic field.

To calculate the London kerngl;, instead of writing the
current density operatof44), we propose a more general
calculation, extending the CDW band beyond the cone ap-

0.15 |

0.05

026 05 075 1 125 15 175 2 S . :
(b) T/, proximation. As in Sec. Il, we start from a CDW Hamil-

tonian written in terms of an extended band

FIG. 15. Top: thermal conductivit,k T vs frequencyxT is in
units of (2vg/v,)AZ and w in units of 2A, with ©=2.2A. Dashed Heow= 2 VI (K) [ &3+ Agm] ¥, (K), (66)
line: T— 0 limit; dotted (ksT=3AJ); solid: (ksT=Ay); dot-dashed: ko
(keT= gAS) Below: thermal conductivity dependency with tempera- here ¢, andAg, areany antisymmetric functions ok with
ture. We hav_e sek in units of vekga/ (2v,4), 9/g.=1.1, and|u/ @ respect to a given Fermi surface node.
=0.1. Solid lines: 0.4, <w<14Ag,; dotted: A, <w<4Ao..  |ngroducing the magnetic field through the modified
The.dot-d.ashe(i line |52the Drude thermal conductivity integrated Ibeierls substitution(43), the series expansion o0&k
@ with units of goekga™/ (2v5). —(elc)mA] in powers ofA is separated into symmetric and

antisymmetric terms ik,

o, cow(@,T— 0) = vpe’ tanr<%“’> + |n(2)%jé‘(w),

e
20, e(k - ET3A) =[Vk) + €2(k) + -+ 17
(64)
+[V(K) + €9(k) + -+ 13
the w/(kgT) <1 limit is dominated by the Drude part. Com- e 1/e\2 o
paring the expression above with 1) for ©=0, we see =& EAialfk *Sle AAd Ve | 7o,
that the CDW phase obeys the temperature dependence of _
the WF law up to second order iA, whered' = g/ Jk; defines the momen-

tum derivatives and repeated indexes are to be summed. The

same applies ta [k —(e/c)m3A]. Using the abbreviatiok
=k-(elc)msA, the Hamiltonian of the CDW+SC phase
with an external magnetic field is

H=> W) roms + Adirom + Agrim, — wramol (k).
k

2
i keowl0.T) _ 94(3) ( @) | 65

720 Tocpw(0,T) ~ 21n(2)

but with a particular numerical constant/(8)/[2 In(2)]
~7.8. Note that the order of the limits is essential, otherwise,
ocpw IS dominated by the interband term in thg (kgT)

>1 limit The current density operatcj;,;(k):—cVAH gives
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]T(k) = WVE){G(J@ - EA](?I(?] 6k> 7073

0.3
. e .
+ e((?IACk - EA]alaJAck> 7'07]1:| \PE 0.25
. < . . a4 02
We calculate the expectation val(p up to first order inA G
(see details in Appendix)Eand find that the London kernel & g 45
reads c
2 B 0.1
Qi=—2> 2 E[(ﬂiek)(ﬂjfk) + (G Ag)(FAg)]
C k o=t1 0.05
Ex » €
X SeCH(B k’lﬂ> + ( K &iajek 0 L=
2 Ex ou
A £ T/Te
ck ou + k BEk,o',u,
+ E. ﬁiﬁjAﬂ) E tanl'< 2 ' (67) FIG. 16. London kernel dependence with temperature in the
i K cone approximation(g/g.=1.1). Plots for O<|u|/a<0.16, from
WhereEL=\s’6§+A§k and the bottom to the top, in fixed intervals of 0.0Q(0)-Q(Ay) in

By [(\’m ¢ o)+ A units of vral (2mdv,C).
is the generalized dispersion in the extended CDW band. ~uv,k;, we calculate the London equation in two limits, near
The nonlocal properties valid in thg—0 limit do not the normal-SC transition and &t=0. Including the Brillouin
depend on the details of the cutdff For this reason, we are zone[-m/d,7/d] in the normal direction to the planes, with
allowed to takeA to infinity with no further consequences. d the interplane distance, from E(66), we have

However, the Green functions method leads to some spurious

results in the ultraviolet if we do not take the Brillouin zone ,B€ BE,
into account. To see this, consider the illustrative case of the Q.(Ay= VFs e > sech 2' .
normal CDW band Hamiltoniaf65). After a suitable diago- kio=£1
nalization into a particle-hole eigenstate basis with eigenval- At T=0, the kernel gives
ues 4, =+ +A%, we may write it into the form
. O Ik e
Heow= 2 E; ¥ (K) 73 (k). QA9 -Q. (0 —— - ——
k d TUAC

The London kernel of this problem can be derived directly
from Eq.(66) by settingA;=uw=0, ignoring theAy terms on

it, and performing the substitutioq—>E’,;. It is immediate to
see that in this case one has

confirming the anomalous behavior detected by them
rule (51) in the optical conductivity.

In the opposite limit, forT~ T, the kernel in the strong
coupling approximatiori3.|u| <1) gives

CDW _ * ,BEL)
A=A '{( 15 a”r( 2 ] Q.(4)-Q.(0)

N : . . . T-Te Be V€ B
resulting in anonzero surface tgrm forj, wh|cr1 dlverg_es in R A Ai,
the ultraviolet for any monotonically crescej. The inte- 4d mv,C 4

grability of the results derived by this method depends on the

introduction of states in the entire Brillouin zone. In particu- in agreement with the mean-field result for the penetration
lar, we have thatj°®")=0 (as expectedby assuming that depth\ , =yc/{4m[Q (0)-Q, (AT} AZ"

the surface term cancels in the Brillouin zone because of its The dependence of the London kernel wjthand the
periodicity. In order to fix the spurious divergences, we adoptemperature is shown in Fig. 16. There is a clear suppression
an argument due to Lifshitz and PitaevsKiiConsidering of the Meissner effect in the low-temperature region, espe-
that the kernel forA;=0 is zero, since no supercurrents arecially when the density of states in the Fermi surface nodes is
induced by the magnetic field, there is no physical result irclose to zero. As we discussed previously in Sec. VI, the

subtracting the normal phase kernel from the SC kernel  opening of a SC gap in a nodal liquid possibly causes the
spectral shift of high-energy states beyond the cone cutoff

(00 =[Qy(A9 = Q; (0)]A;. (68)  in the CDW band to the infrared. As we mentioned before,
We may consider that the kernel above correctly incorporatethe spectral shift of the states belew(~60 meV) has actu-
the Brillouin zone effects, at least near the phase transitionally been observed in the normal CDW phase of the faSe
To analyze the spectral weight behavior due to the Meisserystal??> More experimental studies are required to under-
ner effect within the cone approximatiap~vek, andAy  stand the SC phase properties in this crystal.
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VIII. DISCUSSIONS phase, which would be attracted from the bottom to the top
of the lower band by the opening of the SC gap in TaSe
In this paper we have studied the thermodynamic andClose to the normal-SC phase transition, however, these
transport properties of a model proposed originally in R&f.  states can be introduced by the same procedure that fixes the
for the coexistence of a gapless CDW phase and-aave anomalous divergence of the London kernel in the ultravio-
superconductor in TMD. While the lattice inversion symme-let, which is due to the absence of the Brillouin zone period-
try is broken in the CDW distorted phase, as observed exicity into the calculation. We have extended the calculation
perimentally by neutron diffraction, we propose a pairingto a general CDW band where the loss of the crystal inver-
ansatz which also violates the time-reversal symmetry. Acsion symmetry is included by assumption.
cording to the ansatz, the pairing of the electrons is mediated In summary, we have presented a complete theory for
by virtual acoustic phonons via a piezoelectric coupling, ands-wave superconductivity in nodal liquids. We have calcu-
the center-of-mass momentum of the pairs equals the CDWated the thermodynamics, various response functions, and
wave vectors connecting different sheets of the TMD Fermiransport properties of this system and have shown that these
surface. This additional broken symmetry has dramatic conquantities deviate strongly from the same properties in ordi-
sequences on the spin-exchange interaction and produces aa&ry BCS superconductors. We believe our theory can be
anisotropic NMR response along the normal direction to theaxpplied to some TMD, such as 2H-TagS® 2H-Ta$S, and
triple-CDW plane. In contrast to Tagehe quasiparticles of our predictions can be checked experimentally.
NbSe are well defined in the Fermi-liquid regime. The SC
phase of NbSghas been extensively studied and indicates ACKNOWLEDGMENTS
that a conventional BCS description is warrantéd? B. U. and G. G. C. are indebted to E. Miranda for many
In contrast to the BCS theory, which is not critical, the helpful discussions. B. U. acknowledges FAPESBndacaio
gap equation(13) has a QCP in the critical coupling=g.  de amparo & pesquisa do Estado de S&o PaRioject No.
when the system exhibits particle-hole symmetgy=0).  00/06881-9, for the financial support. A.H.C.N. was partially
When this symmetry is broken, the SC gap is strongly  supported through NSF Grant No. DMR-0343790.
rescaled byu as the coupling parameter is modified, and the
QCP is suppressed. The scaling of the quantit follows APPENDIX A: GAP EQUATION

two different coupling regimedi) “Fermi-liquid” sector in In this appendix we derive Eq$21)—(23). Applying the

weak coupling, forg<<g., whereA/u flows to zero agy | ;1iaple substitutionv=vek+ou, the equation(13) can be
— 0 and(ii) strong-coupling marginal limit fog>g., where written into the form

Ad/|u|>1. The specific-heat jump is strongly attenuated in

the particle-hole symmetric ca$ehereAC,,/C,=0.35, be- _ vk Se — Kk =
cause of the low density of states at the Fermi energy. As 4 > J dk tam-(ﬁ : “)
. T : ) TUA =21 2
expected, in the Fermi-liquid regime we recover the jump of
the BCS modelAC,/C,=1.43. g 4 s
We have observed several anomalous properties in the =, — " 3 In[cosh{ Bal2)secti BVAS + u2)]
transport. Unlike traditional one-band superconductors, the AYF
spectra for optical and thermal conductivities in the clean u B 5
limit have an infrared peak due to the thermal channels of +,U~f V2 N RV tan)’( Ve +A ) (A1)
quasiparticle excitation. These channels involve thermal in- As

traband excitations, promoting the electrons in the condenm the |u|/A <1 limit we find:

sate to the empty states of the pocket, at the top of the lower
band(see Fig. 18 The absorption window for this channel is __ 9 4 n{ costBal2) } tan)-(ﬁ )
limited to the pocket energy|2|. A second kind of absorp- 4muave | B | cOSHBAS2) | A

tion channel is due to interband excitations, when a pair is . .
broken as a result of the absorption of a photon. In this caséNh'Ch is equivalent to Eq21). We notice, however, that the

the electron is excited to the upper band, across the optic bove) enf(?r:ZS:t'?Onn re(r:gzlijm“snvagd -?ﬁé)(('”?]atgr T'/Te'ifr:g
gap barriermg=2vu 2+A2 The later type depends on the g-coupling app Ml Bo

number of electrons in the condensate and is more effectlv%a“s“ed .
We definea=2nvgva/g.. Close toT,, takingAg— 0, we

at T=0, except for a few channels at a given frequeagy obtain
which are abruptly suppressed by the temperature reduction

(say, belowT,) because of the optical gap enlargement, that 29c _ ,BC w2Be
is w,< wy(T) for T<T,. The thermal channels on the con- g Igca 2.4 N cos P
trary vanish aff=0 with no exception. » ]
The optical conductivity has an absorption edgewgt ~ 1N€ critical temperature fog> g, is
The coherence factors are affected by the broken lattice in- —_—
version symmetry in the CDW phase. Thaum rule revels Te= [Ag+VAZ+ 42 In 4], (A2)

. . . 2kgIn 4
an anomalous suppression of the diamagnetic spectral
weight, mainly foru=0. This behavior is an evidence that where Ag=A(T=0,9,4=0)=a(1-g./g). The expression
there are missing high-energy diamagnetic states in the Sthat gives the critical dependence of the gap with tempera-
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ture for (|u|/Aq, > 1) follows directly from the expansion of ds oy, BdA2
the gap equatiofil3) in terms of BA,. Cv=-B =k 2 v Bt == ).
e H H dﬁ k,a,0 aEk o 2 dB
To calculate the critical temperature in the weak-coupling @ T
regime, we take\— 0 in Eq.(Al), giving (B1)
2, 4 {cosf{ﬁcaIZ) . M | (:80|:“|) At the phase transition, the specific-heat jump reads
9 B |costpul2)| a 2 2 A2 any
; o AC(Bo ) = lim | ~ keS8 5 ) T
ﬁc|/~L| ﬁcl/’“llz In g B—Bc 2 dﬂ K,y.0 aEk,a’/.L
Xtanhh —— | - f d¢ % 3 5
2 0 cosh¢ _ keB.  dAg
after integrating the second term of E@l) by parts. If 8msve dB Pe
Bdu|= 4, the integration above can be extended to the inter- a +
val [0, %], x > | deeseci Bele+op) .
o=%x1J0 2
20 =2 +MMM) _ 1] If B.a=4, we may extend the integration range to infinity.
a T This integral can be evaluated in two limits, f8u| <1 and

. ” _ Bdul>1, which yields
In weak coupling(|u|/Ag,>1) the conditionBy|u|>1 is

easily satisfied. The equation above implies that kB, dAZ
ACBW) — 5 — —
| | 27TUAU|: dB 'BC
T.= If“_yea(l—gc/g)\m_l-l, (A3) ,82 )
B7 In4+°T’u, for Blu| <1, B2
where Iny=0.577 is the Euler constant. ‘
In the weak-coupling regime, we can find the gap equa- Belul, for Belu| > 1.
tion near the phase transition. Feij| > 1, we use the power from Eqs.(22) and (A2), we find:
series expansion iBA;<1 of the integraP®
i(In 4+’8°—’u2> for Bu| <1
L] C L]
B tan)‘(’ng+A§> P 5 daZ _ B 4
dv ~ J dv—tan —V) dB lg, | 1 7¢(3) 1 \*
fo \/1/2+ Ag 0 14 2 Bg 8'772 + 2,[)’5/1,2 ’ for BC|Iu’| >1.
T4(3) A (B3)
8 In the normal phase, the specific h€gt, is obtained from
Expanding the gap equatigAl) in lowest order aroung,, Eq. (BD),
we find ke /B2 @
CVn(ﬁc) =S 2 J de e(e+ O'M)z
Bou>1 1 74«(3) 1 -1/2 TC -T 47TUAU|: o=+1J0
A(T—Tew) — — o2 " ogn :
Bel 8 2Bcu Te x SECH( BC(E+ U’ﬂ)) .
(A4)
The weak-coupling expansions above are correct whenevévaluating the integral gives:
tanHBlul/2) ~ 1 or Bdlu|= 4. 18(3), |ulB.<1,
C B 12 B4
APPENDIX B: SPECIFIC HEAT vilBe) = 27U, B EWZBC|ILL|, |ulB.> 1. (B4

In this section we calculate explicitly the specific heat

jump in the weak and strong coupling limits. The entropy OfCombining Eqs(B2)—(B4), we find

the problem is given by r2 In 4( ,35#2)
In4+ <1,
. ) , , , s\ o) IulBe
S=-kg > [(1-n,)In(A-n) ) +n) ., Inny ], AC, 17 )
k,y,o =
Covlit 5 2 )
: . o Wile | 27273 1 > 1.
wheren} , =(e”%ou+1)"' is the Fermi-Dirac distribution, % +t—— [lBe
indexed byo==%1, and by the two branches of the come \ 8 2fcm
=+1. The specific heat yield% (B5)
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APPENDIX C: CORRELATION FUNCTIONS _
Hp= 2 Agl (k) 73" (- k) + H.c.

We define the charge and spin susceptibilities from the k.ab

imaginary time ordered correlation functions: + ab
E AP (k) 750 (= 1) + g (= 1) 73°py (K)

B k ab
“(qg,iw :—f drey(T ,7Dp(=q,0]), (C1
X°(0,iw) . (Tlp(a,7p(=q,00]), (C1 8 00 787, (= K0 + oy (= K) 73 (K
5 2 AFT(K) oz W (K). (D2)
- 1
Xap(@iw) = = J dre“(T[S,(q,7S(-0,0]), (C2) ke3®
0
with p andS,, respectively, the charge- and spin-density op-
erators defined by Eq$29) and (34). APPENDIX E: LONDON KERNEL
The optical, thermal, and thermoelectric correlation func-
tions are defined as In this appendix, we calculate the London ker(@&h). It

can be derived from the calculation of the expectation value

. B ) of the current density operator
I (quiw) = - J dreo(ji(q, )j;(-q,0),  (CI) Y op
0

B () =TrY {e(ai € ~ EAJaiaj ek)<\PT(E)roﬂ3*lf(E)>
5= | are (0, Aif-a.0),  (C k
0

+ e(aiAck - fAiaiajAck)<\P*<E)rom\1f<i)>}

B
Hﬁ(q,iw):—f d€°j(a,jj(-q,0),  (CH (ED
0

where | is the electric current operat@d4) and j© is the ¢ first order inA, where in our definitior1~<—k—(e/c)7-3A

thermal current operator defined by E§4). Expanding the Green functlo@(lwn, )=(iw,- @)™ up to

leading order,
APPENDIX D: HAMILTONIAN IN THE BALIAN-

WERTHAMER SPACE

In this Appendix we discuss E35). The BW space is Tr<\IfT(k)7-#77V1P(k)>
introduced to extend the pairs spaie| ,—k |) to a larger 1 - e
one where the spin and momentum degrees of freedom are = =T 7,1,Go 1 _EGO(ai6k70n3+C7iAckTO"71)Ai ,
decoupled. The procedure rests on “duplicating” the Hamil-
tonian (keeping it invariant by summing in half Brillouin
zone, interchange the order of thg fermionic operators in

the duplicated term, and explore the symmetry underkthe whereGy is the Green functiofl2). The zeroth order terms

——k exchange in thé& sum. The CDW Hamiltonian in the are:
BW space reads
— /0 T
Hoow= 2 vrtlh, (KK - 725, (K) T ) 7oms ¥ (K)o
k,0,a,b 1 <
ve = ’ETVE 70773C0
kEbk [ (k) 777101 () + 4 (K) 777 (K) “n
a,
- - = N(Ey n(-Ey . E2
+¢’bT( k) ba'l’aT( k)+¢bl( k) ba'vzlai(_ k)] Ekzl EkEk UM[ ( K, M) ( K, ,u)] ( )
= 2 vrP K opr7 - k¥(K) (D1)
kezBZ and
by the definition of the BW spino33).
The chemical potential tern6) can also be written as Tr<WT(R)TOn1\p(E)>O
—MEKE%BZWPT(k)%@%‘P(k). The pairing term can be ob-
tained with the use of the anusymmetnc property of the Pauli = Ay > po* [n(Ek o) ~N(=Ex )], (E3)
matrix 7, under the transposmom2 —= 7;2 namely, o=t1 EkEk ou
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whereE, = \r€2+A and ~ ~ e :
K o TR ) 707 (K))y = = > A3Ag)

o=%1

Ex.on = [(Ey + ow)? + AZJY2.

[n(E,,) —n(-E,,)].

At first order, we find after a straightforward calculation =
(E5)
T (K) 75 (k)4 The London kerne(66) follows from the direct substitu-
e 1 . tion of Eqgs.(E2—(E5) into Eq.(E1), just noting that the zero
=- EAaﬂi ekEE T (Gy)?] order current term
po+ Ek
= +
=-°3 Ane) [n(E ) -n-E,)] (E4) (o= 2 2 eleda+ duddal g
o=%
X[n(Ek,o',u) - n(_ Ek,U;L)]
and is zero by symmetry when integratedkn
IR. L. Withers and J. A. Wilson, J. Phys. ©9, 4809(1986. A. Subramanian, Phys. Rev. B2, 8890(1990.
2J. A. Wilson and A. D. Yoffe, Adv. Phys18, 193(1969; J. A.  2IT. Valla, A. V. Fedorov, P. D. Johnson, P-A. Glans, C. McGuin-
Wilson, F. J. DiSalvo, and S. Mahajan, Adv. Phy24, 117 ness, K. E. Smith, E. Y. Andrei, and H. Berger, Phys. Rev. Lett.
(1975. 92, 086401(2004).
3J. P. Tidman, O. Singh, and A. E. Curzon, Philos. M&6, 1191 22\/ \fescoli, L. Degiorgi, H. Berger, and L. Forro, Phys. Rev. Lett.
(1974). 81, 453(1998.
4D. A. Whitney, R. M. Fleming, and R. V. Coleman, Phys. Rev. B 23P. B. Littlewood and C. M. Varma, Phys. Rev. 46, 405(1992;
15, 3405(1977. C. M. Varma, P. B. Littlewood, S. Schmitt-Rink, E. Abrahams,
SR. M. Fleming, D. E. Moncton, D. B. McWhan, and F. J. and A. E. Ruckenstein, Phys. Rev. Le@3, 1996(1989; 64,
DiSalvo, Phys. Rev. Lett45, 576(1980. 497 (1990.
6D. B. McWhan, J. D. Axe, and R. Youngblood, Phys. Rev2& 247 H. Castro Neto, Phys. Rev. Let86, 4382(2002.
5391 (1981). 25M. Vojta, Y. Zhang, and S. Sachdev, Phys. Rev.6, 6721
’T. Valla, A. V. Fedorov, P. D. Johnson, J. Xue, K. E. Smith, and F.  (2000.
J. DiSalvo, Phys. Rev. Leti85, 4759(2000. 26C. M. Varma and W. Weber, Phys. Rev. Le®9, 1094(1977).
8R. A. Klemm, Physica C341, 839(2000. 27D. P. DiVincenzo and E. J. Mele, Phys. Rev.2®, 1685(1984;
9C. W. Chu, V. Diatschenko, C. Y. Huang, and F. J. DiSalvo, Phys. J. Gonzalez, F. Guinea, and M. A. H. Vozmediano, Phys. Rev.
Rev. B 15, 1340(1977). Lett. 77, 3589(1996.
10G, Wexler and A. M. Wooley, J. Phys. G, 1185(1976. 28D, Pines and J. R. Schrieffer, Nuovo Cimentg 496 (1958.
113. A. Wilson, Phys. Rev. BL5, 5748(1977). 29B. Uchoa, A. H. Castro Neto, and G. G. Cabrera, Phys. Rev. B
12D. E. Moncton, J. D. Axe, and F. J. DiSalvo, Phys. RevlR 69, 144512(2004.
801 (1977. 30p, W. Anderson, J. Phys. Chem. Solid$, 46 (1959.
13w, Sacks, D. Roditchev, and J. Klein, Appl. Phys. A: Mater. Sci.3'P. W. Anderson, Phys. Rev. B0, 4000(1984).
Process.66, 925 (1999. 321, N. Cooper, Phys. Revl04, 1189(1956.
Th. Straub, Th. Finteis, R. Claessen, P. Steiner, S. Hufner, B2M. Tinkham, Introduction to SuperconductivityMcGraw-Hill,
Blaha, C. S. Ogleshy, and E. Bucher, Phys. Rev. L&#%.4504 New York, 1996.
(1999. 34R. A. Craven and S. F. Meyer, Phys. Rev.1B, 4583(1977).
W, C. Tonjes, V. A. Greanya, Rong Liu, C. G. Olson, and P. 35p, Garoche, J. J. Veyssié, P. Manuel, and P. Moliné, Solid State
Molinie, Phys. Rev. B63, 235101(200J. Commun. 19, 455(1976; R. E. Schwall, G. R. Stewart, and T.
16T, M. Rice and G. M. Scott, Phys. Rev. LeB5, 120(1975; L. H. Geballe, J. Low Temp. Phy2, 557 (1976.
VanHove, Phys. Rev89, 1189(1953. 36N. Kobayashi, K. Noto, and Y. Muto, J. Low Temp. Phy27,
7K. Rossnagel, O. Seifarth, L. Kipp, M. Skibowski, D. \Voss, P. 217 (1977; D. Sanchez, A. Junod, J. Muller, H Berger, and F.
Kruger, A. Mazur, and J. Pollmann, Phys. Rev.68, 235119 Lévy, Physica B204, 167 (1995.
(2002). 87S. V. Dordevic, D. N. Basov, R. C. Dynes, B. Ruzicla, V. Vescoli,
180, Seifarth, S. Gliemann, M. Skibowski, and L. Kipp, J. Electron L. Degiorgi, H. Berger, R. Gaal, L. Forrd, and E. Bucher, Eur.
Spectrosc. Relat. Phenomi37, 675 (2004). Phys. J. B33, 15(2003.
®Rong Liu, C. G. Olson, W. C. Tonjes, and R. F. Frindt, Phys. Rev.38J. R. Schrieffer,Theory of SuperconductivitfBenjamin, New
Lett. 80, 5762(1998. York, 1964.

20C. Wang, B. Giambattista, C. G. Slough, R. V. Coleman, and M.23°G. D. MahanMany-particle PhysicgPlenum, New York, 1981

184509-21



UCHOA, CABRERA, AND CASTRO NETO PHYSICAL REVIEW Br1, 184509(2005

40R. Balian and N. R. Werthamer, Phys. Reéh81, 1553(1963. 44E. M. Lifshitz and L. P. PitaevskiiStatistical Physic¢Pergamon,

41X. Yang and C. Nayak, Phys. Rev. 85, 064523(2002. Oxford, 1980, Vol. 2, p. 213.
42R. D. ParksSuperconductivityMarcel Dekker, New York, 1969  45A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinskilethods
Vol. 1, Chap. 2. of Auantum Field Theory in Statistical PhysitRrentice Hall,

43M. E. Peskin and D. V. Schroedein Introduction to Quantum New Jersey, 1964 p. 304.
Field Theory(Addison Wesley, Reading, MA, 1995p. 18.

184509-22



