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The formation of a local moment around a zinc impurity in the high-Tc cuprate superconductors is studied
within the framework of the bosonic resonating-valence-bondsRVBd description of thet-J model. A topologi-
cal origin of the local moment has been shown based on the phase string effect in the bosonic RVB theory. It
is found that such anS=1/2 momentdistributes near the zinc in a form of staggered magnetic moments at the
copper sites. The corresponding magnetic properties, including NMR spin-relaxation rate, uniform spin sus-
ceptibility, and dynamic spin susceptibility, etc., calculated based on the theory, are consistent with the experi-
mental measurements. Our work suggests that the zinc substitution in the cuprates provides important experi-
mental evidence for the RVB nature of local physics in the originalszinc-freed state.
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I. INTRODUCTION

The Zn substitution of the in-plane Cu2+ ions in the high-
Tc cuprates introduces some very interesting properties to the
system. Although a Zn2+ ion can be considered as a nonmag-
netic impurity in the CuO2 plane, strong magnetic signatures
have been detected at the surrounding Cu sites. The NMR
and NQR snuclear quadrupole resonanced experiments1–5

have shown the presence of staggered antiferromagnetic
sAFd moments near the Zn site, whose sum behaves like an
S=1/2 magnetic moment as indicated by a Curie-like 1/T
behavior in both the spin-lattice relaxation rates and Knight
shift at low temperatures. The scanning tunnel microscope
sSTMd experiments have revealed6 a sharp near-zero-bias
peak around the Zn site, where the quasiparticle coherent
peak, appearing near the superconductivity gap in the bulk
case, is suppressed simultaneously. The zinc replacement has
also shown a strong destructive effect onTc, and only several
percentage of zinc doping can fully destroy the bulk
superconductivity.7

In order to explain the STM experiment beyond a conven-
tional nonmagnetic impurity scattering treatment,8 the exis-
tence of a local magnetic moment has beenassumed, whose
interaction with thed-wave nodal quasiparticles leads to a
Kondo resonance peak.9–12 Theoretically, it remains a great
challenge to understand the microscopic origin of the mag-
netic moment found near a nonmagnetic Zn impurity. In one
of recent attempts, it was interpreted13 as due to the binding
of an S=1/2 nodal quasiparticle to the impurity, based on a
modified mean-field theory of thet-J model. The local stag-
gered AF moments were also explained14 as a local spin-
density-wavesSDWd ordering. But there still lacks a unified
theory that can self-consistently explain the free moment and
local AF ordering near the zinc impurity without suffering a
magnetic instability. Nonetheless, various approaches have,
at least, indicated that the zinc phenomena are quite different
from those caused by nonmagnetic impurities in a conven-
tional superconductor and have something directly to do with
the nature of the underlying doped Mott insulators. A good
understanding of the pure strongly correlated system, there-
fore, is quite essential in order to sensibly address the overall
zinc impurity issue.

In this paper, we approach the zinc problem by using a
microscopic description of doped Mott insulators, in which
AF correlations in spin degrees of freedom are systematically
described at various ranges as a function of doping concen-
tration of holes. We show that anS=1/2 moment does
emerge, naturally, near a zinc impurity, which is physically
originated from a resonating-valence-bondsRVBd pair in the
original spin background. The latter becomes unpaired upon
the Zn substitution, with one of its constituent spins being
removed, together with the underlying Cu2+ ion. In particu-
lar, we find that such anS=1/2 moment cannot escape from
the zinc impurity because of a topological reason. It is a
consequence of the nonlocal mutual entanglement between
spin and charge degrees of freedom known as the phase-
string effect. Because of this effect, a neutral spin-1

2 excita-
tion sspinond always carries a fictitiousp fluxoid, as seen by
the charge carriers, and, furthermore, even a vacancy on the
lattice, such as a zinc impurity, also acts as a vortex when the
charge carriers are condensed. Consequently, the condensate
cannot survive in the presence of a zinc impurity unless a
spin-12, which carries an antivortex, is trapped nearby to
compensate the vortex effect.

In this bosonic RVB description, we show that the in-
ducedS=1/2 moment around the zinc impurity distributes
like staggered AF moments because of the short-range AF
correlations already present in the spin background, which
are frozen into a local AF ordering once the direction of the
moment is fixed, say, by external magnetic fields. The calcu-
lated NMR spin-lattice relaxation rates and uniform spin sus-
ceptibility are found to be in a systematic agreement with the
experiments. The midgap spin excitations are also investi-
gated, with the results consistent with the neutron
experiment.15

An important fact that we find is that all these properties
are already exhibited in a zinc-doped state obtained by a
sudden approximation: simply removing a spin sitting at the
zinc site from the original pure system. A self-consistent ad-
justment of the RVB background beyond such a sudden ap-
proximation only further strengthens the local trapping of the
S=1/2 moment as well as local AF staggered ordering
around the impurity. Therefore, a Zn impurity in the high-Tc
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cuprates constitutes adirect probe of thepuresystem accord-
ing to the present theory. Namely, both the localS=1/2 mo-
ment and the staggered AF moments “induced” by a zinc
substitution truthfully mirror the nature of the original doped
Mott insulator. In this sense, the zinc substitution simply
reveals the “secrets” of local physics already hidden in the
zinc-free ground state.

The remainder of the paper is organized as follows. In
Sec. II, we present the topological reason that ensures anS
=1/2 moment being trapped around a zinc impurity, based
on the phase-string effect in the bosonic RVB description of
the t-J model. Then in Sec. III, we present a generalized
mean-field description for the doped Mott insulator with a
zinc impurity. The detailed numerical results are given in
Sec. IV. Finally, Sec. V is devoted to conclusions and discus-
sion.

II. TOPOLOGICAL ORIGIN OF THE LOCAL MOMENT
AROUND A ZN IMPURITY

A. Bosonic RVB framework

We begin with an effective description of thepuresystem
of a doped Mott insulator, obtained17,18 based on thet-J
model in an all-boson representationsi.e., the phase-string
formalismd. The effective Hamiltonian is given by17,18 Heff
=Hh+Hs, with

Hh = − tho
ki j l

hi
†eisAij

s −fi j
0dhj + h.c., s1d

Hs = −
J

2 o
ki j la

Di j
seiaAij

h
bia

† bj−a
† + h.c.

+
J

2o
ki j l

uDi j
s u2 + lSo

i,a
bia

† bia − Ns1 − ddD , s2d

where hi
† and bia

† denote the creation operators of bosonic
holons and spinons, respectively, andDi j

s is the bosonic RVB
order parameter determined either self-consistently or by
minimizing the free energy. In the pure system, a uniform
solution,Di j

s =Ds, fi j Pthe nearest-neighborsnnd sitesg, is usu-
ally obtained.18 The Lagrangian multiplierl in s2d is intro-
duced to enforce the global constraint of the total spinon
number

o
i,a

kbia
† bial = Ns1 − dd. s3d

A distinct feature in this model is the topological gauge
field Aij

s , fi j
0, andAij

h, defined on a nn linksi j d, as follows:

Aij
s =

1

2 o
lÞi,j

fuisld − u jsldgSo
s

snls
b D , s4d

fi j
0 =

1

2 o
lÞi,j

fuisld − u jsldg, s5d

and

Aij
h =

1

2 o
lÞi,j

fuisld − u jsldgnl
h. s6d

Herenls
b andnl

h are spinon and holon number operators, re-
spectively. By notinguisld=Im lnszi −zld with zi =xi + iyi rep-
resenting the complex coordinate of a lattice sitei, one has

o
C

Aij
s = p o

lPSC

snl↑
b − nl↓

b d, s7d

o
C

Aij
h = p o

lPSC

nl
h, s8d

andfi j
0 is a uniformp-flux gauge field, satisfying

p
h

eifi j
0

= − 1 s9d

for each plaquette. It means that each holon behaves like ap
fluxoid throughAij

h, which is felt by spinons inHs shereC
denotes a closed loop andSC is the area encircled by itd, and
vice versa. Thus holons and spinons are mutually frustrated
by each other nonlocally via the topological fields,Aij

s and
Aij

h, which represent the phase-string effect hidden in thet-
J model.

In this description, the superconducting state is realized
by the holon condensation,kh†l;h0Þ0, while spinons re-
main RVB paired as characterized byDsÞ0. Specifically, the
superconducting order parameter can be written as18,19

DSC= D0eiFs
, s10d

whereD0~Dsh0
2, andFs is defined by

Fi
s ; o

lÞi

uisldSo
a

anla
b D , s11d

which describes that each spinon carries a 2p vortex in the
phase ofDSC sknown as a spinon-vortex19d. Since spinons
form singlet RVB pairs, these vortices and antivortices are
generally cancelled out ins11d such that the phase coherence
of DSC can be established at low temperatures.18,19

A nonsuperconducting state, with a finite pairing ampli-
tude D0 but is short of phase coherence, can be realized at
higher temperatures where excited spinons disorder the
phase Fi

s according to s11d. Such a low-temperature
pseudogap phase is called the spontaneous vortex phase due
to the presence of free spinon-vortices atTc,T,Tv.

19 The
high-temperature pseudogap phase is defined atTv,T,T0,
where the holon condensation is gone such that the pairing
amplitudeD0=0, whereas the RVB order parameterDs still
remains finite. The latter vanishes beyondT0.

The following discussion of local moments around zinc
impurities will be mainly focused in the superconducting and
spontaneous vortex phases, where the relations10d generally
holds withD0Þ0.

B. Topological origin of local moments

Now let us consider a zinc impurity added to a pure sys-
tem of the doped Mott insulator described by the bosonic
RVB theory outlined above.
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In the high-Tc cuprates, chemically it is a Cu2+ ion that is
replaced16 by a Zn2+. A Zn potential may be considered as a
unitary potential8 that pushes awayboth spin and charge
from the zinc site. In the framework of thet-J model, a zinc
impurity can be thus simply treated as anemptysite with
excluding the occupation of any electrons.

Since a zinc impurity does not change the total charge of
the system in the substitution of a Cu2+ ion by a Zn2+, one
may construct an effective theory by starting with that for a
pure system and removing a neutral spinsspinond from the
system. A heuristic procedure is to imagine exciting a spinon
at the would-be zinc site. With its spin being “fixed,” its
exchange coupling with the surrounding spins is effectively
cut off. Nor can a holon hop to this site because of the
no-double-occupancy constraint in thet-J model. Whether
one removes or not such an isolated spin, the effective effect
of a zinc impurity is created at such a site.

Based on the bosonic RVB theory, corresponding to the
creation of an isolated spinon at the would-be zinc site, a 2p
vortex will then appear in the superconducting order param-
eter s10d via Fs or a p vortex in the holon Hamiltonians1d
via Aij

s , in the superconducting or spontaneous vortex phase
with the condensation of holons,kh†lÞ0. In other words,
each zinc impurity will always induce a nonlocal response
svortex currentd from the charge condensate as shown in Fig.
1sad.

Such a topological effect of a zinc impurity can be traced
back to the nonlocal effect in the pure system of such a
doped Mott insulator, known as the phase-string effect: the
motion of doped holes will always create stringlike sign de-
fects that cannot be “repaired” at low energy in thet-J
model.17 Consequently, spin and charge degrees of freedom

are mutually “entangled” in the pure system. An “empty”
szincd site then can be nonlocally perceived by the charge
degrees of freedom to result in the above vortexlike response
centered at this site.

A more rigorous derivation is to start from the phase-
string representation17 of the t-J model with the presence of
an empty site. Under the same RVB order parameterDi j

s , one
obtains essentially the same effective Hamiltonians,s1d and
s2d, except for that ins5d the summation does not include the
empty szincd site, denoted byi0. Namely,

fi j
0 → fi j

0 − fi j
Zn s12d

fi j
Zn = 1

2fuisi0d − u jsi0dg. s13d

Note that the summations ins4d ands5d should also exclude
the zinc siteswhich are automatically ensured since both
spinons and holons are not allowed at the sitei0d, so that the
definitions for Aij

s and Aij
h remain the same as in the pure

system. By noting

o
C

fi j
Zn = p s14d

for a closed loop aroundi0, one finds that a zinc site is bound
to an extrap fluxoid, which will always induce a vortex
current in s1d if the holons are condensed. Similarly, using
the original definition ofD0 in s10d, the effect of an empty

site can be reexpressed by the replacementD0→D0eiFi0
0
, with

Fi0
0 giving rise to a 2p vortex. Both are consistent with the

previous argument based on freezing a spinon at the sitei0,
which also lead to Fig. 1sad.

Now it is natural to see why a zinc impurity will generally
induce a spin-12 around it in the superconducting and spon-
taneous vortex phases. In the superconducting state, a Zn-
vortex costs a logarithmically divergent energy and thus
must be “screened” by nucleating a neutralS=1/2 spinon
that carries an antivortex19 and is bound to the latter, as
shown in Fig. 2sbd. Note that in the pure system, an isolated
spinon excitation is not allowed in the superconducting bulk
state for the same reason, and only spinons in bound pairs
svortex-antivortex pairsd can be excited, which is known as
the spinon confinement.19 It is also noted that in a different

FIG. 1. sad A vacancyszinc impurityd always induces a vortex-
like supercurrent response in the superconducting phase due to the
phase string effect.sbd To compensate such a vortex effect, a
spinon, which carries an antivortex, has to be trapped around the
zinc impurity, giving rise to a localS=1/2 moment.

FIG. 2. Spinon density distributionkni
bl=kosbis

† bisl around the
zinc impurity. The lattice is 16316 with dopingd=0.125.

MICROSCOPIC ORIGIN OF LOCAL MOMENTS IN A… PHYSICAL REVIEW B 71, 184507s2005d

184507-3



approach20 based on a similar all-boson formalism, an “un-
screened” current vortex is predicted around a zinc impurity
if the S=1/2 is trapped around which carries such an
santidvortex. By contrast, such asantidvortex is always com-
pensated in the present approach since a zinc impurity itself
also induces a vortex as shown in Fig. 1sad.

In the spontaneous vortex phase, even though free vorti-
ces are thermally present in the bulk in a similar fashion as in
Kosterlitz-Thouless transition, there still exists a logarithmic
attraction between a Zn vortex and a spinon vortex at short
range, and a bound statesalthough not a confined state below
Tcd between a Zn and anS=1/2 moment can be still present
below Tv.

Therefore, there is a fundamental topological reason for
an S=1/2 moment to be trapped around a zinc impurity in
the bosonic RVB theory of doped Mott insulators, in the
superconducting and spontaneous vortex phases.

III. GENERALIZED MEAN-FIELD DESCRIPTION

Once we have established the topological origin of theS
=1/2 moment around a zinc impurity, a simple effective de-
scription of the system with one zinc impurity can be devel-
oped.

Note that after trapping a spinon nearby, the vortex in-
duced by the zinc impurity is compensated by the antivortex
carried by the spinon, as illustrated by Fig. 1sbd. Then the
system is topologically trivial at a distance sufficiently away
from the impurity where the system remains the same as the
pure system. The change of the state mainly occurs around
the impurity with a characteristic scale comparable to the
spin correlation length.

We can construct a state based on the ground stateuC0l of
the pure system, by removing alocal spin sitting at the site
i0, denoted by

uC0lZn ; P̂i0
uC0l. s15d

To leading-order approximation,uC0lZn may be regarded as a
“sudden approximation” of the true ground stateuClZn in the
presence of a zinc. Both have the same spin and charge quan-
tum numbers. By suddenly removing a spinon ati0, its origi-
nal partner spinon inuC0l will be left around the sitei0 in
uC0lZn within the spin-correlation lengthj. At distances
larger thanj, on the other hand,uC0lZn is essentially the
same asuC0l Because of the topological reason discussed in
Sec. II, the free spinon partner created inuC0lZn should re-
main trapped around the impurity. Therefore one expects
uC0lZn to have a good overlap with the true ground state
uClZn and can smoothly evolve into the latter under a weak
local perturbation. So it is reasonable for one to takes15d as
a good variational form for the zinc problem.

Since the holons are Bose condensed in the superconduct-
ing and spontaneous vortex phases, of which we are con-
cerned,Aij

h in the spinon Hamiltonians2d can be simplified as
approximately describing a uniform flux with a strength

o
h

Aij
h . pd, s16d

per plaquette.

Under the conditions16d, the spinon HamiltonianHs in
s2d can be straightforwardly diagonalized as18

Hs = o
m,a

Emgma
† gma + const, s17d

by a Bogoliubov transformation

bis = o
m

wmssidsumgma − vmgm−a
† d s18d

with uumu=Îsl+Emd /2Em and uvmu=Îsl−Emd /2Em. A de-
tailed treatment of this mean-field state in a self-consistent
way can be found in Refs. 18 and 21.

Based on the above mean-field description, the zinc-free
RVB ground stateuC0l is defined bygmauC0l=0. Now we
construct the states with one zinc being added to the system
as discussed at the beginning of this section.

First, according to the sudden approximation, the trial
state with a zinc at sitei0 may be obtained by annihilating a
bare spinon at sitei0 with a spin index, say, −s

uC0lZn = bi0−suC0l. s19d

Then, we allow the bosonic RVB order parameterDi j
s to be

adjustable around the zinc site to further minimize the total
energy. Thus the final trial Zn state can be constructed in the
following form:

uClZn = Cbi0−suC0fDi j
s gl. s20d

Here C is a normalization constant anduC0fDi j
s gl is the

ground state of the Hamiltonians2d under a fixed form of the
RVB order parameterDi j

s , which will generally deviate from
the uniformDs sof the pure systemd around the zinc site.

In order to address the dynamic and thermodynamical
properties, one needs to further determine the elementary
excitations based onuClZn defined ins20d. We take the fol-
lowing steps to make the construction. First, by using the
Bogoliubov transformations18d, one has

Cbi0−suC0l = Co
m

wmssi0dvmgms
† uC0l ; f0s

† uC0l, s21d

with f0s
† =Comwmssi0dvmgms

† and C;somuwmssi0du2vm
2 d−1/2.

Second, define a class of single spinon creation operatorsfns
†

as a linear combination ofgms
† ’s, which satisfies

fns
† = o

m

Fnm
s gms

† , o
m

sFlm
s d*Fnm

s = dl,n s22d

with F0m
s ;Cvmwmssi0d such thatf0s

† is consistent with the
definition in s21d. A properF can be then obtained by redi-

agonalizing the Hamiltonian s17d: Hs=onÞ0,aẼnfna
† fna

+const, under a constraintoa f0a
† f0a=1, with Ẽn as the

“renormalized” spectrum in the presence of a zinc impurity.
Then the ground state with a zinc is simply given by

uClZn= f0s
† uC0l, and the orthogonalsmean-fieldd excitation

states are constructed by the creational operatorsfns
† sn

Þ0d as follows:

X. L. QI AND Z. Y. WENG PHYSICAL REVIEW B 71, 184507s2005d

184507-4



uhnnajlZn ; p
nsÞ0d,a

sfna
† dnnauClZn, s23d

wherenna denotes the occupation number at the state labeled
by sn,ad.

Physically, f0s
† in this approach is treated as a projection

operator, from the original ground state to the zinc-doped
ground state, whilefna

† snÞ0d creates spinon excitations that
are ensured to be orthogonal touClZn. The presence of a zinc
impurity at site i0 will be enforced by the constraint
oa f0a

† f0a=1.
Finally, it is noted that instead of treatingDi j

s as unre-
stricted parameters inuC0fDi j

s gl, we shall assume a simple
site-dependence forDi j

s si j Pnn sitesd in the following varia-
tional calculation, which is given by

sDi j
s dnn = DsF1 − s1 − p0dexp −

sui − i0u + u j − i0ud2

4R2 G .

s24d

Here the bulk valueDs is decided self-consistently in the
zinc-free system.18,21The zinc at sitei0 will influence sDi j

s dnn

within a radiusR with p0 determining the strength. The La-
grangian multiplierl in the mean-field Hamiltonians2d will
be kept at the zinc-free value to ensure that the state remains
the same at distances far away from the zinc site. The pa-
rameterp0 will be decided by enforcing the global constraint
for the total spinon number

o
i,a

kbia
† bial = Ns1 − dd − 1 s25d

fcompared tos3dg in the presence of a zinc impurity with a
given R. In the following, most results will be discussed for
the case ofR=1, i.e., within the sudden approximation, and
then the stability of the results will be checked by allowing
the variation ofR.

IV. PHYSICAL CONSEQUENCES

Based on the above-constructed ground state and excited
states, we can straightforwardly calculate various related
physical properties, in the presence of a zinc impurity, by
using the mean-field scheme similar to the pure system. The
results are presented below.

Local S=1/2 moment. As noted before, the ground state
uClZn defined ins20d differs from the pure stateuC0l by a
spin-12. The change of the spinon distribution around the zinc
in the ground states20d is numerically determined, as illus-
trated in Fig. 2, where the hole concentration is fixed atd
=0.125, with the lattice size 16316 andR=1 chosen ins24d.
Compared to the zinc-free mean value 1−d at a distance far
away from the zinc site, the local density of spinons changes
within a finite length scale near the zinc site as shown in Fig.
2, which accounts for the distribution of an unpaired spinon
of S=1/2 in s20d created by the zinc substitution. Note that
the spinon density is enhanced in the sublattice opposite to
that of the zinc site, indicating that the unpaired spinon
mainly stays there, which reflects the fact that the underlying
bosonic RVB pairing ins20d only involves spins at different

sublattices.21 It implies an AF spin configuration induced
around the zinc as shown below.

Staggered moments. Corresponding to the above spatial
distribution of theS=1/2 moment, staggeredsAFd moments
are further shown in Fig. 3 around the zinc site. Note that the
spin-rotational symmetry breaking in Fig. 3 is because we fix
−s=↓ in uClZn such that the total spin change upon a zinc
substitution isDSz=1/2. ThestateuClZn, in general, is a spin
doublet according to its definition ins20d sif uC0l is spin
singletd. The length scalejZn for the distribution of the local
AF moments is essentially decided by the spin-spin correla-
tion length in the original RVB ground state,js<aÎ2/pd
sRef. 21d. Figure 4 shows the doping dependence of the scale
jZn for the distribution of the local spin moments, defined by
fitting kSi

zl.s−1diS0 exps−ui − i0u2/jZn
2 d. Indeed we findjZn

.js. For a hole dopingd=0.125,jZn.2.22a. For a typical
zinc doping in experiment,dZn=0.03, the average distance
between two zincs isdZn<a/ÎdZn=7.07a, which is larger
thanjZn at d=0.125. In this dilute case, the correlation effect
among different zinc impurities can be neglected and one
may only focus on the single zinc effect.

Low-energy spin excitations. One can further examine the
dynamic properties of the induced local AF moments. One
physical quantity is the spin-lattice relaxation rate of63Cu

FIG. 3. The distribution ofkSi
zl near the zinc impurity, with the

scan along the dashed direction shown in the inset, where the zinc
site is marked by the filled circle.

FIG. 4. sColor onlined The size of the spatial distribution of the
local moments,jZn ssolidd, and the bulk spin correlation length,
js=Î2/dp sdottedd, vs dopingd.
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measured in NMR/NQR experiments, which is decided by
the imaginary part of the spin correlation functionxsq,vd as
follows:

1
63T1T

= o
q
UA2sqdIm xsq,vNd

vN
U

vN→0
. s26d

Here the structure factorAsqd=A+2Bscosqxa+cosqyad and
A=−4B when the applied magnetic field is orthogonal to the
CuO2 plane.1 So the main contribution will come from the
AF correlations near the AF momentumsp ,pd. Figure 5
shows the theoretical calculations. In the pure system of the
bosonic RVB state, a pseudogap opens up in the spin excita-
tions, resulting in a suppression of 1/63T1T at low tempera-
ture ssolid line with crosses in Fig. 5d. However, for the
zinc-doped system, the “spin gap” shown in Fig. 5 is filled
up by a Curie-type contribution, 1/63T1T~1/T, because of
the presence of a free moment with a staggered distribution
around the zinc site. The spatial distribution of 1/63T1T is
given in Fig. 6 at a low temperaturesT=0.0067Jd, which
clearly shows that the Curie-type signals are located near the
zinc site, with its maximum at the nn sites of the zinc, con-

sistent with the distributions of the staggered moments in
Fig. 3.

It is noted that the calculation is performed at a 16316
lattice with only one zinc, with an effective zinc doping con-
centration equal to 1/256.0.004. In the realistic case with
more zinc impurities, the intensity of 1/63T1T on average is
expected to be proportional to the density of zinc impurities
at low temperatures, so long as the zinc concentration is not
too large such that the single-zinc approximation used above
is still valid. Thus one should multiply a factor of 5–8 to the
low-temperature part of 1/63T1T for the averaged case in Fig.
5 ssolid curve with squaresd in order to compare to the ex-
perimental case withdZn=0.02–0.03.

Furthermore, the uniform spin susceptibility can be di-
rectly calculated byxu~Rexsq=0,v→0d. xu also shows a
pseudogap behavior at low temperatures in the pure state,
which is replaced by the Curie-like 1/T behavior near the
zinc site due to the contribution from the local moment as
shown in Fig. 7.

Dynamic spin susceptibility. The imaginary part of the
dynamic spin susceptibility, Imxsq,vd, can be directly mea-
sured by inelastic neutron scattering. In the bosonic RVB
mean-field theory, a resonance peak at the AF wave vector
QAF=sp ,pd is present in the dynamic spin-correlation func-
tion in the superconducting phase. For the hole dopingd
=0.125, we obtain the resonance energyEg<0.53J.21 Upon
the zinc doping, the energyEg of the resonance peak has
changed littlessee Fig. 8d in the bulk. But a zinc impurity
does induce some states at lower energies as shown in Fig. 8,
which reflects the modified spin-excitation spectrum near the
zinc, accompanying the emergence of a local moment. Note
that the weight of such zinc-induced modes in Fig. 8 should
be enhanced with a finite concentration of the zincs.

Effect from the holon redistribution. So far the mean-field
results are obtained based on the assumption that the Bose
condensed holons are uniformly distributed in space. But in
the presence of a zinc, the holon density near the zinc impu-
rity should be generally suppressed, to be consistent with the
fact that the spinon density increases around the zinc site
because of the no double occupancy constraint. In the
bosonic RVB theory, since the holons will influence the

FIG. 5. sColor onlined Contributions to 1/63T1T from different
sites are calculated. Solid curve with crosses: from the site far from
the zinc impurity. Dashed curve with triangles: the nn site near the
zinc. Dashed curve with circles: the next-nearest-neighborsnnnd
site near the zinc. Solid curve with squares: average over all sites in
a 16316 lattice with one zincssee textd.

FIG. 6. Distribution of the contributions to 1/63T1T from indi-
vidual sites near the zinc impurity, at temperatureT=0.0067J.

FIG. 7. sColor onlined Uniform spin susceptibility in the pure
system is shown by the solid curve with full circles. The case with
one zinc is illustrated by the solid curve with triangles. The dashed
curve is a fit byx=0.2390/T.
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spinon part by the gauge fieldAij
h defined ins8d, the suppres-

sion of the holon density around a zinc will cause additional
effects on the local spin dynamics, which is considered be-
low.

As shown in Fig. 9, the intensity of the zinc-induced low-
energy spin excitations seen in Fig. 8 will be enhanced with
its energy scale further reduced if a holon density reduction
is taken into account with a profile given by the inset. Mean-
time, the local staggered moments will also be increased
sFig. 10d under the same holon distribution. Although the
above calculations are not based on a self-consistent scheme,
which is generally quite difficult, all the important features
found previously in the uniform profile of the holon distri-
bution are kept qualitatively unchanged, except for the fact
that the anomalies are further strengthened because of the
reduction of the holons, which makes the area near the zinc
closer to the half-filling.

Local stability of the mean-field theory. The stability of
the results discussed above based on the conjectured ground

states20d can be further examined by tuning the variational
order parameter defined ins24d. By changing the parameter
R, the range of the zinc effect on the RVB parametersDi j

s dnn

in s24d can be continuously adjusted. As shown in Fig. 11,

the superexchange energykH̃JlZn is found to monotonically
grow with the increase ofR for both uniform and nonuni-
form profiles of the holon distribution, indicating that the
sudden approximation stateuC0lZn.uCsR=1dlZn remains lo-
cally stable, which prevents the localS=1/2 moment from
leaking far away from the zinc impurity. When the holon
redistribution discussed above is consideredssee the dashed
curve in Fig. 11d, this local stability is further strengthened,
since the frustration effect on the spin dynamics, which
comes from the holon motion, is weakened around the zinc
impurity due to the reduction of the holon density.

V. CONCLUSION

In this paper, we have developed a microscopic descrip-
tion of the zinc doping effect in the cuprate superconductors

FIG. 8. Dynamic spin susceptibility at AF wave vectorQAF

=sp ,pd with d=0.125. The high-energy resonancelike peak atEg

.0.53J is from the bulk szinc freed state, while the low-energy
excitations indicated by the arrow are the ones induced by the zinc
impurity.

FIG. 9. sColor onlined Dynamic spin susceptibility atQAF

=sp ,pd is shown as the solid curve when the holon density is
suppressed locally around the zincssee the insetd. For comparison,
the dashed curve illustrates the case for a uniform holon density
distribution.

FIG. 10. The distribution ofukSi
zlu, corresponding to the profile

of the holon density shown in the inset of Fig. 9, is plotted as the
solid curve, as compared to the dashed curve for the uniform holon
distribution.

FIG. 11. The average superexchange energykHJl / s2NLd per
bondsNL denotes the total number of lattice sites excluding the zinc
sitesd as a function of the parameterR in s24d. Solid curve: uniform
holon distribution. Dashed curve: locally suppressed holon density
around the zinc indicated by the inset of Fig. 10.
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based on an effective theory, i.e., the bosonic RVB theory, of
the t-J model. The unusual effects of the zinc doping ob-
served in the experiments have been explained as a direct
consequence of the mutual nonlocal entanglement between
the spin and charge degrees of freedomsi.e., the phase string
effectd in the doped Mott insulator. Namely, due to the phase
string effect, holons see a topological gauge field that corre-
sponds to some uniform plaquette fluxes in the pure system,
but once the local bonds near a zinc impurity are broken, a
flux deficiency will emerge around the zinc impurity, which
has to be compensated via pairing with a spinon-vortex
nearby, leading to the formation of a local moment.

Once a local moment is formed due to such a topological
mechanism, the effect of zinc doping can be simply de-
scribed by a sudden approximation, which directly translates
the short-range RVB pairing present in the spin background
state of the pure system to the AF spin distribution around a
zinc impurity, once the latter is introduced to the system. The
NMR spin-relaxation rates, uniform spin susceptibility, and
the induced low-lying spin excitations, obtained within the
sudden approximation and beyond, have consistently painted
a unified picture of spin correlations near the zinc, which is
shown to be stable locally and in an overall agreement with
the experimental observations. In particular, the theory pre-
dicts that the range of the distribution for the local moment is
inversely proportional to the square root of doping concen-
tration.

In this work, an important property in the zinc problem
has not been discussed thus far. That is the behavior of qua-

siparticle excitations and the single-electron tunneling prop-
erties. In the bosonic RVB theory, an electron is composed of
a holon and a spinon, together with a nonlocal phase-string
factor.22 In the superconducting phase, it has been shown22

that a quasiparticle is stable due to a confinement of these
holon-spinon and phase-string objects. So the overall low-
energy single-particle spectral function is expected to be the
same as in ad-wave BCS theory. However, the composite
structure is predicted to be seen at high energies, which may
explain the “coherent peak” in the antinodal regime in the
pure system as due to the spinon excitation.22 In the zinc-
doping case, because of the trapping of a free moment
sspinond near the zinc, the high-energy spinon contribution in
the single-particle spectral function can become a zero-
biased mode. Detailed study of this property needs the
knowledge about the charge degree of freedom as well as the
confinement in the superconducting phase, which is beyond
the scope of this work. This issue and other problems, such
as how the superconducting transition temperature will be
affected by the local moments, will be further investigated
within the bosonic RVB description in future.
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