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We present a readout method for superconducting flux qubits. The qubit quantum flux state can be measured
by determining the Josephson inductance of an inductively coupled dc superconducting quantum interference
device sdc-SQUIDd. We determine the response function of the dc-SQUID and its back-action on the qubit
during measurement. Due to driving, the qubit energy relaxation rate depends on the spectral density of the
measurement circuit noise at sum and difference frequencies of the qubit Larmor frequency and SQUID
driving frequency. The qubit dephasing rate is proportional to the spectral density of circuit noise at the SQUID
driving frequency. These features of the back-action are qualitatively different from the case when the SQUID
is used in the usual switching mode. For a particular type of readout circuit with feasible parameters we find
that single shot readout of a superconducting flux qubit is possible.
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I. INTRODUCTION

An information processor based on a quantum mechanical
system can be used to solve certain problems significantly
faster than a classical computer.1 This idea has motivated
intense research in recent years on the control and measure-
ment of quantum mechanical systems. The basic units in a
quantum computer are two level systems, also called quan-
tum bits or qubits. Many types of qubits based on various
physical systems have been proposed and implemented ex-
perimentally.

Qubits based on solid state systems have the advantage of
flexibility in design parameters and scalability. An important
class of solid state qubits are the superconducting qubits.
They are mesoscopic systems formed of superconductor
structures containing Josephson junctions. The energy level
structure in these systems is the result of the interplay be-
tween the charging energy, associated with the electrostatic
energy due to distribution of the charge of a single Cooper
pair, and of the Josephson energy, associated with the tunnel-
ling probability for Cooper pairs across the Josephson junc-
tions. Quantum coherent oscillations have been observed for
a few versions of qubits with Josephson junctions2–7 and
coupling of two qubits was demonstrated.8

A suitable qubit state detection apparatus for individual
qubits is an essential ingredient for the implementation of
algorithms for a quantum computer. Efficient measurement is
necessary to extract all the relevant information on single
qubit states within a restricted time. Moreover, for correla-
tion type measurements in a multiple qubit system, the un-
wanted back-action of the first measurement should not dis-
turb the system so strongly, that subsequent measurements
will be meaningless. In this paper we discuss a measurement
method for superconducting flux qubits. Flux qubits are a
qubit variety formed of a superconducting loop interrupted
by Josephson junctions. The basis states have oppositely cir-
culating persistent currents in the loop. The control param-
eter is an external magnetic flux in the qubit loop. The qubit
state can be determined by measuring the magnetic flux gen-
erated by its persistent current.

A natural candidate for the measurement of the state of a
flux qubit is a dc superconducting quantum interference de-
vice sdc-SQUIDd. A dc-SQUID is a loop containing two Jo-
sephson junctions. Its critical current, which is the maximum
supercurrent that it can sustain, depends on the magnetic flux
enclosed in the loop.9 The state of a flux qubit10,11 was mea-
sured using an underdamped dc-SQUID.7,12 The critical cur-
rent of the SQUID, and thus the state of the flux qubit, is
determined as the maximum value of the current, where the
SQUID switches to a finite voltage state. Due to thermal and
quantum fluctuations, switching of the SQUID is a stochastic
process.13 The qubit states are distinguishable if the differ-
ence between the two average values of the switching cur-
rent, corresponding to the qubit flux states, is larger than the
statistical spread of the measured values of the switching
current. The measurement of a flux qubit using a switching
dc-SQUID was characterized by an efficiency as large as
60%.7 Further improvement of the measurement efficiency is
possible. Also, the back-action on the qubit coupled to the
measurement apparatus, in the situation where no measure-
ment is performed, can be reduced to acceptable levels.14

Nevertheless, switching to the dissipative state has a few
drawbacks. The finite voltage across the dc-SQUID deter-
mines the generation of quasiparticles which causes decoher-
ence of the qubit.15 The long quasiparticle recombination
time is a severe limit to the reset times for the qubits. In the
finite voltage state the SQUID generates ac signals with fre-
quencies in the microwaves range and broad spectral content,
that can induce transitions in a multiple qubit system, con-
strained to have energy level spacings in the same region.
The mentioned types of back-action will not have an effect
on the statistics of the measurements on asingle qubit, as
long as the repetition rate of the measurements is small.
However, in a complex multiple qubit system switching of a
dc-SQUID to the finite voltage state is a strong disturbance
of the state of the total system which introduces errors in
subsequent computations and/or measurements.

A dc-SQUID can be used as a flux detector in an alterna-
tive mode of operation, in which switching to the dissipative
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state is avoided. This is based on the property of a SQUID to
behave as an inductor, with a Josephson inductance that de-
pends on the magnetic flux enclosed in the loop.9 The value
of the Josephson inductance can be determined by measuring
the impedance of the SQUID. The flux sensitivity in this
operation mode is increased if the junction is shunted by a
capacitor and the circuit is excited with an ac signal at a
frequency close to the resonance frequency. A SQUID in the
inductive mode integrated in a resonant circuit was used for
the measurement of spectroscopy of a flux qubit.16

The inductive operation mode resembles the RF-SQUID
in the dispersive mode.9 The RF-SQUID contains a super-
conducting loop with a single Josephson junction; the imped-
ance of a high quality tank circuit inductively coupled to the
loop is measured near resonance, where it is very sensitive to
the value of the magnetic flux in the loop. For charge mea-
surement, a similar device is the RF single electron tunnel-
ling transistorsRF-SETd, with the difference that a dissipa-
tive property of a SET transistor is measured directly. The
RF-SET was used as a detector for charge qubits by Dutyet
al.6 Motivated by research on superconducting qubits a few
flux or charge detectors based on the measurement of a re-
active circuit element have been recently implemented. A
flux qubit was studied by Grajcaret al.17 by measuring the
susceptibility of the qubit loop using a coupled high quality
tank circuit. A detector for charge qubits based on the mea-
surement of the inductance of a superconducting SET was
proposed by Zorin18 and implemented by Sillanpääet al.19 A
sensitive measurement of the critical current of a Josephson
junction which exploits the nonlinearity of the current phase
relation was demonstrated by Siddiqiet al.20 The state of a
charge qubit was read out by Wallraffet al.21 by measuring
the transmission through a coupled transmission line resona-
tor.

The paper is organized as follows. In Sec. II we discuss a
few general constraints on the parameter range where the
dc-SQUID in the inductive mode can operate. We continue
in Sec. III with a general analysis of the response function of
this device as a flux detector. The response function is de-
rived for a general type of circuit embedding the dc-SQUID.
In Sec. IV we discuss the qubit-SQUID interaction and we
identify the relevant aspects of the measurement back-action.
The energy relaxation rate and the dephasing rate of the qubit
during the measurement are derived in Sec. V. Because of ac
driving of the SQUID and quadratic coupling of the qubit to
the SQUID, the qubit relaxation rate is proportional to the
spectral density of circuit noise at frequencies which are the
sum and the difference of SQUID ac driving frequency and
qubit Larmor frequency. Similarly, the dephasing rate is pro-
portional to the spectral density of circuit noise at the fre-
quency of the SQUID ac driving. In Sec. VI we discuss the
results of the calculations on the measurement back-action.
We analyze the measurement efficiency for a specific readout
circuit and we find that single shot readout of a flux qubit is
possible.

II. GENERAL CONSIDERATIONS

In this paper we focus on the readout of a persistent cur-
rent qubit sPCQd,10,11 though the analysis of the measure-

ment is applicable to flux qubits in general. The PCQ is
formed of a superconducting loop with three Josephson junc-
tions. Two of the three junctions are of equal size, with Jo-
sephson energyEJ and charging energyEc, while the third
junction is smaller by a factoraq. Figure 1sad shows a rep-
resentation of the energy levels vs the value of the external
magnetic flux in the loop,Fqb, for a set of typical param-
eters. The qubit quantum state can be represented as a super-
position of two basis states that are persistent current states
in the loop, with values of the current equal to +Ip and −Ip,
respectively. Away from the symmetry pointFqb=F0/2 the
energy eigenstates are almost equal to the persistent current
states. WhenFqb approachesF0/2, the energy eigenstates
are superpositions of the basis states. ForFqb=F0/2 the en-
ergy eigenstates are the symmetric and antisymmetric com-
binations of the basis persistent current states and are sepa-
rated by an energy gap denoted byD. A representation of the
expectation value of the current for each energy eigenstate is
given in Fig. 1sbd.

The dc-SQUID is characterized by the gauge-invariant
phase variables across the two Josephson junctions, denoted
by g1 and g2. The two variables are connected through the
fluxoid quantization condition,g1−g2=−2pFsq/F0, where
F0 is the flux quantum andFsq is the total flux in the SQUID
loop. The flux in the SQUID loop contains an external com-
ponentFx and a self-generated component, which can be
neglected for the typical parameters we will discuss. With
this assumptiong1−g2=−2pfx, where fx=Fx/F0, and the
SQUID can be described as a single Josephson junction with
a critical current given byIcsfxd=2Ic0ucosspfxdu for a sym-

FIG. 1. sad GroundsE0d and excitedsE1d state energy levels for
a PCQ with two junctions equal, withEJ=258 GHz andEC

=6.9 GHz, and the third junction smaller by a factoraq=0.75, re-
sulting in Ip=300 nA andD=5.5 GHz.sbd Expectation value of the
loop current for the groundskIqbl0d and excitedskIqbl1d energy
states with the parameters mentioned insad. scd Schematic represen-
tation of the PCQ and of the measuring dc-SQUID, with crosses
indicating Josephson junctions. The SQUID junctions have critical
currentsIc1 and Ic2. The SQUID acts like a variable inductor, with
an inductanceLJ dependent on the state of the coupled flux qubit.
The impedanceZ of a resonant circuit formed of the dc-SQUID and
a shunt capacitorC is plotted vs the frequencyn0 for the cases
corresponding to the qubit in the ground statescontinuous lined or
in the excited statesdashed lined. The parameters of the circuit have
typical values, as discussed in Sec. VIsR is an equivalent resistance
representing the energy loss of the driven circuitd.
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metric SQUID sIc1= Ic2= Ic0d. For symmetric qubit-SQUID
couplingswhen the two SQUID branches have mutual induc-
tances to the qubit loop with opposite valued the flux gener-
ated by the SQUID in the qubit loop is given byMsIcirc,
where Ms is the inductance between the qubit and the
SQUID loops andIcirc=sIsq,1− Isq,2d /2 swith Isq,1 and Isq,1

being the currents in the SQUID junctionsd is the circulating
current in the SQUID loop. The circulating current of the
SQUID is given by

Icirc = Ic0 sinspfxdcosge, s1d

where ge=sg1+g2d /2. The current and the voltage of the
SQUID are related to the variablege through the two Joseph-
son relations:

I = Icsfxdsinge, s2d

and

V =
F0

2p

dge

dt
. s3d

From Eqs.s2d and s3d it follows that in the linear approxi-
mation(sinsged.ge) the SQUID behaves as a linear inductor
with the Josephson inductance,

LJ =
F0

2pIc
. s4d

If an ac current is injected in the SQUID at frequencyn0
with a small amplitudeIac, the voltage across the SQUID has
the amplitude V=2pn0LJIac=F0n0Iac/ Ic. The maximum
voltage across the SQUID is very smalls,2 mV for n0
=1 GHzd; very low noise amplification is necessary to detect
such a voltage in a short time. Increasing the value ofn0 will
result in a proportional increase in the value of the maximum
ac voltage. However, from Eqs.s1d and s2d it follows that
when the SQUID current varies at frequencyn0, the circulat-
ing current contains a significant frequency component at
2n0 and additional higher harmonics for strong driving in the
nonlinear regime. The flux generated by this circulating cur-
rent in the qubit loop can cause transitions between the qubit
energy levels if the harmonics of the driving current are close
to the qubit energy levels splitting. With typical level split-
ting of 1–20 GHz, the value ofn0 is limited to &1 GHz.

The relative change in Josephson inductance when the
qubit evolves from the ground to the excited state is given by

UdLJ

LJ
U . UdIc

Ic
U . 2putanspfxdu

MsIp

F0
, s5d

where it was assumed that the measurement is performed at a
bias flux in the qubit away fromF0/2, so that the expecta-
tion value of the qubit current in each energy eigenstate ap-
proaches in absolute valueIp ssee Fig. 1sbdd. The typical
values for Ms and Ip limit the value of dLJ/LJ to a few
percent. If the SQUID is driven with a constant ac current,
the maximum difference in ac voltage corresponding to a
qubit state change, from the ground to the excited state, is
,F0n0dLJ/LJ. This can be increased if the SQUID is placed
in a resonant circuit and the driving frequencyn0 is taken
close to the circuit resonance frequencyssee Fig. 1scdd. A

limit on the quality factorQ will be set by the fact that the
response time of the resonator,Q/v0, has to be smaller than
the intrinsic qubit relaxation time, which is in the microsec-
onds range.7,16 WhenQ.2LJ/dLJ the two circuit resonance
peaks, corresponding to the different qubit states, are sepa-
rated and a further increase ofQ will not contribute to an
increase in the ac voltage difference.

The above considerations show that, given the typical qu-
bit energy level splitting and relaxation time, the constraints
on the circuit parameters aren0&1 GHz andQ,100.

III. DETECTOR RESPONSE FUNCTION

In this section we analyze the dc-SQUID in the inductive
mode as a flux detector. We consider the case of moderate ac
driving, when the SQUID behaves as a linear inductor. The
function describing the conversion of flux in the SQUID loop
to ac voltage is determined for a general type of circuit in
which the SQUID is embedded.

If the magnetic flux in the SQUID loop varies in time, the
relation between the transport current and the voltage across
the terminals of the SQUID is given by

Istd =
1

LJstd
Et

Vst8ddt8, s6d

whereLJstd is the time-dependent Josephson inductance. Let
us consider

1

LJstd
=

1

LJ0
„1 + astd…, s7d

whereastd parametrizes the variations of the magnetic flux
in the SQUID. The time-dependent Josephson inductance
LJstd can be represented as the parallel combination of the
inductancesLJ0 and LJ0/astd ssee Fig. 2sadd. In the case of
the qubit measurement,astd describes the dynamics of the
qubit generated flux. The extreme values ofastd in this case
correspond to the qubit in a clockwise or anticlockwise per-
sistent current state and are given approximately by
±p tanspfxdMIp/F0 ssee Eq.s5dd. We assumeuastdu!1, con-
sistent with the usual value of the flux generated by the
coupled qubit in the SQUID loop which is of the order of 1%
of F0.

7,12,16From Eqs.s6d ands7d, it follows that the current
in the SQUID can be written as

I = I0 + I1, s8d

with

I0std =
1

LJ0
Et

Vst8ddt8 s9d

and

I1std =
astd
LJ0

Et

Vst8ddt8. s10d

As discussed in Sec. II, the measurement of the Josephson
inductance is more efficient if the dc-SQUID is integrated in
a resonant circuit. In this case the circuit is driven with an ac
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current source at a frequency close to the resonance fre-
quency and the ac voltage is suitably amplified. The output
ac voltage depends onastd. Since there is a certain freedom
in the design of the resonant circuit, we calculate here the
dependence of the output voltage onastd for a general type
of circuit in which the dc-SQUID is embeddedssee Fig.
2sbdd. We consider a linear network with three ports that
containsLJ0 sthe constant component of the SQUID induc-
tanced, the impedance of the driving current source, the am-
plifier input impedance, complemented by other linear circuit
elements. The portPi has its terminals across the current
source. The portPm is connected across the Josephson induc-
tanceLJ0. Finally, the portPo has its connections at the input
of the amplifier. Three elements are connected to the ports
Pi, Po, andPm, respectively: the ideal current sourceI istd, an
ideal voltage amplifier, and the inductanceLJ0/astd. A spe-
cific electrical circuit described in the way indicated here is
shown in Fig. 3sad.

The relation between the current and the voltage at port
Pm is determined by the inductanceLJ0/astd:

− Imstd =
astd
LJ0

Et

Vmst8ddt8, s11d

which is Eq.s10d with changed sign in order to preserve the
sign convention for the three-ports network.22 The voltage at
the portPa, a=o,m can be written as

Vastd =E
0

`

Zaist8dI ist − t8ddt8 +E
0

`

Zamst8dImst − t8ddt8.

s12d

Here Zabstd is the impedance matrix for the three-port net-
work, with a,b= i,m,o. We assume that the ac driving current
is I istd= Ie cossv0td and the flux variations in the dc-SQUID
loop ssee Eq.s7dd are described byastd=Re(a0 exps−ivtd).
Equation s11d implies thatVm and Im have components at
frequenciesv0+nv, with n being an integer. The voltageVm
can be written as

Vmstd = o
n
SVm,n

2
e−isv0+nvdt +

Vm,n
*

2
eisv0+nvdtD . s13d

A similar expression forIm can be written ifV is replaced by
I in expressions13d.

From Eq.s12d written for a=m, one obtains the Fourier
components ofVmstd as a function of the Fourier coefficients
of Imstd snote thatI istd is imposed and has frequency compo-
nents at ±v0d. These values can be replaced ins11d, and the
terms corresponding to the frequenciesv0+nv are separated.
Using the equations corresponding ton=0,1,21 in expan-
sions of the forms13d and neglecting the termsIm,2 andIm,−2,
the values forIm,0, Im,1, and Im,−1 can be obtained in lowest
order inua0u. Using these values in Eq.s12d for b=o leads to
the following expression for the components of the output
voltage at frequenciesv0+v andv0−v:

Vo,1 =
a0

iv0LJ0
Zmisv0d

Ie

2
Zomsv0 + vd s14d

and

Vo,−1 =
a0

*

iv0LJ0
Zmisv0d

Ie

2
Zomsv0 − vd. s15d

The expressionss14d and s15d for the up- and down-
converted voltage at the output of the circuit are proportional
to the amplitude of the driving currentIe and to the ampli-
tude of the flux modulationua0u. These expressions are us-
able only when the driving conditionssIe and v0d are such
that the maximum amplitude of the current in the SQUID is
not close to the SQUID critical current. Besides the up- and
down-converted componentsVo,1 andVo,−1, the output volt-
age contains a strong componentVo,0 at frequencyvo. Vo
depends only quadratically onua0u and thus it cannot be used
for an efficient detection of the flux.

IV. QUBIT-SQUID INTERACTION

In a basis formed of two persistent current states, the
Hamiltonian of the flux qubit can be written as11

FIG. 2. sad The time-dependent Josephson inductance can be represented as a parallel combination of the inductorsLJ0 andLJ0/astd. sbd
A schematic representation of the circuit in which the dc-SQUID is insertedssee the text for explanationsd.
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Ĥqb =
e

2
ŝz +

D

2
ŝx, s16d

where ŝi, i =x,y,z, have the Pauli matrices representation.
The coefficient of the first term ins16d is e=2IpsFqb

−F0/2d, whereFqb is the flux in the qubit loop. The maxi-
mum persistent currentIp and the minimum energy level
splitting D ssee Figs. 1sad and 1sbdd are parameters fixed by
the qubit junctions design. The average flux induced in the
SQUID loop by the qubit isMIpkŝzl. The flux-dependent
term in the energy of a SQUID is the Josephson energy given
by −2F0/ s2pdIc0 cossgedcosspFsq/F0d. The total fluxFsq in
the SQUID loop contains the external fluxFx and qubit-
induced fluxMIpkŝzl. It follows that the interaction Hamil-
tonian can be written as

Ĥc = MIpIc0 cossĝedsinspfxdŝz, s17d

where we assumed that the flux generated by the qubit is
small and thus a linear approximation could be used. A rig-
orous derivation of the interaction term in the Hamiltonian
for a coupled dc-SQUID and a three Josephson junctions
qubit, assuming a SQUID with a small self inductance and
using the two level approximation for the three Josephson
junctions loop leads to the same result ass17d.

If s17d is compared tos16d with e /2=IpsFqb−F0/2d, it
becomes clear that the back-action due to the measurement is

described by an equivalent flux operator, expressed asF̂b

=MÎcirc. Î circ is the operator corresponding to the circulating

current in the dc-SQUID and is given byÎ circ= I f cossge
ˆ d,

where I f = Ic0 sinspfxd ssee Eq.s1dd. Classically, qubit deco-
herence can be understood as a result of the fluctuations in
the flux bias, due to the SQUID. Ifge is treated as a classical
variable, its time evolution is given by

gestd = ge,cohstd + ge,nstd, s18d

where ge,cohstd=Re(ge0 exps−iv0td) with ge0

=2pIeZimsv0d / siF0v0d the response to circuit driving and
ge,nstd is a random term, corresponding to, e.g., thermal fluc-
tuations. The “classical” flux is given byFbstd
=MI f cos(gestd), which can be approximated by

Fbstd = MI fS1 −
ge

2std
2

D . s19d

The statistical properties ofFbstd are thus determined by
ge

2std. From s18d it follows that for the case when the phase
oscillations amplitude is large compared to the typical values
of genstd, the most important contribution will be the mixing
term ge,cohstdge,nstd. This results in frequency conversion of
the circuit noise.

The analog of Eq.s18d for the quantized system is

ĝe
I std = ge,cohstd + ĝenstd, s20d

in which ĝe
I std is the phase operator in the interaction repre-

sentationwith respect to the qubit-SQUID interaction, which
is thus equivalent to the Heisenberg representation for the
SQUID system.ĝe,nstd is the phase operator representing the

intrinsic evolution, in the absence of circuit driving. The first
term on the right-hand side of Eq.s20d corresponds to the
evolution due to driving, and it is the same as the first term
on the right-hand side of Eq.s18d.

The essential feature of the interaction Hamiltonian given
by s17d is that the coupling to the external phase operator
does not have a linear part. Recent work on the influence of
nonlinear coupling of the noise on the evolution of a two
level system has been done,23 motivated by results reported
by Vion et al.,3 where long coherence times were obtained
for the operation of a qubit at settings where the energy level
separation was insensitive in the first order to external noise.
In the second order approximation, the back-action flux noise
is described by

F̂b = MI fS1 −
ĝe

2

2
D , s21d

which can be separated in three parts as

F̂b1 = MI fFS1 −
ge,coh

2 std
2

D −
ĝen

2 std
2

− ge,cohstdĝenstdG .

s22d

The first term on the right-hand side ofs22d can cause tran-
sitions between the qubit energy levels. As we discussed in
Sec. II, resonant transitions occur when the qubit energy lev-
els splitting is close to the harmonics of the driving ac fre-
quency, and in particular to the second harmonic. The time
average of the first term ins22d, dependent on the amplitude
of the ac driving current, will be considered a part of the
qubit flux biasFqb. The effects of the second term ins22d
were analyzed by Makhlinet al.23 for Ohmic and 1/v type
spectral densities. In this paper we focus on the calculation
of decoherence determined by the third term ins22d. In the
second order perturbation theory, used for the calculation of
the decoherence rates in the next section, the contributions
from the different terms ins22d can be treated independently.

V. CALCULATION OF THE DECOHERENCE RATES

In this section we calculate the relaxation and dephasing
rates of a flux qubit during the measurement by a dc-SQUID
in the inductive mode. It is assumed that the external qubit
flux Fqb is fixed. However, the calculations can be extended
to include the case of the measurement performed during
induced Rabi oscillations or other control sequences.24,25The
model Hamiltonian used for the combined system qubit-
SQUID is

Ĥstd = Ĥqb + Ĥc + ĤSQUIDstd, s23d

whereĤqb is the qubit Hamiltonian given bys16d, Ĥc is the

interaction term given bys17d and ĤSQUIDstd is the SQUID
Hamiltonian, which is time-dependent due to driving. If a
transformation is made to the qubit energy eigenstates, the
first two terms ins23d become
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Ĥqb =
Îe2 + D2

2
t̂z s24d

and

Ĥc = MIpI f cossĝed„cossudt̂z − sinsudt̂x…, s25d

where thet̂i, i =x,y,z are Pauli matrices in the energy eigen-
state basis and tansud=D /e. In the interaction representation
with respect to the qubit-SQUID interaction, the operatorsti

I

evolve in time according to

t̂i
Istd = A i jstdt̂ j s26d

with the matrixA given by

Astd = 1
cossv01td − sinsv01td 0

sinsv01td cossv01td 0

0 0 12 , s27d

in which v01=Îe2+D2/" is the frequency corresponding to
the qubit energy level separationÎe2+D2. The evolution of
the operatorst̂i

H in the Heisenberg picture is obtained using
time-dependent second-order perturbation theory. As ex-
plained in Sec. IV, the relevant part of the interaction Hamil-
toniansEq. s25dd for the calculation of decoherence is given
in the interaction picture by

Ĥc
I std = − MIpI fge,cohstdĝe,nstd„cossudt̂z

I − sinsudt̂x
I
….

s28d

The evolution of the operatorst̂i
H, which allows us to de-

scribe the qubit operators expectation values if the initial
state is known, is given by

t̂i
Hstd = t̂i

Istd −
1

"2E E
t.t1.t2.0

dt1 dt2†ft̂i
Istd,Ĥc

I st1dg,Ĥc
I st2d‡.

s29d

In the following, the second term on the right-hand side of
Eq. s29d is calculated. For the initial calculation we assume
the most general interaction Hamiltonian with linear cou-
pling to the bath, which can be written as

Ĥc
I std = o

i=x,y,z
f̂ i
Istdt̂i

Istd, s30d

where f̂ i are bath operatorssnote that the interaction repre-
sentation is used ins30dd. In the end the form of the operators

f̂ i
Istd corresponding to our case, as given by Eq.s28d, will be

considered:

f̂ x
I std = MIpI f sinsudge,cohstdĝenstd,

f̂ y
I std = 0,

f̂ z
Istd = − MIpI f cossudge,cohstdĝenstd. s31d

If the commutation and anticommutation relations for thet̂i
operators are used, Eq.s29d results in

t̂i
Hstd = o

j ,l,m=x,y,z
A i jstdSt̂ j +

2

"2E E
t.t1,t2.0

dt1 dt2„Ôl j
+st1,t2dt̂l

− Ôll
+st1,t2dt̂ j − e jlmÔlm

− st1,t2d…D . s32d

In the last expression,

Ôi j
±st1,t2d = o

k,l=x,y,z
A iks− t1dĈkl

± st1,t2dA l jst2d, s33d

with

Ĉkl
+ st1,t2d =

1

2
„ f̂ k

I st1d f̂ l
Ist2d + f̂ l

Ist2d f̂ k
I st1d… s34d

and

Ĉkl
− st1,t2d =

i

2
„ f̂ k

I st1d f̂ l
Ist2d − f̂ l

Ist2d f̂ k
I st1d…. s35d

The last two expressions are symmetrized and antisymme-
trized products of operators at different times. Their expec-
tation values calculated for a thermal equilibrium state are
connected with the linear response functions by the
fluctuation-dissipation theorem.26 Note that, to obtains32d,
the integral ins29d was extended to the regiont1, t2 because
the integrand is symmetric under the interchange oft1 andt2.

We assume that initially the qubit and SQUID states were
separable and the SQUID is described by the thermal equi-
librium density matrix. For the case of the coupling Hamil-
tonian given in Eq.s28d, the relevant correlation functions
are

Cge

+ st1,t2d =K1

2
hĝe

I st1d,ĝe
I st2dj+L

0
s36d

and

Cge

− st1,t2d =K i

2
hĝe

I st1d,ĝe
I st2dj−L

0
, s37d

where1/2 denote the anticommutator/commutator, and the
expectation value is taken for the SQUID thermal equilib-
rium density matrix. Froms32d–s37d we see that the time
evolution of the operatorst̂i, i =x,y,z, depends on their ex-
pectation values for the initial qubit state and on a two-
dimensional integral involving the expectation values of op-
erators of types36d and s37d.

The interaction between the qubit and the measurement
dc-SQUID has the consequence that the qubit quantum state
becomes a mixed state. In general one distinguishes between
energy relaxation, corresponding to a change in the qubit
energy expectation value, anddephasing, corresponding to
randomization of the phase of a coherent superposition of
energy eigenstates.24 To calculate the energy relaxation, we
determine the transition rates between energy eigenstates by
determining the evolution ofkt̂z

Hstdl. If in this calculation the
initial qubit state is chosen to be the ground or the excited
state, these rates will represent theabsorptionandemission
rates, respectively. To calculate the dephasing rate, we
determine the decay of the expectation values
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k1/2(t̂x
Hstd± i t̂y

Hstd)l, with the qubit initial state being at̂x

eigenstate.
The calculation of the integral on the right-hand side of

s32d involves a product of the functions cossv01t1,2d and
sinsv01t1,2d, resulting from the expression for the free evolu-
tion matrix A ssee Eq.s27dd and of the functions cossv0t1,2d
and sinsv0t1,2d, resulting from the time dependence of the

coupling operatorsf̂ i
Istd ssees31dd. The correlation functions

appearing ins36d and s37d only depend on the time differ-
encet1− t2. For times that are long compared to 2p /v0 and
2p /v01 the relaxationsdecay ofkt̂z

Hstdld and the dephasing
sdecay ofk1/2(t̂x

Hstd± i t̂y
Hstd)ld can be described as an inte-

gral of the product of the Fourier transform of one of the
spectral functionsCge

± st1,t2d and a weight function that has a
width depending on the integration timet. This weight func-
tion is given by

Wsv,td =
1

2pt
E E

0,t1,t2,t

dt1 dt2 e−ivst1−t2d, s38d

and has the property limt→` Wsv ,td=dsvd. The expressions
below for the relaxation and dephasing rates are given as-
suming that the spectral density of the circuit noise, given by
the Fourier transform of the correlation functions,s36d and
s37d, does not have significant variations over the frequency
range, where the weight function has substantial values. In
this case, the relaxation and the dephasing of the qubit state
are proportional to the time from the beginning of the mea-
surement.

The transitions rates between the two energy eigenstates
depend on the initial state. The transition rate from the ex-
cited state to the ground stateG↓ semissiond and the transition
rate form the ground state to the excited stateG↑ sabsorptiond
are given by

G↓ =
1

2"2sin2sudk2sge0dfSge
sv01 + v0d + Sge

sv01 − v0dg

s39d

and

G↑ =
1

2"2sin2sudk2sge0dfSge
s− v01 + v0d + Sge

s− v01 − v0dg

s40d

in which relations

ksge0d = MIpI fuge0u s41d

are a measurement coupling factor and

Sge
svd = Sge

+ svd − iSge

− svd. s42d

Sge

± are the Fourier transforms of the correlation functions
Cge

± st ,0d given by s36d and s37d. The corresponding expres-
sion for the dephasing rateGf is

Gf =
1

4"2sin2sudk2sge0dfSge

+ sv01 + v0d + Sge

− sv01 − v0dg

+
1

"2cos2sudk2sge0dSge

+ sv0d. s43d

VI. DISCUSSION

In this section we discuss the results of the calculations of
the parameters characterizing qubit decoherence and we ana-
lyze a practical circuit which can be used for single-shot
readout of a flux qubit.

We start with a discussion on the emission and absorption
rates, along the lines of similar analysis done for charge27

and charge-phase24 qubits. BothG↓ and G↑ are proportional
to sin2sud, due to the fact that the operatort̂x ssee s25dd
causes transitions between the energy eigenstates. The differ-
ence between the two rates given bys39d and s40d is due to
the last term in the integrand in expressions32d, connected
with the fact that a commutator is nonvanishing, so it can be
attributed to quantum noise. Letpg and pe be the probabili-
ties for the qubit to be, respectively, in the ground and in the
excited state. The time evolution of these probabilities is
determined by the rate equations

dpg

dt
= −

G↑
2

pg +
G↓
2

pe,

s44d
dpe

dt
=

G↓
2

pg −
G↑
2

pe,

and the normalization conditionpg+pe=1. SinceG↓ and G↑
in s39d and s40d describe the decay ofkt̂zl, they appear di-
vided by 2 ins44d. The polarizationPstd=pgstd−pestd tends
to the equilibrium value

Ps =
G↓ − G↑
G↓ + G↑

, s45d

with a relaxation rate

Gr =
G↓ + G↑

2
. s46d

The spectral densities of the symmetrized and antisymme-
trized correlation functionss36d and s37d depend on the im-
pedance at the portPm ssee Sec. IIId as

Sge

+ svd =
8p

v
cothS "v

2kBT
DRe„Zmmsvd…

RK
s47d

and

− iSge

− svd =
8p

v

Re„Zmmsvd…
RK

, s48d

where RK=h/e2 ssee Devoret28d. Given the relationss46d,
s39d, s40d, ands42d and the properties ofSge

+ svd andSge

− svd to
be, respectively, even and odd functions, the relaxation rate
can be written as
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Gr =
1

2"2sin2sudk2sge0dfSge

+ sv01 + v0d + Sge

+ sv01 − v0dg.

s49d

For a flux qubit coupled to a dc-SQUID biased with a con-
stant current, van der Walet al.14 found that qubit relaxation
is proportional toSge

+ sv01d. Our results show that because of
driving the SQUID with an ac bias current at frequencyv0
the qubit relaxation rate is proportional to the sum of
Sge

+ sv01+v0d and Sge

+ sv01−v0d, and multiplied by the cou-
pling factor of Eq.s41d. In practicev0!v01, which implies
that for a spectral density of the noise which is reasonably
flat at large frequencies we can takeSge

+ sv01+v0d,Sge

+ sv01

−v0d,Sge

+ sv01d, and our results are not significantly differ-
ent from the case of a dc current biased SQUID.14

From s42d, s47d, ands48d it follows that

Sge
s− vd

Sge
svd

= e−b"v, s50d

whereb=1/skBTd. For a qubit coupled to a dc-SQUID bi-
ased with a constant current, which is the case analyzed by
van der Walet al.,14 G↓ andG↑ are proportional to the spec-
tral density of the noise at the frequenciesv01 and −v01,
respectively. For that case Eq.s50d implies that G↑ /G↓
=e−b"v01. This is the detailed balance condition and implies
that in a stationary situation the qubit is in thermal equilib-
rium with the environment at temperatureT ssee also the
results of Schoelkopfet al.27d. In contrast, the relationss39d
and s40d show that for the case analyzed here the detailed
balance condition is in general not satisfied. This is a non-
equilibrium situation generated by the presence of the ac
driving of the SQUID.

The dephasing rate ins43d can be written, ifs46d is used,
as

Gf =
G↓ + G↑

4
+ Gf

* , s51d

where thepure dephasing rateGf
* is given by

Gf
* =

1

"2cos2sudk2sge0dSge

+ sv0d. s52d

The factor cos2sud is due to the coefficient of the operatort̂z

in s25d. Dephasing is a result of the random modulation of
energy level separation due to noise in the SQUID circulat-
ing current. The fact that the SQUID is driven with an ac
current has the consequence that the pure dephasing rate de-
pends on noise atv0, which is qualitatively different of the
result obtained by van der Walet al.14 For the radio-
frequency Bloch-transistor electrometer18 a similar contribu-
tion of the converted noise to back-action was found.18,29

We compare the pure dephasing rateGf
* given by s52d

with a similar contribution due to the second term in Eq.s21d
as calculated by Shnirmanet al.,30 that we denote byG̃f

* . We
consider the simple case where the dc-SQUID is shunted by

a resistorRsh, corresponding to Ohmic dissipation, when the
result of Shnirmanet al. can be used. The following relation
is valid for v0LJ0!Rsh:

Gf
*

G̃f
*

= S"v0

kBT
D3

cothS"v0

kBT
Dge0

2

2

RshRK

sv0LJ0d2 . s53d

For the casev0LJ0!RK and "v0,kBT, the dephasing rate

G̃f
* is dominant even at small SQUID driving amplitudes.

The reliable measurement of the qubit state requires that
the ac voltage at the output of the circuit is averaged for a
long enough time, such that the noise due to the amplifier is
less that the difference between the voltage values corre-
sponding to the two qubit flux states. We define the discrimi-
nation time as the time necessary to have a measurement
signal to noise ratio equal to 1. It is thus given by

Tdiscr =
SVsv0d
sDVqbd2 , s54d

whereSVsv0d is the spectral density of the voltage noise and
DVqb is the difference in the output voltage values corre-
sponding to the two qubit states. The value ofDVqb is pro-
portional toge0. The discrimination timeTdiscr, the relaxation
time Tr =1/Gr, and the dephasing timeTf=1/Gf are in-
versely proportional toge0

2 ssee s46d with s39d, s40d, and
s43dd. Increasing the amplitude of the ac driving leads to a
decrease in the discrimination time. However, this is accom-
panied by a proportional decrease of the qubit decoherence
timesTr andTf. This illustrates the tradeoff between obtain-
ing information about a quantum system and the state distur-
bance. The measurement is efficient if the ratioTr /Tdiscr is
large. The ratioTr /Tdiscr does not depend on the amplitude of
the ac driving. However, a fast measurement is necessary if
we take into account the fact that, besides the measurement
back-action, there are also other sources of decoherence that
will increase the total relaxation rate.

We now analyze the measurement of a flux qubit using
our particular SQUID embedding network presented in Fig.
3sad. The driving source is represented as an ideal current
source with impedanceZs. The amplifier is described as the
combination of the input impedanceZa and ideal voltage
amplifier with gainG. The bias resistorRb has the purpose of
increasing the impedance of the current source. The inductor
Ls is a small stray contribution, unavoidable in the design of
the circuit. The combination of the capacitorsC1 andC2 is an
impedance transformer that will increase the effective im-
pedance of the amplifier input, at the cost of a division of the
total voltage across the inductors; they also provide the ca-
pacitive part necessary to create a resonant circuit. The dc-
SQUID has Josephson junctions with a critical currentIc0
=200 nA. The external magnetic flux in the SQUID loop
corresponds tofx=3.35, resulting in a critical currentIc
=187 nA. The measured persistent current qubit hasIp
=300 nA andD=5.5 GHz. Figures 1sad and 1sbd and show
plots of the energy eigenvalues and persistent current expec-
tation value vs bias flux for these qubit parameters. If the
mutual inductance between the qubit and the dc-SQUID is
M =40 pH, the relative change in Josephson inductance is
given bya=3.4%. A plot of the expressionSge

svd given by
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s42d with s47d and s48d is shown in Fig. 3sbd, assuming a
temperatureT=30 mK.

To calculate the discrimination time given by Eq.s54d, we
assume that the voltage noise is dominated by the voltage
amplifier. We assume that a low noise cryogenic amplifier
with a noise temperature of 4 K is used.31 Equationss14d and
s15d allow the calculation ofDVqb. We assume thatv,0,
since qubit relaxation is slow compared to the detector band-
width swhich will be confirmed by our calculation of the
relaxation timed and we choose the valuev0/2p
=672 MHz that gives a maximum amplitudeDVqb=189 nV
for an ac driving current such that the amplitude of the
SQUID phase oscillations isge0=0.5. The discrimination
time is plotted in Fig. 3scd. The discrimination time increases
when the qubit bias fluxFq approachesF0/2, because the
difference between the expectation values of the qubit cur-
rent for the two energy eigenstates decreasesssee Fig. 1sbdd.

The relaxation time is calculated using the expressions49d
and plotted in Fig. 3sbd for the chosen operating frequency

v0. The relaxation time away from the symmetry pointFq

=F0/2 increases as a result of both the decrease in the trans-
verse coupling term sin2sud and the decrease in the real part
of the impedanceZmm away from the resonance peakssee
Eqs. s49d and s47dd. Over a wide range of parameters the
relaxation time is considerably higher than the discrimination
time, which allows for very efficient readout of the qubit
state. Using a SQUID amplifier32 with a noise temperature
less than 100 mK would allow for reducing the discrimina-
tion time by more than one order of magnitude.

The measurement of the qubit state can be performed by
applying the ac current to the SQUID for a timeTm and by
measuring the average ac voltage during this time interval.
Note that the readout does not have to be performed at the
same qubit bias flux where qubit manipulation prior to mea-
surement is performed. It is possible to perform operations
on the qubit atFqb=F0/2, where the qubit is insensitive to
magnetic flux fluctuations. Afterwards the flux in the qubit
can be changed adiabatically to a different value, where the
two energy eigenstates have sufficiently different values of
the persistent and the qubit relaxation time is larger, allowing
for efficient measurement. Figure 3 shows that away from
the symmetry point the discrimination time isTdiscr

<100 ns, which implies that a measurement timeTm

=300 ns ensures a measurement fidelity larger than 80%.
This measurement time is not only much smaller than the
relaxation time due to readout, but also appreciably smaller
than the presently attained relaxation times of flux qubits
with similar design parameters, which ensures that qubit re-
laxation during readout is negligible.

The dephasing time depends on the Fourier transform of
the symmetrized correlation function at the frequency of the
ac driving. It follows froms47d thatSge

+ sv0d is large, because
v0 has to be close to the resonance frequency of the circuit
for efficient state readout. Even a small amplitude of the ac
signal can cause significant dephasing of the qubit. During
qubit manipulation, when no measurement is performed, the
SQUID ac driving current has to be suppressed very strongly.
For operation at a qubit energy level splittingv01=2D the
decoherence time due to the SQUID is 10ms if the ampli-
tude of the phase oscillations isuge0u=0.003.

The continuous nature of the flux detection makes this
readout method suitable for fundamental studies of the dy-
namics of the measurement process. Further analysis will be
necessary for understanding the dynamics of the coupled
qubit-SQUID system and for an evaluation of possible direct
observation of qubit coherent evolution, similar to the situa-
tion described by Korotkov and Averin.33

VII. CONCLUSIONS

In this paper we analyzed the dc-SQUID in the inductive
mode as a readout method for superconducting flux qubits.
We characterized the response function of the dc-SQUID as
a flux detector. We described the back-action of the measure-
ment circuit on the qubit. The relaxation and dephasing rates

FIG. 3. sad Schematic representation of the measurement circuit,
with notations according to Sec. III. The values of the circuit ele-
ments areRb=4.7 kV, Zs=Za=50 V, LJ0=1.76 nH, Ls=0.18 nH,
C1=60.7 pF, andC2=60.6 pF.sbd A representation of the Fourier
transform of the correlation function for the SQUID phase operator
vs frequency.scd A plot of the measurement discrimination time
scontinuous lined and qubit relaxation timeTr sdashed lined vs qubit
bias flux. The measurement is performed with an amplitude of the
ac driving such thatge0=0.5 at a frequencyn0=672 MHz.
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are proportional to circuit noise at frequencies that are
shifted by the SQUID ac driving frequency, which is a result
qualitatively different of the case of a the measurement done
with a switching dc-SQUID. For a realistic measurement cir-
cuit, we found that single shot measurement of a flux qubit is
possible.
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