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A theoretical analysis based on a numerical solution of the coupled time-dependent Ginzburg-Landau and
heat dissipation equations shows a strong dependence of the critical currents on the applied magnetic field in
a mesoscopic square with attached contacts. In agreement with experiment we found hysteresis which are
caused by a strong heat dissipation in the sample at currents close to the depairing Ginzburg-Landau current
and/or the dynamics of the superconducting condensate. The theoretically obtained nonmonotonous depen-
dence of the switching currentsfrom superconducting to the resistive stated on the applied magnetic field,
arising from the changes in the vorticity, agrees quantitatively with the experimental data. Our results show that
heat dissipation leads to an increase of the hysteresis in the current-voltage characteristic and hence masks the
actual dynamics of the superconducting condensate.
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I. INTRODUCTION

After the discovery of the steplike features in the current-
voltage characteristics of superconducting whiskers1 and the
explanation of this effect through the nucleation of phase slip
centers2,3 this phenomenon attracted a lot of attention from
several experimental and theoretical groupsssee Refs. 4 and
5 for reviewsd. This effect is a consequence of the nontrivial
dynamics of the superconducting condensate and the normal
quasiparticles near the phase slip center.2,4,5During the phase
slip process the gap goes periodically in time to zero in one
point along the sample and it creates an excess of quasipar-
ticles selectronlike and holeliked near this region. Due to the
relatively large time of relaxation of nonequilibrium quasi-
particles in the superconductor they may diffuse on a dis-
tance much larger than the coherence lengthsthe size of sup-
pression of the gapd.6 It results in the existence of a nonzero
electrical field sas a response to the gradient of chemical
potential of nonequilibrium quasiparticlesd and a finite time-
dependent voltage drop near the phase slip center. Unfortu-
nately, strong heat dissipation masks this effect at tempera-
tures far from the critical temperature2 Tc which prohibited
the study of this effect in full details.

Recently, this subject was revisited because new experi-
mental techniques were developed which made it possible to
prepare samples with low resistance7 si.e., diminishing the
heating effects at low temperaturesd or by using pulsed
techniques.8,9 The existence of phase slip centers or lines was
confirmed in high-temperature superconductors8 and they
were found to lead to S-shapedI-V characteristics in the
voltage driven regime.10 Recently phase slip lines were di-
rectly observed11 in low temperature superconducting stripes.
In Refs. 12 and 13 a new type of vortex dynamicssso called
vortex channelling13 or the appearance of “kinematical”

vortices12d was proposed which, in our opinion, is the
“bridge” between slow vortex motion and the fast phase slip
line regime. Furthermore, in Ref. 14 the experimental obser-
vation of quantum phase slips was claimed.

In this paper we present experimental results on the
current-voltage characteristics of a mesoscopic supercon-
ducting square with leads. In this geometry, the contacts play
a crucial rolessee Fig. 1d because the current density is maxi-
mal in them. Therefore we cannot consider those contacts in
equilibrium. This is essentially different from previous work
on superconducting film or bridge attached to “massive” su-
perconducting “banks” where it was possible to assume the
contacts in equilibrium. At low magnetic fields phase slip
centers will appear in our sample in the narrowest places,
where the current density is maximal. Because of inevitable
heat dissipation the sample can transit locally to the normal
statesfor weak heat transferd or to the superconducting resis-
tive statesfor strong heat transferd. In both cases theI-V

FIG. 1. SEM micrograph of an Al square with lateral dimension
of 2 mm.
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characteristics are hysteretic due to heat dissipation and/or
the dynamics of the superconducting condensate. Additional
complications come from the effect of the magnetic field
induced currents in the square on the phase slip process in
the contacts. This makes our system different and to our
knowledge this situation was not studied before either ex-
perimentally or theoretically.

The paper is organized as follows. In Sec. II we present
our experimental results and in Sec. III we give their inter-
pretation on the basis of a solution of the time-dependent
Ginzburg-Landau equations coupled with the equation for
heat dissipation. Our conclusions are given in Sec. V.

II. EXPERIMENT

In Fig. 1 a SEM micrograph of our superconducting
square made from Al usinge-beam lithography is shown.
The coherence length determined from a macroscopic co-
evaporated sample was found to bejs0d=156 nm. The thick-
ness was 39 nm found from AFM and from x-ray measure-
ments. Wedge shaped contacts with an opening angle ofG
=15° were used. This shape was used to minimize the effect
of the contacts on the superconducting properties of the
square.15,16

The experimentalI-V characteristics are obtained by su-
perimposing a small ac currents0.1 mA rmsd to a dc current
Idc. The ac differential resistance is measured with a EG&G
PAR 124A lock-in amplifier. The dc current is swept from
negative to positive value. In order to ensure that the sample
is in the normal state a high dc current is sent through the
sample prior to the current sweep. Such sweeps are repeated
for different magnetic fields.

In Fig. 2 the differential resistancedV/dIsIdcd is shown
for four values of the magnetic fields. A clear hysteretic be-
havior is observed. When starting in the normal state and
decreasing the current, the sample remains in a resistive state
up to low currents. This resistive state is not the normal state
anymore since a nonconstant differential resistance is ob-
served. When starting from the superconducting state and
gradually increasing the current a nonresistive state is ob-
served up to high currents. Contrary to the transition seen at
negative currents, a sharp transition from the nonresistive to
the normal state is measured. While in the negative part the
transition to the nonresistive state is accompanied by the

appearance of a sharp peak, this is not observed for positive
currents. This can be explained by our measuring technique
and by the observed hysteretic behavior. When the transition
occurs, the sample remains in the resistive state even when
decreasing slightly the current so that the measured ac volt-
age will either reflect the nonresistive or the resistive state,
but not the transition. Above 1.2 mT, when the first vortex
enters the sample, the transition to the resistive state is pre-
ceded by a small increase of the differential resistancefsee
Fig. 2sbdg. The shape of this part strongly depends on the
vorticity of the sample suggesting a dissipation caused by
vortex motion. At high magnetic fieldsfsee arrows in Fig.
2sbdg, small symmetric features are observed at high positive
and negative currents.

In order to study the magnetic field dependence in more
details a contour plot of the differential resistance is shown
in Fig. 3 as a function of the dc current and the magnetic
field. The uniform graysblued areas at the left and the right
correspond to the normal state and the white area in the
middle to the nonresistive state. Oscillations are observed for
the transition to the resistive state for positive currents with
cusps each time the vorticity is changedfsee arrows in Fig.
3sbdg. The dissipation caused by vortex motion, which was
already discussed, can also be seen from the contour plot
flight gray sgreend area in Fig. 3g. The dissipation is only
observed for a finite vorticity. At the transition from vorticity
L=1 to L=2 at m0H=2.05 mT, the onset of the dissipation
seems to be continuous, but the dissipation increases more
rapidly with increasing current when increasing the vorticity
as can also be seen from Fig. 2sbd.

Beginning at ±2.5 mT small symmetric features are seen
at high currentfwhite slight blued lines and the dark gray
sdark blued area in Figs. 3sad and 3sbdg. These features are
visible up to ±20 mT and can thus not be arising from the
square since the square has a critical fieldHc3

* =6 mT. It can
only be generated by the contacts which have a higher criti-
cal field since a superconducting/normal boundary with a
sharp angle increases the critical field.17,18

Above ±4.5 mT no hysteretic behavior is seen. All these
features are perfectly reproduced on a different sample and
are not dependent on the measuring conditionsssweep rate,
amplitude of ac current, temperatured. The same behavior is
seen when fixing the applied dc current and sweeping the
magnetic field: when the square is in the normal state, the
sample remains in a resistive state up to low magnetic fields

FIG. 2. sColor onlined MeasureddV/dI as a function of the dc current atsad m0H=0 mT, sbd m0H=3.2 mT,scd m0H=4.2 mT, andsdd
m0H=5 mT measured atT=1.100 K. The full black and dashed blue lines are for increasing and decreasing current, respectively.

VODOLAZOV et al. PHYSICAL REVIEW B 71, 184502s2005d

184502-2



while when starting from the nonresistive state and increas-
ing the magnetic field the resistive state is reached only at
higher magnetic fields.

III. THEORY

To understand the experimental results we studied the
current-voltage characteristics of two-dimensional supercon-
ductors using the generalized time-dependent Ginzburg-
LandausTDGLd equation19

u
Î1 + g2ucu2

S ]

]t
+ iw +

g2

2

] ucu2

]t
Dc

= s=− iAd2c + s1 − T − ucu2dc, s1d

where the parameterg=2tED0/" is the product of the inelas-
tic collision time tE for electron-phonon scattering andD0
=4kBTcu

1/2/p is the value of the gap atT=0 which follows
from Gor’kov’s derivation20 of the Ginzburg-Landau equa-
tions.

This equation should be supplemented with the equation
for the electrostatic potential

Dw = div„Imfc*s=− iAdcg…, s2d

which is nothing else than the condition for the conservation
of the total current in the sample, i.e., divj =0. In Eqs.s1d
and s2d all the physical quantitiessorder parameterc
= ucueif, vector potentialA and electrostatical potentialwd
are measured in dimensionless units: temperature in units of
the critical temperatureTc, the vector potentialA and the
momentum of the superconducting condensatep= =f−A
are scaled in unitsF0/ f2pjs0dg swhereF0 is the quantum of
magnetic fluxd, the order parameter in units ofD0 and the
coordinates are in units of the coherence lengthjs0d
=s8kBTc/p"Dd−1/2. In these units the magnetic field is scaled
with Hc2=F0/2pjs0d2 and the current density withj0
=sn" /2etGLs0djs0d. Time is scaled in units of the Ginzburg-
Landau relaxation timetGLs0d=p" /8kBTcu, the electrostatic
potentialswd is in units ofw0=" /2etGLs0d ssn is the normal-
state conductivity, andD is the diffusion constantd. The pa-
rameteru is equal to 5.79 in accordance with Ref. 19 and we
usedg=40. We putA =sHx,0 ,0d in Eqs.s1d ands2d because
we limit ourselves to the case when the effect of the self-
induced magnetic field is negligible. This is valid in the ex-
perimental situation because the width of the sample is much
less than the characteristic lengthL=ls0d2/df sdf is the
thickness of the sampled.

Strictly speaking Eq.s1d is valid only very close to the
critical temperature ssee estimates for different low-
temperature superconductors in Ref. 21d. For example for
bulk “clean” Al the validity of Eq.s1d was derived only for
the rangeDT,10−4 K nearTc. However our Al samples are
in the “dirty” limit due to the small value of the mean path
length ,. As follows from Refs. 22 and 23 the relation be-
tween current densityj , the absolute value of the order pa-
rameter ucu and the momentump are quite close to the
Ginzburg-Landau relationj =ps1−p2d= ucu2p even whenT
→0 for such samples. Besides, when we turn on the mag-
netic field and/or the transport current the density of states of
quasiparticles differs from the Bardeen-Schriffer-Cooper
dependence24 and can become gapless24,25 for high enough
magnetic fields and/or transport currents. In this case Eq.s1d
should be valid at any temperatureT,Tc because they were
actually derived in the gapless limitswith g=0d26 or for
small value of the gapDsTd!kBTc.

19

The actual value ofg for Al should be about 103 because
the timetE,10−8 s is quite large in this material. However,
the use of such a largeg value is important if we intend to
comparequantitativelythe theoretical and experimental val-

FIG. 3. sColor onlined sad Measured differential resistance
dV/dI as a function of the dc current for different magnetic fields
measured atT=1.100 K. The curves for nonzero field are shifted
for clarity. A color map surface is given for comparison withsbd. sbd
Contour plot of the differential resistancedV/dI as a function of dc
current and magnetic field measured atT=1.100 K for low mag-
netic fields. The arrows indicate the points where the vorticity
changes.
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ues for the critical current. As will be shown below there
exist two critical currents which we call firstIc1 and second
Ic2 critical currents. The first critical current is the current at
which the sample goes to the nonresistive state and its value
strongly depends on the value of the parameterg sin case of
strong heat dissipation—see text belowd. The second critical
current has the meaning of the current at which the super-
conducting state becomes unstable and it could be deter-
mined from a stability analysis of the stationary Ginzburg-
Landau equations. It implies that the currentIc2 does not
depend on theg value which is the main reason why we are
able to find quantitative agreement between theory and ex-
periment for the position of the cusps in theIc2sHd depen-
dencessee belowd.

In our theoretical model we considered the geometry de-
picted in Fig. 4 which simulates the real experimental
samples. To simplify our model we used linear contacts in-
stead of the wedge shaped contacts used in the experiment.
The main difference between them is that for wedge shaped
contacts the order parameter is more suppressed in point A at
low magnetic fields because the current density in this region
is maximalssee Fig. 1d. In order to inject the current in our
system we used normal metal-superconductor boundary con-
ditions at the end of the leads, i.e.,c=0 and −=w= j . At the
other boundaries we used the usual insulator-superconductor
boundary conditions:usi =−Adcun=0 andu=wun=0.

We also took into account the change of the local tem-
perature in the sample in the resistive state by adding the
heat diffusion equation to Eqs.s1d and s2d

Ceff
]T

]t
= Kef fDT + df jn

2/sn − hsT − T0d, s3d

whereT0 is the bath temperature,Ceff=sDsCs+dfCfd is the
effective heat capacity,Kef f=sDsks+dfkfd is the effective heat
conductivity coefficient, and the heat transfer coefficienth
=ks/Ds governs the heat removal from the sample. Here we
used a model for the temperature distribution in thin super-
conducting films discussed in details in Ref. 27 andCs, Cf,
ks, kf are the heat capacity and the heat conductivity of the
substratessubscriptsd and film or samplessubscriptfd, re-
spectively. In this model it is assumed that the thickness of
the substrate and the filmDs+df is much smaller than the
healing lengthLh=ÎKef f/h@Ds+df.

If heat removal is strong enoughslarge value for the co-
efficienthd we can neglect the effects due to the local change
of the temperature. In the opposite case the results will quan-
titatively depend on the ratio between the healing length and

the sample parametersswidth of the square and the ratio
between the value of the current density in the contacts and
in the squared. We chose our parameters in such a way that it
optimizes the calculation timessmall value ofCeffd and we
considered cases of large, intermediate and small value of the
coefficienth. In dimensionless unitsfthe same as Eq.s1dg Eq.
s3d may be written as follows

Cef f̃
]T

]t
= Kef f̃DT + jn

2 − h̃sT − T0d, s4d

where Cef f̃=sDsCs/df +CfdTcsn/tGLs0d j0
2, Kef f̃=sDsks/df

+kfdTcsn/j2s0d j0
2, h̃=hTcsn/df j0

2 and the temperature is mea-
sured in units ofTc. If DsCs/df !Cf andDsks/df !kf we can
use the Wiedemann-Franz law as an estimate forCf and kf

and we obtain forCef f̃=p3/48.0.65 and Kef f̃=p4/48u2

.0.06 at a temperature close toTc. These values should be
considered only as a very rough estimate for the real magni-
tudes because normally the following inequalities are valid:
DsCs/df @Cf andDsks/df @kf. Because of the uncertainty in
the actual values ofCs andks we used the following values:

Cef f̃=0.03 sto optimize calculation timed, Kef f̃=0.06, andh̃
=2310−3 swhich corresponds almost to full heat removal at

T=0.9d, h̃=2310−4 sintermediate heat removald and h̃=2
310−5 sweak heat removald28 and a bath temperature ofT0
=0.9. We checked that our results only weakly depend

on our choice ofCef f̃ and Kef f̃. As a boundary condition to
Eq. s4d we take u¹Tun=0 which means that heat is mainly
transferred to the substrate. Only at the boundary between
the normal metal and the superconductor we used boundary
conditions with fixed temperatureTNS=T0. The healing

length is equal toLh,11j sT=0.9Tcd for h̃=2310−5 and is
comparable to the size of the sample.

Although in our numerical calculations we used units nor-
malized atT=0 we will discuss here mainly the situation for
a bath temperature ofT0=0.9Tc. Therefore, it is more conve-
nient to express the different quantities in units normalized at
T=T0. For example, underHc2 we meanHc2 sT=0.9Tcd.

First we studied the behavior of our model geometry
sample in an applied magnetic field with zero transport cur-
rent. In Fig. 5 we present the dependence of the free energy
of the square and the value of the order parameter in the
center of the edgesi.e., at pointC in Fig. 4d as a function of
the magnetic field. It turned out that for the chosen param-
etersswidth of the square is 6j and the size of the wires is
24j3j which are close to experimental values withj
.0.333mm andHc2.2.95 mTd no single quantum vortex
state exists in the square and only surface superconductivity
nucleates, i.e., the giant vortex state is present atH
.0.8Hc2. Superconductivity vanishes in the superconducting
square atH*2.71Hc2 which is much larger than the third
critical field Hc3=1.69Hc2 of a flat infinite surface, which is a
consequence of the shape and finite size of our system. By
this value the vorticity in the system is equal to 10 and su-
perconductivity may survive in the contacts up to much
higher values of the magnetic field.

What will occur when we switch the transport current on?
Let us consider first the situation when the heat removal is

FIG. 4. Model geometry. Between pointsA and B phase slip
centers appear atH&Hc2. In point C we trace out the dependence
of ucu on the magnetic fieldssee text below and Fig. 5d.
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quite good and the temperature of the sample is equal to the
bath temperature. Then up to some magnetic fieldH* sH*

.0.92Hc2 for our parametersd the transition to the resistive
state from the superconducting state occurs via the appear-
ance of phase slip centers in the contactsfsee Figs. 6sad and
6sbdg. CurrentIc2 at which this occurs slightly depends on the
applied field because the order parameter in the square de-
pends onH ssee Fig. 5d due to the induced screening cur-
rents. Via proximity effects the variation in the order param-
eter in the square influences the order parameter in the
contacts and hence the critical current for nucleation of the
phase slip centers.

At higher magnetic fields the vortex flow regime starts at
I = Ic2sHd. At fields close toH* this regime switches to the
phase slip process near the contactsfsee Fig. 6scdg while at
fields higher thanH* with further increase of the current it
switches to the phase slip line regime in the squarefor more
exactly a line along which the vortices move very fast13—see
Fig. 6sddg. It occurs because the order parameter is strongly
suppressed in the square by the magnetic field while in the
contacts its influence is less pronounced due to the small
width of the contacts. The voltage exhibits a jump at the
transition from slow flux flow to the phase slip line or center
regime. The largerH the smaller this jump in the voltage.13

The actual value ofH* , at which this change in the mecha-
nism of destruction of superconducting state atI = Ic2sHd oc-
curs, depends on the width of the contact. The narrower the
contacts the higher the field at which flux flow in the square
starts before the phase slip process occurs in the contacts.

We should note here that the position of the phase slip line
in the contacts depends on the applied magnetic field. When
the order parameter at the edge of the square decreases, the
phase slip center approaches the square and vice versa. For
the case of wedge contacts we do not expect such a behavior
because in this case the order parameter is more suppressed
around the narrowest point where the current density is
maximal.

In Fig. 7 we present theI-V characteristics calculated for
different values of the magnetic field. For low magnetic

fields and large heat transfer coefficienth̃ the hysteresis in
the I-V characteristics is an internal property of the phase
slip process.4,7,13At the currentIc1sHd the sample goes to the
superconducting nonresistive state from the phase slip re-
gime at fields less than some critical valueH** or from the
flux flow regime for higher fields. The actual value of the
field H** depends on the value of the coefficientg and the
width of the contactssee the above discussion for fieldH*d.
With increasingg, the minimal current at which the phase
slip process is still possible, decreases and hence the field
H** increases, because the current at which the flux flow
starts in the sample does not depend on the relaxation times
of the superconducting condensate.

The magnetic field effects the hysteresis through the local
suppression of the order parameter.7 This is the main origin
of the decreasing and finally the disappearance of the hyster-
esis at the transition from the superconducting state or slow
vortex flow regime to the phase slip regime at high magnetic
fields. Another effect of the magnetic field is the slow in-
crease ofIc1 at low magnetic fields. The reason for this is the
same as was found in Ref. 13—the nonuniform current den-
sity distribution in the contacts due to the applied magnetic
field.

When the heat removal is not effective, then theI-V char-
acteristics have a different shape at low and intermediate
magnetic fields. In Fig. 7 we present our results for two

relatively small values of the heat transfer coefficienth̃. At
low and intermediate magnetic fields the whole sample goes
into the normal stateswith T.Tc or T,Tcd at the current
I = Ic2sHd because of the large heat dissipation which is con-
nected with the phase slip process. The value of that critical

current is the same for any heat transfer coefficienth̃ due to

FIG. 5. Calculated dependence of the free energysof the ground
stated and the order parameter in the center of the edge of the
superconducting square.

FIG. 6. Snapshots of the order parameter distributionsdark color
corresponds to the maximal value ofC and gray to the minimal
oned in a superconducting square with attached leads at different
magnetic fields andI . Ic2sHd.
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the absence of heat dissipation in the “pure” superconducting
state.

When we decrease the current, the temperature in the
sample can become less thanTc ssee Fig. 8d while the sample
will not go into the superconducting state because at this
temperature the current in the sample is too high in order that
superconductivity can sustain it. Only when the temperature
in the sample becomes less than some critical temperature
T* ,Tc swhich depends on the value of the heat transfer co-

efficient h̃d then superconductivity starts to nucleate in the
square in places where the current density is minimalsnear
the corners of the squared. For this current, magnetic field,
bath temperature and in the absence of local heating, the flux
flow or phase slip processes are impossiblessee Fig. 7 for

high value ofh̃d and the sample should go to the supercon-
ducting state. But due to heat dissipation the actual tempera-
ture of the sample is still larger thanT0 ssee Fig. 8d. Conse-
quently the sample is in the resistive state with a resistance
less than the normal one. The range of currents for which
such a process is possible depends on many parameters. For
example, it increases with increasing magnetic field and de-
creasing heat transfer coefficient.

At high magnetic fields the critical currentsIc2 andIc1 are
quite small and even in the case of weak heat removal the
I-V characteristics resemble the ones with strong heat re-
moval at low currentsfFig. 7scdg due to weak heatingfsee
Fig. 8scdg.

And finally in Fig. 9 we present the dependence of the
currentsIc2 and Ic1 on the applied magnetic field for strong

and weak heat removal. There is a good quantitative agree-
ment between the position of the cusps in the experimental
and the theoretical dependencies ofIc2sHd. We explain these
cusps by abrupt changes in the vorticity and hence sharp
changes in the order parameter distributionssee Fig. 5d. The
main difference between theory and experiment is in the am-
plitude of the variation ofIc2 with H sthe theory predicts
larger valuesd and in the value of this critical current. We
believe that this disagreement originates mainly from the dif-
ference in the real shape of the attached contactssFig. 1d and
the contacts used in our modelsFig. 4d. In the experimental
case there is a voltage lead which “strengthen” the supercon-
ducting property near the narrowest pointsas it was shown in
the quasi-one-dimensional limit in Ref. 29d and actually
shifts the position of the phase slip center further from the
square. Therefore, the effect of the variation of the order
parameter in the squareswith applied fieldd should be less
pronounced on the phase slip process in the contacts. Varia-
tions in Ic2 become stronger atH*Hc2 when the resistive
regime starts from the vortex flow regime in the square and
hence the effect of a change in the vorticity is more “visible.”

We interpret the black right line in Fig. 3 as the line cor-
responding to the transition from the vortex flow to the phase
slip line regime induced by increasing current at which a
jump in the heat dissipation occurs. Because the heat re-
moval is not effective, the square will become normal. Oth-
erwise, it will be in the superconducting resistive state with a
resistance close to the normal one. Here we would like to
stress the following. In aluminum the decay length of the

FIG. 7. Current-voltage characteristics of the superconducting
square with contacts calculated for different heat removal coeffi-

cients h̃ and magnetic fields. Current is normalized by the value
j0dw, whered andw are the lead thickness and width, respectively.

FIG. 8. Calculated dependence of the temperature of the super-
conducting square at different currents and magnetic fields. Results

for h̃=2310−3 are not presented due to quite small changessless
than 1%d in the temperature.
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charge imbalanceLQ or, in other words, the region where the
normal current density is finite near the phase slip center2 is
quite large30 LQ.50 mm. The size of our sample is much
less thanLQ. So in this case it is quite difficult to distinguish
between the normal and the superconducting resistive state
because the differential resistance would be the same and
equal to the normal onessee Ref. 30 in Ref. 7d.

With decreasing currentsin absolute valued we cross the
left black line sFig. 3d and at low magnetic fields almost
immediately enter the zero resistance state. Actually, the cur-
rent Ic1 even increases a little. The same increase ofIc1 can
be reproduced theoretically if we assume that these transi-
tions occur due to the decay of the phase slip process in the
contacts at strong heat removalssee Fig. 9d.

A comparison with the experiment also shows that with
increasingH we cross the left black line and do not enter the
zero resistance state. Thus we are probably in the vortex flow
state but with the sample temperature larger than the bath
temperature. The sample can be in the resistive state up to
lower currents than it can be at the bath temperaturessee
Figs. 7 and 8 for small heat transfer coefficientd.

At very high fields dissipation is not very important at
currents close to the critical onesI = Ic2sHd= Ic1sHd sdue to
their small valued and besides there is no “internal” hyster-
esis due to the phase slip process. As a result there is no
hysteresis in the current when the nonzero resistance state
appears and when a fast change in the resistance occurs in
our sample.

IV. CONCLUSION

Hysteresis in the current-voltage characteristics of super-
conducting wires, films or mesoscopic samples may appear

due to heat dissipation or/and due to “intrinsic” hysteresis
connected with the existence of phase slip lines or centers.
We believe that in our measurements we have both types of
hysteresis which are responsible for the observed effects. At
low magnetic fields the sample enters the normal state due to
the appearance of the phase slip process and a strong heat
dissipation at the critical currentIc2. Because of a discrete
change of the vorticity in the superconducting square the
order parameter changes abruptly at some values of H and it
leads to cusps in the dependence ofIc2sHd. At higher fields,
instead of a high dissipative phase slip process, we have slow
vortex motion and heat dissipation results in a weak effect on
the I −V characteristics forI * Ic2sHd.

When we decrease the currentsat fixed value of the mag-
netic fieldd the sample goes first from the normal to the su-
perconducting resistive statesleft black line in Fig. 3d and
then slow vortex flow starts in the superconducting stripsat
high magnetic fieldsd or the phase slip process in the contacts
sat low magnetic fieldd. Because the temperature of the
sample may be higher than the bath temperature, the current,
at which the sample goes to the nonresistive state, may be
smaller thanIc2 even if the resistive state starts as a vortex
flow. So actually we “need” heat dissipation to explain this
effect.

One of the main results of our paper is that we showsby
a self-consistent solution of the time-dependent Ginzburg-
Landau equation and the heat diffusion equationd that heat
dissipation does not necessarily lead to the destruction of
superconductivityas it was supposed in a recent paper31 fin
order to explain recent experiments on MoGe filmsssee ref-
erences thereindg. In these samples the value of the coeffi-

cient h̃ is quite small due to the small value of the normal
conductivity and both critical currentsIc1 and Ic2 are rather
large because of the absence of the external magnetic field.
In general, the situation may be more complicated when
heating does not destroy superconductivity. In such a case,
heating leads to additional complexity in the dynamics of the
superconducting condensate due to the local heating of the
sample.

Another result is, that by comparing the experimental and
theoreticalIc2sHd dependence we may distinguish32 between
the giant vortex and the single quantum vortex state which
appear in the sample. It allows, in principle, to study experi-
mentally the transformation between these two different con-
figurations as a function of the shape, size of the sample, and
external magnetic field.
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FIG. 9. Calculated dependence of the critical currentsIc2 andIc1

sfor h̃=2310−3 and h̃=2310−5d on the applied magnetic field.Ic2

and Ic1 coincide forH*3.9 mT s1.32Hc2d at strong heat transfer

sh̃=2310−3d and for H*4.6 mT s1.56Hc2d at weak heat transfer

sh̃=2310−5d. There exists a nonmonotonous behavior both in the
Ic2sHd and Ic1sHd dependencies which is connected with a change
in the vorticity in the superconducting square.
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