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There are large isotope effects in the phonon kinks observed in angle-resolved photoemission spectroscopy
of optimally doped cuprate high-temperature superconductorssHTSCd, but they are quite different from those
expected for a nearly free-electron metalsFermi liquidd with strong electron-phonon interactionssEliashberg
modeld. These differences, together with many other anomalies in infrared spectra, seem to suggest that other
particlesssuch as magnonsd must be contributing to HTSC. Here we use topological methods to discuss the
data, emphasizing nanoscale phase separation and the importance of a narrow band of quantumpercolative
states near the Fermi energy that is spatially pinned to aself-organizedfilamentary dopant array, resulting in a
filamentaryglass. Topological discrete, noncontinuum, nonperturbative methods have previously explained the
form of HTSC phase diagrams without involving detailed microscopic assumptions, and they are especially
useful in the presence of strong nanoscale glassy disorder. These methods also explain the “miracle” of an ideal
nearly free-electronsgas or liquidd phonon kink in sharply defined nodal quasiparticle states in LSCO at the
metal-insulator transition. Careful study of the data reveals anharmonic phonon interactions. Finally, the uni-
versality of the kink energy and Fermi velocities below the Debye cutoff in different cuprates is the result of
the marginally elastic nature of these configurationally glassy materials, and specifically the isostatic character
of the CuO2 planes.
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I. INTRODUCTION

Since the discovery of high-temperature superconductiv-
ity in the cuprates,1 the foremost question in physics has
been what are the interactions responsible for this completely
unexpected phenomenon. Mueller himself has always argued
that they must be strong electron-phonon interactions, and it
was the expectation that these interactions would be strong in
generically unstable perovskitelike materials that led to his
experiments on doped cuprates, carried out contrary to the
received wisdom that superconductivity would be suppressed
by antiferromagnetic interactions. However, the isotope ef-
fects onTc that were the signature of strong electron-phonon
interactions in metals have behaved perversely in the ceramic
cuprates, being large, as in metals, near the metal-insulator
transition and becoming small near optimal doping. Indeed
the search for isotope effects in the cuprates directly related
to superconductivity has seldom been successful.2 Such elu-
sive behavior suggested that some other interaction might be
involved, but what could this be? Magnons have often been
suggested, but these are unreasonable:sid although it might
seem that exchange of any boson can generate Cooper pairs,
magnon scattering also destroys Cooper pairs, in other
words, magnons suppress, not enhance, superconductivity, as
is evident from phase diagrams, where increasing dopant
density initially quenches magnetic phases, before the super-
conductive phase is reached;sii d electron-magnon coupling
is smaller than electron-phonon couplingsspin-orbit cou-
pling constants for Cu and O are of order 10−2 eV or less,
compared to phonon energies of order 10−1 eV, andsiii d be-
yond the metal-insulator transition, whenTc is growing to-
ward optimal doping, the filling factor for magnons is de-
creasing rapidly. Ignoring these reasons, many theorists have
continued to use magnons and/or spins to explain various
angle-resolved photoemission spectroscopysARPESd and in-

frared anomalies, especially in underdoped samples, but here
these anomalies will be explained topologically, with mag-
nons playing only a very minor role.

The disappearance3 of isotope shifts inTc near optimal
doping could be the result of the optimization process itself:3

small isotope effects “are expected when vibrational fre-
quency changes are compensated by internal coordinate
changes.” Here we will show that these apparently complex
and immeasurable configurational changes are associated
with dopant coordinates and that the latter are nearly per-
fectly self-organized.4 This explains quite simply and very
accurately the central anomalies in the large isotope shifts
recently observed5 near optimal doping in Bi2Sr2CaCu2O8+d
sBSCCOd by ARPES.

Some cautionary remarks are appropriate here. Together
with analysis, geometry, and algebrasincluding group
theoryd, topology is one of the established fields of modern
mathematics; it is also the youngest. Although there are some
papers in theoretical physics that adopt a topological ap-
proach, this style is unfamiliar to most physicists. Topologi-
cal techniques are used here for treating the problems of
strong glassy disorder that arise from the pinning of current
carriers to dopants and the associated percolative conduction
processes in both the normal and superconductive states of
high-temperature superconductorssHTSCd. Conventional
snonpercolatived effective mediumssingle-phased theories of
the metal-insulator transition predict only asingletransition,
but in the cuprates as the dopant density increases, there are
two transitions: first, from the semiconductive phase to the
intermediate or “strange metal” percolative superconductive
phase, and second, from intermediate phase to the normal
metalsnonsuperconductive Fermi-liquidd phase. These topo-
logical methods have previously been used to explain the
origin of the percolative intermediate phase associated with
HTSC and why it has many anomalous properties,6 as well
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as why this phase occurschiefly in cupratesand seldom in
the thousands of other perovskitelike oxides.

Readers who are unfamiliar with the constraint theory of
network glassess1980s–presentd will also find that the
present paper contains many different and difficult ideas.
This is unavoidable because the properties of the cuprates are
very, very different from those of normal metals, so that any
realistic theory will not resemble any already well-known
general modelfsuch as the Sommerfeld nearly free-electron
gasmodel of simple metalss1920sd or its Landau quasipar-
ticle sFermi-liquidd refinementss1950sd or the Hubbard
model s1960sd, so widely misapplied to the cupratesg. This
paper takes the reader beyond simples1920s–1960sd models
in two stages: first, to a percolative model, and then to a
specific kindof percolative model, namely, the filamentary
glassmodel in which the percolative paths have been opti-
mized sself-organizedd in ways discussed below that are
characteristic of ideal network glasses, both electronic and
molecular.

II. THE PHOTOEMISSION KINK

A dispersive kink sdiscontinuous change in sloped in
Eskd for k along s11d in the ab plane appears7 in ARPES
spectra forsPb-dopeddBSCCO and LSCO. The energyEk
s,70 meVd at which the change in slope occurs is somewhat
above that of the zone-boundary LO phonon known8,9 to be
correlated with HTSC, but unambiguously different from
magnon energiess,40 meVd. The large isotope shifts5 deci-
sively support the phonon interpretation of the dispersive
kink, but they raise new problems.

In a conventional Sommerfeld gas or Landau-liquid
model10 dominated by a single Einstein LO phonon mode,
coupled to a Fermi liquid with an electron-phonon coupling
constantl, and self-consistently broadened by many-phonon
decay effects,11 the phonon contribution to the quasiparticle
self-energy inferred from momentum distribution curves
sMDCd increases linearly withuk−kFu up to the phonon cut-
off energyQD and then vanishes.sIf instead energy distribu-
tion curves are used, then the phonon contributions below
and aboveQD are both nearly linear, but of opposite sign,
and near the phonon energy there are two “noncrossing”
branches to the dispersion curve.d In the absence of many-
phonon decay effects the MDC inverse dispersive slope
m,

* =m0
* / s1+ld up to the phonon cutoff energyQD, and then

is unchanged,m.
* =m0

* . With many-phonon decay effects in
both cases the changes inm* on crossingQD are reduced by
a factor of about 3 forl=1.5 compared to the unbroadened
value of slope changes. In this Fermi-liquidsEliashbergd
model11 the measured MDC dispersion line should be pinned
to the bare dispersion line foruE−EF u .QD and for E=EF,
so that there is a discontinuitydE at uE−EF u =QD ssee
Fig. 1d.

Experimentally5 ssee Fig. 2d near optimal doping the situ-
ation is exactlyreversed: the isotope shifts for both energy
and momentum distributions arenearly zeroup to the kink
energyEk, which is also the phonon cutoff energyQD, so
that m,

* ;m0
* . Then they begin to increase linearly withE

−Ek. sm.
* Þm,

* d, without a discontinuity sdE=0d. This

nearly perfect cancellation belowQD echoes the cancellation
at optimal doping of the isotope shift inTc itself. Addition-
ally, the large isotope effects aboveQD continue right up to
the point that the signal is incoherently broadened, a seem-
ingly uncontrolled increase that is rarely encounteredsa
lower cutoff without an upper oned.

In addition to this cancellation belowQD, the relative iso-
tope shifts aboveQD change signask moves from the nodal
gap directions11d toward the antinodal directions01d. In
both directions the slope increases aboveQD fsm.

* /m0
*d

,1g; in the nodal directionsRef. 5, Fig. 2, curve 1d the
increase is larger for18O than for 16O s18m.

* , 16m.
* d,

whereas the reverse holds ask moves closer to the antinodal
direction sRef. 5, Fig. 2sad, curve 6d. Moreover, the isotope
shift has the same anisotropy as the energy gap, leading to a
linear relation between the twofinset, Ref. 5, Fig. 2sadg. The
increase in slope aboveQD means that the effective massm*

has decreased; in Fermi-liquid models7 this is interpreted as
an undressing ofm,

* =ms1+ld below QD to m.
* =m above

QD. Ordinarily one would expect a larger effect for heavier

FIG. 1. The “ideal” quasiparticle dispersion of a Fermi-Landau
liquid interacting with an Einstein phonon of energyQD, measured
in photoemission from momentum-distribution curvesssee Fig. 5 of
Ref. 11d. The dashed line shows the bare dispersion curve without
phonons, and the position of the Einstein phonon energy is marked.

FIG. 2. Isotope-induced changes of the nodal dispersion mea-
sured by ARPES in BSCCO near optimal dopingsafter Fig. 1 of
Ref. 5d.
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massessnormal isotope effect,l,M−a, with a,1/2d, as
observed in the antinodal direction. However, off-lattice con-
figurational instabilities can produce inverse isotope effects,
for instance, with interstitial H in Pd because of zero-point
motion.12 In this case one expects the relaxing carriers to
move towardsEF. Thus the behavior of the antinodal direc-
tion sstrong electron-phonon interactionsd is “normal,”
whereas in the nodal direction it is “inverse,” indicative of
compensating configurational relaxation.

What is the reason for the disappearancesFig. 2d of the
discontinuitydE in the dispersion line predicted by quasipar-
ticle modelssFig. 1d? As we shall see, this is the conse-
quence of self-organized correlation of multiple percolative
nonmomentum conserving paths nearglassyoptimal doping.
However, before we proceed to discuss this complex phe-
nomenon, we can note that, in fact, the theoretically pre-
dicted Fermi-liquid discontinuitydE has been observed13,14

in ARPES spectra along the nodal direction in the low-
density limit near and below the metal-insulator transition in
La2−xSrxCuO4 at x=xc=0.063ftheir Fig. 1sbd, shown here as
Fig. 3g, described by the authors as “a miracle.” For dopant
densities near and below the metal-insulator transition there
are only a few percolative pathssor path segmentsd, and
interactions between carriers on different paths can be ne-
glected. Carriers move freely along these paths, unhindered
by constraints imposed by interpath interactions, and can
thus be described by the usual momentum-conserving quasi-
particle formalism. From the limited published data it ap-
pears that the discontinuitydE decreases with increasingx
and either disappears or broadenssFig. 4d near optimal dop-
ing at x=xo,0.16.

For the reader’s convenience the foregoing discussion is
summarized compactly in Table I. If one accepts the predic-
tions of Fermi-liquid theory as natural or “intuitive,” then the
table shows thatall the experimental results are “counterin-
tuitive.”

III. NANOSCALE PHASE SEPARATION AND THE
PARTICIPATION RATIO

Scanning tunneling microscopysSTMd has produced15,16

quantitative pictures of nanodomain structures on very care-
fully cleavedsin situ at lowTd micaceous BSCCO. The I-V
traces are spatially reproducible on a length scale of 0.15 nm
and time scale of weeks, permitting unprecedented surveys
of nanodomain and impurity electronic structures. The single
most striking aspect of the early data was the near constancy
of the nanodomain diameter at 3 nm, independent of doping
within the superconductive phase, suggestive of ferroelastic
interactions with cutoffs on stress accumulation, consistent
with theoretical expectations based on the general properties
of perovskites and related ceramics.17,18 sAgain, it was the
expectation of strong electron-phonon interactions in fer-
roelastic pseudoperovskites that guided Bednorz and Mueller
in their original work.d Subsequent scans have revealed an
excellent checkerboard gap structure16,19of alternating super-
conductives,40 meVd and pseudogaps,60 meVd 3 nm do-
mains over a field of view of 65 nm2 s,40,000 unit cellsd
near optimal doping. Fourier transforms of the underdoped
two-gap structure have shown that there is a charge-density
wave sCDWd associated entirely with the larger pseudogap
s.60 meVd majority nanodomains, whereas the lattice struc-
ture associated with the smaller superconductive gap pockets
s,60 meVd is undeformed.20 This kind of structural pattern
is readily explained in terms, for example, of orthorhombic
stress patterns that are frustrated and leave behind small re-
sidual unstressed pockets near larger nanodomain corners.

FIG. 3. “Ideal” dispersion in the nodal direction in
La2−xSrxCuO4 at x=0.063 sinsulator-metal transitiond safter Fig.
1sbd of Ref. 14d. HereE1,−0.06 meV andE2,−0.09 meV. These
two energies correspond respectively to the bottom of the optical
phonon band and the infrared cutoffsRefs. 33 and 34d.

FIG. 4. Dispersion in the nodal direction in La2−xSrxCuO4 at x
=0.15 soptimal dopingd safter Fig. 1sad of Ref. 13d. These prelimi-
nary data suggest that there are two kinks in the dispersion curve,
corresponding to one-sE1d and two-phonons2E1d cutoffs; there
may even be a discontinuity at the latter. The crowding effects of
filaments near optimal doping that are illustrated in Fig. 5, or sim-
ply increasing dopant-driven lattice instabilities,40 could cause the
increased strength of the two-phonon interactions, but the most at-
tractive explanation is the “knot” mechanism mentioned in the text.
sThe theory of knots is a separate subject of topology, quite com-
plex in d.2 dimensions. Here we have only the cased=2, and the
only possible knot is that formed by the intersection of two strings
or filaments.d
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Fourier transforms of “octet” subgap states reveal
“d-wave symmetry” gap anisotropy proportional toucos 2fu.
What is most remarkable about the anisotropy is that in
ARPES and also STM data, it holds for the superconducting
gap within a few percent for optimally and overdoped
samples.19 It is important to note that thed-wave gappro-
jected in this way as an order parameterrepresents only a
small fractionsprobably,10%d of the subgap states and that
the latter are merely a tail on the superconductive density of
states itself. Almost all the states responsible for HTSC are
not included in the Fourier projection, which means that they
are not indexable byk and are not describable byd waves.
The Fourier transformsproject gap order on plane waves,
much as participation ratios attempt to identify delocalized
states in simulation models of metal-insulator transitions.
Note that a fraction as small as 10% is inexplicable for a
metallic participation ratio in models containing random dis-
order, and it cannot be explained merely as a result of fluc-
tuations in two dimensions because of Coulomb
interactions,21 even if the on-site Coulomb interactionsU are
50 times larger than the bandwidthW. In view of the easily
deformed nature of perovskites and pseudoperovskites, a
much more plausible, material-specific explanation for the
observed structuresincluding charge-density wavesd is pro-
vided by the self-organized internal stress patterns discussed
above, and elaborated in considerable detail elsewhere.18,22

An important point here is that projecting Cooper pair am-
plitudes on percolative paths provides arigorous derivation22

of the d-wave gap anisotropy proportional toucos 2fu. The
factor 2 arises from Cooper pairing.

IV. DOPANT SELF-ORGANIZATION AND NARROW
COHERENT PERCOLATIVE FERMI ENERGY BAND

Conventional percolation theory is inconsistent with the
small fraction of percolating gap states. In Fermi systems
one can suppose23,24 that there is a narrow energy band of
coherent percolative states centered on self-organized dopant
configurationsffilaments, not stripessa misnomerd because
in the superconductive regions the dopants are disordered
and do not form a superlattticeg. The dopants are not ran-
domly distributed, as in conventional percolation theory, but
form an internal template for microcircuitry. The dopants
organize to form filamentss“pearls on a string”d because
such filaments, with their high conductivities, minimize the
free energy by maximizing the enthalpy gained from screen-
ing of internal electric fieldss“anti-Jahn-Teller-effect”d.25

The filaments are three-dimensional,23 zigzagging coherently
through dopantsslocated outside the CuO2 planesd to avoid
insulating nanodomain walls in metallic planes: this explains
why in high-quality samplesc-axis conductivities and Lon-
don carrier densities follow the same coherent scaling
relations,26 extended to much smaller values, as those in the
ab plane. This scaling relation covers more than six decades
and includes Nb and PbsFermi-liquid metalsd for high car-
rier densities. We can note that without a percolative model,
the c-axis conductivity could not be coherent; it would have
to arise from carrier hopping.

Self-organized configurations cannot be identified by al-
gebraic methods applied to continuum Hamiltonians, but

their properties are known in several other ways. The com-
binatorial problems that arise in attempting to identify such
optimized percolative paths are exponentially difficultsor as
mathematicians say, NP completed. Self-organization in
strongly disordered media was discussed in the context of the
intermediate phase in network glasses,6,27 and it has since
been analyzed in numerical simulations of steadily increas-
ing sophistication.28–30 sThe most recent effort30 involves
40,000 atoms.d The glassy, strongly disordered nature of the
intermediate superconductive phase contrasts with narrow
infrared, Raman and neutron linewidths31 in the crystalline
superlattice 1/8 “stripe” phasessuperconductivity sup-
pressedd of LSCO; thus these widths are much wider at op-
timal doping, and percolative filaments shouldneverbe con-
fused with crystalline stripes. Such a narrow percolative
energy band has often been proposed: a recent example
utilized sum rules for the infrared conductivity.32 The differ-
enceWn−Ws of the integrated planar real part of the conduc-
tivity above and below Tc extends to high energies
s,3000–4000 cm−1d in BSCCO or LSCO because of strong
spolaronicd LO phonon interactions at dopants.33,34

A characteristic feature of this percolative band is its zig-
zag character: in theab plane it consists of line segments
parallel to Cu-O bonds.35 Thes10d antinodal superconductive
states centered on dopant arrays thus have a “strong forward-
scattering” character when treated by nearly free-electron
gasscattering theory.36 Suppose that filamentary formation is
enhanced by decreasing the ratior = t8 / t of second-neighbor
s11d overlap to nearest-neighbors10d Cu-O overlap in the
CuO2 plane and that such topological enhancement increases
Tc. Abrechtet al.observed a reduction inr of a factor of 6 in
severely compressed overdoped LSCO films,37 accompanied
by a large decrease inNsEFd. According to continuum mod-

TABLE I. Comparison of predictions of effects of electron-
phonon interactions on effective masses belowsm,

* d and above
sm.

* d the Debye energyQD in theoretical liquid and glass models
with ARPES experiments.sThe Hubbard model can be regarded as
a Fermi hard-sphere lattice gas.d The subscriptsn and an refer to
nodal s11d and antinodals10d electron planar momentum orienta-
tions, respectively,m0

* is the bare mass,a,… ,d are constants with
a,b and c,d, x is the Sr dopant concentration in La2−xSrxCuO4

sLSCOd, andc8sxd,2.0. The BSCCO data are taken near optimal
doping and refer to the isotope shiftsdd caused by replacing16O
with 18O. Thussfor exampled dm,

* sBSCCOd=0 sno changed, dm.n

*

sBSCCOd,0. There is no simple connection between the isotope
shift dm* and the isotope shiftdTc. However, broadly speaking,dTc

is large whenm,
* /m0

* .1 ssee Sec. V and Ref. 38 for discussion of
the gap equation that determinesdTcd.

Model m,
* /m0

* sm.
* /m0

*dn sm.
* /m0

*dan Ref.

Fermi liquid 1+l 1 1 10,11

Mean-field Hubbard 1 1 1 54

Dopant glass
fc,dg sdd

1 fc−s«dg,1 fd+s«dg.1 Here

Experiment
sBSCCOd sdd

1 fa−s«dg,1 fb+s«dg.1 5

ExperimentsLSCOd 1 csxd,1 13
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els, the decrease inNsEFd should have reducedTc. In fact,Tc

actually increased to a value higher than is found in un-
strained optimally doped LSCO, proving that in cuprates to-
pological factors that favor filamentary formation are more
important than continuum factors, such asNsEFd, in deter-
mining Tc.

V. TOPOLOGICAL THEORY

With these elements in place, one can discuss the first
problem, why at optimal dopingdE=0 and the isotope shifts
are small both forTc and form,

* , the dispersiveEskd below
the phonon cutoff energyQD. Of course, the attractive well
in the gap equation38 lies belowQD so the ARPES observa-
tion of small isotope shifts belowQD at optimal doping is
equivalent to small isotope shifts forTc. But why are the
ARPES shifts at optimal doping so small belowQD?

Constraint theory is a generic theory for dealing with
strongly disordered, but still self-organized, systemsselec-
tronic and molecular glassesd.35 It has explained many of the
properties of network glassessstiffness transitions, phase dia-
grams, including reversibility windows,27 for ,10 different
binary and ternary chalcogenide alloys, and even the nearly
ideal properties of Si/SiO2 interfaces39d. These ideas also ex-
plain the marginal elastic stability of cuprates, which
explains40 why they are the only HTSC. Broadly speaking,
Lagrangian constraint theory is a hierarchical topological
theory that relies on the existence of groupings of inter-
atomic or electronic potentials in selected materials—for in-
stance, bond-stretching and bond-bending interactions in net-
work glasses. It is effective for only a small class of ideally
disordered solids where intact constraints have frozen a liq-
uid into a glass and obstructed crystallization. However, that
class contains exactly those glassy materials, including cu-
prates, which have posed the hardest problems for conven-
tional algebraic and/or analytical theories. Indeed, topology
sincluding set theoryd emerged as a separate branch of math-
ematics when mathematicians realizedsa little more than 100
years agod that there exists a class of exponentially complex
problems that are insoluble by other methods. Here we hope
to develop the general topological approach in the context of
the rich experimental literature that has recently emerged for
the cuprates.

The central idea of constraint theory is that in a fully
self-organized ideal network strong disorder causes the
strongest constraints to be almost perfectly intact, whereas
the weaker ones are absolutely broken.6,41 fIntact sbrokend
molecular constraints are easily recognized as sharpsbroadd
peaks in radial distribution functions, or from narrowsbroadd
Raman bands. In molecular glasses the weakest intact con-
straining bonds are typically three times stronger than the
strongest soft constraining bonds; in other words, there is a
Lagrangian gap in the bond-strength spectrum between intact
and broken constraints. The existence of this Lagrangian gap
is crucial to glass formation.g In algebraic language, the con-
dition Nc;Nd, whereNc is the number of intact constraints,
andNd is the number of degrees of freedom, isexact in an
ideal glass.sHere and later[ means identical within poly-
nomial accuracy. There may still be corrections that are ex-

ponentially small associated with network defects; examples
will be given. In practice these exponentially small correc-
tions are often not observable, and so far they have not been
observed by ARPES inm* .d

In molecular glasses one observes close parallels between
the composition dependencesphase diagramsd of two quan-
tities. The first quantity is the slope of the viscosityh of the
supercooledliquid as T→Tg, sd log h /dTdTg, which has
commonly been used by chemists to measure the “strength”
of a glass, as this quantity is largest for network glasses and
decreases in molecular and polymeric glasses.sThe viscosity
is a direct measure of the residual free-particle nature of the
glass-forming supercooled liquid.d The second quantity is the
irreversible part of the enthalpys“memory”d of the glass
transition, which is smallest when constraints are sharply de-
fined. This correlation shows that there is a direct connection
between the transport properties of glass-forming liquids and
the countable number of shortest range bonding constraints
in the glass; the latter are partially intact in the supercooled
liquid as well, affecting mobilities in a precursive way.
sBroadly speaking, this is the reason why so many precursive
effects have been observed in the cuprates.d The number of
strongest atomic constraintsNc is alwayslimited by the dis-
crete number of atomic degrees of freedomNd of the glass,
an idea41,42whose applications have multiplied vigorously in
the last 25 years, as illustrated in a recent popularized pre-
sentation of the theory.43

Here we are concerned with self-organization of a Fermi-
onic system in the presence of long-range Coulomb and
strain interactions. Because of the Fermi exclusion principle,
hierarchical interactions constrain glassy electronic configu-
rations differently from those in glassy molecular systems
driven by classical interatomic forces. In the case of molecu-
lar glasses, the constrained interactions are the strongest ones
and counting them is a straightforward application of Paul-
ing’s theory of resonating bonds. In Fermi systems the most
constrained carriers are the most weakly boundshighest en-
ergyd ones nearest the Fermi energy. This paradoxical result
is caused by the fact thatsbecause of the exclusion principled
the largest carrier energy can be gained from long-range
Coulomb and strain interactions by polarizing the carriers
nearest the Fermi energy.

Of course, in strongly ionic ceramics, such as the cu-
prates, the phonons that embody long-range Coulomb and
strain interactions best are longitudinal-opticsLOd phonons.
In materials with partially ionic bonds similar to the cu-
prates, such as ZnO, the 3.4 eV luminescence phonon side-
bands associated with LO phonons are typically 5–10 times
stronger than those associated with other phonons;44 thus,
only LO phonon interactions are able to constrain carrier
motion. sRecall that in molecular glasses, as discussed
above, the Lagrangian hierarchical gap between broken and
intact constraints is typically a factor of 3.d In the doped
cuprates there are localized LO phonons that bind to carriers
associated with dopants to form polarons resonantly bound
to dopants. These states are different from conventional free
polarons and have distinctively glassy properties. They could
be called dopolarons to emphasize this point.

Because the cuprate host lattice is so ionic, the strongest
forces are Coulombic and the strongest electronic constraints

TOPOLOGICAL THEORY OF ELECTRON-PHONON… PHYSICAL REVIEW B 71, 184505s2005d

184505-5



are those associated with the most polarizable states, which
are those nearestEF. All the carriers withinQD of EF can
form sdodpolarons by taking advantage of the interaction
with an equal number of LO phonons localized near the
same number of dopants, with polarization vectors parallel to
the local filamentary tangentsthe filament need not be linear,
and the dopants need not be spaced periodically, as in a
commensurate striped. Once againNc;Nd, and this condi-
tion is polynomially exact. Although in the molecular cases
one must rely on the extensive structural and spectroscopic
data available for chalcogenide and oxide network glasses,
counting constraints for dopolarons is so simple that one is
justified in describing the procedure as trivial. This kind of
result—something apparently profound and inaccessible is
obtained after some discussion by a very simple and straight-
forward calculation—is typical of topology.

The electric dipole oscillator strengths of such coherent
filamentary dopolarons are far larger than those of any inci-
dental localized states that may coexist elsewhere in the
sample sfor example, in the exponentially small tails of
pseudogaps in magnetic or charge-density wave nan-
odomains.d Thus the excitations of coherent filamentary
states dominate optical spectrasinfrared or ultravioletd in-
volving excitation of states belowQD. sSpeaking figuratively,
the dopolarons are like shining pearls on strings.d The inte-
gral number of such LO phonons is assumed to be one per
selectrically actived dopant, so the number of constrained
carriers below the Debye energy matches the number of dop-
antsexactly, for all dopant densities, and are unaffected by
isotope exchange, below strongly overdoped, where the
snonglassyd normal Fermi-liquid state forms.sIn other
words, boundsor “impurity” d dopolarons are counted rela-
tive to the glassy dopant array and not relative to the crys-
talline host atoms, which merely form a background me-
dium.d

Of course, this constraint matching conditionNc;Nd is
independent of the dopant densitysso long as we are in the
intermediate phase,30 which is neither insulating nor normal
metallicd, in agreement with experiment,13 which showsm,

*

to be independent of the dopant densitysto within,10%d.
This is a success of constraint theory; it is not merely quali-
tative or quantitative, in the glassy context it is exact. At the
same time,m.

* varies rapidly with dopant density, which is to
be expected, as the constraints that stabilize the most polar-
izable states of the dopant array withuE−EFu,QD are ex-
hausted atuE−EFu=QD. For uE−EFu.QD the marginal sta-
bility of perovskitelike host lattices leads to large shear
instabilities near dopants. These, in turn, increase the dopant
polarizability. The value ofm.

* increases13 by a factor of 1/2
sthe apparent bandwidth decreases by a factor of 1/3d as the
super-Debye carriers are pinned to dopants on going from
x=0.03 to x=0.30 in La2−xSrxCuO4., corresponding to
dm.

* /dx,2. This is another success of constraint theory. The
33% change in bandwidth could not occur in any conven-
tional mean-field model of electronic interactions in a stable
lattice, as the average valenceNv of a La1−xSrxOs3−xd/2 unit
has changed by only 6%sdNv /dx=0.5d. The small changes
in m,

* are consistent with the small changes inNv, while the
large changes observed inm.

* or bandwidth must be caused

by dopant-related lattice instabilities, a kind of local-field,
dopant-driven dielectric mechanical catastrophe. Similarsbut
much weakerd instabilities have been observed45 in metallic
superconductors, such as NbN and V3Si.

The second problem, the anisotropy of the shifts for dis-
persive energies more thanQD away fromEF, is more diffi-
cult. The “normal” isotope shiftsstates with larger masses
m.

* shifting more towardEF, in other words relaxation en-
hances the polarizabilityd is what we would expect from fila-
mentary states bound to dopants as they relax to improve
dielectric screening of the dopant potentialssthe previously
identified “anti-Jahn-Teller effect”d:25 these states are obvi-
ously antinodal states. The nodal states, on the other hand,
must be orthogonal to the antinodal filamentary states.sRe-
call here that ARPES measures only projections of actual
disordered states, but orthogonality is still present after the
projection.d Then phase-space incompressibility dictates that
as the larger mass antinodal states reorder to move closer to
EF, the more weakly interacting nodal states should reorder
to move aways“inverse” isotope shiftd. The two shifts ap-
proximately cancel, leaving little or no net isotope effect near
optimal doping in the angular averagem.

* even above the
phonon cutoff energyQD, where one expects Fermi-Landau
theory11 to be valid. In the Cooper pair channel, the net pri-
mary interaction above the phonon cutoff energyQD is still
Coulomb repulsionsjust as in metalsd, whereas below the
phonon cutoff energyQD it is still attractive electron-phonon
interactions, with an isotope effect concealed by the self-
organized glassiness of the dopant configurations.

In order to make these topologicalsscale-freed ideas more
quantitative, one can discuss the changes in dispersive slope
and energy discontinuitydE at QD that occur when the dop-
ant densityx increases above the critical densityxc s=0.06 in
LSCOd towards the optimal densityx0 s=0.16 in LSCOd.
Fermi liquid or Landau theory says that the quasiparticle
inverse slopesor massm.

* d at energiesuE−EFu.QD is that
of the bare quasiparticle. Because of translational invariance,
momentum is a good quantum number, thusm,

* for uE
−EFu,QD is related to the energy discontinuitydE at QD by

m,
* /m.

* = 1 −d = 1 −dE/QD sFermi liquid onlyd s1d

A discontinuity dE is observed, and Eq.s1d is valid ex-
perimentally for the metal-insulator transitionsx near xcd,
where there are largesnormald isotope effects onTc. Near
optimal dopingxo, where there are only small isotope effects
on Tc, one may havedE,0, butm,

* /m.
* .1. Thus the basic

idea of Sommerfeld-Fermi-Landau continuumsgas or liquidd
theory, in which one can treat both electrons and phonons as
quasiparticles that satisfy the conservation conditions1d, is
satisfied in cuprates near the metal-insulator transition, but it
fails as we increase the filamentary density.

To understand howd and dE are affected by self-
organization in a percolative model, one must ask what hap-
pens to the electronic states asx increases above the metal-
insulator threshold atx=xc. Filamentary paths are formed to
provide maximal dielectric screening of internalsionicd elec-
trical fields, and near threshold they are nearly linear, even in
the presence of disorder. Thus the crystal momentum of
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wave packets traveling along these nearly linear filamentary
paths is well defined. As the density of filamentary paths
increases, they become more and more crowded. Geometri-
cally to avoid collisions the paths become ragged, and crystal
momentum is no longer a good quantum number. Put differ-
ently, near threshold the density of percolative states is low,
and interactions between carriers on different percolative
paths can be neglected. This means that crystal momentum
can be conserved. Further increases inx create crowding of
the Fermionic carriers on nearby percolative paths, which
must avoid each other according to the exclusion principle.
This crowding of the percolative network is similar to the
space-filling that occurs in network glasses at the glass tran-
sition. Because of the crowding, which involves both the
phonons and the Fermions due to their vibronic coupling, the
discontinuitydE gradually disappears asx approaches opti-
mal dopingxo, whereas the break in massd remains.sIn
molecular glasses similar breaks in slope ofTgsxd have been
observed at the boundaries of stiffness phases.27d In addition,
in LSCO nearx=x0, there may even be a dispersive discon-
tinuity at 2QD sFig. 4d. It is tempting to connect the 2QD
discontinuity to the “knot” formed when two filamentary
paths crossfFig. 5sbdg.

Is d.0 in overdoped samples afterdE has vanished at
optimal and higher dopant densities? From the preliminary
ARPES data13 it is not clear whether or nots1d still holds,
but even if a suitable generalization can be found, the nature
of overdoped percolative paths foruE−EFu.QD is expected
to be different from that foruE−EFu,QD. Forx.xo, the cost
in filamentary localization or transverse kinetic energy be-
gins to exceed the binding energy gained from localization,
especially in narrow saddle-point regions, which begin to
undergo phase transitions to a Fermi liquid due to three-path

intersectionsfFig. 5scdg. This effect should be larger for the
more energetic states in the higher energy rangeuE−EFu
.QD; in effect, these “hot” glassy states begin to “melt”
before the less energetic “cold” states withuE−EFu,QD. All
the less energetic states withuE−EFu,QD are constrained
and glassy, but the more energetic unconstrained states with
uE−EFu.QD will have largerm.

* because of this melting
effect, which is characteristic of a Fermi system. Classical
molecular network glasses exhibit a similar effect identified
in numerical simulations with “floppy”sor cyclicald modes,46

so it seems that the changed in m* at QD might occur in
percolative models without a discontinuitydE. However,
since the anisotropy of the isotope shifts near optimal doping
is proportional to the superconductive energy gap, which, in
turn, is proportional toucos 2fu, it would seem that a broad-
ened discontinuityd is more consistent.

The differences between the clamping ofm* below and
aboveQD are summarized in Table I, where the predictions
of constraint theory are seen to be in excellent agreement
with experiment. Although these glassy results are qualita-
tively different from those predicted by Fermi-liquid theory
or Hubbard lattice gases, quasiparticle ideas are so intuitive
that more discussion is appropriate on the dispersive behav-
ior above QD, which appears to be linearsconstantm.

* d.
BecauseQD=0.07 eV! the band widthW,2 eV, we expect
that below QD, m,

* should be nearly constant. However,
above QD it might seem from phase-space considerations
that m.

* should progressively softensdecreased as uE−EFu
increases towardsW. On this question the data with the least
scatter are the BSCCO isotope data.5 Most of thes16O, 18Od
curves in their Figs. 1sbd and 2sad show a constantm.

* up to
0.3 eV s,4QDd. However, if one looks closely at the16O
nodal data5 svirgin sampled in Fig. 2sad, curve 1, one notes
something striking: unlike the other curves, wherem.

* is
constant for both16O and18O, here there is noticeable soft-
ening for 16O, but not 18O. If one is optimistic, one can
actually discern in the16O curve three regions of constant
m.

* , with breaks atQD, 2QD, and 3QD! These are the LO
phonon harmonics, also observedsbut identified only by
theoryd34 in BSCCO infrared data.33 Semiconductor lumines-
cence spectra often exhibit LO phonon sidebands, and their
observation in the Drude infrared spectra and in the ARPES
dispersive spectra provides very strong support for the
dopant-centered filamentary glass model.

One may wonder why the LO harmonics are observed
only in that one ARPES case. Because the final excited
ARPES state involves an electron with 20+ eV kinetic en-
ergy, the ARPES harmonics are weak compared to the Drude
ones and are easily obscured by interactions of filamentary
paths with other structural features, such as charge-density
waves in the antinodal directions,20 or built-in host strain
memory effects in the isotope-exchanged18O samples. The
fact that they are observed at all in the most favorable virgin
16O case testifies to the remarkable quality of these ARPES
data. Of course, the observation of LO phonon sidebands
completely excludes alternative explanations of either the
Drude or the ARPES fine structure in terms of magnons.

FIG. 5. A sketch of possible glassy percolative metallic paths
sdashed linesd, passing through dopant centers projected on the
CuO2 plane that shows how these can be crowded in overdoped
samples into forming a locally liquid-metallic phase when passing
through a narrow region between two insulating regions.19,20 The
regions of states resonantly bound to the circled dopants are shaded;
when these regions merge, the states become locally metallic:sad
one underdoped percolative path near the insulator-metal transition,
sbd near optimal doping two percolative paths can intersect and
form knots that generate quasiparticle “knot” resonances at 2QD

sFig. 4d, andscd three percolative pathssoverdopedd; their intersec-
tion forms a Fermi liquid.

TOPOLOGICAL THEORY OF ELECTRON-PHONON… PHYSICAL REVIEW B 71, 184505s2005d

184505-7



VI. ABSORPTIVE KINK

There is a different kind of kink at 100 meV insPb-
dopeddBSCCO, in thewidth of the ARPES peaksrelated to
the quasiparticle scattering rated.47 The kink appears to shift
to ,70 meV in optimally doped BSCCO. This kink in the
width of the photoemission peak has a perfectly conventional
and straightforward explanation in terms of a distribution of
charge-density wavesCDWd energy gaps with a maximum
cutoff of 100 meV that is temperature independent up to
,150 K. Other work20 chose 60 meV as the optimal energy
for separating superconductive gaps and CDW gaps spatially,
but the difference between these two values is small com-
pared to their difference with 100 meV. Moreover, because
of the projection of spatial inhomogeneities ontok involved
in ARPES, perfect agreement is not expected. The width
anomaly at 100 meV insPb-dopeddBSCCO was explained in
terms of magnon excitations, but the oscillator strength for
magnon excitations should be small compared to that for
CDW. The shift from 70 meV in BSCCO to 100 meV in
sPb-dopeddBSCCO is also more easily explained as a pin-
ning of CDW swith an increase in the CDW gapd, than as a
change in the magnon gap in the CuO2 plane.

VII. UNIVERSALITY OF m,
* AND QD:

ANOTHER “MIRACLE”?

The report14 of a nearly ideal quasiparticle discontinuity
at QD at threshold doping in LSCO described the observation
as a “miracle.” The value ofm,

* observed in five different
cuprates over a wide range of dopingbelow QD is nearly
constant, much like the nanodomain diameters.16 The actual
phonon cutoffs in the host spectra measured by neutron scat-
tering are not constant, therefore, the contrary dopant behav-
ior is, if not a miracle, at least a major puzzle. Moreover,m.

*

increases rapidly with increasing doping right through the
metal-insulator transition toward large doping. We again see
here an abrupt separation of the observed dispersion curves
into two subsets, one constrained to be constant and indepen-
dent of doping, whereas the other shows a dramatic chemical
trend. Clearly this extreme behavior suggests exactly intact
or broken constraints, with no intermediate cases, in other
words, well-defined constraints; such well-defined subsets
explain many properties of network glasses.6,41–43 It is just
this absence of partially broken constraints that distinguishes
glasses in their intermediate phases from supercooled liq-
uids. In this case the carriers are either in or out of phase
with the local LO filamentary phonon.

Constraint theory explains several remarkable features of
the crystal chemistry of the cuprates. A general characteristic
of all perovskite and pseudoperovskite oxides is that they are
subject to a very wide variety of lattice instabilities, gener-
ally taken to be an indication of attractive strong electron-
phonon interactions. Lattice instabilities are commonly ob-
served in metallic alloys and are often the factor that limits
Tc, as the lattices stabilize themselves through deformations
that lower the total energy and reduce these interactions.45

However, there are many instabilities in transition-metal ox-
ides, yet most of them are not dopable, and although the

nondopable manganites can be rendered metallic by alloying,
they cannot be made superconductive. The origin of this be-
havior is the global instability of cuprate networks, viewed
as nearly glassy and underconstrained.40 At low temperatures
such networks should undergo Jahn-Teller distortions to be-
come insulating.

According to constraint theory, one of the factors that en-
ables the cuprates to avoid unfavorable distortions is that the
CuO2 planes are isostaticsrigid but unstressedd, whereas all
the other planes are underconstrainedssoft and locally
buckledd.40 This means that near dopants, located in the
planes adjacent to CuO2 planes or in other metallic planes,k
is no longer a good quantum number, and only the phonon
and electron states in CuO2 planes show up in ARPES data
as resolvable peaks. Moreover, the residual impact of soften-
ing associated with unconstrained relaxation in the dopant-
deformed underconstrained planes applies only tom.

* above
QD, accounting for the monotonic increase ofm.

* as
electron-phonon interactions are screened with increasing
dopant concentration. It should be stressed that this dynami-
cal dopant screening effect is not the result of magnon ex-
change, as is made abundantly clear by the isotopic depen-
dence ofm.

* in the BSCCO experiments,5 which extends to
high energies far outside the magnon range. Note also that
dynamical dopant screening aboveQD has little effect onTc,
as the high-energy repulsive interactions aboveQD add only
a logarithmic correctionlc of order 0.2 to the superconduc-
tive coupling constantl* =l−lC, which depends mainly on
the strength of the attractive electron-phonon interactionsl
belowQD.

At x=0.03, below the metal-insulator transition in
La2−xSrxCuO4 at x=xc=0.063, the discontinuityd is even
larger and narrower13 than atx=xc. What does this mean? It
means that even at this low doping level the dopants are
forming line segments to maximize their conductivity and
the associated dielectric screening energy. The segments are
too short to produce a metal-insulator transition at low ener-
gies, but at photon energies,20 eV, mean-free paths are so
short s,10 nmd that these line segments look linear, with
negligible intersegment scattering.

VIII. CONCLUSIONS

We have shown that discreteglassypercolative constraint
theory6,40–43 successfully explains all the major features of
the recent photoemission5,13,14and STM19,20 data without in-
troducing new axioms. The most conspicuous features are
the rigidity of the subLO phonon states and the variablesoft-
ness of superLO phonon states. The explanation for this
anomalous electromechanical behavior in a glassy context
relies heavily on analogies with the strikingly similar me-
chanical behavior of network glasses. The latter has been
well studied experimentally and simulated in great numerical
detail, in studies extending over the last 25 years.43 Given the
unprecedented complexity of the electromechanical behavior
of the cuprates, these mechanical analogies provide further
evidence of the presence of strong electron-phonon interac-
tions in the cuprates, and indicate that these attractive inter-
actions are the cause of HTSC, as always supposed by
Mueller.1,2
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Many strongly correlated continuum “liquid” or “glue”
spolynomiald Hamiltonian models have been proposed to ex-
plain various facets of HTSC, involving magnons,47 charge-
density wavessCDWsd severything except dopantsd, but
rarely phonons, which are of coursenecessaryto explain the
observed isotope effects.5 The nontopologicalsnonglassyd
modelsexpandthe Fermi-liquid coordinate space with aux-
iliary spin or CDW variables. CDWs dilute attractive
electron-phonon interactions by reducingNsEFd, and mag-
netic moments break Cooper pairs. Thus auxiliary spin or
CDW interactions can onlyreduce Tc and cannot explain
HTSC. Auxiliary spin or CDW models met with small suc-
cesses in explaining individual experiments, but no overall
success, and they failed completely to explain phonon kinks
and large isotope effects. Given its deep and extensive basis
in experiment,43,48 the success of glassy percolative con-
straint theoryswhich actuallycontractsthe liquid coordinate
space to form the frozen filamentary glassd in explaining
high TSC should not be surprising, but the origin of its suc-
cessful prediction of the rigidity of sub-LO phonon disper-
sion may not be obvious. Constraints effectivelydefinethe
glassy state and are generic to it.43 The cuprates are simply
well-studied electronic glasses with very strong electron-
phonon interactions, in which constraint-imposed rigidity has
been observed spectroscopically.

Constraint theory is an axiomatic hierarchical theory that
treatsslong-ranged strain effects on self-organized networks
in strongly disordered glassy solidssboth molecular and
electronicd; it is supported by many successful studies that
depend on the short-range character of covalent bonding
forces.43 Coulomb interactions are present in the cuprates in
addition to short-range interatomic forces, but these seem to
affect HTSC only indirectly smainly through enhancing
electron-phonon interactions by resonantly binding carriers
to soft dopantsd. This is not surprising, as attractive electron-
phonon energies are short range and must be dominant in
order to achieve highTc’s. Thus it is also not surprising that
no new axioms have been introduced here to explain the
ARPES and STM data.

The successes of constraint theory span a wide range of
combinatorially “insoluble” sexponentially difficultd prob-
lems, including even the nature and structure of proteins in
their transition states.43,49 The success reported here is un-
forced; in connection with the protein successes, one is jus-
tified in saying that cuprate HTSC are “almost alive.” The
self-organized nature of the configurationally glassy elec-
tronic network explains the anomalous cancellationsrigidityd
effects in m,

* below QD, as well as the seemingly uncon-
trolled, strongly dopant-dependent isotope effects inm.

*

aboveQD. The latter surely reflect the marginal mechanical
instability of these pseudoperovskite lattices.40 One can con-
jecture that the success of the hierarchical theory of elec-
tronic rigidity in HTSC stems primarily from the long-range
nature of both Coulomb and strain interactions, which gen-
erate a narrow band of dopant-centered filamentary states
pinned toEF.

Although the anomalous rigidity of states within a Debye
energy of the Fermi energy is a natural consequence of the
topological glass model, one may reasonably ask which fea

tures of the data are not explicable topologically. An example
is the magnitudesa, b, and csxd of the large isotope and
dopant concentration dependence ofm.

* discussed above and
in Table I. Although the theory of marginal elastic stability
explains whyc8sxd is so large, it does not explain the mag-
nitude quantitatively. To do so would apparently require a
first-principles calculation of the anisotropic relaxation
sstraind field around dopant strings, which thus far lies well
outside the range of the state of the computational art, as
applied, for example,50 to MgB2 ssix atoms/celld. Such a cal-
culation would involve at least as many atoms as are found
in a nanodomains,103d, with the dopants arranged to mini-
mize the energy by forming filaments. Problems of this kind
in the cuprates are unavoidably better treated topologically
than by brute force.

Another interesting problem is the origin of the dispersive
kink at 2QD that may have been observed in LSCO at opti-
mal dopingsFig. 4d. Here it has been suggested that this kink
might arise from “knots” formed by intersections of two
dopant-centered paths in narrow bottlenecks of a nan-
odomain landscapefFig. 5sbdg. It is noteworthy that a disper-
sive kink at 2QD has thus far not been observed in BSCCO.
A possible topological explanation for this is that although
there is only one metallic CuO2 plane in LSCO, there are two
metallic BiO2 and CuO2 planes in BSCCO, so that two paths
can avoid each other by using alternating planes. It will be
interesting to see if this difference survives in future experi-
ments. If it does, it will then be even more interesting to see
if this difference between BSCCO and LSCO can be ex-
plained by more conventionalsnonglassyd theories.

The possibility that oxide percolative paths can be self-
organized may not be restricted to cuprates. Thin films of
a-sIn, Ga, ZndO are apparently filamentary metals at carrier
concentrations as low as 1016/cc, whereas single-crystalline
InGaO3sZnOd5 is metallic only for carrier densities above
1018/cc. For these materials a natural path to flexible self-
organization would involve In enrichment of the strings il-
lustrated in their Fig. 1. Because these materials are stiff
mechanically, in them electron-phonon interactions are too
weak to produce superconductivity, but these transparent
films are technologically promising filamentary metals.51

Various interpretations of cuprate resistivity datarsTd are
reviewed recently, and it is suggested thatd2r /dT2 can be
used to construct electronic phase diagrams.52 The discussion
of these diagrams is essentially phenomenological, because it
is difficult to construct quantitative theoretical models for
rsTd. The most noteworthy feature of the diagrams is the
unexplainedlinearity of the white “zero curvature” critical
regionsrc smarked with a dashed line in their Fig. 2 for
LSCO, for exampled over wide ranges of composition and
temperature; this is characteristic of a topological or perco-
lative, not analytic or algebraic, property. There is a simple
explanation for this linearity ofrc: it is the result of the
linearity of the number of percolation paths with site-
occupation probability p, known from many numerical
simulations.46 Strict resistivity linearity,d2r /dT2=0, at high
T is generally observed only at or very near optimal doping
snearly vertical white linesrc in Figs. 1 and 2 of Ref. 46
BSLCO and LSCOd. At optimal doping the filling factor for

TOPOLOGICAL THEORY OF ELECTRON-PHONON… PHYSICAL REVIEW B 71, 184505s2005d

184505-9



the filamentary intermediate phase is maximized,53 whereas
the filling factors for the neighboring nonpercolative insulat-
ing and normal metallic phases are nearly zero.

Several thousand papers have discussed HTSC in the con-
text of a single-phasesmean-fieldd Hubbard model. The
mean-field Hubbard contact-interaction model predicts no

phonon effects on the electronic spectrum near the Fermi
energy;54 this result is included in Table I. Whether or not it
represents an improvement on Fermi liquid theory may be a
matter of taste. Finally, the importance of electron-phonon
interactions in the theory of HTSC is emphasized in a recent
summary.55
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