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Andreev scattering, Zener tunneling, and anomalous ac Josephson effect in near-ballistic
quasi-two-dimensional weak links
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The competition and cooperation of Andreev scattering and normal scattering in superconducting hetero-
junctions lead to the formation of Andreev-Josephson b&AdB), whose energies vary periodically with the
phase difference between the pair potentials. We compute these bands for a quasi-two-dimensional electron gas
in an InAs channel between an AlSb substrate and superconducting Nb stripes separated by an AlSb barrier. In
such systems ac Josephson currents with frequengh&ve been observed, whavg=2eV/# is the canonical
Josephson frequency at voltage In analogy with semiconductor physics Kroemer has reasoned that Zener
tunneling between the AJB should be responsible for the extra oscillations ¢artbenalous ac Josephson
currents. From the time-dependent Bogoliubov-de Gennes equations we calculate the ac Josephson current
densityj} and, perturbation theoretically, the Zener-tunneling current delﬁﬁtyThe total current densitj?
:fJ+fZT contains a strong component that oscillates wiihy.2
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[. INTRODUCTION ageV in analogy with the Bloch oscillations of crystal elec-
trons on Stark laddefs!® and transitions between these
gnergy bands, which correspond to Zener tunnétirme-

¢ tween the crystal Bloch bands, would give rise to finite time

Qaverages of the currents that are measured in the current-

tromagnetic waves of frequenay. The weak links were voltage characteristics. The combination of the Josephson

based on InAs quantum wells as a coupling medium betweefrrents, due to the Bloch-like oscillations, and the Zener-
Nb electrodes, see Fig. 1. These observations indicate “th%mnelmg currents should cause the anomalous ac Josephson
presence of a strong component in the ac Josephson curre‘?ﬁia' , del i lated he th £ Averi d

at the frequency éV/#, twice the canonical Josephson fre- roezmers mo_e3 IS related to the theory of Averin an
quencyw,=2eVi#".4 In addition, a strong enhancement of Bard'aé and Averirt who analyzed the adiabatic phase dy-
the conductivity at vanishing voltage and subharmonic ganamlcs Off the two dt;_screge §tat|es of dposmve and negative
structures were measured. This indicates nonequilibrium efgnergykq a current- |aseL s(ljng e-;no € quantllJ_m pom;c] con-
fects due to Andreev scatteriig.In this context Argamah  @ct: taking into accountLandau) Zener tunneling in the

analyzes superconductings)-normal (N)-superconducting Presence of normal scattering an(_:l rglatinsgj this to earlier pa-
(S) junctions in a diffusive model that is similar to a resis- pers OQ. Josgphson-BI_och OSC'.”at'dﬁé' Furthermore,
Lundint® investigated microwave-inducedandau) Zener

tively shunted junction model. He considers only one repre- ing b 1a And ih th
sentative energy level. For a microscopic description of th unneting gtween current-carwmg ndreev states wit .t N
elp of the time-dependent Bogoliubov-de Gennes equations

ballistic situation Kroemérhas discussed a model of a one- BdG ) . d adiabati
dimensional SNS junction, where normal scattering and An{BdGE), assuming quantum point contacts and adiabatic

H 17
dreev scattering in the SN interfaces generate bound stateg,‘ase dynamics of the energy levels. Braisal."" used

Drexler et al! and Lehnertet al?>2 observed anomalous
Shapiro steps, in addition to the “canonical” Shapiro steps,
voltagesfiw/4e in the dc current-voltage characteristics o
mesoscopic superconducting weak links, irradiated by ele

whose quantized energies depend on Josephson's tim ese equations, too, in order to calculate the combined ef-
dependent phase difference ects of Andreev scattering and normal scattering on the dc

current in single-mode superconducting constrictions at low

2eV i
B(t) = Dy + %(t—to) (1) applied voltage.

between the pair potentials in the S layers, when between
these layers a constant voltage exists for timest=t°.

(For three-dimensional superconducting-semiconducting-
superconducting junctions with spatially varying effective
masses and Fermi energi@sdependent bound states have
been computed numericafly. The energetic positions of
these levels oscillate periodically with(t). This way energy
bands form ind space that correspond formally to the Bloch
bands of electrons in periodic lattice potentials. According to  FIG. 1. A narrow InAs channel with a quasi-two-dimensional
Kroemer’'s model, the quasiparticles in these “Andreev-electron gas between an AlSb substrate and superconducting Nb
Josephson band%oscillate under the influence of the volt- stripes separated by an AISb barrier.
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In the present paper, using the time-dependent BAGE and - _ h
without limiting the analysis to the one-dimensional case, we A= ez%‘b(t)- (5
present the detailed quantum-mechanical calculation of the
Andreev-Josephson bands and their quasiparticle wave fung; ihe s regions& is neglected.

tions in Sec. Il. Section Il treats the Zener tunneling be-  ag first pointed out by Ishii the N region of an SNS junc-
tween these bands when a finite voltage drop occurs acrogg, “is more like a gapless superconducting state than the
the SNS junction. The resulting current-density equations arggya| normal stat@® with the consequence that there exists a
derived in Sec. IV. The numerical evaluations yield the "Ca'phase gradien/2a.2° Ishi's Josephson current has been
nonical” and the anomalous ac Josephson effect in Sec. Ygnfirmed by Bardeen and Johns8nwhose Galilei-
The paper terminates with a critical discussion of our apinyariance argument was substantiated perturbation theoreti-
proximations in Sec. VI. cally for thin films in Ref. 8. Equatior5) is the generaliza-
tion of the static phase gradient to the adiabatic, time-
Il. ANDREEV-JOSEPHSON BANDS (AJB) dependent case. It has been derived for nonadiabatic
. o _ situations, to@®?’

The motion of quasiparticles with electron component  The modulus of the pair potential is approximated by the
and hole component in inhomogeneous superconductors ysyal step function with step height (This is justified in
with pair potentialsA under the influence of scalar potentials detail in Ref. 31 The scalar potential in Eq4) consists of
U and vector potentialg\, that may depend on timg is  two componentslU=Uy(x)+U(z). The potentialUy(x) de-

described by the time-dependent Bd@E20 scribes the quantum well that confines the InAs electrons in
x direction by potential walls that rise high above the chemi-
iﬁﬁ|‘lf(F,t)) = 7:l(F,t)|‘P(F,t)> (2)  cal potentialu in the InAs channelU(2) is any scalar poten-
ot

tial that causes normal scattering and thus perturbs the bound
Andreev states®3?of the SNS junction.
For V=0, i.e., time-independent phase differendgsand
u(r,t) U(2)=0 the wave functions of these Andreev states with en-
v(Ft) ) 3) ergies less thah are given in Appendix A, Eq(A4); the
’ energy eigenvalue@neasured relative tg) are given b§32

for the spinor wave function
W(r,t) = (

Here the matrix Hamiltoniarﬂ(r*,t) has the single-electron .
ﬁvzp EE((I)) ()

Hamiltonian EX(®)= —=| nw+ arccos—— + — 6
(D) % T A o (6)

N 1(he o 2
H(r,t) = o L‘V + eA(r,t)} +URY - p (4)  wherev,e=fik,/m’" is the z component of the Fermi veloc-

. ity; k,r=(kZ -k ~K))'/2 k, andk, being the wave numbers of
and H'(f,1) in the diagonal and the pair potentialf,t)  propagation along the andy axes. The superscript (—)
and its complex conjugate in the off diagonaf; is the ef-  refers to a state with @ component of momentum parallel
fective mass. The constant chemical poteniiak that of a  (antiparalle) to the z direction.
reservoir, and the evolution of the quasiparticle wave func-  Among the bound Andreev states are pairs) and| W)
tions in time starts from stationary states that characterize th@ith oppositez momenta and different energy quantum num-
system before the fields are switched on at tif¥2! (For  persn and m that are degenerate for phase differendes
weak links involving strongly correlated superconductorsequal to
and conventional normal or semiconducting materials one
has density-functional BdGE-2* The strong correlations ®° = m(m-n). (7)
will modify the pair potentials and influence Andreev
scattering—but only quantitatively. Therefore Andreev-
scattering effects should be similar in conventional and un
conventional superconductors.

We consider the superconducting weak link shown in Fig
1, which is of the type used in the experiments that exhibi
the anomalous ac Josephson effect. The proximity effect in-
duces superconducting pair potentials in the InAs channel ot + - - -
below the superconducting Nb electrodeshus the elec- [Wamo(P)) = o[ o) + Vi), 0= £1, - (8)
tronic structure of the quasi-two-dimensional electron gas irwe obtain the perturbed energy eigenvallgs, () from
the InAs channel is that of an SNS junction with normal Egs. (B3)~(B10) of Appendix B as
layer width 2a and extension§D —a) of the superconducting
banks. Current flow in the direction is associated with a 1l \/1 b =2 2
phase differenc& between the pair potentials. We neglect Enmo = E(En"’ En+o Z(En —E)+ [Uned®. (9)
all magnetic fields and work in a gauge where the pair po-
tential is real. In the N region the vector potential that enter<E,,,, lies above(o=+1) or below (¢=-1) the degenerate
Eq. (4) is>>%7 energy level. The degeneracy is removed by

The perturbatiortd(z) mixes these states, removes the de-
generacies, and thus leads to the Andreev-Josephson bands
(AJB).* We calculate this fofb values in the vicinity ofb?
by applying the perturbation theory for quasidegenerate ef-
fective two-level systeni$3*to the Andreev states.

Starting with the linear combination of Andreev states
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FIG. 2. Andreev-Josephson bandsdnspace for a fixedk,r
(Ref. 35. The wave functions in the band paft¥,,-3) and

|Whm+1)) join at d=d, with the wave functions in the band parts

[V (-1ym(+1)) @nd | ¥ nme1y-1)) for properly chosenpt . The per-
turbed energie€,,,(P) of Eq. (9) vary with & according to the
relation Eq-1)(me1)o(P+2m) =Eqmy(P). [Note that E,_ (P +2m)
=Ep (D), Eppyq(P+2m) =E (), andU -1 1) (P +27) = Uy D).]

Unm:_icnmeiw(mm)/ZJ U(Z)e—i2kz,:z

1 E'+E;
xsin{—w(n +m)+ Mz}dz (10)
2 UzF
with
1
Com= — = — . (11
2V(@+ ) (@a+ny)
. hv
A= —Z (12)

2VAZ - (Ep)?

is the average length of quasiparticle penetration into the
superconductors. The perturbation theoretical calculation of

the coefficients in Eq(8) yields

+ Unm @

Anmo = D g'énms, (13
nmo
- Enma_E;r io?
= €%nmo, 14
Amns D, (14)
where
Dime = \’/|Unm|2 + (Enme — E;)Z- (15

The phase factor@ﬁ’m are only relevant for joining the lin-
ear combinationg8) at phase differences liké, in Fig. 2.
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ergy states form the ground-state configuration of the system.
According to Eq.(6) unperturbed bound Andreev states have
negative energies for negative valuesmfif ®=0. As the
phase difference increases positive energiglsb) become
negative and negative energie§®) become positive. Thus
there are AJB in the positive and the negative energy range.
The ones abovE=0 are labeled by=1,2,3,... in theorder
of increasing energies, and the ones belw0 are labeled
by r=-1,-2,-3,....(We do not indicate explicitly thek,
and k, that belong to a sefr} of bands) Each AJB can
accomodate a spin-up and a spin-down quasiparticle.

The wave function that describes a quasiparticle in a
given AJB for® values that are larger than a given initigy
can be written as

p@)=3 Vo )6 - [cpf:m— g])
=0

<ol 7] o)

0(2) is the usual Heavyside function. Thg m, and o
change withl according to

(16)

n=ngy- %[I + o(l mod 2], a7
1

m=mgy+ E[l - o(l mod 2], (18)
o=oy(-1). (19

Furthermore,
®py,= PG, + 1, (20)

where
e Z ol o]l o]0

(21

is the phase difference in the center of thenterval where
the AJB statdV,) is given by|\IanmO,,D>. This interval con-
tains the initial phase differencgy; in other words®, lies
in the interval [<D?Do—7r/2,<1>2,0+7r/2]. Thus ng=ne(Py,r),
My=my(Py, ), andoy=op(Pg,r). At CD%O the Andreev states
|\I’;O> and|\I’r'%> are degenerate.

Ill. ZENER TUNNELING

When a finite voltage oftime-averagedmagnitudeV ex-
ists between the S banks the phase difference changes in time

This figure shows schematically examples of the AJB thagiccording to Eq(1), and in the bound Andreev levels of Eq.
result from Eqs(6)—(15). For eaclv, there is another set of (6) ® becomesb(t). Consequently, the wave functions, Eq.
bands. (8), as well as their energies, E@®), change in time, too, so

The complete set of solutions of the BAGE consists ofthat the stationary AJB wave functior{46) turn into the
positive and negative energy statésyhere the negative en- nonstationary AJB wave functions:
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oo

W, () = 3 [WHD)O(t - T )O(T,, ~1) x e el —ma meEeWWﬁ“W
1=0 1=0
(22) al
XO(t-T)O(T, -t Y t) P W.(t) ).
where
(29
(WD) = [Wam(P(1))), (23)  We calculate the coefficients(t) by solving this equation in
first perturbation-theoretical order. This means: on the right-
L hand side of Eq(29) we approximate,(t) by 1 if r=ry and
E(0) = Bomy (P (D), (24) by 0 otherwise. Thus, at tim&, when the voltage first ap-
pears the considered quasiparticle is supposed to be in AJB
oo ro. For s#r, the bs(t)zbroys(t) are the amplitudes of the
T.=t % V2" (25 probabilities that Zener tunneling from the AJB into the
neighboring bands has occurred until timé. The detailed
Here (tedious calculation of thebr &), associated with integrat-
ing Eq. (29 betweent? andt is presented in Ref. 35 and
5 yields these probabilities to be
t, :tgo+ ﬂlw (26) -
© LECEDVLI LR
indicates the times when the energids (®(t)) and 2
E(P(t)) are degeneratksee Eq.(6)], wheren and m are ( ev ) ( fv e ) an( E" Sgr s),
determined by via Eqgs.(17)<(19); (E59)? + N s
(30
tgoz 0+ 5/@%0 — &) (27)  where we have dropped the index Orgf In the i, summa-

tion goes only over thodefor which thet, of Eq. (26) are the
times when the quasiparticle in bandsees” the minimum

is the time during which the phase difference changes froni energetlc dlstancE’ S 10 bands:

O, to @2, according to Eq(1).
The wave function$W, (1)), Eq.(22), describe quasiparti- EFS— |E' () - E St min = 2/Unnd » (31)

cle oscillations between the upper and lower edges of the

AJB. If one inserts them into the time-dependent Bd@E  WhereU, is given by Eq.(10) and Egs(17)—(19). Subse-

terms remain that originate from those time derivatives thatjuent! in il differ by 2. \; ¢ is obtained from Eq(12), if

appear in addition to the time derivative of the exponentiakthere one replacei: by E’(®(t))=E; (D(t)).

exg- (|/ﬁ)ft0E (t")dt’]. These terms are responsible for tran-

sitions between the bands. The principal contributions come S = EE,ffH Ars (32)
from the time derivatives of the coefficierd§,,, anda,, " eV v

given by Egs.(13) and (14). (The essential parts of these

time derivatives are proportional tdeV/|U,,)v,e/(2a  limits the time intervals[tj= &, s,t;+ & 5] during which the
+2)\}).35) We take care of them by time-dependent perturbaduasiparticle can tunnel with appreciable probability.

tion theory and calculate the transition probabilities in away N these intervals the phase of the exponentlalls from
that is similar to the description of Zener tunneling by thel¥: (t)> and (W(t)|, containing the energy differenceg,(t)
Houston wave¥ of crystal electrons in an electric field. In —Ex(t)], is quasistationary. Outside these time intervals the
so doing we expand the full solutigi(r,t)) of the time-  phase (vagles SO rap&dly that the contributions to the integral
dependent BAGE2) with A of Eq. (5) in terms of the non- ©f Ed- (29) betweent™ andt=1,+§; ¢ oscillate themselves to
sta[:ionary AJB vszf\)/e functions,qE((jz)Z): zero. We replac@(t—q—ér,s) by {1+exp{(t|—t)/(5r,sl4)]}‘1

in order to take into account th#shr J1)|? is nonzero already
for timest in the rang€t|— &, ,t+ & o]

[W(F,0) =2 b ()W, (). (28)
r
IV. CURRENT DENSITIES
Inserting this ansatz into E), observing the orthonormal-
ity of the AJB wave functions, and noting that : : .

%l ] . £l o e obtained fromdE;/ d®, whereE; is the phase coupling en-
2BV )0 -T)O (T, ~texd —(i/#) JE(t)dt'] ergy of the junctiorf® In nonequilibrium superconducting
=H(F, t)|¥,(t)), we obtain the secular equation for the ex- systems charge transport can be calculated from the gauge-
pansion coefficients: invariant current densit§'°

In thermodynamic equilibrium Josephson currents may be

184504-4



ANDREEV SCATTERING, ZENER TUNNELING, AND..

> e * > -
jry=- o R@{E [UyPeUfy + vyPevy (1 - fk)]}- (33
K

We consider current flow in the N region. In BG3) uy(r,t)

and v, (r,t) are the electron and hole wave functions that

evolve from the stationary statéswhich characterize the
system before the fields, responsible for nonequilibrium, ar
switched on at=t% p,=(%/i)V+&,(/4a)d(t) is the kinetic
momentum operator, arfg is the probability that at tempera-

ture T a quasiparticle actually occupies the dynamic state _

described byu(r,t) andu(F,t); k={k,, ky,E'r (t9}. The sum

in Eq. (33) goes over the complete set of states that evolve ~

from the initial positive-and negative-energy statés Inclu-
sion of the negative-energy states is the reason why there
no factor of 2 multiplying the right-hand side of E@®3).®
The distribution functionf, depends upon the relative
magnitudes of the times, for inelastic scattering and the
time 7,= 27 /2eV during which®(t) of Eq. (1) changes by

Energyﬂi A]

PHYSICAL REVIEW B 71, 184504(2005

3
() [n]
FIG. 3. Andreev-Josephson bands z)=U(2).

2m and a quasiparticle in an AJB moves through one bandy, in Eq. (29), is formally decoupled from the “force” that

period, e.g., fromI) m to (<1> mt2m) in Fig. 2.
At voltages so Iow thatr,< 7, and Zener tunneling is

negligible, one has a quasistationary situation where the en-

ergy E'r(t) changes so slowly that the probability of finding a
quasiparticle WitkE'r(t) is practically the same as in thermal
equilibrium: fk:fo(E'r(t)). If one inserts this and the AJB

wave functions into Eq(33) one gets the ac Josephson cur-

drlves the quasiparticle through the AJBhus for AJB like
the two central bands in Fig. 3 we have

df

d_ts == (Ps,s+
Here Py s=fos (1 -foo)d|by {?/dt is the probability per unit
time for first order Zener tunneling from bastinto bands,

Psi o) + (Ps-s— (35)

Pss-).-

rent of the SNS junction. It may be approximated analyti-where |by ¢? is given by Eq.(30). fos=Tfo(Es(®p)) is the

cally by?

J(@(1) = je sinP(t) = Lygnj (P(1)],

wherejc is the critical Josephson current density dngl is
Likharev's kinetic inductance parametér.

In the opposite limit of the “high” voltage regime with
Tin> 7, and Zener tunneling between the AJB,would be
the Fermi distribution functiorf,=fy(EL(t%) at the initial
time t°, if the b,(t) in Eq. (28) would include the influence of
the Pauli principle on the transition probabilities. Then we
could just insert all the wave functiori28) pertaining to the
different r (that label the different initial AJB from which
Zener tunneling occuysnto Eg. (33) and evaluate it. How-
ever, the standard perturbation theoretical procedure used
the calculation of the transition probabilitiés, «(t)|?, Eq.

(34)

(30), between definitely occupied and definitely empty states’

requires that the Pauli principle is introduced “by hand” via
appropriate occupation probabilitiésof the d(t)-dependent
AJB states with energies E(®(1)=3EX)O(t
-T,-)O(T,.—t). In this approximation the,(,t) andv,(r,t)
in Eq. (33) are the AJB wave function&?2), and f is re-
placed byf (®d,t). This occupation probability of band
changes in time according talfy/dt=(dfs/od)(dd/dt)
+(af4/ dt). The change o by the voltageV changeE,(d).
The resulting motion of a quasiparticle in basdoes not
change the occupation probability, i.e., Jf/ 9P =0, if the

band is separated by sufficiently wide gaps from its neigh-
bors so that Zener tunneling is only taken into account by

dfl dt but is negligible indfy/d®. [In this sense the pertur-

Fermi equmbnum distribution function with the quasiparti-
cle energyE{(®,) at timet°. Thus the effect of Zener tunnel-
ing on the Pauli principle is neglected: labels the band
below ands+ labels the band above basdAt low tempera-
tures the probabilities per unit time for downward tunneling,
Pss- andPg, i, are much smaller than those for upward tun-
neling. This can be also seen from Figs. 5 and 6: The dotted
curves, where downward tunneling is being neglected, differ
only very little from the solid curves that do include down-
ward tunneling. According to Eq30) (with the Heavyside
function replaced by{1+exd(t—t)/(5y /4)]}"%) the prob-
ability d/by ¢?/dt is nonzero only in the vicinity of,. We
defineW, ¢ (t) = f"+5zs (Pss— Py o) dt. Then,f,, obtained by

lﬂtegratlng Eq.(35 betweent® andt, changes periodically
between fo(Ey(®g) and fo(Ey(®g)~Wss(t) [fo(Es(®o)

W,_ «(t))] under the assumption that in a stable situation the
net lossWs.(t) [gain Ws_ «(t;)] at timet, is balanced by the
net gainWg_(t;,1) [loss Wy, (t.1)] at the later timet,, if
the energy of band is negative, i.e.s=-1 [positive, i.e.,s
=+1].

The situation is different when there is level crossing, as
in Fig. 4. [The reason for level crossing and the resulting
differences between Figs. 3 and 4 is explained below Egs.
(41) and(42).] When two levels, that are parts of the basds
ands’, cross at time; and phase differenc®(t;) the occu-
pation probabilities of the two bands are exchanged, i.e.,

fod = [fs (Eg[D(t — 0)]) — f(E{D(t; - 0)])]
X (P - D(t)); (36)

bation that causes Zener tunneling, i.e., the time change off,/3® is given by the right-hand side of Eq(36)

184504-5
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§'=-2—-5=+2, \N<_*1) +1—>—VV(_*1) bp FA— A,

If the energyE{(d) of a band arrives at A& for certain
values of®, the approximation of the moving bound An-
dreev states and the perturbation theoretical treatment of
a¥l(t)/ ot break down. At A quasiparticles either are ejected
into the continuum states, leave the quantum well, and move
into the superconducting banks, where they come to thermal
equilibrium, or they reenter the quantum well out of the con-
tinuum. In Fig. 3 the first ejection after the timg occurs

Energy [ A]

-0. with the occupation probabilityy(Es.(Pg)), and the reen-

_04 trance aftett; occurs with the occupation probabilify(+A).

For all subsequent times the occupation probabilities of the

-06 bandss=+2 are fo(+A) (shortly) before the times_, ,.
~0.8 and fo(£A)xW_, 4, (shortly) aftert,—, ,  (assuming the net
tunneling balance indicated abgvén Fig. 4 ejections occur

o 1 2 3 4 5 6 With fo(Exia(Po)) after to, fo(Esia(Po))EW_y 4y after ty,
(1) [n] and fo(iA)iV\/:L+l aftert,. Then, the occupation probabili-

ties at ejection remain the same as after

In Eq. (33) we approximate the occupation probabilitigs
, ) ) . by thefy(®d,t) and theu, andv, by the AJB wave functions,
with s and s' interchanged. In the case of Fig. 4 at time 44 given by Eqs(22—(25), (8)—(12), and (A4). The total
tz, when @(t) =27, fo 1(Eca[P(t=0])=fo(E=-2(Po)  cyrrent density in the N layer becomes
“Wop a(ty),  fy-o(Eg= A P(t,-0)])=fo(Eg-o=-4); for

FIG. 4. Andreev-Josephson bands z)=U,(2).

fo(Eg-_o=—A) see next paragraph. At timg, when ®(t,) coo € 3 3t
jry = - R EE[Upr((I),t)ﬂ)pv
=7 B B 0D =Ty d) WL () M ek s o
fy=a(Eg=—d P(t3-0) ) =fo(Eg=—2=-A). W, ,(t3) is de-
fined like W_ ,4(t3), but the Fermi functions i, .; have N ESR FCRVIE (37)

to be replaced byfo(F=A)[1-fy(xA)]. At all later level-

crossing timedg,tg,... theoccupation probabilities are the  There is a net current density only in taedirection. In
same as aff;. The changes to be made in the above relation®kef. 35 it is shown that the components ofu;f)euS and
for level crossings at positive energy ase-1—s=+1, v{pw, are in the N region

e f SirA(Kx) Uil (Epme = ED)2
(uspus)ezzz (t_TI—)®(TI+_t)2L L 2 : +\2 Jlrn an‘I+ _klm e —n
1=0 X y|Unm| +(Enmr_En) a"')\n a"‘7\m
b BBy e ek U itk b (38)
V@a+ @+ iy
* . h Sinz(kxx) |Unm|2 - (Enrm - E+)2
fug)&, =~ > O(t-T)O(T, —t i - .
(Uspvs)ez % ( | ) ( I+ )ZLXLy |Unm|2 + (Enmg_ E;)Z 1na+ )\; im a+ )\;1
n Enms ~ En [k:rlnunme—iw(n+m)ei(kt1n+k:1m)z —K UL meiw(n+m)e—i<kﬁln+k21m)z] 1 (39)

V@+a)(@+ny)

if all bands are separated from each other by gefisen, in  derived from the pure Andreev states whose levels cross in
each time intervdT,_, T;,] the quasiparticle states consist of the corresponding time intervald,_,T.]. They are much
linear combinations of Andreev states, H§).] If, on the  simpler than in Eqs(38) and (39), and of the type ©(t
other hand, we have the band structure of Fig. 4 with band T,-)O(Tj.—t)(/2L,L)siP(kx)[ BKg,/ (@+\7)], where +
gaps and level crossingk,summation goes over the sum- (—) refers to pure Andreev states of positiregative mo-
mands of Eqs(38) and(39) only for1=1,3,5,...(when the mentum, and B=+1[-1] indicates a contribution to
band states are made up of the linear combinations of Antu pug)é,(vepv,)E,l.

dreev statgs For1=0,2,4,...,however, the summands are ~ We may decompose the total current density in two parts:
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J(F8) = J5(F,0) + 21(F1). (40)

The Zener-tunneling current densi&T(F,t) contains all
terms proportional to the Zener-tunneling probabilities
Ibs:|?=|bs: 2 in the f(®, 1), whereas the Josephson current

densityj,(7,t) consists of the remaining terms j(f,t) that .2

o

describe the adiabatic motion of the quasiparticles in the AJB £
without tunneling. =

4

V. NUMERICAL RESULTS

For the numerical calculations of the band structure and
the current densities the set of parameters characterizing th -2
guasi-two-dimensional electron gas in the InAs channel in

Fig. 1 is 2a=500 nm, (D-a)=500 nm, L,=15 nm, L, —30 ] 5 3 . 5 5
=100 um; parabolic equivalent effective mass =0.053n, (1) [n]

electron densityp=5x 10" cm™3; proximity-induced pair

potential(Ref. 25 A=0.3 meV; and temperatufe=2.2 K. FIG. 5. Current densitieg,(z=0,t) (dashed-dotted j;(0,t)

(dasheg, and j(0,t)=j,(0,t)+);(0,t) (solid curve for fixed k¢
=0.9% and scattering potentidl(z)=U4(2) vs phase difference
A. Andreev-Josephson bands ®(t) at voltageV=1 wV. [The dotted curve gives the total current

The matrix element,, of Eq. (10) is computed with two ~ 9ensityi(0.) if downward tunneling is neglected.

alternative simple delta-function models for the normal- . o _
scattering potentidl(2): By Zener tunneling the quasiparticles move successively

from lower to higher AJB, until aE=A they are ejected into

_ ke the continuum states. From the ground-state continuum at
Us(2) = m' 23(|2 - a), (41) E=-A quasiparticles enter the AJB spectrum.
2 B. Current densities
_ hKke R R
Uy(2) = m Z8(2). (42) In order to compute the current densitigsand j, de-

) ) ) ) ) fined by and below Eq40), we take the average 6¢F £ in
Model potentials like these are widely used in the I|teratureEq. (37) over the channel thickness and evaluate it in the
when the joint action of, and the fundamental difference be'center of the normal layer a=0. If one had only one di-
tween Andreev scattering and normal scattering is thenansion so thak, and k, were fixed, resulting, €.g., ik,

issue123%-41In our case, as pointed out by Kroemer and—o 9%, one would have the(t)-dependent current densi-
shown by our Eqs(9) and(10), the point that matters is the ties shown in Figs. 5 and 6

rem?val orgmnremm;]al of the dsge?]eracide?f and the opening |, rig 5 the total current densitj(0,t) has minima at
up of gaps between the AJB at the phase differences given . _ : P . :
Eq. (7). The two potentiald),(2) and U,(z) model the re- b;¥hase difference®(t)=n, n integer. In this sense it oscil-
moval and partly nonremoval of degeneracies and the result- . ‘ .
ing consequences for the Josephson and the tunneling cu N AN I
rents in the simplest possible way. The interface potential 4|
U,(2) corresponds to the models used, e.g., by Refs. 8, 39
and 40 andJ,(z) corresponds to the model of Ref. 12. We 3
address the issue of scattering from isolated three-
dimensional impurities in the Discussion. For the potential- — 2
barrier parameteZ we useZ=0.053<0.5. The AJB com-
puted withU,(z) andU,(2) for k,z=0.3%g are shown in Figs.
3 and 4.

Both models yield an energy gap arouk&0 between
the highest AJB of negative energy=—1, and the lowest
AJB of positive energys=+1. U;(2) leads to additional
small gaps between the bargts—1 ands=-2 and the bands )
s=+1 ands=+2 in Fig. 3. These gaps vanish in Fig. 4: the
delta functiond(z) in U,(z2) makesU,,,=0 for even(n+m); _3 i
see Eq(10). A more realistic scalar potential which, e.g., has 0 ! 2 q)(g’ ] 4 5 6
a Gaussian instead af(z) would result in nonvanishing
gaps. FIG. 6. Same as in Fig. 5 fdd,(2).

1

j[10* Arm?]

0

184504-7



A. JACOBS AND R. KUMMEL PHYSICAL REVIEW B71, 184504(2005

ip [10° A
j, [10° Arm?]

Ade
0.0

0.5 0.5
Y, , Y, ,
! \(\e\ ! \\“%\
10" 00 v 1.0 00
FIG. 7. Complete Zener-tunneling current dengjtyvs voltage FIG. 8. Complete Josephson current dengjtys voltageV and
V and timet. time t.

lates withtwice the canonical Josephson frequency, i.e., with  The resulting complete Zener-tunneling and Josephson
2w;=4eVIh. More precisely,R,;=a(2w;)/a(w;) has the  current densities are computed fd5(z) and plotted in Figs.
value 0.39; her@(2w;) is the Fourier coefficient in the Fou- 7 and 8 as functions of low voltag&sand timet. Their sum

rier component that oscillates with the frequenay;2and  is shown in Fig. 9. The total current density computed for
a(w;) belongs to the oscillation with the canonical frequencyhigher voltages JuV <V=<10 uV is presented in Fig. 10.
w;. For the total current density of Fig. 6 one finBs;;  Because of the larger Zener-tunneling currents at higher volt-
=0.36.[The Fourier components of the higher harmonics areages the upward oscillations after the times of tunneling are
smaller thana(2w;) by about a factor of 3 or morglf, on  much more pronounced in Fig. 10 than in Fig. 9.

the other hand, there were no Zener-tunneling currents one

would only have the nonsinusoidal Josephson current densi-

ties, given by the dashed lines in Figs. 5 and 6; the corre- VI. DISCUSSION

sponding ratio of their Fourier coefficients, i.eR; We have confirmed perturbation-theoretically Kroemer’s
=ay(2wy)/ay(wy), is 0.24 for both caseglifferences show in  pregictiort that Zener-like tunneling between the Andreev-
the third dlglt only. Thus Zener tunneling enhances the am-Josephson band@JB) in SNS junctions leads to current
plitude of the oscillations with &, by more than 50%. oscillations that involve twice the canonical Josephson fre-

Current oscillation with 8, is the basis for the quencyw;=2eV/#, thus giving rise to the anomalous ac Jo-
explanatioft of the observed anomalous Josephson effectsephson effect. The AJB are calculated from the stationary
The physical origin of the enhancement of the;Dscilla-  BAGE by perturbation theory for quasidegenerate two-level
tions, i.e., of the current rising again right afé(t)>(2n  systems, treating the normal scattering of electrons and holes
—1)m, is clearly seen in Fig. 5: fof2n—-1)7<®(t)<2nm, by a scalar potentidl(z) as a small perturbation of the quan-
the Zener-tunneling current density; overbalances the Jo- tized, ®-dependent Andreev stat®$32 Formally, it would
sephson current densityThe small arches around(t)
=2n7 are due to the emergence out of and reentrance intc
the continuum of the bands wittr £2 in Fig. 3]

The story of Fig. 6 is the same, with one exception: At
phase difference®(t)=2n the total current density does
not go down to zero, as it does in Fig. 5, because at level 1
crossings, whenb assumes the degeneracy valuesrdn -
Fig. 4, the occupation probabilities of the unperturbed An- 5 0
dreev states with opposite momenta are not the same. Pertus
bations likeU,(z), on the other hand, that remove all degen- =
eracies, produce the linear combinatid8$ with vanishing
total momentum, and thus vanishing current densities, at al
®(t)=nr in Fig. 5.

=1
0.0

. .. ,»(/
In order to take into account the additional degrees of v, 0:5 50
freedom in the quasi-two-dimensional weak links of the ex- “ly
. : N
periments we perform the sums in Eg7) over allk, andk, 10 00 WX

which result ink,r such that 0.R-<k,.<0.9Zg. This re-

striction selects thek,r values compatible with our FIG. 9. Complete total current density, i.e., the sunjgffrom
approximation® and the minimunk, value[see Eq.(A7)]. Fig. 7 andj; from Fig. 8, vs voltage and time.
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26, s, when the quasiparticle is very close to the gﬂﬁ
between the two bands, is

ev)? 2 1
(—) ( o2 ) X zsin2<—Er'55rS>.
E) \2a+2n ) © (ES ho9or

The second term, the one behind tResign, is typical for
time-dependent perturbation theory, when a perturbation is
switched on at timé=-4; ; and one calculates the probabil-
ity that a transition between two stateands, separated by
the energetic distandg;®, has occurred until the timess.
The first term, the one in front of the sign, is the absolute
square of the perturbation, i.e., of the essential part of the
& time derivatives of the coefficients in the linear combinations
of the unperturbed Andreev states, Eg). Basically, these
FIG. 10. Complete total current density in the “high” voltage M€ derivatives are t!me+ dependent, too, because of the
regime. ®(t)-dependent energiek;[®(t)] of the bound Andreev
states, Eq(6), that determine the coefficients according to
be desirable to extend the analysis to scalar potentléals Egs. (13 and (14). However, we have only taken into ac-
so that one can also treat normal scattering from isolatedount their magnitudes at the times of tunnelifg,when
three-dimensional impurities and defects. However, we dgalculating the transition probabilities, thus neglecting all
allel to the NS interfaces drastically changes the physics ofq treating the constant component as a perturbation that

charge transport perpendicular to the interfaces. Therefor"eﬁectively acts durindt,— &, ..+, JJ. This is justified for

avoiding the formal complications associated with noncon;?lapsEr's>ﬁwJ because all variations of the terms in Egs.

served momenta parallel to the interfaces should be justifie _ N
for the computation of Josephson and Zener-tunneling cur* 3) and(14) occur at the rates,=2eV/# at whichE [ ®()]

rents in the quasi-two-dimensional electron gases, where ﬂgnan%es. For voltages/<10 uV we have fiw,<3.36
anomalous Josephson effect has been observed. ><1(T_ eV. Thus our apprOX|mat|0n of neglecting higher
In the complete total current density the ratio of the am-Fourier components is acceptable for gajig°>3
plitude of the second harmonic to the amplitude of the first< 107> V. This is the case for the gaps that result from the
harmonic has a temperature dependence which is mucfalar potentiald);(z) and Uy(2) in our numerical calcula-
weaker than the experimentally observed temperature depetions of the current densities.
dence of the ratio of the half-integer to the integer Shapiro While Zener tunneling of Bloch electrons in crystals is
steps? The weak temperature dependence may be due to thessociated with transitions through spatially forbidden re-
strong curvatures of the AJB close to the band minima andjions, where the electron wave functions are damped expo-
maxima. Weaker band curvatures for other forms of the scanentially so that the transition probabilities depend exponen-
lar potentialU(z) may lead to stronger temperature depen-tially on gaps and fields, the tunneling of Andreev-reflected
dence, because Zener tunneling would occur with apprequasiparticles through the AJB gaﬁgs, opened up by nor-
ciable probability in wider® ranges around the band mal scattering, isiot associated with any spatial transitions
extrema. The corresponding contributions to the current willvia the overlap of exponentially damped waves. Rather, the
change with thetime- and temperature-dependent occupa- quasiparticles remain localized in the superconducting quan-
tion of these ranges. tum well (as long as the magnitude of their energies does not
The adiabatic approximation of the moving bound An-exceedA) because their group velocignd their charge re-
dreev states, that form the AJB, breaks down for energiegerse sign in each momentum-conserving electrerhole
very close to the edge of the pair-potential well @.fhus  scattering process by the off-diagonal pair potential walls.
our calculation of Zener tunneling by first-order time- This pecularity of quasiparticles in bound Andreev states
dependent perturbation theory with respect to the timdW?:) is basically the reason for the fact that tiimelependent
changes of the coefficients in the linear combinations of An-¢lectric fields change their energy in time without changing
dreev states that form the AJB is valid only at safe distancetheir localization, thus acting in a way that is similar to the
from *A. This is the case for the two models 0fz) em-  action of time-dependent fields on electrons in bound states
ployed in our current density calculations. The injection intoof conventional quantum wells.
the pair-potential well at A and the ejection out of this well All quasiparticles that climb the superconducting quantum
at +A of all quasiparticles that are effectively excited out of well from —A to +A via Zener tunneling and multiple An-
the ground state by the voltageé are processes that have dreev reflections originate from the continuum states. These
been described previously, e.g., in Ref. 25 and referencedates extend throughout the superconducting banks and are
therein, for ballistic SNS junctions without any use of thein thermal equilibrium with the lattice. There are also quasi-
adiabatic approximation. particles that traverse the normal layer without any Andreev
According to Eq.(30), the probability of a tunneling tran- scattering. They make up the Sharvin curr&ihey are not
sition from AJBr to AJB s during one of the time intervals included in Kroemer's model and in the current densities of

j[10° A/m?]

1l
1.0 3
1.0

L 50
by,

10 0.0
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Figs. 5-10. The Sharvin-current density has been estimated ———s

i i ions i ke= Vk2 - K2— K2 =—=, q=—. (A86)

in Ref. 35 on the basis of the calculations in Ref. 25. It F= VK- K -k, v e q a3

increases linearly with the voltage. In the relevant voltage

range up to 1QuV it is tiny compared to the time average of The function

the complete total current density and can be neglected alto- -

gether. _ - n(x,y) = sink X)€", k.=n,—, (A7)
We have calculated the occupation probabilities of the Lx

AJB between the time", when the voltage/ first appears, yoscrines the plane waves in thelirection and the standing

and later timest, when their changes by Zener tunneling waves in the qguantum well forming the channel. At low tem-

repeat themselves periodically, in the simplest possible wai/ﬁ-‘eratures fop=0.2 eV, L,=15 nm, andri =0.0531, only
) . 1 =X ) . H

(i) we have neglected the influence of Zener tunneling on th&. o < \hhand states with =1 andn,=2 are occupied. The

p!ockadg of t“””e'”.‘g channels by the P.aL.J!' principle, an uasiparticle energiesE;<A solve the eigenvalue
(ii) we did not take into account the possibility that the d's'equatioﬁﬁz

tribution function before tunneling may be similar to that of
“hot” electrons in semiconductor physitswhere high volt- . hu,e E-(Dg) D,

ages lead to an effective temperatdrethat is higher than En(®o) = 2a nar+ arccos— — + PRk (A8)

the temperature of the sample’s heat bath. A fully self-

consistent solution of the Boltzmann equation for Zener tunThus a complete set of quantum numbers that characterize a

neling between AJB remains a task for future work. quasiparticle  wave  function is given by k
={n,;ky;(n, +,8)}. For the sake of simplicity we use onty
ACKNOWLEDGMENT and “+” as labels of the wave functioﬂ'ﬁ in Eq. (A4). The

. . coefficients in this wave functiofes well as the energy ei-
We thank Herbert Kroemer for discussions of Bloch 0S-gony a1k result from the matching of the solutions of Eq.

ciIIation;, Andreev_ scat_tering, and charge transport in SUIO('”?Al) in the N and S layers at the NS interfaces and normal-
conducting heterojunctions. ization. They are

APPENDIX A: UNPERTURBED BOUND ANDREEV 1

STATES Cln= T (A9)
In the absence of external fields and scattering potentials \/LXLV{ 2at 2)\{1 - ex;(— A, )J}
U(2) the electronic structure of the quasi-two-dimensional
SNS junction of Fig. 1 is obtained from the solutions of the (Et);1e;i[(2a,ﬁsz)Eﬁ¢¢0,2]
stationary Bogoliubov-de Gennes equations Cin= AL .
N D-a
Eﬁ‘l’;‘:(F) — HO(F)\P*E'(I:’) ) (Al) \/LxLy{ 2a+ an\‘l - eXF<_ NE )J }
n
The Hamiltonian is (A10)
- [Ho( A2 Hereby, \, is given by Eq. (12, and ¢E;) =exd
Ho(F) = A@) - HyF) (A2) arcco$E;/A)] is the probability amplitude of Andreev

scattering at energids<<A.
with

APPENDIX B: QUASIDEGENERATE PERTURBATION

Ho(M) = — | 2% +6 2+U()— (A3)
o= om | i) T %ag 0 olX) = p. THEORY WITH THE BOGOLIUBOV-DE GENNES

. . EQUATIONS

The wave functions that solve EGAL) in the normal layer
are, cf® Normal scattering within the N layer of the junction is

1 0 taken into account by adding the scalar poteritia) to Hg

Wi(r) = n(x,y)[cin(0>e¢u(k1n+q>z+ Cfln(]-)etl(k‘lntq)z], of Eq. (A3). The m:ittnx Hri\mlltom:ar(AZ) changes to
(Ad) H(F) = Ho() + U(2), (B1)
where the superscriptst” determine the orientation of mo- with
mentum i (U(z) 0 ) ©2)
2) = .
. == 0 -U®
K, = fi| ke + B (A5)
five Applying appropriately the standard perturbation-theoretical

parallel(+) or antiparallel —) to thez direction; 3 describes  procedure¥3*to the stationary BAGE With(F) we obtain
the quasiparticle character: electronlik@=+1) or holelike  the energies of the perturbed states, i.e., of the linear combi-
(B=-1); nation in Eq.(8), as

184504-10



ANDREEV SCATTERING, ZENER TUNNELING, AND..

1 _ 1 _
Enma::E(H;+w4m)+‘T\/Z(H;_'Hn)2+|Hanv (B3)
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(56 Sl

+
n
+

U(2)
0

0
-U(2)

u

+* 4
n vn

Uﬁ=f(u

Un

where :f|uﬁ|2U(z)d3r—f lvalPU(2)dr
Hi= | WD TH(F) + U@ 1idr, B4 .
n f n(f) [ O(r_)) (Z)] n r ( ) :|C1n|2fsin2(kxx)u(z)d3r
Hom= f VO THAD + U@ . (B5) ~[C* f sitkU@dr=0 (B9
. . . and
With the BAGE(A1) and the orthogonality relation
« o (U(Z 0 U
Unm:f(u; M ( @ )( T>d3r
J«ymn*w%«yﬁr:o (B6) 0 -U®@/\v,
- - 3 _ +* - 3
Egs.(B4) and(B5) turn into _f Uy UnU(2)r JU” ol (@)
~ 5 e . ™ —i(kE K
Hi =5 + f VEO U WESr = EE+ U, (BY) = CinCim f smz(L—xnxx)e a2y (2)d
) -C'Clim J sir12<LZnxx)e“(kf1n+k31m)zu(z)d3r
o= | WO UDE =0 @9 :

In order to keep things simple we calculate the matrix ele-

ments in Eqs(B7) and (B8) only with the wave functions
given by Eq.(A4). [This is exact ifU(2) is limited to the N
layer, and otherwise a good approximation, because th

. . 1
=- iCnme'”(”“m)’zf U(z)e"ZkZFZsin[Ew(n +m)

1

UzF

+

(E, + E%)z]dz, (B10)

e

bound-states wave functions decay exponentially in the SvhereC,, is defined in Eq(11), with (D-a)/\;>1 being

banks] Observing Eqs(A9) and (A10) we obtain

assumed in EqSA9) and (A10).
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