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We study the two-dimensional bond-dilutedXY and six-state clock models by Monte Carlo simulation with
cluster spin updates. Various concentrations of depleted bonds were simulated, in which we found a systematic
decrease of the Kosterlitz-ThoulesssKTd transition temperatures of bothXY and six-state clock models as the
concentration of dilution decreases. For the six-state clock model, a second KT transition at lower temperature
was observed. The KT transition temperatures as well as the decay exponenth for each concentration of
dilution are estimated. It is observed that the quasi-long-range order disappears at the concentration of dilution
very close to the percolation threshold. The decay exponenth of the KT transitions calculated at each con-
centration indicates that the universality class belongs to the pureXY and clock models, analogous to the
expectation of the Harris criterion for the irrelevance of randomness in the continuous phase transition of
systems with nondiverging specific heat.
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I. INTRODUCTION

Dilution is an indispensable aspect of both theoretical and
experimental studies due to the presence of defects and im-
purities in any real material.1,2 The pioneering work by
Harris3 on the effect of dilution on the critical behavior of
systems with continuous transition has stimulated many stud-
ies in the field of random systems. Based on the Harris cri-
terion, it is predicted that the dilution will be relevantsirrel-
evantd if the specific heat exponenta of the pure system is
positive snegatived, and becomes marginal in the casea=0,
for example, in the two-dimensionals2Dd Ising system.4

It is well known that the pure 2DXY model cannot have
a true long-range order at any finite temperature due to the
continuous symmetryUs1d.5,6 However, the system can exist
in a quasi-long-range ordersQLROd, an intermediate phase
which is a topological excitation formed by vortex-antivortex
pairs.7 The number of vortex-antivortex pairs increases with
the temperature until the system experiences the Kosterlitz-
ThoulesssKTd transition. This transition corresponds to the
unbinding of vortex-antivortex pairs, which leads the system
to a high-temperature disordered phase.

The existence of QLRO in the presence of dilution is an
interesting topic. This is related to the fact that the QLRO is
a topological order vulnerable to the local defect or pertur-
bation. The dilutedXY models may have relevance to the
study of superconductivity, in particular the interaction be-
tween vortices and the spatial inhomogeneity due to the im-
purities. However, not so much attention has been paid to the
dilution effect on the KT transition.

Quite recently, two contradictory results on the 2D site
dilutedXY model were reported.8,9 By using the Monte Carlo
sMCd simulation with the Metropolis algorithm, Leonelet
al.8 showed that the QLRO disappears before the concentra-
tion of vacant sites reaches the percolation thresholdpc of

site dilution. On the other hand, performing a more extensive
MC study with the Wolff cluster algorithm,10 Bercheet al.9

suggested that the QLRO remains up to dilute concentration
very close to the percolation thresholdpc sfor the site dilu-
tion on the square latticepc,0.593d. With these two incon-
sistent results, it is worth carrying out a detailed study of the
dilution problem from a different point of view. Here, treat a
bond-diluted case; it should be made clear whether or not the
QLRO remains up to the percolation threshold of bond dilu-
tion.

The effect of theq-fold symmetry-breaking fields on the
2D XY model has been the subject of attention.11,12 Treating
clock models, where only discrete angles of theXY spins are
allowed, is essentially equivalent to probing theq-fold
symmetry-breaking fields. TheUs1d symmetry of theXY
model is replaced by the discreteZq symmetry in theq-state
clock model. It was shown11 that the 2Dq-state clock model
has two phase transitions of KT type atT1 and T2sT1,T2d
for q.4. There is an intermediateXY-like QLRO phase be-
tween a low-temperature ordered phasesT,T1d and a high-
temperature disordered phasesT.T2d. The effect of dilution
on the low-temperature ordered phase due to the discrete
symmetry of the clock model is another interesting subject to
study.

In this paper, we study the bond-dilutedXY and six-state
clock modelssq=6d on the square lattice. We use the Monte
Carlo method with cluster flip. For the estimator of the KT
transition we use the ratio of magnetic correlation functions
with different distances.13 In the next section, we describe
our model and the detail of calculation method. Then, in Sec.
III we shall present our results. Section IV is devoted to the
summary and concluding remarks. A part of the preliminary
results of the present work was reported at the conference,
“Statistical Physics of Disordered Systems and its Applica-
tion,” which was held in July 2004, at Hayama, Japan.14
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II. MODEL AND SIMULATION METHOD

The bond-dilutedXY spin model is written with the
Hamiltonian

H = o
ki j l

JijSi ·Sj = o
ki j l

Jijcossui − u jd, s1d

where summation is performed over the whole nearest-
neighbors pairski j l , Si being a unit planar spin vector occu-
pying the ith site of lattice systemshere, we deal with the
square latticed, andui the angle associated with theith spin.
For the six-state clock model, the angle takes discrete values,
ui =2pq/6 with q=0,…,5. The quenched dilution is con-
veyed by the couplingJij following a distribution PsJijd
=pdsJij −Jd+s1−pddsJijd, with p being the concentration of
existing bonds, or we can says1−pd is the concentration of
the dilutedsmissingd bonds.

We make use of the canonical sampling MC method with
multicluster spin updatessSwendsen-Wang algorithm15d. The
embedded cluster idea for continuous spins due to Wolff10 is
adopted, namely by projecting the planar spins into a random
axis so that the Kasteleyn-Fortuin16 procedure on Ising spins
can be performed. Spins with missing bonds due to dilution
are not connected in forming a cluster.

We simulated the 2D dilutedXY and six-state clock mod-
els on the square lattice with periodic boundary conditions.
We treated both models with the linear sizes ofL=32, 48, 64,
80, and 96. Various bond concentrations, from the pure case
p=1.0 down top=0.55, were simulated. For each concentra-
tion of each system size we treated many different realiza-
tions in order to get better statistics; typical number of real-
izations is 256, except forp=0.55, where more realizations
were taken into account to compensate highly sample-
dependent results. We performed 104 MC steps for the equili-
bration and 43104 MC steps for the measurement. We use
the reweighting technique17 to obtain the thermal average at
temperatures different from those at which actual simulations
were made.

III. RESULTS

A. Specific heat

Let us start by presenting the results of the specific heat
for the dilutedXY and six-state clock models on the square
lattice. The specific heat per spin is defined as follows:

CsTd =
1

NkT2fkE2l − kEl2g, s2d

wherek is the Boltzmann constant. The number of spins and
the total energy are denoted byN andE, respectively.

The temperature dependence of specific heat for various
bond concentrations is plotted in Fig. 1 for the dilutedXY
and six-state clock models. The temperature is represented in
units of J/k from now on. The statistical errors are less than
the order of the width of curves. We see that the size depen-
dence is small, which is typical for the KT transition. Single
finite peaks observed in the dilutedXY model may corre-
spond to the existence of one KT transition; on the other

hand there are double peaks for the diluted clock models,
which signify the existence of two KT transitions. In both
models, the positions of the peaks gradually shift to the
lower temperature as we reduce the bond concentration; the
peaks become relatively flat with the decrease ofp. This
indicates that the QLRO in the system gradually fades away.
However, no abrupt change has been observed; the change
with p is smooth and continuous. More quantitative analysis
on the critical behavior shall be performed on the magnetic
correlation ratio in the following.

B. Magnetic correlation ratio

The critical behavior of magnetic ordering can be inves-
tigated more precisely from the evaluation of the magnetic
correlation function which is defined as the following:

gsrd = kSi ·Si+rl, s3d

where r is the fixed distance between spins. Precisely, the
distancer is a vector, but we have used a simplified notation.

Consider the ratio of the correlation functions with differ-
ent distances. At the critical point or on the critical line, the
correlation functiongsrd for an infinite system decays as a
power of r

gsrd , r−sD−2+hd, s4d

whereD is the spatial dimension andh the decay exponent.
For a finite system in the critical region, it can be shown that
the ratio of the correlation functions with different distances
has a finite-size scalingsFSSd form with a single scaling
variable

FIG. 1. sColor onlined Temperature dependence of specific heat
of the dilutedsad XY andsbd six-state clock models for various bond
concentrations of system sizesL=32, 48, 64, 80, and 96.
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gsr,t,Ld
gsr8,t,Ld

= fsL/jd, s5d

if we fix two ratios,r /L andr / r8, wherej is the correlation
length.

Tomita and Okabe13 showed that this correlation ratio
with different distances is a very good estimator for the
analysis of the second-order phase transition, as well as for
the KT transition. The helicity modulus18 and the Binder
parameter19 are often used in the analysis of the KT transi-
tion, but the correlation ratio is more efficient in the sense
that corrections to FSS are smaller.13 It has been successfully
applied to the study of the 2D fully frustrated clock model.20

In the present work, we consider the ratio of magnetic
correlation functions settingr =L /2 andr8=L /4 for two dis-
tances. Thus, we evaluate the correlation ratiosgsL /2d /
gsL /4d.

1. Estimate of KT transition temperatures

We show the temperature dependence of magnetic corre-
lation ratio for various bond concentrationsp in Fig. 2 for the
diluted XY and six-state clock models. The data of different
sizes for each bond concentration are plotted. The statistical
errors are less than the order of the width of curves. Although
at high temperatures curves of different sizes are separated,
they gradually merge as the temperature is decreased. At
lower temperatures the curves of different sizes are collapsed
on a single curve, which is the behavior of the QLRO phase,
in other words, on the critical line. The essential feature of
the diluted systems is the same as the pure case, which indi-
cates the existence of the KT transition. The approach to
QLRO phase is described by the scaling behavior shown in
Eq. s5d. For the six-state clock model, the curves with differ-
ent sizes separate again at low enough temperatures. This
comes from the discrete symmetry of the clock model, which

yields the low-temperature ordered phase. Thus, in addition
to the high-temperature KT transition, a second KT transition
at lower temperature exists for the six-state clock model. We
find that the overall behavior of the diluted clock model is
essentially the same as the pure clock model, except that the
KT transition temperatures decrease with the dilution. We
shall estimate the KT transition temperatures of both theXY
and clock models using FSS.

With the FSS analysis based on Eq.s5d and the KT form
of the correlation length,j~ expsc/Îtd, where t= uT−TKTu /
TKT, we can write theL dependence ofTKTsLd as follows:

TKTsLd = TKT +
c2TKT

sln bLd2 . s6d

We consider the size-dependent critical temperatureTKTsLd
that gives the constantR=gsL /2d /gsL /4d. In Fig. 3, we show
the plot ofTKTsLd as a function ofl−2, with l =lnsbLd, using
best-fitted parametersb andc for the dilutedXY and six-state
clock models withp=0.9. The system sizes areL=32, 48,
64, 80, and 96. For the value ofR, 0.600, 0.650, and 0.700
are used for theXY model, andTKTsLd obtained using dif-
ferentR are represented by different marks. For the estimate
of T2 of the diluted clock model, the value ofR is set to be
0.600, 0.650, and 0.700, whereasR is 0.975, 0.985, and
0.995 forT1. The data using differentR are collapsed on a
single curve, which suggests that the difference ofR is ab-
sorbed in theR dependence ofb. The intercepts in the verti-
cal axis of Fig. 3 give the estimate of the KT transition
temperatures. The estimate ofTKT for the dilutedXY model
with p=0.9 is 0.747s4d. The number in the parentheses de-
notes the uncertainty in the last digits. In the same way, we
estimate the two KT transition temperatures of the diluted
six-state clock model,T2 and T1, as 0.727s4d and 0.605s4d,
respectively.

FIG. 2. sColor onlined Ratio of
magnetic correlation functions of
the dilutedsad XY andsbd six-state
clock models for various bond
concentrations of sizesL=32, 48,
64, 80, and 96. The temperature is
represented in units ofJ/k.
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We also plot the data forp=0.6 in Fig. 4. The choice of
fixed R is different from that forp=0.9. The estimated KT
transition temperatures are given by the intercepts in the ver-
tical axis. The KT transition temperatures forp=0.6 are
lower than those forp=0.9; for the six-state clock model the
QLRO phase betweenT1 andT2 becomes narrower.

Performing the same procedure for other bond concentra-
tions, we estimate their KT transition temperatures; they are
tabulated in Table I. For the six-state clock model, the lower
sT1d and highersT2d KT transition temperatures are esti-
mated. In Fig. 5 we show the phase diagram of the diluted
systems, which is produced from Table I. As can be seen
from the phase diagram, the KT transition temperatures
gradually decrease with dilution, and the QLRO phase dis-
appears at the bond concentration which is very close to the
percolation thresholdpc; for the bond percolation of the
square lattice,pc=0.5. This result is the same as that of
Bercheet al.9 for the site dilution, but different from that of
Leonelet al.8

For the clock model the intermediate QLRO phase is sup-
pressed to a narrow range of temperature as the diluted bonds
increase. The lower KT transition comes from the discrete
symmetry. Thus, the behavior near the percolation threshold
is similar to the case of the diluted Ising model. The higher
KT transition temperatureT2 for the clock model becomes
higher thanTKT for the XY model with the samep near p
=0.5, which may be related to the stabilization effect of dis-
crete symmetry.

2. Decay exponent

Next, we consider the decay exponenth of both XY and
six-state clock models for each bond concentration. We first
look at the constant value of correlation ratioR for different
sizes and find the associate correlation functiongsL /2d. We
give our attention to the power-law dependence of the corre-
lation function on the system size,gsL /2d,L−h, expressed
in Eq. s4d with D=2. Choosing the fixedR, we have the
same temperature for different sizes on the critical point or
on the critical line. Moreover, away from the critical points
the sameR gives different temperatures for different sizes,

FIG. 3. sColor onlined The plot of TKTsLd versus l−2, with l
=ln bL, to estimate KT transition temperature of the dilutedsad XY
and sbd six-state clock models on the square lattice forL=32, 48,
64, 80, and 96, with bond concentrationp=0.9. For the clock
model, both the highersT2d and lowersT1d KT transition tempera-
tures are estimated. The data obtained from different values ofR are
shown by different marks.

FIG. 4. sColor onlined The plot of TKTsLd versus l−2, with l
=ln bL, to estimate KT transition temperature of the dilutedsad XY
and sbd six-state clock models on the square lattice forL=32, 48,
64, 80, and 96, with bond concentrationp=0.6. For the clock
model, both the highersT2d and lowersT1d KT transition tempera-
tures are estimated. The data obtained from different values ofR are
shown by different marks.

TABLE I. The estimates of KT transition temperatures for the
diluted XY and six-state clock models for various bond concentra-
tion p. For the clock model the lowersT1d and highersT2d KT
transition temperatures are estimated.

XY Six-state clock

p TKT T1 T2

1.0 0.895s3d 0.715s3d 0.902s3d
0.9 0.747s4d 0.605s4d 0.727s4d
0.8 0.575s6d 0.489s6d 0.574s4d
0.7 0.401s6d 0.388s6d 0.434s6d
0.6 0.215s12d 0.277s4d 0.281s4d
0.55 0.076s8d 0.198s8d 0.204s6d
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but the corrections to the power-law behavior, Eq.s4d, are
the same, which yields the estimate of the decay exponenth.
This analysis ofh was used in the study of the fully frus-
trated clock model.20 As an example, we consider the system
with bond concentrationp=0.9. We plotgsL /2d versusL for
variousRs in double-logarithmic scale for the dilutedXY and
six-state clock models in Fig. 6. The value ofh is estimated
from the slope of the best-fitted line for each value of con-
stant correlation ratio. Similar plots forp=0.6 are given in
Fig. 7.

The R dependence of thus-obtainedh of each bond con-
centration for the dilutedXY and six-state clock models is
plotted in Fig. 8. As can be seen, the exponentsh of bond
diluted system with various bond concentrations behave
similar to those of the pure case,p=1, namely continuously
changing with the temperature in the KT phase. We have
plotted the data down top=0.6. All the data seem to be
universal, and the corrections are small except for the larger
R side of the clock model withp=0.6. The deviations from
the pure value become larger forp=0.55; they are not plotted
here. This comes from the fact that it is close to the perco-
lation threshold and corrections become larger. In the
renormalization-group language, the critical behavior is af-
fected by another fixed point nearby.

Since the estimatedh is almost constant for smallerR,
which corresponds to higher temperature, in Fig. 8, the ex-
ponent atTKT of theXY model andT2 of the clock model are
estimated as

FIG. 5. sColor onlined Phase diagram of the dilutedsad XY and
sbd six-state clock models. As shown, there is a systematic shift of
the KT transition temperatures as the bond concentration decreases.
The plot suggests that the critical dilution is close to the percolation
thresholdpc=0.5. For the clock model, due to the discrete symme-
try, there exists a lower KT transition, separating the ordered phase
of low temperature from the intermediate QLRO.

FIG. 6. sColor onlined Double-logarithmic plot of the magnetic
correlation functiongsL /2d versusL of the dilutedsad XY and sbd
six-state clock models, for bond concentrationp=0.9. Here, the
slope of the best-fitted line of each correspondingR gives the esti-
mate of the exponenth.

FIG. 7. sColor onlined Double-logarithmic plot of the magnetic
correlation functiongsL /2d versusL of the dilutedsad XY and sbd
six-state clock models, for bond concentrationp=0.6. Here, the
slope of the best-fitted line of each correspondingR gives the esti-
mate of the exponenth.
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h2 = 0.25s1d.

This value is consistent with that for the pure case, 1/4
=0.25. For the low-temperature sideslarge Rd of the XY
model,h approaches 0. Meanwhile, the estimatedh for the
six-state clock model becomes constant for largeR. This
gives the decay exponent at the lower KT transition tempera-
ture T1 as

h1 = 0.12s1d,

which is consistent with the pure value of1/9=0.111. The
present results suggest that the exponents associated with the
KT transitions are universal with dilution.

IV. CONCLUDING REMARKS

In summary, we have investigated the bond dilution of the
XY and six-state clock models on the square lattice using the
canonical sampling MC method with cluster spin updates.

We have observed the KT transition of higher temperature
separating the intermediate QLRO phase from the disordered
phase. Due to the discrete symmetry of the clock model, the
lower KT transition also has been observed. There is a sys-
tematic decrease in KT transition temperatures as the con-
centration of diluted bonds increases. Our estimates of the
KT transition temperatures for each concentration, both for
theXY and six-state clock models, are listed in Table I, from
which the corresponding phase diagram shown in Fig. 5 fol-
lows. As can be seen from the phase diagram, the critical
concentration of dilution is very close to the percolation
threshold, which is the same as the result of Bercheet al.9 for
the site dilution, but different from that of Leonelet al.8 The
bond-diluted and site-diluted classical spin systems show es-
sentially the same behavior, although there may be differ-
ences for the quantum spin models.21,22 Our preliminary re-
sults for the site-dilutedXY and clock models give the
continuous phase transition with respect top. Thus, our re-
sult is in favor of that of Bercheet al.9

The phase diagram also shows that the intermediate
QLRO phase for the clock model is suppressed to a narrow
range of temperature as the diluted bonds increase. Our esti-
mates of decay exponents for lower concentration dilution
suggest that the KT transition remains unaffected by dilution,
which is analogous to the expectation of the Harris criterion
that the randomness is irrelevant for system with nondiverg-
ing specific heat.

Quite recently, Sasamoto and Nishimori have studied the
phase diagram of 2D randomZq models using the duality
argument.23 The analysis of the duality argument for the
present model will be left as a future problem.
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