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The problem of weak ferromagnetism in antiferromagnets due to canting of magnetic moments is treated
using Green’s function technique. At first the eigenvalues and eigenfunctions of the electronic Hamiltonian
corresponding to collinear magnetic configuration are calculated which are then used to determine the first and
the second variations of the total energy as a function of the magnetic moments canting angle. Spin-orbit
coupling is taken into account via perturbation theory. The results of calculations are used to determine an
effective spin Hamiltonian. This Hamiltonian can be mapped on the conventional spin Hamiltonian that allows
one to determine parameters of isotropic and anisotropicsDzyaloshinskii-Moriyad exchange interactions. The
method is applied to the typical antiferromagnets with weak ferromagnetisma-Fe2O3 and La2CuO4. The
obtained values of the magnetic moments canting angles are in good agreement with previous theoretical
results and are in reasonable agreement with experimental data.
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The Heisenberg Hamiltonian is the basis of most theoret-
ical investigations of the transition metal compounds
magnetism.1–3 The essential part of these investigation is de-
termination of exchange interaction parametersJij . It can be
done in a phenomenological way by fitting those parameters
to reproduce experimental datastemperature dependence of
magnetic susceptibility and magnon dispersion curves ob-
tained in inelastic neutron-scattering measurementsd.4 How-
ever, much more physically appealing is to obtain them inab
initio calculations. In most cases it was done via calculated
total energy values for different magnetic moments configu-
rations. Mapping on Heisenberg Hamiltonian gave a system
of linear equations forJij sfor example, see Ref. 5d. This
procedure becomes inconvenient for the systems with a large
number of long-range competing exchange interactions as in
sVOd2P2O7, NaV2O5, Cu2Te2O5X2 sX=Br,Cld, etc.6

In 1987 Lichtensteinet al.7 proposed the calculation
method that does not use total energy differences. They de-
termined exchange interaction parameters via calculation of
second variation of total energyd2E for small deviation of
magnetic moments from the collinear magnetic configura-
tion. The expression for this second variation was derived
analytically and required for its evaluation calculation of the
integral over the product of the one-electron Green functions.
Then this method was successfully applied to the various
transition metal compounds.8–11

The combination of low symmetry and spin-orbit cou-
pling was shown by Dzyaloshinskii12 and Moriya13 to give
rise to anisotropic exchange coupling. Moriya has shown
how the processes involving an additional virtual transition
due to spin-orbit coupling can cause an anisotropic exchange
interaction as a correction to the isotropic Anderson superex-
change term and introduced the new term in the spin Hamil-
tonian which is the Dzyaloshinskii-Moriya interactionsDMd.
Solovyevet al.14 has shown that the Dzyaloshinskii-Moriya
interaction parameters can be calculated using perturbation
theory and Green’s function technique and described the

canting of magnetic moments of LaMnO3. Recently,
Katsnelson, and Lichtenstein15 have derived the general ex-
pression for Dzyaloshinskii-Moriya interaction term in the
LDA++ approach.

This paper is devoted to the problem of first-principles
theoretical description of weak ferromagnetism in antiferro-
magnets, specifically to the task of calculations of weak fer-
romagnetic moment value and direction of spin canting. For
this we consider the first and second variations of the total
energy of the system at small deviation of magnetic moments
from collinear configuration with spin-orbit coupling intro-
duced as a perturbation using Green’s function technique. We
show that there is an additional on-site term that was not
taken into account in previous work,14 which gives signifi-
cant contribution to weak ferromagnetic moment. Based on
the results of our calculations we propose an effective single
site Hamiltonian. This Hamiltonian is sufficient for solving
the problem of spin canting, but it can also be rewritten to
the conventional form containing isotropic and anisotropic
exchange interaction terms. We have applied our method to
weak ferromagnetism ina-Fe2O3, the classical system which
was used by Moriya in his pioneering work,13 and in antifer-
romagnetic cuprate La2CuO4 in the low-temperature ortho-
rhombic phase, estimated ferromagnetic moments values on
the metallic ions in these compounds and determined the
plane of spin canting. It is interesting to note that there is
another possible source of noncollinearity arising from iso-
tropic exchange interaction, which is the result of lattice frus-
tration sfor instance, triangular and pyrochlore latticesd.
Magnetic ions sublattices for botha-Fe2O3 and La2CuO4 are
not frustrated, therefore spin-orbit coupling is the only pos-
sible source of spin noncollinearity in these systems.

Briefly, this paper is organized as follows. In Sec. I we
describe the method for calculation of spin Hamiltonian pa-
rameters which are responsible for the magnetic moments
canting. Section II contains the results of our calculations for
a-Fe2O3 and La2CuO4 crystals. In Sec. III we discuss and
briefly summarize our results.
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I. METHOD

According to Andersen’s “local force theorem,”16–18 the
total energy variationdE under the small perturbation from
the ground state coincides with the sum of one-particle en-
ergy changes for the occupied states at the fixed ground state
potential. In the first order for the perturbations of the charge
and spin densities one can find the following relation:7

dE =E
−`

EF

de e dnsed = EFdz−E
−`

EF

de dNsed =

−E
−`

EF

de dNsed, s1d

wherensed=dN/de is the density of the electron state,Nsed
is the integrated density of the electron state, andEF is the
Fermi energy. In the case of magnetic excitation the change
of total number of electronsdz is equal to zero. The Green
function G is formally expressed in the usual wayG=se
−Hd−1. One can express density of states and integrated den-
sity of states via Green functionG:

nsed = −
1

p
Im SpGsed s2d

and

Nsed = −
1

p
Im Sp lnse − Hd. s3d

Then the variation of integrated density of states is given by

dNsed =
1

p
Im SpfdHGg. s4d

Therefore the first and the second variations of total energy
of the system take the following forms:

dE = −
1

p
E

−`

EF

de Im SpsdHGd s5d

and

d2E = −
1

p
E

−`

EF

de Im Spsd2HG + dHGdHGd. s6d

Operator of spin rotation on the sitej by the angleudWfu
around directionnW =dfW / udfW u is given by

Û = es1/2didfW sŴ , s7d

wheresŴ =sŝx,ŝy,ŝzd are Pauli matrices. For smalludfW u val-
ues we can expand the spin rotation operator in the following
way:

Û = 1 + 1/2idfW sŴ − 1/8sdfW sŴ d2. s8d

New Hamiltonian of the system after rotation of the spin on

j site around directionnW by the angleudfW u results in the
formula

H̃
ˆ

= U†ˆ ĤÛ. s9d

The first variation over the angle of rotation is expressed in
the following form:

dĤ = 1/2idfW fĤ,sŴ g. s10d

In the basisuilmsl si denotes the site,l the orbital quan-
tum number,m the magnetic quantum number, ands the

spin indexd the Hamiltonian matrix takes the formHilm,jlm8
ss8

=kilmsuĤu jlm8s8l. For simplicity, we drop the indexes of
orbital and magnetic quantum numbers and leave spin and
site indexes below. We assume that without spin-orbit inter-
action the ground state corresponds to the collinear magnetic
configuration at which all spin moments lie along thez axis.

Therefore the Hamiltonian matrixHij
ss8 is diagonal in the

spin subspace

Hij = SH i j
↑ 0

0 H i j
↓ D .

One can rewrite the first variation of Hamiltonian Eq.s10d in
the following form:

dHjj = idf j
x1 0

D j

2

−
D j

2
0 2 + df j

y1 0
D j

2

D j

2
0 2 , s11d

whereD j =H j j
↑ −H j j

↓ . It is easy to show that the second varia-
tion of Hamiltonian is given by

d2Hjj = d2f j
x1−

D j

2
0

0
D j

2
2 + d2f j

y1−
D j

2
0

0
D j

2
2 . s12d

The rotation of spin moment aroundz axis does not change
the energy of the system, therefore there is no term withdfz

in Eqs.s11d and s12d.
Then we take into account the spin-orbit coupling via per-

turbation theory. The Green function betweenith and j th
sites in the first order of perturbation theory with respect to
the spin-orbit coupling can be written as

G̃ij = Gij + o
k

GikHk
SOGkj, s13d

where Hk
SO=lkLWSW, k denotes site,Gij is Green function of

system with collinear magnetic configuration, andlk is spin-
orbit coupling constant. The first variation of total energy Eq.
s5d takes the form

dE = −
1

p
o

i
E

−`

EF

de Im SpSdHiGii + o
k

dHiGikHk
SOGkiD .

s14d

The first term in Eq.s14d is equal to zero. The second term
can be expressed as the following sum:
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dE = o
i

Ai
xdfi

x + Ai
ydfi

y, s15d

where

Ai
x = o

k

Bik
x = −

1

2p
E

−`

EF

de Reo
k

sDiGik
↓ Hk↓↑

SOGki
↑

− DiGik
↑ Hk↑↓

SOGki
↓ d s16d

and

Ai
y = o

k

Bik
y = −

1

2p
E

−`

EF

de Im o
k

sDiGik
↓ Hk↓↑

SOGki
↑

+ DiGik
↑ Hk↑↓

SOGki
↓ d. s17d

We consider the situation when all spins lie along thez axis
and therefore the rotation around it does not change the en-
ergy of the system. In order to findAi

z component of the

magnetic torque vectorAW i, we change the coordinate system
in the following waysx,y,zd→ sz,y,−xd srotation around the
y axisd:

H̃SO=
1

2
S 1 1

− 1 1
DSH↑↑

SO H↑↓
SO

H↓↑
SO H↓↓

SODS1 − 1

1 1
D . s18d

ThereforeAi
x component in the new coordinate system isAi

z

in the old one:

Ai
z = o

ik

Bik
z = −

1

4p
E

−`

EF

de Reo
k

fDiGik
↑ sHk↑↑

SO − Hk↓↓
SOdGki

↓

− DiGik
↓ sHk↑↑

SO − Hk↓↓
SOdGki

↑ g. s19d

In contrast to the first variationdE, the second variation of
total energyd2E over small deviations of magnetic moments
from ground state collinear magnetic configuration has non-
zero value without taking into account spin-orbit coupling:

d2E = −
1

p
E

−`

EF

de Im SpS1

2o
i

d2HiiGii +
1

2o
j

d2HjjGjj

+ o
i j

dHiGijdHjGjiD , s20d

where

Spsd2HiiGiid = 1/2d2fi
xDisGii

↓ − Gii
↑d + 1/2d2fi

yDisGii
↓ − Gii

↑d
s21d

and

SpsdHiGijdHjGjid = 1/2dfi
xdf j

xsDiGij
↓D jGji

↑ d

+ 1/2dfi
ydf j

ysDiGij
↓D jGji

↑ d. s22d

Using the conditionGii
↑ −Gii

↓ =sG↑DG↓dii =o jGij
↑D jGji

↓ one can
rewrite Eq.s20d in the following form:

d2E =
1

4p
E

−`

EF

de Im o
i j

sDiGij
↓D jGji

↑ d

3 fsdfi
x − df j

xd2 + sdfi
y − df j

yd2g. s23d

One can see that Eq.s23d contains onlyx andy components

of dWf. In order to includez component, one can use the same
rotation of coordinate system as for the site magnetic torque

vectorAW , Eq. s18d. Finally, we obtain the following function

of the total energy over angledWf:

DE = o
i

AW idfW i +
1

2o
i j

Jij udfW i − dfW ju2, s24d

where

Jij =
1

4p
E

−`

EF

de ImsDiGij
↓D jGji

↑ d. s25d

The aim of this paper is description of canted magnetism
in transition metal compounds caused by spin-orbit coupling.
For this we have used the expressions24d for the total energy
as a function of canting angle. In order to solve the problem
of the weak ferromagnetism in antiferromagnets we suppose
that the crystal is an antiferromagnet containing two sublat-
tices 1 and 2, with the same canting angle for the atoms
belonging to the same sublattice. With this assumption Eq.
s24d is reduced to the following form:

DE = AW 1dfW 1 + AW 2dfW 2 + o
j.1

J1judfW 1 − dfW 2u2. s26d

Our results fora-Fe2O3 and La2CuO4 demonstrated thatAW 1

=−AW 2 storque vector has an opposite sign for the atoms be-
longing to the different sublatticesd. That gives

DE = AW 1sdfW 1 − dfW 2d + o
j.1

J1judfW 1 − dfW 2u2. s27d

If we further suppose that the deviations of magnetic mo-
ments from the average direction defined bydfW i have the
same absolute value but different sign for both sublattices,
then Eq. s27d takes the following formswe suppose that
magnetic moments lie in the plane perpendicular to site mag-

netic torque vectorAW and canting occurs in the same planed:

DE = 2AW 1dfW 1 + 4o
j.1

J1judfW 1u2. s28d

Then we find the value ofudfW 1u whereDE has a minimum

udfW 1u =
uAW 1u

4o
j.1

J1j

. s29d

The next step is to establish connection between Eq.s24d
and conventional spin Hamiltonian
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H = HDM + Hexch= o
iÞ j

DW i jfeW i 3 eW jg + o
iÞ j

JijeW ieW j , s30d

whereei is a unit vector in the direction of theith site mag-

netization, Jij is the exchange interaction, andDW i j is the
Dzyaloshinskii-Moriya vector. One can rewrite the second
term in Eq.s30d asHexch=oi j Jij ueW iuueW jucossui jd. In the limit of
small canting angle values we can assume that cossui jd=1

− udfW i −dfW ju2/2 and exchange interaction energy for antifer-
romagnetic configuration has the form

DHexch=
1

2o
i j

Jij udfW i − dfW ju2. s31d

Therefore in the limit of smalldfW we can directly map the
second term of total energy variation Eq.s24d onto the sec-
ond term in spin Hamiltonians30d.

The first term in Eq.s24d describes the deviation of the
spin moment on the sitei from the initial collinear spin con-
figuration direction. We assume that this initial spin direction
on the sitei is defined by the direction of Weiss mean-field

HW i
WF=o jsÞidJijeW j sthe corresponding unit vector iseW i

0

=HW i
WF/ uHW i

WFud. Therefore we can map the first term in Eq.
s24d on the spin Hamiltonian

Hdev= o
i

AW ifeW i
0 3 eW ig s32d

describing the deviation of spin moments away from the di-
rection eW i

0 of external Weiss field.sWe have used here the
connection between rotation vectordfW i and the change of the
magnetic moment unit vectordeW i =eW i −eW i

0: deW i =fdfW i 3eW i
0g.d

In order to demonstrate the connection betweenAW i and DW i j
one can rewrite the Eq.s32d in the following form:

Hdev=
1

2So
i

AW iF HW i
WF

uHW i
WFu

3 eW iG + o
j

AW jF HW j
WF

uHW j
WFu

3 eW jGD .

s33d

Using our definition ofHW i
WF we obtain

Hdev=
1

2So
i j

AW i

uHW i
WFu

JijfeW j 3 eW ig + o
i j

AW j

uHW j
WFu

JijfeW i 3 eW jgD .

s34d

This gives us the following expression for parameterDW i j of
spin Hamiltonians30d:

DW i j =
1

2
JijS AW j

uHW j
WFu

−
AW i

uHW i
WFu
D . s35d

Therefore the components of Dzyaloshinskii-Moriya interac-
tion vector are given by

Dij
x = −

1

4p
JijE

−`

EF

de Re

3o
k
SD jGjk

↓ Hk↓↑
SOGkj

↑ − D jGjk
↑ Hk↑↓

SOGkj
↓

uHW j
WFu

−
DiGik

↓ Hk↓↑
SOGki

↑ − DiGik
↑ Hk↑↓

SOGki
↓

uHW i
WFu

D , s36d

Dij
y = −

1

4p
JijE

−`

EF

de Im

3o
k
SD jGjk

↓ Hk↓↑
SOGkj

↑ + D jGjk
↑ Hk↑↓

SOGkj
↓

uHW j
WFu

−
DiGik

↓ Hk↓↑
SOGki

↑ + DiGik
↑ Hk↑↓

SOGki
↓

uHW i
WFu

D , s37d

Dij
z = −

1

8p
JijE

−`

EF

de Reo
k
SD jGjk

↑ sHk↑↑
SO − Hk↓↓

SOdGkj
↓

uHW j
WFu

−
D jGjk

↓ sHk↑↑
SO − Hk↓↓

SOdGkj
↑

uHW j
WFu

−
DiGik

↑ sHk↑↑
SO − Hk↓↓

SOdGki
↓

uHW i
WFu

+
DiGik

↓ sHk↑↑
SO − Hk↓↓

SOdGki
↑

uHW i
WFu

D . s38d

We have obtained more general expression for the
Dzyaloshinskii-Moriya interaction parameter in comparison
with those presented in paper.14 There are two kinds of con-

tributions into magnetic torque vectorAW i: on-site interaction

BW ii sabsent in Ref. 14d and intersite interactionBW iksi Þkd. We
have found that on-site contribution in the magnetic torque

AW , which was not considered before, plays an important role
in weak ferromagnetism description.

We have applied the calculation scheme developed above
to the typical antiferromagnets with weak ferromagnetism
a-Fe2O3 and La2CuO4 in low-temperature orthorhombic
phase. In order to calculate Green functions corresponding to
the collinear spin configurations we used LDA+U
approach19 realized in LMTO method within the atomic
sphere approximation.20

II. RESULTS

A. Fe2O3

Weak ferromagnetism or weak noncollinearity of essen-
tially antiparallel magnetic moments was first observed in
a-hematitea-Fe2O3.

21 The trigonal crystal ofa-Fe2O3 has

R3̄c space group. Depending on temperaturea-hematite oc-
curs in two different antiferromagnetic states: atT,250 K
the spins are along the trigonal axis, and at 250 K,T
,950 K they lie in one of the vertical planes of symmetry
making small angle of 1.1310−3 with basal plane.22,23 In the
latter case thea-Fe2O3 has a net ferromagnetic moment.
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Dzyaloshinskii has shown that the spin superstructure gives
rise to a nonvanishing antisymmetric spin coupling vector
which is parallel to the trigonal axis. Moriya13 gave phenom-
enological Dzyaloshinski’s explanation a microscopic foot-
ing by means of Anderson’s perturbation approach to mag-
netic superexchange.

Sandratskiiet al.24 have performed the calculation based
on the local approximation to spin-density functional theory
sLSDAd using the fully relativistic version of ASW method.
In spite of the well-known problem of proper determination
of the energy gap in semiconducting and insulating materials
using the LSDA approximation, the authors24 succeeded in
describing a weak ferromagnetism. The obtained ferromag-
netic moment of about 0.002mB per Fe atom together with
atomic moment of iron of 3.72mB results in the canting angle
of 0.53310−3 which is two times smaller than experimental
value. In the present study we treat the problem of weak
ferromagnetism description ina-Fe2O3 using perturbation
theory.

The electronic structure ofa-hematite calculated using
the standard LDA+U approximation19 with on-site Coulomb
interaction parametersU=5 eV, JH=0.88 eV, and structure
data from Ref. 25 is in good agreement with previous theo-
retical calculations.26 The Brillouin zone integration has been
performed in the grid generated by usings6;6;6d divisions.
We have obtained the magnetic moment of 4.1mB per Fe
atom. This value is a little smaller than those seen experi-
mentally s4.6–4.9mB in Refs. 27 and 28d. The energy gap
value of 1.67 eV is also slightly underestimated comparing
with experimental datas2.14 eV in Ref. 29d.

The calculated isotropic exchange interactions and contri-

butions in site magnetic torqueAW 2 are presented in Tables I
and II, respectively. The energy integration has been per-
formed in the complex plane by using 800 energy points on
the rectangular contour. The simplified crystal structure and
the interaction paths are shown in Fig. 1. One can see that
the values of exchange interaction parameters and spin-orbit
torque terms are converged in sum over the neighbors. Even
the contributions from fifth-nearest neighbors are negligibly
small. The obtained interaction picture is more complicated
than those Moriya examined in order to describe the weak
ferromagnetism ina-hematite.13 There are strong isotropic
exchange interaction with the third and the fourth neighbors.

This agrees well with experimental results30 and theoretical
predictions.31 The mean-field value of Néel temperature ob-
tained via exchange interactions24 overestimates the experi-
mental result of about two times. We restrict our consider-
ation to comparing of LDA+U exchange interactions with

TABLE I. Values of exchange interactions of Atom 2 with atoms
which belong to different coordination spheres estimated in experi-
ment sRef. 30d, calculated in present work using LSDA and LDA
+U approximationssin meVd. The couplings with negative sign are
ferromagnetic. The number in bracket denotes the corresponding
coordination sphere presented in Fig. 1.

Samuelsenet al. sRef. 30d LSDA LDA+ U

Js1d −3.076 9.905 8.576

Js38d −0.528 −5.71 −7.3

Js18d 20.313 25.957 25.224

Js48d andJs49d 12.554 13.488 17.502

Js3d 1.056 −0.497 −0.073

TABLE II. The different contributions in components of site
magnetic torque ofa-Fe2O3 obtained in LDA+U calculation sin
meVd. The couplings with negative sign are ferromagnetic.dij is the

distance betweenith and j th atoms in a.u.RW i j is the radius vector
from ith site to j th site in units of the lattice constants5.49 a.u.d.

si , jd dij RW i j Bij
x Bij

y Bij
z

s2,2d 0 s0;0;0d 0 0 0.162

s2,1d 5.45 s0;0;−0.99d 0 0 0.005

s2,38d 5.60 s−0.5;−0.86;0.20d −0.036 0.015 0.001

s2,38d 5.60 s1;0;0.20d 0.032 0.023 0.001

s2,38d 5.60 s−0.5;0.86;0.20d 0.004 −0.038 0.001

s2,18d 6.36 s0.5;−0.86;−0.58d 0.071 0.019 −0.14

s2,18d 6.36 s−1;0;−0.58d −0.052 0.052 −0.14

s2,18d 6.36 s0.5;0.86;−0.58d −0.019 −0.071 −0.14

s2,48d 6.99 s0.5;−0.86;0.79d 0.168 0.063 0.101

s2,48d 6.99 s−1;0;0.79d −0.139 0.115 0.101

s2,48d 6.99 s0.5;0.86;0.79d −0.029 −0.178 0.101

s2,49d 6.99 s−0.5;−0.86;−0.79d 0.128 0.094 0.076

s2,49d 6.99 s1;0;−0.79d 0.017 −0.158 0.076

s2,49d 6.99 s−0.5;0.86;−0.79d −0.145 0.064 0.076

s2,4d 7.53 s0;0;−1.37d 0 0 0.001

FIG. 1. sColor onlined The crystal structure ofa-Fe2O3. The
large circles are Fe atoms which belong the smallest unit cell used
in the LDA+U calculations. The small circles are Fe atoms which
surround atom 2. The arrows denote the magnetic configuration
used in our calculations.
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those deduced from inelastic neutron-scattering
experiment.30 Using the Green function method with RPA
approximation32 the authors of Ref. 30 obtainedTN
=1044 K, which is in good agreement with experimental
value varying from 947 to 969 K. Comparing our exchange
interaction parameters obtained in LDA+U calculation with
experimental values we observe good agreement for the larg-
est magnetic interactions with the third and the fourth neigh-
bors. There is disagreement between experiment and theory
for interactions with the first and the second neighbors.
While experimental exchange interactionJ21 with the first
neighbor is ferromagnetic, our results and results of other
works24,33 show that this interaction is antiferromagnetic in
the ground state ofa-Fe2O3.

The sum of the exchange interactions between atom 2 and
its neighbors is given byJ2=oiÞ2J2i =189.26 meV. We have
also obtained the following components of site magnetic
torque vector on the atom 2:A2

x=oiB2i
x =0 eV, A2

y=oiB2i
y

=0 eV, andA2
z=oiB2i

z =0.282 meV. One can see that on-site

interactionB22
z gives the main contribution inAW 2. The site

magnetic torque ofAW 1 has the following componentss0;0;
−0.282d, the same value but the opposite sign comparing

with AW 2. The value of canting angle ofudfW u=0.4310−3 cal-
culated using Eq.s29d agrees well with previous theoretical
results24 s0.53310−3d and both are about two times smaller
than experimental datas1.1310−3 in Refs. 22 and 23d. In
order to compare our perturbation theory results with those
which was obtained using the fully relativistic ASW
method24 we have calculated the canting angle within the
LSDA approximation. The obtained canting angle value of
0.6310−3 is in good agreement with both our LDA+U result
and result of Sandratskii paper.24

It is easy to show that in the case when all spins lie along
the z axis there is no canting of the spin moments. On the
other hand, if direction of Weiss field is perpendicular to the
z axis, the canting exists and the system has weak ferromag-
netic moment. This picture fully agrees with experimental
and theoretical data.13,22,23

B. La2CuO4

In the case of the cuprates Dzyaloshinskii-Moriya interac-
tion is the leading source of anisotropy, since single-ion an-
isotropy does not occur due toS= 1

2 nature of the spins on the
Cu2+ sites. The experimental data34,35 demonstrate that in
case of low-temperature orthorhombic phase the spins do not
lie exactly in the CuuO planes, but are canted out of the
plane by small angle of 0.17°. Coffey and co-workers36 made
complete examination of the anisotropic exchange interac-
tion in orthorhombic phase based on a symmetry consider-
ation. They assumed rotation axis of the CuO6 as a direction
of antisymmetric exchange interaction and obtained that the
spins are canted in plane which is perpendicular to
Dzyaloshinskii-Moriya vector.

The first attempt at a microscopic calculation of the
Dzyaloshinskii-Moriya anisotropy for La2CuO4 in the low-
temperature orthorhombic and tetragonal phases was made
by Coffey, Rice, and Zhang.37 They have examined the

Dzyaloshinskii-Moriya interaction patterns on an antiferro-
magnetically ordered state and shown conditions for arising
of weak ferromagnetism. Then the authors of Refs. 38–40
have demonstrated that the higher order terms with respect to
spin-orbit coupling are also important to describe magnetic
properties of La2CuO4. Here we present anab-initio investi-
gation of canted magnetism of La2CuO4 and concentrate
only on the first order spin-orbit coupling terms.

We have performed the LDA+U calculations for
La2CuO4 in the low-temperature orthorhombic phase using
structural data for Nd doped La2CuO4,

41 with on-site Cou-
lomb interaction parametersU=10 eV, JH=1 eV sthe same
as used in Ref. 42d. The Brillouin zone integration has been
performed in the grid generated by usings6;6;6d divisions.
The schematic structure of CuuO layer of La2CuO4 in low-
temperature orthorhombic phase is presented in Fig. 2.

The experimental value of the energy gap is reported to be
about 2 eVsRef. 43d. Our gap value of 1.94 eV is in good
agreement with experimental data. The calculated magnetic

TABLE III. Isotropic exchange interactions of atom 0 with
neighbors and components of different contributions in site mag-

netic torqueAW 0 sin meVd. RW 0j is radius vector from 0th site toj th
site in units of the lattice constants10.14 a.u.d.

RW 0j J0j B0j
x B0j

y B0j
z

s0;0;0d 0 0.101 0 0

s−0.49;0.5;0d 14.576 0.020 −0.032 −0.005

s0.49;0.5;0d 14.576 0.020 0.032 0.005

s0.49;−0.5;0d 14.576 0.020 −0.032 −0.005

s−0.49;−0.5;0d 14.576 0.020 0.032 0.005

s0;1;0d −2.071 0.002 0 0

s0;−1;0d −2.071 0.002 0 0

s−0.98;0;0d −1.943 −0.007 0 0

s0.98;0;0d −1.943 −0.007 0 0

s−0.49;0;1.22d 0 0 0 0

s−0.49;0;−1.22d 0 0 0 0

s0.49;0;1.22d 0 0 0 0

s0.49;0;−1.22d 0 0 0 0

FIG. 2. sColor onlined The schematic crystal structure of
La2CuO4 in the low-temperature orthorhombic phase. The open
circles are oxygen atoms which are tilted up out of the Cu plane, the
black circles are oxygen atoms tilted down out the Cu plane. The
big circles are copper atoms. The arrows denote the magnetic con-
figuration used in LDA+U calculations with spin moments lie
along thez axis.
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moment value on Cu atom is 0.61mB, which also agrees well
with experiment.44

We have performed calculations of the isotropic exchange
interactions and different contributions to site magnetic
torque componentssTable IIId using the energy integration in
the complex plane with 700 energy points on the rectangular
contour. One can see that the exchange interaction param-
eters and the spin-orbit torque terms are converged in sum
over the distancesRijd. The obtained values of exchange in-
teraction parameters are in good agreement with results of
previous calculations for low-temperature tetragonal phase42

and experimental estimations.34 The sum of the isotropic ex-
change interaction terms and components of site magnetic
torque are given by J0=oiÞ0 J0i =58.304 meV, A0

x

=0.171 meV,A0
y=0 meV, andA0

z=0 eV. We obtained that

AW 2=s−0.171;0;0d, again of the same value but the opposite

sign comparing withAW 0. It means that the system has net
ferromagnetic moment if spins lie in the plane which is per-
pendicular tox axis saxis of rotation of oxygen octahedrad.
This fully agrees with results of previous theoretical

works.34,36,37The obtained value of canting angleudfW u=0.7
310−3 is about three times smaller than those experimentally
observed 2.2–2.9310−3 sRefs. 34 and 35d.

III. CONCLUSION

We present method for calculation of spin Hamiltonian
parameters responsible for magnetic moments canting. The

effective Hamiltonian for canted magnetism is proposed. We
show that the parameters of this model Hamiltonian can be
obtained from first-principles calculations. Using the devel-
oped method we describe the weak ferromagnetism in
a-Fe2O3 and La2CuO4. It is shown that on-site contribution

BW ii in site magnetic torqueAW i plays the crucial role for net
ferromagnetic moment ofa-Fe2O3 and La2CuO4 in low-
temperature orthorhombic phase. Finally we can conclude
that the obtained values of the magnetic moments canting
angles are in good agreement with previous theoretical re-
sults and are in reasonable agreement with experimental
data.
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