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The interplay between dipole-dipole interaction, magnetocrystalline anisotropy, and disorder on the magnetic
hysteresis in two-dimensional square arrays of nanomagnets is studied by numerically solving the Landau-
Lifshitz equation. The interaction-induced frustration gives rise to even-odd oscillations in the magnetic prop-
erties when the system size is varied. The oscillations persist to remarkably large arrays with fluctuating
amplitudes, evidencing the significance of the boundary effects and the competition among a number of
quasistable orders of the magnetic moments. The hysteresis is strongly affected by the magnetocrystalline
anisotropy and disorder. While both of them broaden the hysteresis loop, the remanence in the disordered
system bears a universal value: almost half of the saturation magnetization.
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I. INTRODUCTION

The sizes of magnetic media to record a single bit have
decreased drastically in recent years in order to increase the
capacity of storage.1 The magnetic characteristics of a unit
cell as well as the interaction among the cells are fundamen-
tally altered during the course of the size reduction.2 In is-
lands of, for instance, Fe,3,4 Co,5,6 or permalloy7,8 having the
thickness of several tens of nanometers and the diameter of
,1 mm, the magnetic texture of the ground state involves
vortices. The flux-closure-type magnetic configuration is fa-
vored to minimize the stray fields, i.e., to reduce the magne-
tostatic energy. When the diameter of the disks is reduced,
the disks undergo a transition, in which they are occupied by
only a single magnetic domain. The transition takes place as
the vortex energy becomes more costly than the magneto-
static energy.9 Below the critical size for the single-domain
formation, magnetic disks are regarded as nanomagnets even
in the demagnetized state. In this regime, interparticle inter-
action is expected to dominate the processes of magnetiza-
tion reversal when an external magnetic field is varied.10,11

In this paper, we examine the hysteresis in the magneti-
zation of square arrays of nanomagnets. The arrangement of
the magnetic moments in finite-size arrays is calculated by
numerically solving the Landau-Lifshitz equation. We inves-
tigate how the ordering of the magnetic moments generated
by dipole-dipole interaction is altered by the boundary ef-
fects, magnetocrystalline anisotropy, and disorder.

II. MODEL

In our simulations, we assume that identical nanomagnets
are to be placed, in the absence of disorder, at the lattice sites
of square arrays having a lattice constanta. We treat the
individual nanomagnet as a magnetic momentM . The mag-
netic moments interact with each other through dipole-dipole
interaction. Our numerical analysis examines the configura-
tion of the magnetic moments in the presence of an external
in-plane magnetic fieldH.12,13The response of the magnetic
moments to the magnetic field is calculated by solving the
Landau-Lifshitz equation

dM

dt
= gM 3 Heff − a

M 3 sM 3 Heffd
Ms

, s1d

whereg is the gyromagnetic ratio,a is the damping coeffi-
cient, andMs= uM u. The second term on the right-hand side
of the equation phenomenologically introduces the relaxation
of the magnetic moment, forcingM to be oriented in parallel
with Heff after energy dissipation. We note that the above
equation conserves the magnitude of the magnetic moment.

The effective magnetic fieldHeff acting on the magnetic
moment consists of the applied external magnetic field, the
dipole fields, and the uniaxial anisotropy field

Heff
i = H − Hdp

i + 2K
M ·u

Ms
2 u, s2d

whereu is a unit vector in the direction of the magnetocrys-
talline anisotropy andK is the strength of the anisotropy. The
dipole field acting on theith nanomagnet that originates from
the rest of the nanomagnets in the array is given by

Hdp
i = o

jÞi
FM j

r i j
3 − 3

sM j · r i jdr i j

r i j
5 G . s3d

We do not take into account the shape anisotropy of the
nanomagnets, i.e., the nanomagnets are assumed to be circu-
larly shapedswith an infinitesimally small radiusd. The ef-
fects of the shape anisotropy are, at least qualitatively,
equivalent to those of the magnetocrystalline anisotropy.

We have calculated the time evolution governed by Eq.
s1d using the fourth-order Runge-Kutta method.14 We typi-
cally use a fixed time stepDt=0.1/sgMsd. The time step is
appropriately reduced when a positional disorder is intro-
duced as the dipole field gets significantly strong for the
nanomagnets with a small separation. Iterations are contin-
ued until the changes in the orientation of the magnetic mo-
ments become negligibly small. Since we employ the fourth-
order Runge-Kutta algorithm instead of the second-order
one, the convergence can be achieved with the above time
interval, which is much larger thanDt=0.005/sgMsd used in
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Refs. 12 and 15. As a consequence, the maximum lattice size
in the present work far exceeds that in the study by Kayali
and Saslow.15

In evaluating the magnetization curves,uHu is initially in-
creased to a large value in order to almost fully magnetize
the arrays. WhileH is subsequently varied around zero with
a small stepstypically DH=0.01Ms/a

3d, a steady state is
derived for each value ofH. Throughout this paper,H is
aligned along the axis of the square arrays anda /g is set to
be 0.6. For the severalsgenerald cases that we checked in
details, the numerical results were unchanged when these
parameters were moderately altered. That is, as our attention
is focused on the static properties of the magnetization, the
numerical results to be presented below are, except for un-
usual circumstances,16 independent of the specific choice of
the damping parameter.17

III. MAGNETIC ORDERING DUE
TO DIPOLE-DIPOLE INTERACTION

A. Symmetric arrays

We first examine the magnetic properties when only
dipole-dipole interaction is accounted for. Prakash and
Henley18 investigated the ground state and the linear re-
sponse to an external magnetic field of an infinite array
within the approximation of nearest-neighbor interaction.
The ground state was found to be infinitely degenerate. The
continuous degeneracy is reduced to a discrete symmetry by
the external field as certain states are selected. In finite ar-
rays, boundary effects additionally play a crucial role in the
ordering of magnetic moments. We have calculated the mag-
netization for square lattices of linear dimensionN whenH is
varied. We emphasize that the long-range dipole-dipole in-
teraction is fully taken into account in our simulations. The
inset of Fig. 1sad displays a hysteresis of the magnetization
MH per lattice site in the direction ofH, i.e., along the axis of
the square array. Here, the array containsN3N nanomagnets
with N=57. The magnetocrystalline anisotropy is assumed to
be absentsK=0d. The magnetization and the magnetic field
are normalized in units ofMs and Ms/a

3, respectively. The
magnetic moments are nearly aligned along the external field
when uHu.Ms/a

3. At weak magnetic fields,MH changes
roughly linearly withH. Nevertheless, a hysteresis is present
in the magnetization curve andMH exhibits small abrupt
jumps at a number of values ofH.

Figures 1sad and 1sbd, respectively, show the variation of
the remanenceM0 and the areaAh enclosed by the hysteresis
loop whenN is changed. The magnetic field is varied be-
tween −2Ms/a

3 and 2Ms/a
3, for which the magnetic mo-

ments are better than 99.5% polarized atuHu=2Ms/a
3. We

find oscillatory behavior ofM0 andAh whenN changes be-
tween even and odd numbers.15 The oscillations originate
from the internal frustration imposed by the array boundary.
The boundary effects were studied by Stamps and Camley12

for the case ofN=3. With increasing the array size, the
boundary effects would be less important. The polarization at
uH0u=2Ms/a

3, for instance, improves for large values ofN.
Nevertheless, the magnitude of the even-odd oscillations re-
mains significantly large even whenN,60. In fact, the os-

cillation amplitude rather remains unchanged withN.
In the interior of square arrays, the magnetic moments are

oriented, in the absence of an external field, along the rows
or the columns of the arrays. The directions of the linearly
aligned moments are antiparallel between adjacent lines.12,18

Thus, M0 is anticipated to be vanishingly small when the
boundary effects are negligible. The microscopic configura-
tion of the magnetic moments due to the internal frustration,
which gives rise to the nonzero values ofM0, changes with
N. However, certain magnetic textures are assumed to be
intact for some intervals ofN from the conservation of the
oscillation amplitude. In Fig. 2, we show the magnetization
pattern atH=0 whenN is set to the specified values around
19. The magnetization pattern in the finite-size square arrays,
in fact, exhibits domainlike structures. At the boundary be-
tween the “domain walls,” one finds the “f=p /4” ground
state 18 pointed out by Prakash and Henley, in which the
nearest-neighbor magnetic moments are orthogonal to each
other and the four magnetic moments in a unit cell of the
square array form a closed loop. WhileN crosses the critical
value between 18 and 20, whereM0 changes abruptly, the
magnetization pattern does not change significantly. One no-
ticeable change is that the zigzag of the magnetic moments at
the right-end column is more pronounced forN=20 and 22
than that forN=16 and 18.

The difference in the magnetic texture is much greater
between the even and odd numbers ofN. Notice that bothM0
andAh are larger for odd numbers ofN than for even num-

FIG. 1. sad RemanenceM0 and sbd areaAh enclosed by the
hysteresis loop when the sizeN of square arrays containingN3N
nanomagnets is varied. The filled and open circles correspond to the
odd and even values ofN, respectively. The thin solid lines indicate
the results of the fits using Eq.s4d. The inset insad shows the
magnetizationMH per lattice site when the external magnetic field
H applied along the axis of the square array is varied forN=57. The
magnetization curves for down magnetic-field sweep whenN=16,
18, 20, and 22 are shown in the inset ofsbd. The uniaxial magne-
tocrystalline anisotropy is assumed to be absentsK=0d.
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bers whenN is small, whereas the relationship is reversed
when N is large. Therefore, the even and odd arrays are
suggested to be governed by distinct order states of the mag-
netic moments. In Fig. 2, the antiparallel linear arrangement
of the magnetic moments at the center of the arrays is per-
pendicular to the direction of the external magnetic field for
the even numbers ofN, whereas it is along the direction of
the external field forN=19. sThis feature is present also in
the numerical results in Ref. 12 for the 535 and 636 ar-
rays.d Interestingly, the magnetic moments of the outermost
two columns are unusually parallel at the left- and right-hand
sides forN=19, plausibly responsible for the largerM0 than
whenN is even numbers.

The abrupt changes in the magnetic texture whenN
crosses critical values have a common origin with the abrupt
jumps inMH whenH is varied. Notice that an abrupt change
in M0 does not necessarily result in the abrupt change inAh,
for instance betweenN=18 and 20.sA reverse situation can
be easily caused by the emergence of an abrupt change of
MH at nonzero magnetic fields.d As shown in the inset of Fig.
1sbd, the magnetic field for an abrupt change ofMH crosses
H=0 betweenN=18 and 20 during the course of its gradual
shift whenN is varied.19 sAnother abrupt jump inMH near
H=0.1Ms/a

3 is responsible for the abrupt jump inM0 be-
tweenN=28 and 30.d A number of quasistable configurations
evolve during the cycle of a magnetization curve. The even-
odd oscillations inM0 andAh can thus be either in phase or
out of phase.

The finite-size simulation by Stamps and Camley12 was
extended by Kayali and Saslow15 up to N=14. From the
behavior betweenN=6 and 14,Ah was suggested to be non-
zero in the limit ofN→`. Similarly, a nonzero value ofM0
will be speculated for the infinite array if the same analysis is
applied to the results in Fig. 1 in a similar range ofN. As we
stated, we anticipate, at least,M0 to be zero in the absence of
the boundary effects, as the antiferromagnetic-like columnar
arrangement of the magnetic moments will prevail. Our
much extended simulations demonstrate that the magnetic
properties in the infinite system are hardly predictable by the
extrapolation of the finite-size results because of the unsub-
siding boundary effects. Given the domainlike structures
demonstrated in Fig. 2, it seems rather unlikely that the
boundary effects can be avoided by a mere extrapolation of
N→`. Nevertheless, following the analysis by Kayali and
Saslow, we have attempted to fit the numerical data to the
form

CsNd = C` +
Camp

Np , s4d

whereC is eitherM0/Ms or Ah/ sMs
2/a3d. As shown by the

solid lines in Fig. 1, it is possible to fit the data with satis-

factory accuracies. It may be worthwhile to note that the
values ofM0 for the two groupsN=20, 22, 24, 26, and 28
andN=50, 52, 54, and 56 can be fit using common param-
eters. We summarize the fit parametersC` and p in Fig. 3.
The mean value ofC` is roughly zero forAh, as expected.
However, the mean value ofC` for M0 appears to be unex-
pectedly negative.

The previous works by Stamps and Camley12 and Kayali
and Saslow15 and the present work are based on the same
numerical model. However, there are some differences
among the numerical results. Kayali and Saslow found a
“barrel” state atH=0 for N=3, in which the magnetic mo-
ments in the left and right columns are directed opposite to
that in the central column and the corner moments are
slightly tipped. The tipping was absent in the numerical re-
sult by Stamps and Camley. Consequently, the predicted
magnetization loops are different between Refs. 12 and 15.
We also find the barrel state, see the left inset of Fig. 7sbd, in
agreement with Kayali and Saslow. Nevertheless, our mag-
netization loop is somewhat different from their prediction,
and Ah is larger in our case than theirs. In addition, our
numerical result is considerably different from that of Kayali
and Saslow whenN=5. Our hysteresis loop, the dotted curve
in Fig. 7sdd, exhibits one less abrupt jump ofMH. Moreover,
Ah in our simulations forN=5, 7, and 9 appears to form a
group that is independent of the group consisting ofN=11,
13, and 15. In contrast, Kayali and Saslow found thatN=7,

FIG. 2. Pattern of the magnetic
moments at zero external mag-
netic field sH=0d for N=16, 18,
19, 20, and 22. The thick arrow
indicates the direction of the ex-
ternal field.

FIG. 3. Parametersp andC`, see Eq.s4d, used in the fits shown
by the solid curves in Fig. 1. The filled and open symbols corre-
spond to the odd and even values ofN, respectively. The circles and
triangles indicate the values forM0 andAh, respectively.
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9, 11, and 13 belong to the same group. Although these
group assignments are not conclusive because of the short
span ofN for each group, our assignment is reasonable, at
least for our results, since a large change is correspondingly
present inM0 betweenN=9 and 11.

B. Asymmetric arrays

The large even-odd oscillations suggest that the magnetic
properties may exhibit a remarkable anisotropy when the
number of the lattice sites is even in one direction and odd in
the other direction. In Fig. 4, the magnetization curves are
shown for asymmetric arrays consisting ofN3 sN+1d nano-
magnets. The two horizontal panels are associated with an
identical array: The magnetization is calculated along the
long and short axes of the arrays for the left- and right-hand-
side columns, respectively. We show the configurations of
the magnetic moments atH=0 for the 233 and 334 arrays
in the insets of Figs. 4sbd and 4sdd, respectively. The configu-
rations are independent of the direction of the external mag-
netic field. The hysteresis is absent in the short direction of
the asymmetric arrays when the array size is small.sA com-
parison between the magnetization curves for the 233 and
334 arrays indicates that whether the number of nanomag-
nets in the magnetic field direction is even or odd is not
relevant for the absence of the hysteresis.d This trend is,
however, not a generic property of the asymmetric arrays as
the hysteresis is more pronounced in the short direction for
the array having 536 nanomagnets.

In asymmetric arrays, the magnetization is inevitably in-
fluenced by the shape anisotropy of the square lattices. In

order to assess the contributions of the general, and hence
less intriguing, shape anisotropy to the magnetization curves,
we plot in Fig. 5 the hysteresis loops in arrays consisting of
N3 sN+2d nanomagnets. Despite the larger shape asymme-
try for theN3 sN+2d lattices than for theN3 sN+1d lattices,
the anisotropy in the magnetization curves in Fig. 5 is merely
comparable to that in Fig. 4. We, therefore, conclude that the
even-odd asymmetry gives rise to a considerable enhance-
ment of the anisotropic magnetic properties.

IV. EFFECTS OF MAGNETOCRYSTALLINE ANISOTROPY

The importance of the internal frustration evidenced by
the large even-odd oscillations suggests that the processes of
the magnetization reversal are sensitive to perturbations that
compete with the dipole-dipole interaction. In this and the
next sections, we, respectively, examine the influences of the
magnetocrystalline anisotropy and disorder, which cannot be
ignored in the actual experiments.

The magnetocrystalline anisotropy is taken into account
in Fig. 6 for the case ofN=24. The easy axis of the uniaxial
anisotropy is assumed to be 45° inclined from the axes of the
square array within its two-dimensional plane. The magneti-
zation flip processes are almost completely dominated by the
magnetocrystalline anisotropy forKùMs

2/a3. In such a cir-
cumstance, the magnetization curve of an array is, in prin-
ciple, equivalent to that of a single nanomagnet. The mag-
netic moments are oriented in the diagonal direction of the
array by the strong uniaxial anisotropy atH=0. The rema-
nence is hence smaller by a factor of 1/Î2 than the fully

FIG. 4. MagnetizationMH per lattice site vs external magnetic
field H of N3 sN+1d asymmetric arrays in the absence of the
uniaxial magnetocrystalline anisotropy. The number of the nano-
magnets in the arrays is indicated in the panels. The magnetization
is along the long and short directions of the arrays for the panels on
the left- and right-hand sides, respectively. The configurations of the
magnetic moments atH=0 for the 233 and 334 arrays are shown
in the insets ofsbd and sdd, respectively.

FIG. 5. MagnetizationMH per lattice site vs external magnetic
field H of N3 sN+2d asymmetric arrays in the absence of the
uniaxial magnetocrystalline anisotropy. The number of the nano-
magnets in the arrays is indicated in the panels. The magnetization
is along the long and short directions of the arrays for the panels on
the left- and right-hand sides, respectively. The configuration of the
magnetic moments atH=0 for the 234 array is shown in the inset
of sbd.
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polarized magnetization. The external magnetic field rotates
the magnetic moments to be away from the diagonal direc-
tion. The magnetization curve is, therefore, given by a
gradual tilt of the magnetic moments determined by the bal-
ance between the external field and the anisotropy field. One
finds from Eqs.s1d and s2d

Hscosu − sinud =
2Î2K

Ms
fsudsinu, s5d

whereu is the angle of the magnetic moment with respect to
the anisotropy axis andfsud=cosu is the angular function of
the magnetocrystalline anisotropy field. The thin solid curve
in Fig. 6sbd is calculated using Eq.s5d. Trivial cases areu
=0 sMH=Ms/Î2d when H=0, andu=p /4 sMH=Msd when
H→`. When uHu is increased with the opposite polarity, al-
most all the magnetic moments flip simultaneously at a criti-
cal magnetic field. The magnetization deviates from the pre-
diction of Eq. s5d in the vicinity of this reorientation. The
dipole-dipole interaction retains some influences on the re-
versal processes of the magnetization, owing to the subtle
balance of the forces acting on the nanomagnets at the mo-
ment of the magnetization flip.

The magnetization curve whenK,0.5Ms
2/a3, the solid

curve in Fig. 6sad, is a representative case in which the
dipole-dipole interaction and the magnetocrystalline aniso-
tropy compete with each other. The criticality of this value of
K is illustrated by the expansion of the hysteresis loop due to
the anisotropy, as displayed in the inset of Fig. 6. On the one
hand, the dipole-dipole interaction prefers antiparallel repeti-
tion of collinear moments. On the other hand, the magneto-
crystalline anisotropy orients all the magnetic moments in
the direction favored byH and its previous history. The mag-

netization curve forK=0.5Ms
2/a3 is characterized by a

convex-shaped gradual change ofMH, due to the force bal-
ance described by Eq.s5d, while H is reduced to zero and a
series of cascades, instead of a single giant jump, after the
polarity of H has been reversed.

The competition between dipole-dipole interaction and
magnetocrystalline anisotropy gives rise to dramatic effects
in the hysteresis when the arrays are small, as the frustration
is enhanced under the constraint of the boundary. In Fig. 7,
we compare the magnetization curves in the presence and
absence of the magnetrocrystalline anisotropy for various
values of the sizeN of N3N square arrays. Here,K=0 and
Ms

2/a3 for the dotted and solid curves, respectively. For
smaller arrays, larger values ofK are required to heighten the
competition as the ordering of the magnetic moments due to
the dipole-dipole interaction is more stable. In fact, the mag-
netization curves forK=0 and 0.5Ms

2/a3 are almost identical
when N=2. For this array size, the magnetic moments are
made to be aligned along the anisotropy direction atH=0 by
strengthening the anisotropy toK=Ms

2/a3, see the inset of
Fig. 7sad. The transition between the two stable states
saroundH=0d takes place abruptly atK=0.774Ms

2/a3. When
N=3, M0 is similar forK=0 andMs

2/a3, see Fig. 7sbd. How-
ever, the configuration of the magnetic moments atH=0 is
considerably modified by the magnetocrystalline anisotropy.

In Figs. 6 and 7, the inclination of the magnetrocrystalline
anisotropy from the axis of the array was assumed to be 45°.
This angle was chosen primarily for correspondence to the
existing experiments using Fe films epitaxially grown on

FIG. 6. MagnetizationMH per lattice site vs external magnetic
field H as a function of the strengthK of the uniaxial magnetocrys-
talline anisotropy. The easy axis of the uniaxial anisotropy is 45°
inclined from the axes of the square array. For the dotted and thick
solid curves,Ka3/Ms

2=0 and 0.5 insad and 1.0 and 1.5 insbd,
respectively. The linear dimension of the square array isN=24. The
thin solid curve showsMH when the dipole-dipole interaction is
ignored, Eq.s5d. The inset shows the areaAh of the hysteresis loop
when the anisotropy strengthK is varied.K andAh are normalized
both byMs

2/a3.

FIG. 7. MagnetizationMH per lattice site vs external magnetic
field H in the simultaneous presence of dipole-dipole interaction
and uniaxial magnetocrystalline anisotropy. The strength of the an-
isotropy isK=0 andMs

2/a3 for the dotted and solid curves, respec-
tively. The easy axis of the uniaxial anisotropy is 45° inclined from
the axes of the square array. The linear dimensionN of the square
arrays is indicated in each panel. The configurations of the magnetic
moments atH=0 are shown forN=2 and 3 in the insets ofsad and
sbd, respectively.
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GaAss001d substrates. As the dipole-dipole interaction is
negligible in these experimental structures,10 the arrays are
usually defined, for convenience of sample fabrication, hav-
ing their axes aligned along the cleavage direction of the
substrate, i.e.,h110j. The easy axes of the cubic anisotropy in
the Fe films, which is dominant unless the films are consid-
erably thin, are along theh100j direction of the substrate.
sThe cubic anisotropy was replaced by the uniaxial aniso-
tropy in our simulations for simplicity.d For completeness,
we have also carried out the simulations for the case of the
uniaxial anisotropy being along one axis of the arrays. The
magnetization curves whenK=Ms

2/a3 are presented in Fig. 8
for a number of array sizes. Because of the direct confronta-
tion between the antiferromagnetic-like arrangement of the
magnetic moments induced by the dipole-dipole interaction
and the ferromagnetic-like arrangement favored by the mag-
netrocrystalline anisotropy, the magnetization curves exhibit
a dramatic dependence on the direction of the external mag-
netic field. Remarkably, hysteresis is absent in the magneti-
zation curves for all the array sizes examined here when the
external field is applied perpendicular to the direction of the
uniaxial anisotropy.

V. EFFECTS OF POSITIONAL DISORDER

We finally consider the influences of a disorder on the
arrangement of magnetic moments governed by the dipole-

dipole interaction.20,21 For this purpose, we displace the na-
nomagnets from the lattice sites of a square array. The
amount of this displacement in the two orthogonal directions
of the array is chosen randomly with a uniform distribution
within an intervalf−d/2, d/2g, i.e., the magnetic moment is
placed completely randomly within a square area having the
sized3d and centered at the lattice site of the nondisordered
square array.

In the inset of Fig. 9, we compare the magnetization
curves whend/a=0.0, 0.3, and 0.6 forN=30. One finds that
the disorder enlarges the hysteresis loop in terms of both the
remanence and the coercive field. The areaAh enclosed by
the hysteresis loop andM0 are plotted in Fig. 9. The symbols
show the respective values for a certain realization of disor-
der. Statistically averaged ones are shown by the lines. The
hysteresis in the disordered system has the following charac-
teristics. sid The enclosed area expands parabolically with
increasingd. sii d The remanence saturates at about one-half
of the full magnetization when the disorder is strong. A large
external magnetic field is required for fully polarizing the
magnetic moments in the disordered system as the dipole
field gets extremely strong for the nanomagnets with small
separations. It may be noteworthy that, even though the dis-
ordered system lacks the spatial inversion symmetry, the
magnetization curves for the up and down magnetic field
sweeps are identical to each other if the polarities ofH and
MH are simultaneously reversed, provided thatuHu reaches a
large enough value.

VI. CONCLUSION

In conclusion, we have investigated the magnetization of
square arrays of nanomagnets. The influences of dipole-
dipole interaction on the processes of magnetic moment re-
versal have been examined through numerical solutions of

FIG. 8. MagnetizationMH per lattice site vs external magnetic
field H in the simultaneous presence of dipole-dipole interaction
and uniaxial magnetocrystalline anisotropy. The easy axis of the
uniaxial anisotropy is parallel to one of the axes of the arrays. The
strength of the anisotropy isK=Ms

2/a3. The external magnetic field
is along and perpendicular to the direction of the uniaxial aniso-
tropy for the solid and dashed curves, respectively. The linear di-
mensionN of the square arrays is indicated in each panel. The
configurations of the magnetic moments at the indicated external
magnetic fields are illustrated on top of the panels. The thick arrow
indicates the direction of the external field. The easy axis of the
uniaxial anisotropy is parallel and perpendicular to the external field
for the configurations depicted on the left- and right-hand sides,
respectively.

FIG. 9. AreaAh enclosed by the hysteresis loopsfilled circlesd
and remanenceM0 sopen circlesd when the strengthd of disorder is
varied for the linear dimension of the square arrayN=30. The sym-
bols indicate the values obtained for each realization of disorder.
The lines show the statistically averaged values. The inset shows
the magnetizationMH per lattice site vs external magnetic fieldH
curves. The disorder strength isd/a=0, 0.3, and 0.6 for the dotted,
solid, and dashed curves, respectively.
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the Landau-Lifshitz equation. The internal frustration im-
posed by the array boundary persists up to considerably large
arrays. A number of roughly degenerate magnetic configura-
tions take over each other when the system size and the
external magnetic field are varied. Kayali and Saslow15 sug-
gested that the area enclosed by a hysteresis loop in an infi-
nite array is nonzero, based on the numerical results in finite-
size arrays. Our much extended simulations indicate this
prediction to be unreliable. The ordering of the magnetic

moments under dipole-dipole interaction has been demon-
strated to be altered dramatically by the competition with the
uniaxial magnetocrystalline anisotropy. We have also shown
that a lattice disorder leads to an enlargement of the hyster-
esis loop if dipole-dipole interaction is significant. While the
hysteresis loop expands its area parabolically with strength-
ening the disorder, the remanence is given universally to be
about half of the saturation magnetization when the disorder
is sufficiently strong.
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