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Magnetization of two-dimensional square arrays of nanomagnets
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The interplay between dipole-dipole interaction, magnetocrystalline anisotropy, and disorder on the magnetic
hysteresis in two-dimensional square arrays of nanomagnets is studied by numerically solving the Landau-
Lifshitz equation. The interaction-induced frustration gives rise to even-odd oscillations in the magnetic prop-
erties when the system size is varied. The oscillations persist to remarkably large arrays with fluctuating
amplitudes, evidencing the significance of the boundary effects and the competition among a number of
quasistable orders of the magnetic moments. The hysteresis is strongly affected by the magnetocrystalline
anisotropy and disorder. While both of them broaden the hysteresis loop, the remanence in the disordered
system bears a universal value: almost half of the saturation magnetization.
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I. INTRODUCTION am M X (M X Hgp)
. . . . . T X He—a : (1)
The sizes of magnetic media to record a single bit have dt Ms

decreased drastically in recent years in order to increase the . ) o . i
capacity of storagé.The magnetic characteristics of a unit Wherey is the gyromagnetic ratiay is the damping coeffi-
cell as well as the interaction among the cells are fundamerfient, andMs=|M|. The second term on the right-hand side
tally altered during the course of the size reducfidn. is- of the equation phenomenologically introduces the relaxation
lands of, for instance, F&* Co56 or permalloy- having the of the magnetic moment, forcirg to be oriented in parallel
thickness of several tens of nanometers and the diameter ¥fith Herr after energy dissipation. We note that the above
~1 um, the magnetic texture of the ground state involvesequation conserves the magnitude of the magnetic moment.
vortices. The flux-closure-type magnetic configuration is fa- 1he effective magnetic fielth acting on the magnetic
vored to minimize the stray fields, i.e., to reduce the magnemoment consists of the applied external magnetic field, the
tostatic energy. When the diameter of the disks is reducedlipole fields, and the uniaxial anisotropy field
the disks undergo a transition, in which they are occupied by
only a single magnetic domain. The transition takes place as H o =H-H. + ZKMU )

eff — dp 2
the vortex energy becomes more costly than the magneto-
static energy. Below the critical size for the single-domain
formation, magnetic disks are regarded as nanomagnets eveaiereu is a unit vector in the direction of the magnetocrys-
in the demagnetized state. In this regime, interparticle intertalline anisotropy an is the strength of the anisotropy. The
action is expected to dominate the processes of magnetizdipole field acting on théh nanomagnet that originates from
tion reversal when an external magnetic field is vatfet. the rest of the nanomagnets in the array is given by

In this paper, we examine the hysteresis in the magneti-

zation of square arrays of nanomagnets. The arrangement of i
the magnetic moments in finite-size arrays is calculated by HdD=2
numerically solving the Landau-Lifshitz equation. We inves- I
tigate how the ordering of the magnetic moments generatea,

by dipole-dipole interaction is altered by the boundary ef-''c do not take into account the shape anisotropy of the
y dip P . . y u y nanomagnets, i.e., the nanomagnets are assumed to be circu-
fects, magnetocrystalline anisotropy, and disorder.

larly shaped(with an infinitesimally small radiys The ef-
fects of the shape anisotropy are, at least qualitatively,
equivalent to those of the magnetocrystalline anisotropy.
We have calculated the time evolution governed by Eg.
In our simulations, we assume that identical nanomagnetgl) using the fourth-order Runge-Kutta methddwe typi-
are to be placed, in the absence of disorder, at the lattice siteglly use a fixed time stept=0.1/(yMy). The time step is
of square arrays having a lattice constantWe treat the appropriately reduced when a positional disorder is intro-
individual nanomagnet as a magnetic momghtThe mag- duced as the dipole field gets significantly strong for the
netic moments interact with each other through dipole-dipolenanomagnets with a small separation. Iterations are contin-
interaction. Our numerical analysis examines the configuraded until the changes in the orientation of the magnetic mo-
tion of the magnetic moments in the presence of an externahents become negligibly small. Since we employ the fourth-
in-plane magnetic fieltH.1213The response of the magnetic order Runge-Kutta algorithm instead of the second-order
moments to the magnetic field is calculated by solving theone, the convergence can be achieved with the above time
Landau-Lifshitz equation interval, which is much larger thakt=0.005(yMy) used in
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Refs. 12 and 15. As a consequence, the maximum lattice size T . S . S
in the present work far exceeds that in the study by Kayali
and Saslow®

In evaluating the magnetization curvéld| is initially in-
creased to a large value in order to almost fully magnetize
the arrays. WhileH is subsequently varied around zero with
a small step(typically AH=0.0IM/a%, a steady state is
derived for each value of. Throughout this papei is
aligned along the axis of the square arrays aig is set to
be 0.6. For the severdfeneral cases that we checked in

details, the numerical results were unchanged when these .
parameters were moderately altered. That is, as our attention “
is focused on the static properties of the magnetization, the “'Em 1
numerical results to be presented below are, except for un- 5
usual circumstancé$,independent of the specific choice of 2
the damping parametét. 5
<_C
Ill. MAGNETIC ORDERING DUE
TO DIPOLE-DIPOLE INTERACTION T, ——
0 10 20 30 40 50
A. Symmetric arrays N

We first examine the magnetic properties when only FIG. 1. (8) RemanenceV, and (b) areaA;, enclosed by the
dipole-dipole interaction is accounted for. Prakash anchysteresis loop when the si2éof square arrays containingx N
Henley® investigated the ground state and the linear re-nanomagnets is varied. The filled and open circles correspond to the
sponse to an external magnetic field of an infinite arrayodd and even values &, respectively. The thin solid lines indicate
within the approximation of nearest-neighbor interaction.the results of the fits using Eq4). The inset in(a) shows the
The ground state was found to be infinitely degenerate. TheagnetizatiorMy per lattice site when the external magnetic field
continuous degeneracy is reduced to a discrete symmetry By applied along the axis of the square array is variedfeb7. The
the external field as certain states are selected. In finite affagnetization curves for down magnetic-field sweep wieri6,
rays, boundary effects additionally play a crucial role in thel8: 20, and 22 are shown in the inset(bf. The uniaxial magne-
ordering of magnetic moments. We have calculated the mad2¢™ystalline anisotropy is assumed to be abs#t0).
netization for square lattices of linear dimensdmwhenH is  cjjlation amplitude rather remains unchanged with

varied. We emphasize that the long-range dipole-dipole in- |n the interior of square arrays, the magnetic moments are
teraction is fully taken into account in our simulations. Theoriented, in the absence of an external field, along the rows
inset of Fig. 1a) displays a hysteresis of the magnetizationor the columns of the arrays. The directions of the linearly
My per lattice site in the direction ¢1, i.e., along the axis of aligned moments are antiparallel between adjacent s,
the square array. Here, the array contéinsN nanomagnets  Thus, M, is anticipated to be vanishingly small when the
with N=57. The magnetocrystalline anisotropy is assumed t@oundary effects are negligible. The microscopic configura-
be absentK=0). The magnetization and the magnetic field tion of the magnetic moments due to the internal frustration,
are normalized in units oM and M¢/a, respectively. The which gives rise to the nonzero valuesMf, changes with
magnetic moments are nearly aligned along the external fieltl. However, certain magnetic textures are assumed to be
when [H|>Mg/a3. At weak magnetic fieldsM,, changes intact for some intervals ol from the conservation of the
roughly linearly withH. Nevertheless, a hysteresis is presentoscillation amplitude. In Fig. 2, we show the magnetization
in the magnetization curve anbly exhibits small abrupt pattern atH=0 whenN is set to the specified values around
jumps at a number of values &f. 19. The magnetization pattern in the finite-size square arrays,
Figures 1a) and Xb), respectively, show the variation of in fact, exhibits domainlike structures. At the boundary be-
the remanenc#, and the are#\, enclosed by the hysteresis tween the “domain walls,” one finds thep“ /4" ground
loop whenN is changed. The magnetic field is varied be-state!® pointed out by Prakash and Henley, in which the
tween -M¢/a® and M/a3 for which the magnetic mo- nearest-neighbor magnetic moments are orthogonal to each
ments are better than 99.5% polarized/t=2Mg/a®. We  other and the four magnetic moments in a unit cell of the
find oscillatory behavior oMy and A, whenN changes be- square array form a closed loop. Whilecrosses the critical
tween even and odd numbéfsThe oscillations originate value between 18 and 20, whek&, changes abruptly, the
from the internal frustration imposed by the array boundarymagnetization pattern does not change significantly. One no-
The boundary effects were studied by Stamps and Cdrleyticeable change is that the zigzag of the magnetic moments at
for the case ofN=3. With increasing the array size, the the right-end column is more pronounced fé=20 and 22
boundary effects would be less important. The polarization athan that forN=16 and 18.
[Ho|=2M/ @3, for instance, improves for large values Mgf The difference in the magnetic texture is much greater
Nevertheless, the magnitude of the even-odd oscillations rebetween the even and odd numberdlofotice that bothivi,
mains significantly large even wheéMi~60. In fact, the os- andA,, are larger for odd numbers of than for even num-
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FIG. 2. Pattern of the magnetic
moments at zero external mag-
netic field (H=0) for N=16, 18,
19, 20, and 22. The thick arrow
indicates the direction of the ex-
ternal field.
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bers whenN is small, whereas the relationship is reversedfactory accuracies. It may be worthwhile to note that the
when N is large. Therefore, the even and odd arrays areralues ofM, for the two groupsN=20, 22, 24, 26, and 28
suggested to be governed by distinct order states of the magndN=50, 52, 54, and 56 can be fit using common param-
netic moments. In Fig. 2, the antiparallel linear arrangemengters. We summarize the fit paramet&sandp in Fig. 3.

of the magnetic moments at the center of the arrays is perfhe mean value of,. is roughly zero forA,, as expected.
pendicular to the direction of the external magnetic field forHo\Never, the mean Va|ue moo for MO appears to be unex-
the even numbers dfl, whereas it is along the direction of pectedly negative.

the external field foN=19. (This feature is present also in " The previous works by Stamps and Camfegnd Kayali

the numerical results in Ref. 12 for the<® and 6x6 ar- 514 gasloW? and the present work are based on the same

rays) Interestingly, the magnetic moments of the O.Utermoscﬁumerical model. However, there are some differences
two columns are unusually parallel at the left- and right-han mong the numerical results. Kayali and Saslow found a

sides forN=19, plausibly responsible for the largkl, than “parrel” state atH=0 for N=3, in which the magnetic mo-

whenN is even numbers. . . . .
The abrupt changes in the magnetic texture wién ments in the left and right columns are directed opposite to

crosses critical values have a common origin with the abrup&h.at in the central column and the corner moments are

jumps inM,, whenH is varied. Notice that an abrupt change slightly tipped. The tipping was absent in the numericall re-
in M, does not necessarily result in the abrupt changa,jn  Sult by Stamps and Camley. Consequently, the predicted

for instance betweeN=18 and 20/(A reverse situation can Magnetization loops are different between Refs. 12 and 15.
be easily caused by the emergence of an abrupt change ¥fe also find the barrel state, see the left inset of Fig), n

My, at nonzero magnetic fieldsAs shown in the inset of Fig. agreement with Kayali and Saslow. Nevertheless, our mag-
1(b), the magnetic field for an abrupt changeldf, crosses ~Netization loop |s.somewhat different fr_om their prgdlct|on,
H=0 betweerN=18 and 20 during the course of its gradual @d An is Iarger'm our case thap theirs. In addition, our
shift whenN is varied!® (Another abrupt jump irMy near numerical result is considerably dlff_erent from that of Kayali
H=0.1M./a® is responsible for the abrupt jump M, be- _and_SasIow Wh¢N=5. Our hystere5|s_ loop, the dotted curve
tweenN=28 and 30.A number of quasistable configurations in Fig. 7(d), exhibits one less abrupt jump bfy,. Moreover,
evolve during the cycle of a magnetization curve. The evenfh in our simulations folN=5, 7, and 9 appears to form a
odd oscillations inM, and A, can thus be either in phase or 9roup that is independent of the group consistindNef11,

out of phase. 13, and 15. In contrast, Kayali and Saslow found tRat7,
The finite-size simulation by Stamps and Canifeyas 5 -
extended by Kayali and Saslé%up to N=14. From the o
behavior betweeN=6 and 14 A, was suggested to be non- (@
zero in the limit ofN—oo. Similarly, a nonzero value d¥l, et
will be speculated for the infinite array if the same analysis is e 1k MaAiadasia ]
applied to the results in Fig. 1 in a similar rangeNbfAs we U e
stated, we anticipate, at leabt, to be zero in the absence of
the boundary effects, as the antiferromagnetic-like columnar T eooe,, S an sy
arrangement of the magnetic moments will prevail. Our o
much extended simulations demonstrate that the magnetic ok MAM/ ' ' ' Ib loa
properties in the infinite system are hardly predictable by the sas ST (b)
extrapolation of the finite-size results because of the unsub- < seee 10-2 &£
siding boundary effects. Given the domainlike structures 5 o0 ot [ -
demonstrated in Fig. 2, it seems rather unlikely that the o ' <_/“"'"'""' %
boundary effects can be avoided by a mere extrapolation of eoooo0 sese 402
N—oco. Nevertheless, following the analysis by Kayali and oak I es0d A
Saslow, we have attempted to fit the numerical data to the L. L . coopogooeo, e
form 0 10 20 30 40 50
N
(:am
CN)=C.+ Wp’ ) FIG. 3. Parametergs andC.,, see Eq(4), used in the fits shown

o 5 by the solid curves in Fig. 1. The filled and open symbols corre-
whereC is eitherMy/Mg or Ap/(MZ/a%). As shown by the  spond to the odd and even values\frespectively. The circles and
solid lines in Fig. 1, it is possible to fit the data with satis- triangles indicate the values féll, and A, respectively.

184439-3



Y. TAKAGAKI AND K. H. PLOOG PHYSICAL REVIEW B 71, 184439(2009

M, /M,

H (units of My/a%) H  (units of My/a®)

FIG. 4. MagnetizatiorMy per lattice site vs external magnetic FIG. 5. MagnetizatiorMy, per lattice site vs external magnetic
field H of NX(N+1) asymmetric arrays in the absence of the field H of NX (N+2) asymmetric arrays in the absence of the
uniaxial magnetocrystalline anisotropy. The number of the nanouniaxial magnetocrystalline anisotropy. The number of the nano-
magnets in the arrays is indicated in the panels. The magnetizatiomagnets in the arrays is indicated in the panels. The magnetization
is along the long and short directions of the arrays for the panels ois along the long and short directions of the arrays for the panels on
the left- and right-hand sides, respectively. The configurations of thehe left- and right-hand sides, respectively. The configuration of the
magnetic moments &=0 for the 2< 3 and 3x 4 arrays are shown magnetic moments & =0 for the 2x 4 array is shown in the inset
in the insets oflb) and (d), respectively. of (b).

9, 11, and 13 belong to the same group. Although theserder to assess the contributions of the general, and hence
group assignments are not conclusive because of the shadess intriguing, shape anisotropy to the magnetization curves,
span ofN for each group, our assignment is reasonable, aive plot in Fig. 5 the hysteresis loops in arrays consisting of

least for our results, since a large change is correspondingly X (N+2) nanomagnets. Despite the larger shape asymme-

present inMy betweenN=9 and 11. try for the N X (N+2) lattices than for thé X (N+ 1) lattices,
the anisotropy in the magnetization curves in Fig. 5 is merely
B. Asymmetric arrays comparable to that in Fig. 4. We, therefore, conclude that the

The large even-odd oscillations suggest that the magnetl%ven'Odd asymmetry gives rise to a considerable enhance-

properties may exhibit a remarkable anisotropy when thdnent of the anisotropic magnetic properties.
number of the lattice sites is even in one direction and odd in
the other direction. I_n Fig. 4, the magnetization CUrves are\, trrects OF MAGNETOCRYSTALLINE ANISOTROPY
shown for asymmetric arrays consistinghd& (N+1) nano-
magnets. The two horizontal panels are associated with an The importance of the internal frustration evidenced by
identical array: The magnetization is calculated along thehe large even-odd oscillations suggests that the processes of
long and short axes of the arrays for the left- and right-handthe magnetization reversal are sensitive to perturbations that
side columns, respectively. We show the configurations otompete with the dipole-dipole interaction. In this and the
the magnetic moments bt=0 for the 2x 3 and 34 arrays  next sections, we, respectively, examine the influences of the
in the insets of Figs. @) and 4d), respectively. The configu- magnetocrystalline anisotropy and disorder, which cannot be
rations are independent of the direction of the external magignored in the actual experiments.
netic field. The hysteresis is absent in the short direction of The magnetocrystalline anisotropy is taken into account
the asymmetric arrays when the array size is snfdlcom-  in Fig. 6 for the case oN=24. The easy axis of the uniaxial
parison between the magnetization curves for the32and  anisotropy is assumed to be 45° inclined from the axes of the
3X 4 arrays indicates that whether the number of nanomagsquare array within its two-dimensional plane. The magneti-
nets in the magnetic field direction is even or odd is notzation flip processes are almost completely dominated by the
relevant for the absence of the hystergsihis trend is, magnetocrystalline anisotropy fé&¢=M2/a®. In such a cir-
however, not a generic property of the asymmetric arrays asumstance, the magnetization curve of an array is, in prin-
the hysteresis is more pronounced in the short direction fociple, equivalent to that of a single nanomagnet. The mag-
the array having % 6 nanomagnets. netic moments are oriented in the diagonal direction of the
In asymmetric arrays, the magnetization is inevitably in-array by the strong uniaxial anisotropy 0. The rema-
fluenced by the shape anisotropy of the square lattices. Inence is hence smaller by a factor ofy2/than the fully
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1

[ (a)

M, /M,

-3 -2

1 0 1 2 3
H (units of Mya®)

FIG. 6. MagnetizatiorM, per lattice site vs external magnetic
field H as a function of the strengtl of the uniaxial magnetocrys-
talline anisotropy. The easy axis of the uniaxial anisotropy is 45° -
inclined from the axes of the square array. For the dotted and thick H (units of M /a3)
solid curves,Ka3/M§:0 and 0.5 in(a) and 1.0 and 1.5 inb), s
respectively. The linear dimension of the square arrdy=24. The
thin solid curve showdM when the dipole-dipole interaction is
ignored, Eq(5). The inset shows the arég of the hysteresis loop
when the anisotropy strengiais varied.K andA,, are normalized
both by M2/aS.

FIG. 7. MagnetizatiorMy per lattice site vs external magnetic
field H in the simultaneous presence of dipole-dipole interaction
and uniaxial magnetocrystalline anisotropy. The strength of the an-
isotropy isK=0 andMi/a3 for the dotted and solid curves, respec-
tively. The easy axis of the uniaxial anisotropy is 45° inclined from
the axes of the square array. The linear dimen$icof the square
polarized magnetization. The external magnetic field rotatearrays is indicated in each panel. The configurations of the magnetic
the magnetic moments to be away from the diagonal direcmoments ati=0 are shown foN=2 and 3 in the insets d&) and
tion. The magnetization curve is, therefore, given by a(b), respectively.
gradual tilt of the magnetic moments determined by the bal-

ance between the external field and the anisotropy field. Onlgetlzatmnh cur(\j/e fOJKTO'r?\AS/ a 1s dcharacthen?ed b%/ Ia
finds from Eqs.(1) and (2) convex-shaped gradual changeMdf;, due to the force bal-

ance described by E@5), while H is reduced to zero and a
212K ) series of cascades, instead of a single giant jump, after the
f(6)sin 6, (5  polarity of H has been reversed.

The competition between dipole-dipole interaction and
whered is the angle of the magnetic moment with respect tomagnetocrystalline anisotropy gives rise to dramatic effects
the anisotropy axis anfl#) =cos# is the angular function of in the hysteresis when the arrays are small, as the frustration
the magnetocrystalline anisotropy field. The thin solid curveis enhanced under the constraint of the boundary. In Fig. 7,
in Fig. 6(b) is calculated using Eq5). Trivial cases are9  we compare the magnetization curves in the presence and
=0 (My=M¢/+2) whenH=0, andd=m/4 (My=Mg) when absence of the magnetrocrystalline anisotropy for various
H— . When|H| is increased with the opposite polarity, al- values of the siz& of NX N square arrays. Her&=0 and
most all the magnetic moments flip simultaneously at a criti-M2/a® for the dotted and solid curves, respectively. For
cal magnetic field. The magnetization deviates from the presmaller arrays, larger values k§fare required to heighten the
diction of Eq. (5) in the vicinity of this reorientation. The competition as the ordering of the magnetic moments due to
dipole-dipole interaction retains some influences on the rethe dipole-dipole interaction is more stable. In fact, the mag-
versal processes of the magnetization, owing to the subtleetization curves fok=0 and 0.512/a° are almost identical
balance of the forces acting on the nanomagnets at the mavhen N=2. For this array size, the magnetic moments are
ment of the magnetization flip. made to be aligned along the anisotropy directiokl a0 by

The magnetization curve whei~0.5M2%/a% the solid  strengthening the anisotropy #=MZ/a% see the inset of
curve in Fig. a), is a representative case in which the Fig. 7(a). The transition between the two stable states
dipole-dipole interaction and the magnetocrystalline aniso{aroundH=0) takes place abruptly dﬁ:O.774\/I§/a3. When
tropy compete with each other. The criticality of this value of N=3, My is similar forK=0 andMﬁ/a?’, see Fig. ). How-

K is illustrated by the expansion of the hysteresis loop due t@ver, the configuration of the magnetic moment$iat0 is

the anisotropy, as displayed in the inset of Fig. 6. On the oneonsiderably modified by the magnetocrystalline anisotropy.
hand, the dipole-dipole interaction prefers antiparallel repeti- In Figs. 6 and 7, the inclination of the magnetrocrystalline

tion of collinear moments. On the other hand, the magnetoanisotropy from the axis of the array was assumed to be 45°.
crystalline anisotropy orients all the magnetic moments inThis angle was chosen primarily for correspondence to the
the direction favored by and its previous history. The mag- existing experiments using Fe films epitaxially grown on

H(cosf—-sin ) =

S
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FIG. 9. AreaA,, enclosed by the hysteresis logfiled circles

and remanenckl, (open circles when the strengtl of disorder is
varied for the linear dimension of the square aray30. The sym-
bols indicate the values obtained for each realization of disorder.
o . . . The lines show the statistically averaged values. The inset shows
FIG. 8. MagnetizatiorMy, per lattice site vs external magnetic the magnetizatioM, per lattice site vs external magnetic fiettl

field H in the simultaneous presence of dipole-dipole interactioncurves The disorder strengthdga=0, 0.3, and 0.6 for the dotted
and uniaxial magnetocrystalline anisotropy. The easy axis of thesolid énd dashed curves respectivély. ' ’ '

uniaxial anisotropy is parallel to one of the axes of the arrays. The
strength of the anisotropy K=MZ/a%. The external magnetic field ) ) ) )
is along and perpendicular to the direction of the uniaxial anisodipole interactiorf®2! For this purpose, we displace the na-
tropy for the solid and dashed curves, respectively. The linear dihomagnets from the lattice sites of a square array. The
mensionN of the square arrays is indicated in each panel. Theamount of this displacement in the two orthogonal directions
configurations of the magnetic moments at the indicated externadf the array is chosen randomly with a uniform distribution
magnetic fields are illustrated on top of the panels. The thick arrowvithin an interval[-d/2, d/2], i.e., the magnetic moment is
indicates the direction of the external field. The easy axis of theplaced completely randomly within a square area having the
uniaxial anisotropy is parallel and perpendicular to the external fieldsized X d and centered at the lattice site of the nondisordered
for the configurations depicted on the left- and right-hand sidessquare array.

respectively. In the inset of Fig. 9, we compare the magnetization
curves wherd/a=0.0, 0.3, and 0.6 foN=30. One finds that

H (units of My/a%)

GaAq001) substrates. As the dipole-dipole interaction is . . .
negligible in these experimental structutéshe arrays are the disorder enlarges the hysteresis loop in terms of both the

usually defined, for convenience of sample fabrication, hayfémanence ._';md the coercive field. '.rhe.akﬁaenclosed by
ing their axes aligned along the cleavage direction of thdN€ hysteresis loop arid,, are plotted in Fig. 9. The symbols
substrate, i.e{110. The easy axes of the cubic anisotropy in show the_ r_especnve values for a certain realization _of disor-
the Fe films, which is dominant unless the films are considder. Statistically averaged ones are shown by the lines. The
erably thin, are along th€l00} direction of the substrate. hysteresis in the disordered system has the following charac-
(The cubic anisotropy was replaced by the uniaxial anisoleristics. (i) The enclosed area expands parabolically with
tropy in our simulations for simplicity.For completeness, increasingd. (ii) The remanence saturates at about one-half
we have also carried out the simulations for the case of thef the full magnetization when the disorder is strong. A large
uniaxial anisotropy being along one axis of the arrays. Th&xternal magnetic field is required for fully polarizing the
magnetization curves whd6=M?/a® are presented in Fig. 8 Magnetic moments in the disordered system as the dipole
for a number of array sizes. Because of the direct confrontafield gets extremely strong for the nanomagnets with small
tion between the antiferromagnetic-like arrangement of thé€parations. It may be noteworthy that, even though the dis-
magnetic moments induced by the dipole-dipole interactiorPrdered system lacks the spatial inversion symmetry, the
and the ferromagnetic-like arrangement favored by the maghagnetization curves for the up and down magnetic field
netrocrystalline anisotropy, the magnetization curves exhibifWeeps are identical to each other if the polaritiesicdnd
a dramatic dependence on the direction of the external mag?V‘H are simultaneously reversed, provided tft#jtreaches a
netic field. Remarkably, hysteresis is absent in the magnetfarge enough value.
zation curves for all the array sizes examined here when the
ex'Ferr_laI fie_ld is applied perpendicular to the direction of the V1. CONCLUSION
uniaxial anisotropy.
In conclusion, we have investigated the magnetization of
V. EFFECTS OF POSITIONAL DISORDER square arrays of nanomagnets. The influences of dipole-
We finally consider the influences of a disorder on thedipole interaction on the processes of magnetic moment re-
arrangement of magnetic moments governed by the dipoleversal have been examined through numerical solutions of
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the Landau-Lifshitz equation. The internal frustration im- moments under dipole-dipole interaction has been demon-
posed by the array boundary persists up to considerably larggrated to be altered dramatically by the competition with the
arrays. A number of roughly degenerate magnetic configuradniaxial magnetocrystalline anisotropy. We have also shown
tions take over each other when the system size and thiat a lattice disorder leads to an enlargement of the hyster-
external magnetic field are varied. Kayali and Sadksug-  esis loop if dipole-dipole interaction is significant. While the
gested that the area enclosed by a hysteresis loop in an infiysteresis loop expands its area parabolically with strength-
nite array is nonzero, based on the numerical results in finiteening the disorder, the remanence is given universally to be
size arrays. Our much extended simulations indicate thisbout half of the saturation magnetization when the disorder
prediction to be unreliable. The ordering of the magneticis sufficiently strong.
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