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The competition and cooperation of Andreev scattering and normal scattering in superconducting hetero-
junctions lead to the formation of Andreev-Josephson bandssAJBd, whose energies vary periodically with the
phase difference between the pair potentials. We compute these bands for a quasi-two-dimensional electron gas
in an InAs channel between an AlSb substrate and superconducting Nb stripes separated by an AlSb barrier. In
such systems ac Josephson currents with frequency 2vJ have been observed, wherevJ=2eV/" is the canonical
Josephson frequency at voltageV. In analogy with semiconductor physics Kroemer has reasoned that Zener
tunneling between the AJB should be responsible for the extra oscillations of thesanomalousd ac Josephson
currents. From the time-dependent Bogoliubov-de Gennes equations we calculate the ac Josephson current
density jWJ and, perturbation theoretically, the Zener-tunneling current densityjWZT. The total current densityjW

= jWJ+ jWZT contains a strong component that oscillates with 2vJ.
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I. INTRODUCTION

Drexler et al.1 and Lehnertet al.2,3 observed anomalous
Shapiro steps, in addition to the “canonical” Shapiro steps, at
voltages"v /4e in the dc current-voltage characteristics of
mesoscopic superconducting weak links, irradiated by elec-
tromagnetic waves of frequencyv. The weak links were
based on InAs quantum wells as a coupling medium between
Nb electrodes, see Fig. 1. These observations indicate “the
presence of a strong component in the ac Josephson current
at the frequency 4eV/", twice the canonical Josephson fre-
quencyvJ=2eV/"”.4 In addition, a strong enhancement of
the conductivity at vanishing voltage and subharmonic gap
structures were measured. This indicates nonequilibrium ef-
fects due to Andreev scattering.5,6 In this context Argaman7

analyzes superconductingsSd-normal sNd-superconducting
sSd junctions in a diffusive model that is similar to a resis-
tively shunted junction model. He considers only one repre-
sentative energy level. For a microscopic description of the
ballistic situation Kroemer4 has discussed a model of a one-
dimensional SNS junction, where normal scattering and An-
dreev scattering in the SN interfaces generate bound states,
whose quantized energies depend on Josephson’s time-
dependent phase difference

Fstd = F0 +
2eV

"
st − t0d s1d

between the pair potentials in the S layers, when between
these layers a constant voltageV exists for timestù t0.
sFor three-dimensional superconducting-semiconducting-
superconducting junctions with spatially varying effective
masses and Fermi energiesF-dependent bound states have
been computed numerically.8d The energetic positions of
these levels oscillate periodically withFstd. This way energy
bands form inF space that correspond formally to the Bloch
bands of electrons in periodic lattice potentials. According to
Kroemer’s model, the quasiparticles in these “Andreev-
Josephson bands”43 oscillate under the influence of the volt-

ageV in analogy with the Bloch oscillations of crystal elec-
trons on Stark ladders,9,10 and transitions between these
energy bands, which correspond to Zener tunneling11 be-
tween the crystal Bloch bands, would give rise to finite time
averages of the currents that are measured in the current-
voltage characteristics. The combination of the Josephson
currents, due to the Bloch-like oscillations, and the Zener-
tunneling currents should cause the anomalous ac Josephson
effect.

Kroemer’s model is related to the theory of Averin and
Bardas12 and Averin13 who analyzed the adiabatic phase dy-
namics of the two discrete states of positive and negative
energy of a current-biased single-mode quantum point con-
tact, taking into accountsLandau-d Zener tunneling in the
presence of normal scattering and relating this to earlier pa-
pers on Josephson-Bloch oscillations.14,15 Furthermore,
Lundin16 investigated microwave-inducedsLandau-d Zener
tunneling between current-carrying Andreev states with the
help of the time-dependent Bogoliubov-de Gennes equations
sBdGEd, assuming quantum point contacts and adiabatic
phase dynamics of the energy levels. Bratuset al.17 used
these equations, too, in order to calculate the combined ef-
fects of Andreev scattering and normal scattering on the dc
current in single-mode superconducting constrictions at low
applied voltage.

FIG. 1. A narrow InAs channel with a quasi-two-dimensional
electron gas between an AlSb substrate and superconducting Nb
stripes separated by an AlSb barrier.
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In the present paper, using the time-dependent BdGE and
without limiting the analysis to the one-dimensional case, we
present the detailed quantum-mechanical calculation of the
Andreev-Josephson bands and their quasiparticle wave func-
tions in Sec. II. Section III treats the Zener tunneling be-
tween these bands when a finite voltage drop occurs across
the SNS junction. The resulting current-density equations are
derived in Sec. IV. The numerical evaluations yield the “ca-
nonical” and the anomalous ac Josephson effect in Sec. V.
The paper terminates with a critical discussion of our ap-
proximations in Sec. VI.

II. ANDREEV-JOSEPHSON BANDS (AJB)

The motion of quasiparticles with electron componentu
and hole componentv in inhomogeneous superconductors
with pair potentialsD under the influence of scalar potentials

U and vector potentialsAW , that may depend on timet, is
described by the time-dependent BdGE5,18–20

i"
]

]t
uCsrW,tdl = ĤsrW,tduCsrW,tdl s2d

for the spinor wave function

CsrW,td = SusrW,td
vsrW,td

D . s3d

Here the matrix HamiltonianĤsrW ,td has the single-electron
Hamiltonian

HsrW,td =
1

2m* F"

i
¹W + eAW srW,tdG2

+ UsrW,td − m s4d

and −H*srW ,td in the diagonal and the pair potentialDsrW ,td
and its complex conjugate in the off diagonal;m* is the ef-
fective mass. The constant chemical potentialm is that of a
reservoir, and the evolution of the quasiparticle wave func-
tions in time starts from stationary states that characterize the
system before the fields are switched on at timet0.19,21 sFor
weak links involving strongly correlated superconductors
and conventional normal or semiconducting materials one
has density-functional BdGE.22–24 The strong correlations
will modify the pair potentials and influence Andreev
scattering—but only quantitatively.19 Therefore Andreev-
scattering effects should be similar in conventional and un-
conventional superconductors.d

We consider the superconducting weak link shown in Fig.
1, which is of the type used in the experiments that exhibit
the anomalous ac Josephson effect. The proximity effect in-
duces superconducting pair potentials in the InAs channel
below the superconducting Nb electrodes.25 Thus the elec-
tronic structure of the quasi-two-dimensional electron gas in
the InAs channel is that of an SNS junction with normal
layer width 2a and extensionssD−ad of the superconducting
banks. Current flow in thez direction is associated with a
phase differenceF between the pair potentials. We neglect
all magnetic fields and work in a gauge where the pair po-
tential is real. In the N region the vector potential that enters
Eq. s4d is25–27

AW = eWz
"

e4a
Fstd. s5d

In the S regionsAW is neglected.
As first pointed out by Ishii the N region of an SNS junc-

tion “is more like a gapless superconducting state than the
usual normal state”28 with the consequence that there exists a
phase gradientF /2a.29 Ishii’s Josephson current has been
confirmed by Bardeen and Johnson,30 whose Galilei-
invariance argument was substantiated perturbation theoreti-
cally for thin films in Ref. 8. Equations5d is the generaliza-
tion of the static phase gradient to the adiabatic, time-
dependent case. It has been derived for nonadiabatic
situations, too.26,27

The modulus of the pair potential is approximated by the
usual step function with step heightD. sThis is justified in
detail in Ref. 31.d The scalar potential in Eq.s4d consists of
two components:U=U0sxd+Uszd. The potentialU0sxd de-
scribes the quantum well that confines the InAs electrons in
x direction by potential walls that rise high above the chemi-
cal potentialm in the InAs channel.Uszd is any scalar poten-
tial that causes normal scattering and thus perturbs the bound
Andreev states5,6,32 of the SNS junction.

For V=0, i.e., time-independent phase differencesF, and
Uszd=0 the wave functions of these Andreev states with en-
ergies less thanD are given in Appendix A, Eq.sA4d; the
energy eigenvaluessmeasured relative tomd are given by8,32

En
±sFd =

"vzF

2a
Fnp + arccos

En
±sFd
D

±
F

2
G , s6d

wherevzF="kzF/m* is thez component of the Fermi veloc-
ity; kzF=skF

2 −kx
2−ky

2d1/2, kx andky being the wave numbers of
propagation along thex and y axes. The superscript1 s2d
refers to a state with az component of momentum parallel
santiparalleld to thez direction.

Among the bound Andreev states are pairsuCn
+l and uCm

− l
with oppositez momenta and different energy quantum num-
bers n and m that are degenerate for phase differencesF
equal to

Fnm
0 ; psm− nd. s7d

The perturbationUszd mixes these states, removes the de-
generacies, and thus leads to the Andreev-Josephson bands
sAJBd.4 We calculate this forF values in the vicinity ofFnm

0

by applying the perturbation theory for quasidegenerate ef-
fective two-level systems33,34 to the Andreev states.

Starting with the linear combination of Andreev states

uCnmssFdl = anms
+ uCn

+l + amns
− uCm

− l, s = ± 1, s8d

we obtain the perturbed energy eigenvaluesEnmssFd from
Eqs.sB3d–sB10d of Appendix B as

Enms =
1

2
sEn

+ + Em
− d + sÎ1

4
sEn

+ − Em
− d2 + uUnmu2. s9d

Enms lies abovess= +1d or below ss=−1d the degenerate
energy level. The degeneracy is removed by
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Unm= − iCnmeipsn+md/2E Uszde−i2kzFz

3sinF1

2
psn + md +

sEn
+ + Em

− d
"vzF

zGdz s10d

with

Cnm;
1

2Îsa + ln
+dsa + lm

− d
. s11d

ln
± ;

"vzF

2ÎD2 − sEn
±d2

s12d

is the average length of quasiparticle penetration into the
superconductors. The perturbation theoretical calculation of
the coefficients in Eq.s8d yields

anms
+ =

Unm

Dnms

eiwnms
F

, s13d

amns
− =

Enms − En
+

Dnms

eiwnms
F

, s14d

where

Dnms = ÎuUnmu2 + sEnms − En
+d2. s15d

The phase factorswnms
F are only relevant for joining the lin-

ear combinationss8d at phase differences likeFa in Fig. 2.
This figure shows schematically examples of the AJB that
result from Eqs.s6d–s15d. For eachvzF there is another set of
bands.

The complete set of solutions of the BdGE consists of
positive and negative energy states,36 where the negative en-

ergy states form the ground-state configuration of the system.
According to Eq.s6d unperturbed bound Andreev states have
negative energies for negative values ofn, if F=0. As the
phase difference increases positive energiesEn

−sFd become
negative and negative energiesEn

+sFd become positive. Thus
there are AJB in the positive and the negative energy range.
The ones aboveE=0 are labeled byr =1,2,3, . . . in theorder
of increasing energies, and the ones belowE=0 are labeled
by r =−1,−2,−3, . . ..sWe do not indicate explicitly thekx
and ky that belong to a sethrj of bands.d Each AJB can
accomodate a spin-up and a spin-down quasiparticle.

The wave function that describes a quasiparticle in a
given AJB forF values that are larger than a given initialF0
can be written as

uCrsFdl = o
l=0

`

uCnmssFdlQSF − FFnm
0 −

p

2
GD

3QSFFnm
0 +

p

2
G − FD; s16d

Qszd is the usual Heavyside function. Then, m, and s
change withl according to

n = n0 −
1

2
fl + ssl mod 2dg, s17d

m= m0 +
1

2
fl − ssl mod 2dg, s18d

s = s0s− 1dl . s19d

Furthermore,

Fnm
0 = FF0

0 + lp, s20d

where

FF0

0 = o
p=−`

+`

ppQSF0 − Fpp −
p

2
GDQSFpp +

p

2
G − F0D

s21d

is the phase difference in the center of theF interval where
the AJB stateuCrl is given by uCn0m0s0

l. This interval con-
tains the initial phase differenceF0; in other words,F0 lies
in the interval fFF0

0 −p /2 ,FF0

0 +p /2g. Thus n0=n0sF0,rd,
m0=m0sF0,rd, ands0=s0sF0,rd. At FF0

0 the Andreev states
uCn0

+ l and uCm0

− l are degenerate.

III. ZENER TUNNELING

When a finite voltage ofstime-averagedd magnitudeV ex-
ists between the S banks the phase difference changes in time
according to Eq.s1d, and in the bound Andreev levels of Eq.
s6d F becomesFstd. Consequently, the wave functions, Eq.
s8d, as well as their energies, Eq.s9d, change in time, too, so
that the stationary AJB wave functionss16d turn into the
nonstationary AJB wave functions:

FIG. 2. Andreev-Josephson bands inF space for a fixedkzF

sRef. 35d. The wave functions in the band partsuCnms−1dl and
uCnms+1dl join at F=Fa with the wave functions in the band parts
uCsn−1dms+1dl and uCnsm+1ds−1dl for properly chosenwnms

F . The per-
turbed energiesEnmssFd of Eq. s9d vary with F according to the
relation Esn−1dsm+1dssF+2pd=EnmssFd. fNote that En−1

+ sF+2pd
=En

+sFd, Em+1
− sF+2pd=Em

− sFd, andUsn−1dsm+1dsF+2pd=UnmsFd.g
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uCrstdl = o
l=0

`

uCr
l stdlQst − Tl−dQsTl+ − td 3 e−si/"de

t0
t

Er
l st8ddt8

s22d

where

uCr
l stdl ; uCnms„Fstd…l, s23d

Er
l std ; Enms„Fstd…, s24d

Tl± = tl ±
"

2eV

p

2
. s25d

Here

tl = tF0

0 +
"

2eV
lp s26d

indicates the times when the energiesEn
+(Fstld) and

Em
− (Fstld) are degeneratefsee Eq.s6dg, wheren and m are

determined byl via Eqs.s17d–s19d;

tF0

0 = t0 +
"

2eV
sFF0

0 − F0d s27d

is the time during which the phase difference changes from
F0 to FF0

0 according to Eq.s1d.
The wave functionsuCrstdl, Eq. s22d, describe quasiparti-

cle oscillations between the upper and lower edges of the
AJB. If one inserts them into the time-dependent BdGEs2d,
terms remain that originate from those time derivatives that
appear in addition to the time derivative of the exponential
expf−si /"det0

t Er
l st8ddt8g. These terms are responsible for tran-

sitions between the bands. The principal contributions come
from the time derivatives of the coefficientsanms

+ andamns
− ,

given by Eqs.s13d and s14d. sThe essential parts of these
time derivatives are proportional toseV/ uUnmu dvzF/ s2a
+2ln

+d.35d We take care of them by time-dependent perturba-
tion theory and calculate the transition probabilities in a way
that is similar to the description of Zener tunneling by the
Houston waves37 of crystal electrons in an electric field. In
so doing we expand the full solutionuCsrW ,tdl of the time-

dependent BdGEs2d with AW of Eq. s5d in terms of the non-
stationary AJB wave functions, Eq.s22d:

uCsrW,tdl = o
r

brstduCrstdl. s28d

Inserting this ansatz into Eq.s2d, observing the orthonormal-
ity of the AJB wave functions, and noting that
ol=0

` Er
l uCr

l stdlQst−Tl−dQsTl+− tdexpf−si /"det0
t Er

l st8ddt8g
=ĤsrW ,tduCrstdl, we obtain the secular equation for the ex-
pansion coefficients:

]

]t
bsstd = − o

r

brstdo
l=0

`

e−si/"de
t0
t

Er
l st8ddt8

3Qst − Tl−dQsTl+ − tdKCsstdU ]

]t
UCr

l stdL .

s29d

We calculate the coefficientsbsstd by solving this equation in
first perturbation-theoretical order. This means: on the right-
hand side of Eq.s29d we approximatebrstd by 1 if r =r0 and
by 0 otherwise. Thus, at timet0, when the voltage first ap-
pears the considered quasiparticle is supposed to be in AJB
r0. For sÞ r0 the bsstd;br0,sstd are the amplitudes of the
probabilities that Zener tunneling from the AJBr0 into the
neighboring bandss has occurred until timet. The detailed
stediousd calculation of thebr0,sstd, associated with integrat-
ing Eq. s29d betweent0 and t, is presented in Ref. 35 and
yields these probabilities to be

ubr,sstdu2 = o˜
l

Qst − tl − dr,sd

3 S eV

sEg
r,sd2D2S "vzF

a + lr,s
D2

sin2S1

"
Eg

r,sdr,sD ,

s30d

where we have dropped the index 0 ofr0. In the õl summa-
tion goes only over thosel for which thetl of Eq. s26d are the
times when the quasiparticle in bandr “sees” the minimum
energetic distanceEg

r,s to bands:

Eg
r,s ; uEr

l stld − Es
l stldumin = 2uUnmu, s31d

whereUnm is given by Eq.s10d and Eqs.s17d–s19d. Subse-

quent l in õl differ by 2. lr,s is obtained from Eq.s12d, if
there one replacesEn

± by En
+(Fstld)=Em

− (Fstld).

dr,s =
Eg

r,s

eV

a + lr,s

vzF
s32d

limits the time intervalsftl −dr,s,tl +dr,sg during which the
quasiparticle can tunnel with appreciable probability.

In these intervals the phase of the exponentials from
uCrstdl and kCsstdu, containing the energy differencesfEr

l std
−Es

l stdg, is quasistationary. Outside these time intervals the
phase varies so rapidly that the contributions to the integral
of Eq. s29d betweent0 and tù tl +dr,s oscillate themselves to
zero. We replaceQst− tl −dr,sd by h1+expfstl − td / sdr,s/4dgj−1

in order to take into account thatubr,sstdu2 is nonzero already
for times t in the rangeftl −dr,s,tl +dr,sg.

IV. CURRENT DENSITIES

In thermodynamic equilibrium Josephson currents may be
obtained from]EJ/]F, whereEJ is the phase coupling en-
ergy of the junction.29 In nonequilibrium superconducting
systems charge transport can be calculated from the gauge-
invariant current density18,19
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jWsrW,td = −
e

m* ReHo
k

fuk
*pWeukfk + vkpWevk

*s1 − fkdgJ . s33d

We consider current flow in the N region. In Eq.s33d uksrW ,td
and vksrW ,td are the electron and hole wave functions that
evolve from the stationary statesk which characterize the
system before the fields, responsible for nonequilibrium, are

switched on att= t0; pWe=s" / id¹W +eWzs" /4adFstd is the kinetic
momentum operator, andfk is the probability that at tempera-
ture T a quasiparticle actually occupies the dynamic state
described byuksrW ,td andvksrW ,td; k;hkx,ky,Er

l st0dj. The sum
in Eq. s33d goes over the complete set of states that evolve
from the initial positive-andnegative-energy statesk. Inclu-
sion of the negative-energy states is the reason why there is
no factor of 2 multiplying the right-hand side of Eq.s33d.8

The distribution functionfk depends upon the relative
magnitudes of the timetin for inelastic scattering and the
time tp;2p" /2eV during whichFstd of Eq. s1d changes by
2p and a quasiparticle in an AJB moves through one band
period, e.g., fromFnm

0 to sFnm
0 +2pd in Fig. 2.

At voltages so low thattin!tp and Zener tunneling is
negligible, one has a quasistationary situation where the en-
ergyEr

l std changes so slowly that the probability of finding a
quasiparticle withEr

l std is practically the same as in thermal
equilibrium: fk= f0(Er

l std). If one inserts this and the AJB
wave functions into Eq.s33d one gets the ac Josephson cur-
rent of the SNS junction. It may be approximated analyti-
cally by8

j„Fstd… = jC sinfFstd − Lkinj„Fstd…g, s34d

where jC is the critical Josephson current density andLkin is
Likharev’s kinetic inductance parameter.38

In the opposite limit of the “high” voltage regime with
tin@tp and Zener tunneling between the AJB,fk would be
the Fermi distribution functionfk= f0(Er

l st0d) at the initial
time t0, if the brstd in Eq. s28d would include the influence of
the Pauli principle on the transition probabilities. Then we
could just insert all the wave functionss28d pertaining to the
different r sthat label the different initial AJB from which
Zener tunneling occursd into Eq. s33d and evaluate it. How-
ever, the standard perturbation theoretical procedure used in
the calculation of the transition probabilitiesubr,sstdu2, Eq.
s30d, between definitely occupied and definitely empty states
requires that the Pauli principle is introduced “by hand” via
appropriate occupation probabilitiesfs of theFstd-dependent
AJB states with energies Es(Fstd);ol=0

` Es
l stdQst

−Tl−dQsTl+− td. In this approximation theuksrW ,td andvksrW ,td
in Eq. s33d are the AJB wave functionss22d, and fk is re-
placed by fssF ,td. This occupation probability of bands
changes in time according todfs/dt=s]fs/]FdsdF /dtd
+s]fs/]td. The change ofF by the voltageV changesEssFd.

The resulting motion of a quasiparticle in bands does not
change the occupation probabilityfs, i.e., ]fs/]F=0, if the
band is separated by sufficiently wide gaps from its neigh-
bors so that Zener tunneling is only taken into account by
]fs/]t but is negligible in]fs/]F. fIn this sense the pertur-
bation that causes Zener tunneling, i.e., the time change of

Cr
l in Eq. s29d, is formally decoupled from the “force” that

drives the quasiparticle through the AJB.g Thus for AJB like
the two central bands in Fig. 3 we have

dfs
dt

= − sPs,s+ − Ps+,sd + sPs−,s − Ps,s−d. s35d

Here Ps8,s= f0s8s1− f0sddubs8,su2/dt is the probability per unit
time for first order Zener tunneling from bands8 into bands,
where ubs8,su2 is given by Eq.s30d. f0s; f0(EssF0d) is the
Fermi equilibrium distribution function with the quasiparti-
cle energyEssF0d at timet0. Thus the effect of Zener tunnel-
ing on the Pauli principle is neglected;s− labels the band
below ands+ labels the band above bands. At low tempera-
tures the probabilities per unit time for downward tunneling,
Ps,s− andPs+,s, are much smaller than those for upward tun-
neling. This can be also seen from Figs. 5 and 6: The dotted
curves, where downward tunneling is being neglected, differ
only very little from the solid curves that do include down-
ward tunneling. According to Eq.s30d swith the Heavyside
function replaced byh1+expfstl − td / sds8,s/4dgj−1d the prob-
ability dubs8,su2/dt is nonzero only in the vicinity oftl. We
defineWs,s8stld;etl−ds,s8

tl+ds,s8sPs,s8−Ps8,sd dt. Then,fs, obtained by

integrating Eq.s35d betweent0 and t, changes periodically
between f0(EssF0d) and f0(EssF0d)−Ws,s+stld ff0(EssF0d)
+Ws−,sstldg under the assumption that in a stable situation the
net lossWs,s+stld fgain Ws−,sstldg at time tl is balanced by the
net gainWs−,sstl+1d floss Ws,s+stl+1dg at the later timetl+1, if
the energy of bands is negative, i.e.,s=−1 fpositive, i.e.,s
= +1g.

The situation is different when there is level crossing, as
in Fig. 4. fThe reason for level crossing and the resulting
differences between Figs. 3 and 4 is explained below Eqs.
s41d ands42d.g When two levels, that are parts of the bandss
ands8, cross at timetl and phase differenceFstld the occu-
pation probabilities of the two bands are exchanged, i.e.,

]fs/]F = †fs8„Es8fFstl − 0dg… − fs„EsfFstl − 0dg…‡

3d„F − Fstld…; s36d

]fs8 /]F is given by the right-hand side of Eq.s36d

FIG. 3. Andreev-Josephson bands forUszd=U1szd.
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with s and s8 interchanged. In the case of Fig. 4 at time
t2, when Fst2d=2p, fs=−1(Es=−1fFst2−0dg)= f0(Es=−1sF0d)
−W−1,+1st1d, fs8=−2(Es8=−2fFst2−0dg)= f0sEs8=−2=−Dd; for
f0sEs8=−2=−Dd see next paragraph. At timet4, when Fst4d
=4p, fs=−1(Es=−1fFst4−0dg)= f0sEs=−1=−Dd−W−1,+1

* st3d,
fs8=−2(Es8=−2fFst4−0dg)= f0sEs8=−2=−Dd. W−1,+1

* st3d is de-
fined like W−1,+1st3d, but the Fermi functions inP71,±1 have
to be replaced byf0s7Ddf1− f0s±Ddg. At all later level-
crossing timest6,t8, . . . theoccupation probabilities are the
same as att4. The changes to be made in the above relations
for level crossings at positive energy ares=−1→s= +1,

s8=−2→s8= +2, W−1,+1
s* d →−W−1,+1

s* d , 7D→ ±D.
If the energyEssFd of a band arrives at ±D for certain

values ofF, the approximation of the moving bound An-
dreev states and the perturbation theoretical treatment of
]Cr

l std /]t break down. At ±D quasiparticles either are ejected
into the continuum states, leave the quantum well, and move
into the superconducting banks, where they come to thermal
equilibrium, or they reenter the quantum well out of the con-
tinuum. In Fig. 3 the first ejection after the timet0 occurs
with the occupation probabilityf0(Es=±2sF0d), and the reen-
trance aftert1 occurs with the occupation probabilityf0s±Dd.
For all subsequent times the occupation probabilities of the
bandss= ±2 are f0s±Dd sshortlyd before the timestl=2,4,. . .
and f0s±Dd±W−1,+1 sshortlyd after tl=2,4,. . . sassuming the net
tunneling balance indicated aboved. In Fig. 4 ejections occur
with f0(Es=±2sF0d) after t0, f0(Es=±2sF0d)±W−1,+1 after t2,
and f0s±Dd±W−1,+1

* after t4. Then, the occupation probabili-
ties at ejection remain the same as aftert4.

In Eq. s33d we approximate the occupation probabilitiesfk
by the fssF ,td and theuk andvk by the AJB wave functions,
as given by Eqs.s22d–s25d, s8d–s12d, and sA4d. The total
current density in the N layer becomes

jWsrW,td = −
e

m* ReHo
kx,ky

o
s

†us
*pWeusfssF,td + vspWevs

*

3f1 − fssF,tdg‡J . s37d

There is a net current density only in thez direction. In
Ref. 35 it is shown that thez components ofus

*pWeus and
vspWevs

* are in the N region

sus
*pWusdeWz = o

l=0

`

Qst − Tl−dQsTl+ − td
"

2LxLy

sin2skxxd
uUnmu2 + sEnms − En

+d2Hk1n
+ uUnmu2

a + ln
+ − k1m

− sEnms − En
+d2

a + lm
−

+
Enms − En

+

Îsa + ln
+dsa + lm

− d
fk1n

+ Unmeisk1n
+ +k1m

− dz − k1m
− Unm

* e−isk1n
+ +k1m

− dzgJ , s38d

svspWvs
*deWz = − o

l=0

`

Qst − Tl−dQsTl+ − td
"

2LxLy

sin2skxxd
uUnmu2 + sEnms − En

+d2Hk−1n
+ uUnmu2

a + ln
+ − k−1m

− sEnms − En
+d2

a + lm
−

+
Enms − En

+

Îsa + ln
+dsa + lm

− d
fk−1n

+ Unme−ipsn+mdeisk−1n
+ +k−1m

− dz − k−1m
− Unm

* eipsn+mde−isk−1n
+ +k−1m

− dzgJ , s39d

if all bands are separated from each other by gaps.fThen, in
each time intervalfTl−,Tl+g the quasiparticle states consist of
linear combinations of Andreev states, Eq.s8d.g If, on the
other hand, we have the band structure of Fig. 4 with band
gaps and level crossings,l summation goes over the sum-
mands of Eqs.s38d ands39d only for l =1,3,5, . . .swhen the
band states are made up of the linear combinations of An-
dreev statesd. For l =0,2,4, . . .,however, the summands are

derived from the pure Andreev states whose levels cross in
the corresponding time intervalsfTl−,Tl+g. They are much
simpler than in Eqs.s38d and s39d, and of the type ±Qst
−Tl−dQsTl+− tds" /2LxLydsin2skxxdfbkbn

± / sa+ln
±dg, where 1

s2d refers to pure Andreev states of positivesnegatived mo-
mentum, and b= +1f−1g indicates a contribution to
sus

*pWusdeWzfsvspWvs
*deWzg.

We may decompose the total current density in two parts:

FIG. 4. Andreev-Josephson bands forUszd=U2szd.
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jWsrW,td = jWJsrW,td + jWZTsrW,td. s40d

The Zener-tunneling current densityjWZTsrW ,td contains all
terms proportional to the Zener-tunneling probabilities
ubs,s±u2= ubs±,su2 in the fssF ,td, whereas the Josephson current

density jWJsrW ,td consists of the remaining terms injWsrW ,td that
describe the adiabatic motion of the quasiparticles in the AJB
without tunneling.

V. NUMERICAL RESULTS

For the numerical calculations of the band structure and
the current densities the set of parameters characterizing the
quasi-two-dimensional electron gas in the InAs channel in
Fig. 1 is 2a=500 nm, sD−ad=500 nm, Lx=15 nm, Ly

=100mm; parabolic equivalent effective massm* =0.053m,
electron densityr=531018 cm−3; proximity-induced pair
potentialsRef. 25d D=0.3 meV; and temperatureT=2.2 K.

A. Andreev-Josephson bands

The matrix elementUnm of Eq. s10d is computed with two
alternative simple delta-function models for the normal-
scattering potentialUszd:

U1szd ;
"2kF

m* Zdsuzu − ad, s41d

U2szd ;
"2kF

m* Zdszd. s42d

Model potentials like these are widely used in the literature
when the joint action of, and the fundamental difference be-
tween Andreev scattering and normal scattering is the
issue.8,12,39–41In our case, as pointed out by Kroemer and
shown by our Eqs.s9d ands10d, the point that matters is the
removal or nonremoval of the degeneracies and the opening
up of gaps between the AJB at the phase differences given by
Eq. s7d. The two potentialsU1szd and U2szd model the re-
moval and partly nonremoval of degeneracies and the result-
ing consequences for the Josephson and the tunneling cur-
rents in the simplest possible way. The interface potential
U1szd corresponds to the models used, e.g., by Refs. 8, 39,
and 40 andU2szd corresponds to the model of Ref. 12. We
address the issue of scattering from isolated three-
dimensional impurities in the Discussion. For the potential-
barrier parameterZ we useZ=0.05330.5. The AJB com-
puted withU1szd andU2szd for kzF=0.3kF are shown in Figs.
3 and 4.

Both models yield an energy gap aroundE=0 between
the highest AJB of negative energy,s=−1, and the lowest
AJB of positive energy,s= +1. U1szd leads to additional
small gaps between the bandss=−1 ands=−2 and the bands
s= +1 ands= +2 in Fig. 3. These gaps vanish in Fig. 4: the
delta functiondszd in U2szd makesUnm=0 for evensn+md;
see Eq.s10d. A more realistic scalar potential which, e.g., has
a Gaussian instead ofdszd would result in nonvanishing
gaps.

By Zener tunneling the quasiparticles move successively
from lower to higher AJB, until atE=D they are ejected into
the continuum states. From the ground-state continuum at
E=−D quasiparticles enter the AJB spectrum.

B. Current densities

In order to compute the current densitiesjWJ and jWZT, de-
fined by and below Eq.s40d, we take the average ofjWsrW ,td in
Eq. s37d over the channel thicknessLx and evaluate it in the
center of the normal layer atz=0. If one had only one di-
mension so thatkx and ky were fixed, resulting, e.g., inkzF
=0.92kF, one would have theFstd-dependent current densi-
ties shown in Figs. 5 and 6.

In Fig. 5 the total current densityjs0,td has minima at
phase differencesFstd=np, n integer. In this sense it oscil-

FIG. 5. Current densitiesjZTsz=0,td sdashed-dottedd, jJs0,td
sdashedd, and js0,td; jZTs0,td+ jJs0,td ssolid curved for fixed kzF

=0.92kF and scattering potentialUszd=U1szd vs phase difference
Fstd at voltageV=1 mV. fThe dotted curve gives the total current
density js0,td if downward tunneling is neglected.g

FIG. 6. Same as in Fig. 5 forU2szd.
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lates withtwice the canonical Josephson frequency, i.e., with
2vJ=4eV/". More precisely,R2/1;as2vJd /asvJd has the
value 0.39; hereas2vJd is the Fourier coefficient in the Fou-
rier component that oscillates with the frequency 2vJ, and
asvJd belongs to the oscillation with the canonical frequency
vJ. For the total current density of Fig. 6 one findsR2/1
=0.36.fThe Fourier components of the higher harmonics are
smaller thanas2vJd by about a factor of 3 or more.g If, on
the other hand, there were no Zener-tunneling currents one
would only have the nonsinusoidal Josephson current densi-
ties, given by the dashed lines in Figs. 5 and 6; the corre-
sponding ratio of their Fourier coefficients, i.e.,RJ,2/1
;aJs2vJd /aJsvJd, is 0.24 for both casessdifferences show in
the third digit onlyd. Thus Zener tunneling enhances the am-
plitude of the oscillations with 2vJ by more than 50%.

Current oscillation with 2vJ is the basis for the
explanation4 of the observed anomalous Josephson effect.
The physical origin of the enhancement of the 2vJ oscilla-
tions, i.e., of the current rising again right afterFstd. s2n
−1dp, is clearly seen in Fig. 5: fors2n−1dp,Fstd,2np,
the Zener-tunneling current densityjZT overbalances the Jo-
sephson current density.fThe small arches aroundFstd
=2np are due to the emergence out of and reentrance into
the continuum of the bands withs= ±2 in Fig. 3.g

The story of Fig. 6 is the same, with one exception: At
phase differencesFstd=2np the total current density does
not go down to zero, as it does in Fig. 5, because at level
crossings, whenF assumes the degeneracy values 2np in
Fig. 4, the occupation probabilities of the unperturbed An-
dreev states with opposite momenta are not the same. Pertur-
bations likeU1szd, on the other hand, that remove all degen-
eracies, produce the linear combinationss8d with vanishing
total momentum, and thus vanishing current densities, at all
Fstd=np in Fig. 5.

In order to take into account the additional degrees of
freedom in the quasi-two-dimensional weak links of the ex-
periments we perform the sums in Eq.s37d over allkx andky
which result inkzF such that 0.2kF,kzF,0.92kF. This re-
striction selects thekzF values compatible with our
approximations35 and the minimumkx value fsee Eq.sA7dg.

The resulting complete Zener-tunneling and Josephson
current densities are computed forU2szd and plotted in Figs.
7 and 8 as functions of low voltagesV and timet. Their sum
is shown in Fig. 9. The total current density computed for
higher voltages 1mV øVø10 mV is presented in Fig. 10.
Because of the larger Zener-tunneling currents at higher volt-
ages the upward oscillations after the times of tunneling are
much more pronounced in Fig. 10 than in Fig. 9.

VI. DISCUSSION

We have confirmed perturbation-theoretically Kroemer’s
prediction4 that Zener-like tunneling between the Andreev-
Josephson bandssAJBd in SNS junctions leads to current
oscillations that involve twice the canonical Josephson fre-
quencyvJ=2eV/", thus giving rise to the anomalous ac Jo-
sephson effect. The AJB are calculated from the stationary
BdGE by perturbation theory for quasidegenerate two-level
systems, treating the normal scattering of electrons and holes
by a scalar potentialUszd as a small perturbation of the quan-
tized, F-dependent Andreev states.5,6,32 Formally, it would

FIG. 7. Complete Zener-tunneling current densityjZT vs voltage
V and timet.

FIG. 8. Complete Josephson current densityjJ vs voltageV and
time t.

FIG. 9. Complete total current density, i.e., the sum ofjZT from
Fig. 7 andjJ from Fig. 8, vs voltage and time.
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be desirable to extend the analysis to scalar potentialsUsrWd
so that one can also treat normal scattering from isolated
three-dimensional impurities and defects. However, we do
not expect that the breaking of translational invariance par-
allel to the NS interfaces drastically changes the physics of
charge transport perpendicular to the interfaces. Therefore,
avoiding the formal complications associated with noncon-
served momenta parallel to the interfaces should be justified
for the computation of Josephson and Zener-tunneling cur-
rents in the quasi-two-dimensional electron gases, where the
anomalous Josephson effect has been observed.

In the complete total current density the ratio of the am-
plitude of the second harmonic to the amplitude of the first
harmonic has a temperature dependence which is much
weaker than the experimentally observed temperature depen-
dence of the ratio of the half-integer to the integer Shapiro
steps.2 The weak temperature dependence may be due to the
strong curvatures of the AJB close to the band minima and
maxima. Weaker band curvatures for other forms of the sca-
lar potentialUszd may lead to stronger temperature depen-
dence, because Zener tunneling would occur with appre-
ciable probability in wider F ranges around the band
extrema. The corresponding contributions to the current will
change with thestime- andd temperature-dependent occupa-
tion of these ranges.

The adiabatic approximation of the moving bound An-
dreev states, that form the AJB, breaks down for energies
very close to the edge of the pair-potential well at ±D. Thus
our calculation of Zener tunneling by first-order time-
dependent perturbation theory with respect to the time
changes of the coefficients in the linear combinations of An-
dreev states that form the AJB is valid only at safe distances
from ±D. This is the case for the two models ofUszd em-
ployed in our current density calculations. The injection into
the pair-potential well at −D and the ejection out of this well
at +D of all quasiparticles that are effectively excited out of
the ground state by the voltageV are processes that have
been described previously, e.g., in Ref. 25 and references
therein, for ballistic SNS junctions without any use of the
adiabatic approximation.

According to Eq.s30d, the probability of a tunneling tran-
sition from AJB r to AJB s during one of the time intervals

2dr,s, when the quasiparticle is very close to the gapEg
r,s

between the two bands, is

S eV

Eg
r,sD2S vzF

2a + 2lr,s
D2

3
"2

sEg
r,sd2 sin2 S1

"
Eg

r,sdr,sD .

The second term, the one behind the3 sign, is typical for
time-dependent perturbation theory, when a perturbation is
switched on at timet=−dr,s and one calculates the probabil-
ity that a transition between two statesr ands, separated by
the energetic distanceEg

r,s, has occurred until the time +dr,s.
The first term, the one in front of the3 sign, is the absolute
square of the perturbation, i.e., of the essential part of the
time derivatives of the coefficients in the linear combinations
of the unperturbed Andreev states, Eq.s8d. Basically, these
time derivatives are time dependent, too, because of the
Fstd-dependent energiesEn

±fFstdg of the bound Andreev
states, Eq.s6d, that determine the coefficients according to
Eqs. s13d and s14d. However, we have only taken into ac-
count their magnitudes at the times of tunneling,tl, when
calculating the transition probabilities, thus neglecting all
frequency-dependent components of their Fourier expansion
and treating the constant component as a perturbation that
effectively acts duringftl −dr,s,tl +dr,sg. This is justified for
gapsEg

r,s@"vJ because all variations of the terms in Eqs.
s13d ands14d occur at the ratevJ=2eV/" at whichEn

±fFstdg
changes. For voltagesVø10 mV we have "vJø3.36
310−6 eV. Thus our approximation of neglecting higher
Fourier components is acceptable for gapsEg

r,sù3
310−5 eV. This is the case for the gaps that result from the
scalar potentialsU1szd and U2szd in our numerical calcula-
tions of the current densities.

While Zener tunneling of Bloch electrons in crystals is
associated with transitions through spatially forbidden re-
gions, where the electron wave functions are damped expo-
nentially so that the transition probabilities depend exponen-
tially on gaps and fields,11 the tunneling of Andreev-reflected
quasiparticles through the AJB gapsEg

r,s, opened up by nor-
mal scattering, isnot associated with any spatial transitions
via the overlap of exponentially damped waves. Rather, the
quasiparticles remain localized in the superconducting quan-
tum well sas long as the magnitude of their energies does not
exceedDd because their group velocityand their charge re-
verse sign in each momentum-conserving electron↔ hole
scattering process by the off-diagonal pair potential walls.
This pecularity of quasiparticles in bound Andreev states
uCn

±l is basically the reason for the fact that time-independent
electric fields change their energy in time without changing
their localization, thus acting in a way that is similar to the
action of time-dependent fields on electrons in bound states
of conventional quantum wells.

All quasiparticles that climb the superconducting quantum
well from −D to +D via Zener tunneling and multiple An-
dreev reflections originate from the continuum states. These
states extend throughout the superconducting banks and are
in thermal equilibrium with the lattice. There are also quasi-
particles that traverse the normal layer without any Andreev
scattering. They make up the Sharvin current.26 They are not
included in Kroemer’s model and in the current densities of

FIG. 10. Complete total current density in the “high” voltage
regime.
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Figs. 5–10. The Sharvin-current density has been estimated
in Ref. 35 on the basis of the calculations in Ref. 25. It
increases linearly with the voltage. In the relevant voltage
range up to 10mV it is tiny compared to the time average of
the complete total current density and can be neglected alto-
gether.

We have calculated the occupation probabilities of the
AJB between the timet0, when the voltageV first appears,
and later timest, when their changes by Zener tunneling
repeat themselves periodically, in the simplest possible way:
sid we have neglected the influence of Zener tunneling on the
blockade of tunneling channels by the Pauli principle, and
sii d we did not take into account the possibility that the dis-
tribution function before tunneling may be similar to that of
“hot” electrons in semiconductor physics,42 where high volt-
ages lead to an effective temperatureT* that is higher than
the temperature of the sample’s heat bath. A fully self-
consistent solution of the Boltzmann equation for Zener tun-
neling between AJB remains a task for future work.
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APPENDIX A: UNPERTURBED BOUND ANDREEV
STATES

In the absence of external fields and scattering potentials
Uszd the electronic structure of the quasi-two-dimensional
SNS junction of Fig. 1 is obtained from the solutions of the
stationary Bogoliubov-de Gennes equations

En
±Cn

±srWd = Ĥ0srWdCn
±srWd. sA1d

The Hamiltonian is

Ĥ0srWd = SH0srWd Dszd
Dszd − H0

*srWd
D sA2d

with

H0srWd =
1

2m* F"

i
¹W + eWz

"

4a
F0G2

+ U0sxd − m. sA3d

The wave functions that solve Eq.sA1d in the normal layer
are, cf.8

Cn
±srWd = hsx,ydFC1n

± S1

0
De±isk1n

±
7qdz + C−1n

± S0

1
De±isk−1n

± ±qdzG ,

sA4d

where the superscripts “6” determine the orientation of mo-
mentum

"kbn
± ; "SkzF + b

En
±

"vzF
D sA5d

parallels1d or antiparallels2d to thez direction;b describes
the quasiparticle character: electronlikesb= +1d or holelike
sb=−1d;

kzF ; ÎkF
2 − kx

2 − ky
2, vzF =

"kzF

m* , q ;
F0

4a
. sA6d

The function

hsx,yd ; sinskxxdeikyy, kx = nx
p

Lx
, sA7d

describes the plane waves in they direction and the standing
waves in the quantum well forming the channel. At low tem-
peratures, form=0.2 eV,Lx=15 nm, andm* =0.053m0, only
the subband states withnx=1 andnx=2 are occupied. The
quasiparticle energies En

± ,D solve the eigenvalue
equation8,32

En
±sF0d =

"vzF

2a
Fnp + arccos

En
±sF0d
D

±
F0

2
G . sA8d

Thus a complete set of quantum numbers that characterize a
quasiparticle wave function is given by k
;hnx;ky; sn, ± ,bdj. For the sake of simplicity we use onlyn
and “6” as labels of the wave functionCn

± in Eq. sA4d. The
coefficients in this wave functionsas well as the energy ei-
genvaluesd result from the matching of the solutions of Eq.
sA1d in the N and S layers at the NS interfaces and normal-
ization. They are

C1n
± =

1

ÎLxLyH2a + 2ln
±F1 − expS−

D − a

ln
± DGJ , sA9d

C−1n
± =

gsEn
±d71e7ifs2a/"vzFdEn

±
7F0/2g

ÎLxLyH2a + 2ln
±F1 − expS−

D − a

ln
± DGJ .

sA10d

Hereby, ln
± is given by Eq. s12d, and gsEn

±d;expf
−i arccossEn

± /Ddg is the probability amplitude of Andreev
scattering at energiesE,D.

APPENDIX B: QUASIDEGENERATE PERTURBATION
THEORY WITH THE BOGOLIUBOV-DE GENNES

EQUATIONS

Normal scattering within the N layer of the junction is
taken into account by adding the scalar potentialUszd to H0

of Eq. sA3d. The matrix HamiltoniansA2d changes to

ĤsrWd = Ĥ0srWd + Ûszd, sB1d

with

Ûszd ; SUszd 0

0 − Uszd
D . sB2d

Applying appropriately the standard perturbation-theoretical

procedures33,34 to the stationary BdGE withĤsrWd we obtain
the energies of the perturbed states, i.e., of the linear combi-
nation in Eq.s8d, as
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Enms =
1

2
sHn

+ + Hm
− d + sÎ1

4
sHn

+ − Hm
− d2 + uHnmu2, sB3d

where

Hn
± =E Cn

±srWd†fĤ0srWd + ÛszdgCn
±d3r , sB4d

Hnm=E Cn
+srWd†fĤ0srWd + ÛszdgCm

−d3r . sB5d

With the BdGEsA1d and the orthogonality relation

E Cn
+srWd†Cm

− srWdd3r = 0 sB6d

Eqs.sB4d and sB5d turn into

Hn
± = En

± +E Cn
±srWd†ÛszdCn

±d3r ; En
± + Un

±, sB7d

Hnm=E Cn
+srWd†ÛszdCm

−d3r ; Unm. sB8d

In order to keep things simple we calculate the matrix ele-
ments in Eqs.sB7d and sB8d only with the wave functions
given by Eq.sA4d. fThis is exact ifUszd is limited to the N
layer, and otherwise a good approximation, because the
bound-states wave functions decay exponentially in the S
banks.g Observing Eqs.sA9d and sA10d we obtain

Un
± =E sun

±*vn
±* dSUszd 0

0 − Uszd
DSun

±

vn
± Dd3r

=E uun
±u2Uszdd3r −E uvn

±u2Uszdd3r

= uC1n
± u2E sin2skxxdUszdd3r

− uC−1n
± u2E sin2skxxdUszdd3r = 0 sB9d

and

Unm=E sun
+*vn

+*dSUszd 0

0 − Uszd
DSum

−

vm
− Dd3r

=E un
+*um

−Uszdd3r −E vn
+*vm

−Uszdd3r

= C1n
+*C1m

− E sin2S p

Lx
nxxDe−isk1n

+ +k1m
− dzUszdd3r

− C−1n
+* C−1m

− E sin2S p

Lx
nxxDe−isk−1n

+ +k−1m
− dzUszdd3r

= − iCnmeipsn+md/2E Uszde−i2kzFzsinF1

2
psn + md

+
1

"vzF
sEn

+ + Em
− dzGdz, sB10d

whereCnm is defined in Eq.s11d, with sD−ad /ln
± @1 being

assumed in Eqs.sA9d and sA10d.
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