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Nonlinear spin relaxation in strongly nonequilibrium magnets
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A general theory is developed for describing the nonlinear relaxation of spin systems febrongly
nonequilibriuminitial state, when, in addition, the sample is coupled to a resonator. Such processes are
characterized by nonlinear stochastic differential equations. This makes these strongly nonequilibrium pro-
cesses principally different from the spin relaxation close to an equilibrium state, which is represented by linear
differential equations. The consideration is based on a realistic microscopic Hamiltonian including the Zeeman
terms, dipole interactions, exchange interactions, and a single-site anisotropy. The influence of cross correla-
tions between several spin species is investigated. The critically important function of coupling between the
spin system and a resonant electric circuit is emphasized. The role of all main relaxation rates is analyzed. The
phenomenon of self-organization of transition coherence in spin motion, from the quantum chaotic stage of
incoherent fluctuations, is thoroughly described. Local spin fluctuations are found to be the triggering cause for
starting the spin relaxation from an incoherent nonequilibrium state. The basic regimes of collective coherent
spin relaxation are studied.
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I. INTRODUCTION in quantum computing and others, as is discussed in

The problem of spin relaxation from a state close to equi_revi§w§?5'16 One of the major possible applications is in
librium has a long history and is well studied, being relateg@chieving the regime of superradiant operation by spin
to the description of spin motion in the vicinity of different masers>*"~1%Punctuated nonlinear dynamics of spin assem-
magnetic resonances. This type of spin relaxation is usuallplies can also be a new tool for information processhg.
characterized by linear differential equations, such as Bloch The aim of the present paper is to develop a general
equations. The theory of spin motion close to equilibrium hagheory of nonlinear spin relaxation, being based on a realistic
been expounded in numerous literature, among which imicroscopic Hamiltonian including, in addition to the Zee-
would be possible to mention several good bobks. man terms, the main spin interactions, and taking account of

Essentially nonlinear spin motion arises if the system ighe different major mechanisms of spin attenuation. By con-
prepared in a strongly nonequilibrium initial state, e.g., withsidering just some limited models, it is easy to come to false
magnetization opposite to an external magnetic field, and, isonclusions and to predict fictitious physical effects that by
addition, is coupled to a resonator. Such nonlinear dynamicBo means can exist in real materials. It is only by carefully
are commonly treated by the Bloch equations supplementeiieating different competing mechanisms that one can derive
by the Kirchhoff equation for a resonator electric cirduitt  reliable physical implications.

However, the phenomenological Bloch equations do not al-
low for the elucidation of different physical processes in-
volved in the behavior of the system and are not able to Keeping in mind the applicability of the theory to a wide
describe several, probably the most interesting, selfelass of spin systems, we start with a rather general Hamil-
organized regimes of spin motion, as was demonstrated itonian including the major spin interactions the most often
Refs. 12-14. Some physical models, based on microscopimet in magnetic materiafs/?'-23Let us consider a solid
spin Hamiltonians, have also been considered, whose survesample containingl vector spinsS; enumerated by the index
can be found in recent review!® But in each of these i=1,2,... N. The spin operator§; can represent any par-
models one standardly studies only some particular sukticle of spinS, starting fromS=1/2 tovery high spin values.
stances and considers only a part of spin interactions, mainlyhese can be nuclear or electronic spins, as in the standard
secular dipole-dipole interactions, and one takes into accoumroblems of nuclear or electronic spin resonaricé$®Mag-

only some of the known attenuation processes. At the sameetic molecules, forming molecular magnets, can possess
time, it is evident that taking care of only particular model various spins ranging fror8=1/2 up t0oS=27/2, as is re-
elements can easily lead to wrong physical conclusionsyiewed in Refs. 16, 19, and 24—26. Bose-Einstein conden-
since real physical materials always include several differensates of dilute gasgsee review& 39, being placed in opti-
characteristics competing with each other. The study of noneal lattices can form localized clouds with an effective spin
linear spin relaxation is of paramount importance not solelyper site of order 19or 16°. Spin dynamicgmainly lineay is
owing to its theoretical beauty but also because it can ban intensively developing field of research, called
employed in a variety of applications, such as the measurespintronics’!

ment of materials parameters, ultrafast repolarization of The Hamiltonian of a spin system can, generally, be sepa-
solid-state targets, creation of sensitive field detectors, usagated into two parts,

Il. BASIC SPIN HAMILTONIAN

1098-0121/2005/118)/18443215)/$23.00 184432-1 ©2005 The American Physical Society



V. I. YUKALOV PHYSICAL REVIEW B 71, 184432(2005

~ 1 _ * —
H= EH+ EHU, (e Hij:aij<sz§z‘53+§>+bij3+$+bi13_§+20i13+32
H&J
the first term being related to individual spins, while the +20;SS - %(S'S +5S). 9
f(?r(:igrr]wd representing spin interactions. The single-spin Ham|I1-he inte_raction parametem; =a;;, b;=b;, and ¢;=c; are
symmetric and have the property

- o )

Hi_ /.LoB Si D(SZ) (2) E a‘IJ = 2 blj = E CIJ :O, (10)
consists of the Zeeman energy and the energy of the single- D ED D
site magnetic anisotropy. Heypg,=%ys, with ys being the  following from Egs.(6).
gyromagnetic ratio of a particle with spta For electronic The equations of motion for the spin operators are ob-
spins, uo <0, while for nuclear sping., can be either posi- tained from the Heisenberg equations and the commutation
tive or negative. The total magnetic field relations

B =Bye,+ (B, + H)e, (3) [S{,S] = 25”.32, [Sz,q—'] =+ 5”.3‘—'
contains external longitudinaB, and transverseB;, mag-  |n order to represent the evolution equations in a compact

netic fields, and also a feedback figtdof a resonator, if the  form, it is convenient to introduce the local fields
sample is coupled to a resonant electric circuit. The aniso-
tropy parameteb is positive for an easy-axis anisotropy and

negative in the case of an easy-plane anisotropy. 0= g) (a5 + C'JS " C”% +(E-9)) @
The interaction Hamiltonian
S“%G—JHS‘-S]- (4) fEh < 2CIJ%Z +2le% +‘JIJ(S S)
J(#i
includes dipole and exchange interactions. The dipolar tens@{nd the effective force
is
i
f=-—uoB+H)+¢&. (12)
Dgf = “0( 5= 300D, (5) Pl
There is a characteristic frequency, the Zeeman frequency,
wherea, B=X,Y,z and which we denote as
r..
rijE|rij|! ”ijE_IL, rjy=r;-rj. wOE—@BO. (13
Fij )
This tensor enjoys the properties Then as the equations of motion for the spin operators, we
obtain
ED““-O 2 D=0, (6)
—i(wgy+ +f§+ |— + 14
of which the first is exact and the second one is asymptoti- dt (0o + &)F +1S (SSZ §5). 9

cally exact for a macroscopic sample with a large number of
spinsN> 1. A positive exchange integral corresponds to fer-
romagnetic interactions and negative, to antiferromagnetic dsz 1.,
interactions. U S +51. (15

It is convenient to represent the Hamiltonians through the
ladder spin operator§ = S‘tiS). Then the single-spin term The following description of spin dynamics will be based on

with its Hermitian conjugate, and

(2) writes as these equations.
S 2
Hi =~ 1oBoS - Mo(Bl+ H)(S +S)-D(* (1) lll. TRIGGERING SPIN FLUCTUATIONS
With the notation Suppose that the spin system is prepared in a strongly
nonequilibrium state, being polarized along thaxis. What
8 = Dﬁz, b = =(D*~ DY~ 2iDi>} then could be the triggering mechanisms initiating spin mo

tion and their relaxation to an equilibrium state? It is evident
(8) that imposing transverse magnetic fields would push the
spins to move. But assume that there are no transverse mag-

Cij = E(Disz_ iDY), netic fields at the initial time and no transverse coherence is
imposed on the system. What then would initiate the spin
the interaction Hamiltonia¥) transforms to motion? Here it is important to stress the role of local spin
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waves as of the triggering mechanism for starting the spin 1 or B ir
relaxation. & —NE 2", ak‘,E ge =,
The appearance of spin waves is due to the local fields k =)

(12). In order to consider spin waves, or more generally, spirwith the analogous transforms fbg andJ
fluctuations that arise in a state which is not necessarily equieperators

librium, it is appropriate to work with the operator equations

(14) and(15). Let us define the operator deviation %t = S-Kteiik-rj, §= %2 gietik.rj_

k j

6§'=8§" (s (16)

from an averageS"), which is not necessarily an equilib- L 5
rium average, but which can be an average over a nonequi- = + _(a_k +3,-1J ) =p 22
librium statistical operator, though such t{&f) weakly de- T OsT g Tk (S B h (S, (22

pends on the indek because of which it can be taken out of : -
the sums in Egs(11). Then, owing to Eqs(10), we have from the first of Eqs(14), we obtain

ij» and for the spin

Using the notation

d
1 . . —S =-iqS +iBS. (23
b= 2 [805+0;05 + ;05 + (65 - o], dt
j(#0) . . L
17) Looking for the solution of the latter equation in the form
S; - uke—ia)kt + v*kei wkt,
_i S |2 1 +9b +J _ we find the spectrum of spin waves
§= 4 2, | 2605~ 5805 +2b; 05 +3;(85 - o)) |,
i(#0) —[2_ 2
o= Ve~ B (24)
which demonstrates that these local fields really correspon

. , fh the long-wave limit, one gets
to local spin fluctuations.

To emphasize the role of the spin fluctuations, let us set a; + 2J;;
; ) - - ST A 2
B,=H=0, that is, looking at the case when the transverse o= |ag| 1 <3Z>% 4o, (ki) | (25
i

fields do not initiate the spin motion. And, respectively, let
(S")=0, but the longitudinal polarization be finité¥)#0.  wherek— 0, and the summation is over the nearest neigh-
ThenS'=65'". The behavior of spin fluctuations is character- bors.
ized by linearizing Eqs(14) and (15) with respect to the In this way, in the spin system there are always transverse
operator deviation$16). The linearization of the single-site fluctuations, which can be named spin waves. The latter, as
anisotropy term in Eg(14) has to be done so that we satisfy they have been described, are not necessarily the spin waves
the known exact relations f@=1/2 andS— o, which can in an equilibrium state, as they are usually understSdaijt
be representéé®? as are to be considered in a generalized sense. Under spin
L waves, we mean here just transverse spin fluctuations. It is
- (5t - these transverse fluctuations that are responsible for trigger-
SS+S9 = (2 S><SZ>S ' (18) ing the initial motion of polarized spins, when there are no
) ) ) external transverse magnetic fields. This is why these trans-
Introduce the single-site anisotropy frequency verse spin fluctuations can be called triggering spin waves.
D Taking into account such quantum spin fluctuations makes it
wp = (25-1)— (19) possible to describe the dynamical regimes of spin motion,
h which do not exist for classical Bloch equations. And it be-
comes possible to develop a detailed picture of how the
transverse spin coherence arises from initially chaotic fluc-
(S tuations. This self-organized process of coherence emerging
D (20 from chaos is one of the most interesting and challenging
problems of spin dynamics.

and the effective spin frequency

W= wg=— W ?,
wherewy is defined in Eq(13). Then, linearizing Eqs(14)
and(15), we find IV. SPIN EVOLUTION EQUATIONS

d_ . d _ The equations of motiofil4) and (15) for spin operators
dt =-loS +(S)é dtéSZ_O_ (21) are highly nonlinear. The nonlinearity comes from two
sources. One is caused by the spin interactions accumulated
The second of these equations, under the initial condition the local fluctuating field¢11). Another kind of nonlin-

55/(0)=0, givessS=0. earity enters through the effective for¢e) containing feed-
Now let us employ the Fourier transforms for the interac-back fields included in the terrhl. The treatment of the
tions nonlinear spin dynamics will be done here by means of the
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scale separation approatht®>34which is a generalization of Averaging over spin operators, because of their long-
the averaging techniggéeto stochastic differential equations. range role, one can employ the decoupling

Notice, first of all, that there are two different spatial o
scales. One of them is related to local field4) describing (S =AY (#]). (27)
random spin fluctuation§l7), which is characterized by a Though this looks like a mean-field approximation, one
spatial length of the order of the mean interparticle distancghould not forget that the restricted averaging, denoted by the
ap. At this length scale, chaotic quantum spin fluctuationssingle angle bracketé--), by definition, involves only the
prevail. Another length scale is the wavelength a, corre-  spin degrees of freedom, without touching the stochastic
sponding to coherent effects associated with the characterigariablesg, and £&. Therefore the quantum fluctuations are
tic spin rotation frequencyo.. At the latter scale, coherent not |ost in decoupling27) but are preserved because of the
spin correlations are important. These two different lengthyependence of the spin averag&s) on the random vari-
scales allow us to distinguish two types of operators. Ongpess; andé. Then decoupling27) is termed the stochastic
type are the local fluctuating fields1), that is, the variables | aan-field approximatioH:-16
&, & and”, and another type are the spin operat§rsS, A special care is to be taken in considering the single-site
ands'. The former, responsible for local short-range fluctua-tgrm of Eq.(14). When averaging the latter, one has to pre-
tions, can be represented by random variabfeS;'**while  serve the exact limiting properties known 8£1/2 andS

the latter keep track of long-range coherent effects. Respec-, .. The corresponding decoupling, correctly interpolating
tively, it is convenient to define two sorts of averaging with heween the exact limiting behavid$d®32is

respect to the corresponding variables. Then the statistical
averaging over spin operators will be denoted by the single - [, 1
angle brackets:--), while the averaging over the random (§5+59)=(2 S (§XS). (28)

local fields will be denoted by the double angle brackets . ) _
(¢-++)). The latter, treating the chaotic local spin fluctuations'nus, forS=1/2, expressior(28) becomes zero, as it should

as white noise, are defined as be, and forS— =, one has &5 XS, again in agreement with
the correct asymptotic behavior.
UEDN = {EDN =0, {&DEM))) = 2738t —t'), Let us average the equations of motidd) and(15) over

the spin degrees of freedom, not touching the fluctuating
random fields§, and & Our aim is to obtain the evolution
{&EMEL) = (EDER N =0, (& [M)ET))) =2y38t—t'), equations for the following variables: Th&nsition function

(26) 1 N
u= S—NEl (S, (29)

where vy, is the width of inhomogeneous dynamic broaden-
ing.
It is worth stressing that the white-noise approximation
(26) is not principal and could be generalized to taking into
account a colored noise by including finite relaxation times. 1 N
This, however, would result in much more complicated and W= SNIN-D 2. (S'S), (30

. . . (N - 1) i#i
cumbersome equations. It is therefore more convenient, fol- J
lowing the ideas of the scale separation apprdacii,to  showing the level of coherence in the spin motion, and the
separate in the temporal behavior of spin correlations tw@pin polarization
parts, fast and slow. The fast part is connected to the local N
spin fluctuations described by the spectrum of local spin 1
waves(24). The characteristic frequencies of these fluctua- S= S_NZ (s,
tions are defined by the near-neighbor spin coupling as well =t
as by the applied external magnetic field. Here and in whatlefining the average polarization per particle.
follows, we assume that this external field is sufficiently In order to have the evolution equations representing re-
strong, so that the fluctuation spectri@d) is characterized alistic spin systems, but not just some unreasonable models,
by the frequencies of the order of the Zeeman frequenyyy an accurate account must be taken of the main relaxation
which is essentially larger than the frequency terms due tenechanisms. Being based on unrealistic models, omitting
spin interactions. With the time® wq being the shortest important existing attenuation processes, it would be easy to
among all other characteristic times, the related fast spiffiall into the sin of predicting physical effects that in reality
fluctuations can be effectively treated as white noise, as isan never occur. We shall consider the following basic relax-
done in Eq.(26). The influence of spin correlations slowly ation rates.
decaying in time can be appropriately included into the trans- (1) Spin-lattice longitudinal attenuationy,;, caused by
verse relaxation timd&, determined by the strength of the spin-lattice interactions. The corresponding longitudinal re-
spin-spin coupling allowing for dipolar as well as exchangelaxation time isT;=1/v,. For different materialsy, can be
interactions. This effective relaxation time will also be takenof different order. At low temperature, when spin-phonon
into account in the following consideration, together with theinteractions are suppressed, the paramegiecan be rather
effect of line narrowing due to high spin polarizatidn. small. For instance, in polarized nuclear taréfess tempera-

describing the average rotation of transverse spin compo-
nents; thecoherence intensity

(31
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ture of 1 K, one hagy;~107° s™%. In molecular crystals be- and inhomogeneous mechanisms, discussed above, we de-
low the blocking temperature of t7he ordersofll K, the spin-note the overall transverse relaxation rate as
lattice rate can be between~ 10" and 10° s~ (see more . .
details in Refs. 16 and 24—-pBeing small, this relaxation Fo=%,(1-5)+7, (35)
parameter may not play an essential role at the initial stage of (6) Dynamic inhomogeneous broadeningis caused by
spin motion, however, it always plays a principal role at thefast dynamic spin fluctuations, or the local spin waves, dis-
late stages of spin relaxation. cussed in Sec. lIl. It comes into play through the stochastic
(2) Polarization pump ratey,, which is added tay; when  averaging(26). The value of the broadening, due to local
the sample is subject to a permanent pump supporting a noBpin waves, is of the order or smaller thgp'4-1621As s
equilibrium level of the longitudinal spin polarization. This emphasized in Sec. lll, this dynamic broadening is crucially
rate can be made much larger than Thus, by means of important at the initial stage of spin relaxation, when there
dynamic nuclear polarization, the pump rate for nuclear spingare no applied transverse fields.

in solids can be as large 35~0.01 and 10 $.1® The sum (7) Cross relaxation ratesarise when there are several
of y, andy, will be denoted as spin species in the system. For example, if there are two
. « types of spinsSandF, then the dynamic broadening for spin
Fi=n+n. (32 Shecomes
(3) Spin dephasing rates,, due to spin-spin interactions. _ W (36)
This rate has been calculated by many authors, and the gen- Y3= VYss™ Vs
erally accepted valde’ writes as Cross correlations can influence other relaxation rates, espe-
2 cially if the Zeeman frequencies of the spiSsand F are
—n o lose to each othér./ 1516
=nop—VS(S+1), 33 ¢ . e . :
[ (8) Spin radiation ratey, arises when there exist the so-

. , . - . called wave packets of strongly correlated spins interacting
where p=N/V is density andn is a coe;fﬂuent approxi~ \ ith each other through the common radiation field. The
mately equal to the number of nearest neighbors. The process . .. L

. L . . ossibility of the appearance of such an electromagnetic fric-
of spin dephasing is mainly due to dipolar forces. Exchange.

interactions slightly narrow the line widit33), yielding'62: ion was, first, noticed by Ginzbutgand later discussed by

a factor of about 0.8. The coefficient in E§3) also depends :r;?en)ilsauthors(see, e.g., Ref. 48This collective radiation
on the type of lattice, so that the numerical factor here is

approximate. The value of, is usually larger than that of;. 2 ., 3

For example, in polarized solid targ&ts, ~ 10° s%, in mo- Y= iPMoS(kLs) : (37
lecular magnet§?4it is y,~10'° s, Inverse ofy, defines

the spin dephasing tim&,=1/1y,. wherek is the wave vector of the radiating field ahdis an

(4) Effective homogeneous broadenipgs) takes into ac-  effective linear size of a spin packet radiating coherently.
count a correction to the spin dephasing rateappearing in ~ Rate(37) has earlier been obtain€d® in the classical ap-
the case of strongly polarized spin systems. Such a strongfoximation. In Appendix B, we briefly sketch how this rate
polarization can be achieved in magnetically ordered materican be derived in a fully quantum-mechanical picture. It is
als, by applying strong longitudinal magnetic fields, or byimportant to stress that the existence of (@8 presupposes
dynamic polarization techniques. This effective broadeninghe occurrence of monochromatic radiation with a well-

reads as defined constant spin frequenay and wave vectok, and
that the radiation wavelength is much larger than the linear
¥2(8) = y2(0)(1 =59,  ¥,(0) = 7, (34)  sizel of a spin packet, so that
wheres is an average spin polarizatigBl) and vy, is given g
by Eq. (33). The derivation of Eq(34) is explained in Ap- kls<1 |k= A (38)

pendix A. Under weak polarization, whest<1, one has
¥2(9) = 5. If these conditions do not hold, no noticeable relaxation rate
(5) Static inhomogeneous broadeniméis due to various arises. And under the validity of these conditions, one has
magnetic defects, crystalline defects, field gradients, and a ¥,
variety of additional interactions always present in any real — =~ 0.1kL)*< 1. (39
materialst~"-?%31Very often the inhomogeneity develops in Y2
matter not because of externally incorporated defects, burhe ratey, is so much smaller tharn,, and usually much
being due to the internal properties, when a heterogeneousnaller thany;, that it can be safely neglected, being abso-
state is more thermodynamically stable than a homogeneoustely unable to influence the motion of spins. Actually,
state3’3  This, e.g., happens in many colossal- Bloembergeh has already analysed this problem and come
magnetoresistance materfd$! and in high-temperature to the conclusion that the interaction of spins through the
superconductor®-“6where there appears mesoscopic phasenagnetodipole radiation field is completely negligible. How-
separation. In generah/*2 can be both smaller as well as ever, one may put the following question. Suppose that the
larger thany,. However in the majority of cases, to a very considered sample is ideally homogeneous, so;tbin very
good approximation/;~ v». Summarizing the homogeneous small, and let the initial spin polarization be very high, such
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thats(z)m 1. Then the effective transverse r485) at the ini-  (26). The external transverse fieRR] and the resonator feed-
tial time t=0 can become rather small. Could then the radiaback fieldH need yet to be specified.
tion rate (37) play any noticeable role, at least at the very
initial stage of spin motion? We study this problem below. V. RESONATOR EEEDBACK FIELD

(9) Thermal noise attenuatioty; emerges when the spin o )
system is coupled to a resonant electric circuit. The resonator The resonator feedback fietd is created by the electric
Nyquist noise, due to the thermal fluctuations of current incurrent of the coil surrounding the spin sample. We assume
the circuit creates a fluctuational magnetic field, which has tdhat the coil axis is along the axis The electric circuit is
be included in the effective forod2). The magnitude of the Characterized by resistan& inductancel., and capacityC.
thermal field, produced by the Nyquist noise, is well The spin sample is inserted into a coil fturns, lengthl,
knownZ® It was found?6that the resulting thermal attenu- Cross-section ared., and volumeV,=A. The electric cur-

ation is rent in the circuit is described by the Kirchhoff equation
2 dj 1" dd

_mowge o D rys 2 jerar =g, -2 46

= th—, 40 j j(t")dt : (46)
"= 45N 20, (40 dt Clo bt

where 7 is a filling factor, w is the natural frequency of the in which E; is an electromotive force, if any, and the mag-
electric circuit, y is the resonator ringing width, an@d;  netic flux
=kgT/#% is the thermal frequency. Bloembergen and P8und
first mentioned that, because of the macroscopic nhumber of o= 4_77nAc77mX1 (47)
spinsN entering the denominator of, the latter is unable to c
influence any spin motion in a macroscopic sample. Thi
conclusion was confirmed by accurate calculatins®

(10) Resonator relaxation ratarises when the sample is
coupled to a resonant electric circuit. Then in the effective

Svhere n=VIV,. is a filling factor, is formed by thex com-
ponent of the magnetization density

__ Mo
force (12) the magnetic fieldH is the resonator feedback m, = VE (8- (48)
field. The role of this field will be thoroughly studied in what '
follows. The electric current, circulating over the coil, creates a mag-

Summarizing all said above, for the spin avera@3 to  netic field
(31), we obtain the evolution equations

4
du H=- (49
- (st &=l utis, (41) ¢
The circuit natural frequency is
dw e 1 ( nZAc)
—==2"w+ (u f+fus, 42 =— |(L=47r—— 50
o= W ) (42 =T T (50)
ds 1 and the circuit damping is
PR CRAR VA F(CRy o (43) 1 R o
Y=EEo T 20’ (51
supplemented by the initial conditions
B _ B where 7 is called the circuit ringing time an@=wL/R is
u0) =up, w(0)=wo, s(0)=s. the quality factor. Also, let us define the reduced electromo-
In these equations/ is a stationary spin polarization, the tive force
characteristic spin frequency is cE
e =—. (52)
W= Wy~ WpS, (44) NAy

with @, given by Eq.(13) and wp by Eq. (19). The total ~ Then the Kirchhoff equatio46) can be transformed to the
longitudinal ratel’; is defined in Eq(32) and the total trans- €quation
verse ratd’,, in Eq. (35). The effective force is dH t q

i ot +2yH + wzf H(t")dt’ = ve; - 47777d—r?< (53

== uo(By+H) + £+ (45) ’
for the feedback magnetic field created by the coil.

where the last term is the friction force due to the interaction The feedback equatio®3) can be represented in another
through magnetodipole radiation, ang is the magnetodi- equivalent form that proved to be very convenient for defin-
pole radiation rat€37). Equationg41) to (43) are stochastic ing the feedback field?1°For this purpose, we involve the
differential equations, since they contain the random varimethod of Laplace transforms and introduce the transfer
ables&, and &, whose stochastic averages are given in Eqsfunction
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A
G(t) = (COSw’t - l,sin w’t>e‘7t, (54 u <1l A=o0-|od). (64)

w w
where When the resonance is sufficiently sharp, so [hat vy, then

[T the coupling function(60) reduces to
0 =\w 72
— —a N

Thus we transform the feedback-field equati®3) to the @=gy/1-€7). (65
integral representation Thus the resonator feedback figlds defined by Eq(59), in

t which « is given by Eq.(65) and B, by Eq.(61).
H =f G(t=t")[yer(t’) — 4mpmy(t’)]dt’, (55)
0

) . VI. AVERAGED EVOLUTION EQUATIONS
in which

1 d The resonator field, defined in E9), has to be substi-
my(t) = =pueS— (U’ +u). (56) tuted in the effective forcé45) entering the evolution equa-
2 dt tions (41) to (43). In Eq. (45), we also need to specify the

Let the resonant part of the reduced electromotive forc&Xt€rnal magnetic fiel@,. In general, the latter may contain

(52) be a constant part and an alternating term. So, let us take this
transverse field in the form
€(t) = hy, coswt. 5
f( ) 2 ( 7) Bl = ho + hl coswt. (66)

And let us introduce the notation .
In what follows, we shall use the notation

2= ' (58) Hoho Hohy
0=, = —,
" 2h v 2 (67)

As usual, we assume that all attenuation parameters are o ) .
much smaller than the characteristic spin frequengyThen  Equations(41) to (43) are stochastic differential equations,
Eq. (55) can be solved by an iteration procedure, which incontaining the random variablel and ¢ describing local

first order gives spin fluctuations. In order to derive the evolution equations
H in terms of ordinary differential equations, we have to ac-
Mo _ . o complish the averaging over random fluctuations. This can
—— =i(au—a u)+2Bcoswt. 59 . X
h (au-au)+2p ¢ (59 be done by following the scale separation approdctthe

usage of the stochastic averag@$), and by invoking the
known techniques of treating stochastic variatifes.
1-exgd—i(w- oJt— 1} Keeping in mind that the attenuation parameters are sub-
y+i(o— wy) stantially smaller than the characteristic spin frequeagy
we notice from Egs(41) to (43) that the functioru can be
1-exgd-i(w+w)t -1} classified as fast, being compared with the temporal behavior
+ ; (60 ;
y-i(w+ oy of the functionsw ands. The latter play the role of temporal
) ] ] . quasi-invariants with respect to
desc_rlbes the coupling of spins with the resonator and the First, we substitute into Eqg41) to (43) the effective
function force (45), the resonator field59), and the transverse mag-
netic field (66). This results in the equations

Here the coupling function

a = Yows

B= %(1 —e (61)

u . *
_ _ _ —=—i(wst &U— (T~ as— y9u+f;s—asu,
characterizes the action of the resonator electromotive force dt

on spins. In Eq(60) the notation for the natural spin width (68)
m 2
Yo= 7 MPMeS (62) dw e .
O e E:—Z(Fz—as—yrs)wﬂu fo+ flu)s— as(u?+ (u)?),
is employed. 69)

The spin-resonator coupling can be characterized by the
dimensionless coupling parameter

ds 1. .
g= YYoWs 63) a:_(a-'-%)w_é(u fi+fu) =Ti(s=90)
Yo+ A% 1
in which A= w—|w{ is the detuning. As is evident from Eq. + Ea(uz +(u)?), (70)

(60), an efficient spin-resonator coupling is possible only
when the detuning from the resonance is small, such that in which
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fi=—ivy— 2i(vy + B)COSwt + &. (71) an absolutely ideal Iattic*e with no inhomogeneous broaden-
ing, that is, let us sety,=0, which is certainly a purely
imaginary situation. Then, according to E@®5), one has
I',=v,(1-5%). Assume that the spin system is completely

' [t polarized, withs,=1. Hence, at the initial timd;,=0. Could
u=upexp) —(iwg+I'; - as- %S)t—lf &(t")dt’ then the spin motion be started by the term witf? The
0 answer is evident: As far as the largest terms in both Egs.

Then we solve Eq(68) for the fast variablal, keeping the
quasi-invariants fixed, which yields

t _ (75 and(76) are those containingj, the terms withy, are
+5f fit")exp) - (ios+ ', —as— y9)(t-t') always negligible, even iF,=0. Even more, functioné30)
0 and(31), by their definition, satisfy the inequality
t
—if go(t”)dt”}dt’. (72 w+s<1. (77)
t,

Therefore, if one setsy=1, thenwy=0, and the termy,w
Solution (72) must be substituted in Eq§69) and (70) for simply disappears from the equations. Vice versa, if one sets
the slow functionswv and s. After this, the latter equations a noticeablewy,~ 1, thens?’<1, andT',=y,>v,. In this
have to be averaged over time and over the stochastic vanway, the radiation ratey, never plays any role in the spin
ables&, and &, again keeping the quasi-invariants fixed. Tomotion, which is in agreement with the estimates by
slightly simplify the resulting equations, one can take theBloembergert.

initial condition for the transition function in the real form, Note that the situation in spin systems is principally dif-
such thatuy=u, which is not principal but just makes the ferent from that happening in atomic systems. In the latter,
equations less cumbersome. both the linewidthy,=2|d|?%k3/3 as well as the collective
To present the resulting equations in a compact form, weadiation ratey,=(2/3)|d|*k®N,, whereN, is the number of
introduce theeffective attenuation correlated atoms, forming a wave packet, are caused by the
2T vo(vy + BT (v, + BT same_phy_sical process, by the interaqtion of atoms with their
3= yg+ 20 -0 21 It 12 —(1-¢eT, radiation field. Hencey,/y,=N> 1, which results in the co-
Wi+T? wi+I7? A%+T herentization of the dipole transitions. This is possible even

(73) if KL>1, but the number of atoms in a partial wave packet is
_ _ N.>1, sincey,/ y,=N.>1. Contrary to this, in spin systems
in which the linewidth y,, given in Eq.(33), is due to direct dipole-
_ dipole interactions, while the radiation rat&/) is a result of
F=I+y3—(a+ . 74 o . . . R o .
2+ 75~ (@t y)s (74 the spin interactions with their radiation field. This is why in
And finally, after the described averaging, we obtain the evoihe latter case, one always hgs< y,, and the radiation rate

lution equations v, plays no part in the motion of spins.
dw We may also notice that in the effective attenuat{@B)
— ==-2T,- as— y;s)W+ 2I'55%, (75) the terms due to the presence of a constant transverse field
dt are less important than the terms caused by the local spin
g fluctuations and by the alternating transverse fields. There-

S fore, omitting the terms corresponding to a permanent trans-
—_— = + - - - . .
dt (@t yw-Tss=T(s=0). 70 erse magnetic field, we have
These equations are very general. They include various : (v, + BT It
attenuation processes, described in Sec. IV, and take into Fa=ys+ T2+ A2 (1-e7). (78)

account transverse constant and alternating fi¢ids, as . . . _
well as the resonator electromotive for¢67) entering Finally, we obtain the evolution equations
through function(61). The resonator feedback field is re-

sponsible for the appearance of the coupling functi®s). dw =-2(, - as)w+ 2I';57, (79
Notice that the radiation relaxation rate, defined in Eqg. dt
(37), enters everywhere together with the spin-resonator cou-
. - . . . ds
pling . However their values are drastically different. Since < = —aw-Tys-Ty(s- ), (80)

Y Y 3
= ~0.1-(kLy)° <1 - : .
a 0 ws( ) ’ describing the averaged motion of spins.

the value ofy, is so incomparably smaller than~ gy,, that

it is evident, in the presence of a resonator, the satsust VIl. COHERENCE EMERGING EROM CHAOS
be forgotten.
Moreover, even when there is no resonator, so thaB One of the most intriguing questions is how the spin mo-

=0, the radiation ratey, plays no role, since it is much tion could become coherent if initially it was not. This is a
smaller thanys,, y;, and y;. One might think thaty, could  particular case of the general physical problem of how co-
play a role in the following unrealistic case. Let us imagineherence emerges from chaos.
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Being interested in a self-organized process of arising coerossover. Notice that the quantity $+ « is positive since
herence, let us consider the case, when there are no exterr%ls 1. Then, in order that the chaos ti&Y) be positive and
transverse fields pushing spins, thatvis=8=0. Then Eq. finite, the inequality
(78) yieldsI';=y;. Assume also that there is no pumping, so
that 7*1:0, hencel’;=y,. Under these conditions, the initial 9% > 1 _§+ k>0 (88)
spin motion, for the time such that

nt<l, W<l yt<1, (81 must hold. For a strong spin-resonator coupling, wiyen

>1, the chaos tim reduces to
follows from Eqgs.(79) and (80) in the form Imes?) .

W =Wy + 2 735 = 72(1 — 5+ KW, tczglso(l_%""()' (89)

=g, - + -
s=%-l(n* 9%~ ndt (82 As is seen, there exists a well-defined stage of chaotic
where the inhomogeneity coefficient is introduced, spin fluctuations, with a finite chaos tintg>0, after which
K= vl 7. 83) the coherent regime develops,g&>0. The coupling pa-
272 rameterg is defined in Eq(63), from which it follows that
If at the initial time no transverse polarization is imposed onone should havesss,> 0. Assuming that the initial spin po-
the system, and the initial coherence function is zevg, larization is positive,s,>0, one gets the requirement that
=0, nevertheless the coherent spin motion starts developings>0. The latter, by definition44), is equivalent to the
according to the law condition wy> wps. Moreover, the coupling functio(65) is
_ obtained under the resonance condit{éd), which implies
W= 273sgt (Wo=0), (84) that wg has to be close to the resonator natural freqﬁemcy
provided there is an initial longitudinal polarizatisg=0.  There are two ways of preserving the resonance condition
The initiation of the emerging coherent motion is caused by64). First, one can impose a sufficiently strong external
local spin fluctuations creating the effective raig Recall —magnetic fieldBy, such that the frequenayo, given by Eq.
that in the Bloch equations coherent motion never appears [fL3), would be much larger thaap, defined in Eq(19). This
it is not imposed by the initial conditions. Contrary to this, becomes trivial forS=1/2, when wp=0. If wy> wp, then it
Egs. (79) and (80) take into account the local spin fluctua- iS easy to realize the resonance conditiéd), with ws~
tions triggering the motion of spins. The second of E§8),  and slightly varying in time detuning=w-ws.
keeping in mind that usually; < y;~ 7,, can be simplified The second way of keeping the resonance conditfih
to is by means of the chirping effet®!° This requires to vary
in time the external magnetic fieBl, so that to maintain the
S=5o(1 - yst). (85 equality ’ *
At the initial stage of spin motion, their coherence is yet
incipient, and the motion is mainly governed by quantum oBo
chaotic spin fluctuations. The coherentization of the trans- h +(w+wps) =4, (90
verse motion goes through the resonator feedback field and
the growing coupling functioit65). The quantitative change
in the spin motion happens when the coupling funciie®
becomes so large that the terfhi,—as) in Eq. (79) goes
negative, which means that an efficient generation of coher- VIIl. COHERENT SPIN RELAXATION
ence has started in the system. This is analogous to the be-
ginning of maser generatidi-1The moment of time, when ~ After the chaos timg87), the motion of spins becomes
the regime of mainly chaotic quantum fluctuations trans-more and more coherent, being collectivized by the resonator
forms into the regime of predominantly coherent spin mo-feedback field, with the coupling functioa reaching the
tion, can be called thehaos time This timet, is defined by ~ valuegy,. At the transient stage, wher~t; but t<T,;, we

with a fixed detuning.

the equalityas=T",, that is by the equation mhay neglect the term r\]/\/iﬂ’gxl*in Eq. (S(r)]). Assuming that
« there is no pumping, that is;=0, one had™;=v;. Let us
as=y(1-S)+y, (t=t). (86)  continue studying the case lof the self-organized coherent
From here, the estimate for the chaos time is spin motion, when there are no transverse external fields, so
that v;=8=0, hencel';=y;. When the coherence is well
t =7In 9% (g7)  developed, then the main term in E9) is the first one,
¢ g9-1 +s§ -k’ while the term withy; can be neglected. Under these condi-

tions, and usi i®85) for the ratel’,, Egs.(79) and
wherer is the resonator ringing time defined in E§1). The (ggsre%nucgig%hzxgﬁism ) for the ratel’s, Bgs.(79) an

regime of chaotic spin fluctuations lasts till the chaos time

(87), after which the coherent stage of spin motion comes

into_play. As is clear ffom the above eq_uations, the transfor- dw = - 2y(1 -+ kK~ g9W, (91)
mation from the chaotic to coherent regime goes as a gradual dt
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ds delay time(95) should occur after the chaotic stage, so that
i 9rw (92)  ty>t,. But the latter implies thay,> 0.
The triggered coherent relaxationorresponds to

The solution of these equations is explained in Appendix C

and it yields g9 >1+k 0<g?wy<1. (103
v \2 t—t And the purely self-organized coherent relaxatiotakes
P R 0
w sec , place when
972 )
09> 2+k, Wy=0. (104
Y t-tg) 1+«
SE g tan — +T- (93)  In this classification, we keep in mind the inequalipyt,
Y P <1, owing to whichw.~w, ands.~s,. The initial coher-
Here ence is assumed to be weak, so thgt< 1.
— (94) For w0<s§, the delay timg95) can be represented as
1 _,\2
is the pulse time showing the duration of the coherent relax- to=t.+ o n M (105)
ation occurring as a fast pulse. The delay time 2 QA
_t | Yot Yy 95 In the case of the purely self-organized coherent relaxation,
b=t 2 n Yo~ Vg (99 for sufficiently large coupling and initial polarization, such

] ] ) ~ thatgsy>1, the delay timg105) reduces to
defines the time of the maximal coherence. The pulse width

is given by the relation
gven By ty=t,+ 2In| —| | (106)
’)/2 1’)/2|: (g'yz)z :| 2 Yale
=292 141 +4 2] w |, 96 ,
P27 vg /) © ®0  here 7,=T,/g%. From these formulas, one sees thay;f

— 0, thenty— o, and no coherent relaxation is possible. This
emphasizes the crucial role of the local spin fluctuations,
Yg=729%-1-k). (97)  whose existence results in the relaxation rgje
At the delay time(95), solutions(93) are given by the
expressions

in which

The boundary valuew, ands; are

W =Wo + 2[ 7555~ 7o(1 55+ iWolte,  Sc=So(L = y3to), 1
(98) W(to) = We + (50 -
with the chaos timé, given in Eq.(87). Since we are inter- .
ested in the self-organized collective process, when there énd for t>1,, they exponentially decay to the values

no large transverse polarization imposed on the system at the
initial time, we may sewo<%. Then Eq.(96) simplifies to

Y= 75+ (972 AW (99)
The pulse timg94) reads as

+K 1+«k

2
) . Sltg) = (107)

w = 4w(tg)exp(— 2y,t),

2 1+
S= -5+ §(1+K) +2<SC—TK)exp(— 2y,t).

- (108
=— . (100 , , .
V(gs — 1 - k)% + gw, At very large timeg ~ T, the transient equatior{81) and

. . ) ) .. (92 are no longer valid. Then one has to return to the full
It is easy to notice that if the spin-resonator coupling iSequations(79) and (80). With increasing time, the solutions
weak,g<1, theny,~ y;~7, and 7,~T,. In that case, N0 ten( to the stationary points defined by the zeros of the right-
self-organized coherence can arise in the system. hand sides of these equations. Among the relaxation regimes
_ Collective coherent effects appear in the spin motion onlyg the stationary solutions, one is especially interesting, go-
if the pulse timer, is smaller than the dephasing tiffe.  jng through a long series of coherent pulses. This pulsing
The inequalityr, <T», according to Eq(100), requires that  coherent relaxation takes place under a permanent external

Tp

(98- 1 -2+ g2, > 1. (101 pump*ing described by a large pumping rate> y;. Then
) ) ) I'y=1v,. If also the coupling parameter is sufficiently large,
Three different regimes can satisfy H§01). such thatg¢>1 and
The regime ofcollective inductiorhappens when
95 <1+k, QW= 1. (102) B«
9¢7

Then, as is clear from Eq97), one hasy,<0, because of
which ty<t.. This means that there is no noticeable maxi-then the fixed point of Eq4.79) and (80) is given by the
mum in the coherence function, since, by definition, the expressions
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W (1_ 73) *:1(1_£> Ase=3AS Fr IS APSFE. (119
9t v\ 9in g\ 9n )b
(109 containing the part of the single-site interactions of intensity

A and the part of the dipole interactions, with the dipolar
corresponding to a stable focus. The relaxation to the stationensor

ary solutions(109) realizes through a series of sharp coher-
ent pulses, similar to the form of Eq®3), with the temporal aﬁ MoMOF( - 3n’n )
interval between the pulses asymptotically defined by the

. . 'l
separation time

In particular, these could be hyperfine interactions between

om nuclear and electron spin3>°
T (110 We employ notatior(8) for the interaction parameters of
V29Ln(72+ 72) Sspins and an equivalent notation for the interaction param-

The number of the separate coherent pulses can be estimat t?rsa”tp, i, and (;'IF of F spins. Similarly, we define the
asNgep=1/7;Tsep Which gives nteraction parameters

_ — 1 1
m _ pZZ T AXX_ AYY _ o1 AX T (AXZ_ Ay
Nz« 92t %) aj = A, by = (AT AP 2AF), o = S(Af-IA]
sep™ 277_2 * "
"1

(116)

Such a highly nontrivial relaxation regime occurs only underfor the spin cross interactions.

a strong pumping and a sufficiently strong coupling with a  The |ocal fieldg(11), acting onS spins, are generalized to
resonator. the form

1 . _
IX. INFLUENCE OF CROSS CORRELATIONS &= Z-g‘-) [;S+c;S +¢;S + (S-S +aF +CF]
] 1

When in the sample, in addition to the studied spins, there .
are spins of other nature, the presence of the latter can cer- +¢;F7l, (117)
tainly influence the dynamics of the former. Let us consider
the case of two types of coexisting spissandF. The total £
Hamiltonian is the sum

Z {ZC'J%Z 5§ + 205 +3(§ - §) + 2]

H=Hg+Hg+Hge (117 _Ea”F +2bIJFJ:|

of the Hamiltonians foIS spins,F spins, and their interac-

. LA L _ Analogous local fields act oR spins,
tions. The HamiltoniarHg of S spins is the same as in Egs. ¢ P

1) to (4). Let us accept for the Hamiltoniaf of F spins a
;ir)nilal(r Q)leneral form P " P g) [a”FF +C”FF +C”FF +J”F(F F)+a,J§Z
] i
+C.S +¢; ST,
HF—E H|F+ E HIJF (112) IJ% IJ%
|¢J
— 1 - + - -
The single-spin terms are - ]g) [ZC”FFJZ_ 2%FFy + 20yeFy + Jye (R —F)
Hie = = uoeB - Fi - De(F)?, (113 + 2c,JF§Z S + 2b,,sj } (118
\;vri;hgtir\]/gr;tokfsl magnetic field3). And the interaction terms 1044 of one effective foro(a2), we have now two forces
f= B,+H)+ A
Fie = S DIFTF] -3 F, (119 pholBa+H) e
: : i i
with the dipolar tensor fr=- %MOF(Bl +H)+ ZAiS_ + & (119
D = '“OF( - 3ninf). In addition to frequency13), let us introduce the effective
) frequencies
Assume that the interactions between $handF spins are o = — PR A (120)
represented by the Hamiltonian oF hoo h
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The Heisenberg equations of motion for the system with

Hamiltonian(111) yield the equations foB spins

L= —i(og+ oFT4£)S + ST+ DS TS,

a§_ 1

- 127
dt 2 (12

(f'§ +57f),
and the equations fdf spins

dF;

. _ i _ _
at i(wor + &S + &op)F; +FIZfF+%DF(Fi Fi+FiF),

dt

1 . +
== E(fFFi +Fife). (122

Again we assume that the sample is inserted into the coil of
a resonant electric circuit. The feedback field acting on the

sample is given by Eq.53) or (55), where now the
magnetic-moment density is

N Ng
m, =203 (59 + EE S (R, (123
Via Via
with N being the number of spins.
Averaging Eqgs(121) and (122, we derive the evolution
equations for function&29), (30), and(31), corresponding to
S spins, as well as the equations for the functions

1
U = F_NFEL <Fi_>, (124)
Ng
Wg = mz (FFD, (129
1 >
&= F—NFEl (FD), (126)

describingF spins. In this notation, the transverse magnetic-

moment density123) is

1 . 1 "
my = EP,U«OS(U +U)+ EPFMOFF(UF +Ug),

wherepg is the density ofF spins.
The analysis of the evolution equations for the combine

system ofSandF spins is the same as has been given abov

for one type of spins, with the difference that all expres-
to show that in the triggering of spin motion an important
role is played by the couple8-F spin fluctuations, which
yield the dynamic relaxation rateg and ys: defined by the
relations

3= Yest Yar V= Vert s (127)

where

PHYSICAL REVIEW B 71, 184432(2005

2
M0 Iqer [ MoMor
Yss™ P%\“‘S(S"' 1), vse= Vppr P F,
2
MoF [Cre [ MorMo
YrE = PFT\!’F(F +1), Ys= Vppr P S.

The effective frequencies & and F spins, respectively,
are

wWg= Wy~ wDS+ 8S|:s, W = Wog ~ wDFS|:+SSF,
(128)

wherewp is given by Eq.(19) and

wpg = (2F - 1)%. (129
We shall not overload this paper by a detailed exposition
of various cross correlations resulting from the complicated
system of the coupled evolution equations $andF spins.
Let us only emphasize the existence of a rather nontrivial
nonlinear effect of mutual spin interactions through the reso-
nator feedback field. Calculating the latter from the integral
representation(55), with the transverse magnetic density
(123, and substituting this into the evolution equations re-
sults in an effective mutual influence of spins through the
feedback field. If the resonator is tuned to the characteristic
frequencyws of S spins, then for the latter, we derive the
evolution equations similar to Eq$79) and (80), but with
the effective spin-resonator coupling
w
9= YYoWs )’

- y2<f+A2)<“

instead of Eq(63), and withy; given by Eq.(127). Depend-

ing on the spin characteristics, coupliig30 can substan-
tially surpass the value of E¢63). This is because the sub-
system ofF spins, coupled to a resonator, becomes itself a
kind of an additional resonator f@& spins.

PrioreSEF
PHOWE

(130

X. CONCLUSION

A general theory is developed for describing nonlinear
spin relaxation, which occurs when the spin system is pre-
pared in a strongly nonequilibrium state and when the
sample is coupled to a resonator electric circuit. A strongly

onequilibrium initial state can be realized by placing a po-
arized sample into an external magnetic field, whose direc-

%on is opposite to the sample magnetization. Nonlinearity in

spin relaxation comes from direct spin-spin interactions and
from their effective interactions through the resonator feed-
back field. Direct spin interactions are responsible for the

appearance of local spin fluctuations, playing a crucial role at
the starting stage of relaxation. The resonator feedback field
collectivizes the spin motion, leading to coherent collective

relaxation. The developed theory is based on a realistic
Hamiltonian containing the main spin interactions. The role

of various relaxation rates is thoroughly analyzed.
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The aim of the present paper has been to develop a gen- M,(s) = M,(0)(1 - <),
eral theory providing an accurate and realistic description of
nonlinear spin relaxation. This theory can be employed for a My(S) = 2.18\/I§(0)(1 ~)(1-0.422).

large class of polarized spin materials. Applications to par-
ticular substances require a special consideration and sep@ubstituting this intoy,(s), and taking into account thaf
rate publications. There exists a large variety of materialss1, we obtain Eq(34).

that can be treated by the developed theory. Just to give an
example, we may mention the class of molecular
magnets$1924-26Fqr instance, the molecular crystalMs

made of molecules of spin 1/2, so has no magnetic aniso- g get a fully quantum-mechanical microscopic picture of
tropy. Its nonlinear spin relaxation can be realized in a rathegpin interactions with electromagnetic field they radiate, one

weak external field3,=1 G. The molecules Mp and F§  has to add to the spin Hamiltonidt) the field Hamiltonian
possess the spiB=10. They form crystals with density

~10?* cmi 3. The anisotropy frequency isp~ 102 7%, At 0 = 1 J (E2+ H))dr

low temperatures below about 1 K, the molecules can be =g '

well polarized, with the spin-lattice relaxation parameters

y1~105-107 s71. The line width is caused by rather strong WhereE=E(r ,t) is electric field ancH=H(r ,t) is magnetic

dipole interactions, withy,~10s™. The conditonw, fi€ld, and the operator energy of spin-field interactions

> wp can be reached fdB,>10° G. In the molecular mag- N

net, formed by the molecules Mnwhose spin isS=12, the Ho.= — 1S S -H;

magnetic anisotropy is much weaker, with ~ 10'° s, be- f 0= a

ing of the same order ag,~ 10'° s71. Therefore the required _ _ _

magnetic field is not high,> 10° G. Coupling a molecular whereHi_:H(ri,'F). From the Helsenberg equations _of motion

crystal to a resonant circuit with the natural width for the field variables, one finds the vector potential

= w/2Q, whereQ is the resonator quality factor, one can 1 r=r'|\ dr
A(r,t)=—fj(r’,t— )

APPENDIX B: SPIN RADIATION RATE

attain the values of the coupling parameter as largey as

~Q~ 10% With such a strong coupling, the influence of the

resonator feedback field outperforms other relaxation mechag \which the current density is
nisms, producing fast coherent relaxation, with relaxation

times 7,~ 10" s. Such a fast reorientation of the magnetic _ -
moment can result in the emission of radiation pulses of high j==Cue2 S X Valr —r)).
intensity. =1

c r=r'l’

N

The vector potentiah;=A(r;,t) can be represented as
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APPENDIX A: EFFECTIVE HOMOGENEOUS
BROADENING

The homogeneous broadening, existing in spin systems, A =-> -x ,&Oqz(t——'l>,
arises from spin-spin interactions and is usually expressed i i ¢
through the moments!,, which may depend on the level of \ith the notation
the longitudinal polarizatiors, provided the latter is suffi-
ciently large. The moments have been calculated in a number - Mo . -
of works 1-7,21. The most general and exact formula, relat- K= ?(ex— ley), o= poly:
ing the effective broadening with the moments, can be found o )
in Abragam and Goldmah,which for the Gaussian line From here, we get the magnetic figtj=H(r;,t) acting on
shape is anith spin asH;=V,; X A;, which gives the field

(g—JE Hi=H +H +H/,
TN oMy - MEe)] in which

The Lorentzian line shape yields to practically the same ex-
pression, with a slightly different coefficient. The broadening  H; =-— >
]

g = (@ -nyny & N & =34 - nyn;

Y TR . e a2 rs
v,(s) for the Lorentzian line is/w of the Gaussian broaden- ij ij
ing. The dependence of the moments on the polarization has N .
o T 9 Tij
been accurately calculatédjielding X1+ c Slt- <)
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Y _3(—) .n..)n.. ( r..) 3‘)/r 1
P Mo Mo - )T iy Sw = - =2 kL 2
H; ; rﬁ %Z t c/ w 2L, hPMOS( -

If the spins on different sites move independently of eachlhe frequency shift is very small, even as compared{o
other, so that the single-spin terms in the above sums chaotf!nce

cally oscillate, then the average magnetic field acting on each So
spin from the radiation of other spins is zero. Noticeable — =0.1(kLy)? < 1.
action of other spins can arise only if there exist the groups 72

of spins, the so-called spin packets, which are strongly corof course, such a small shift can be omitted, being negligible
related, moving together. A substantial mutual interaction beas compared tg/, and the more so as compareddg And

tween spins, caused by their electromagnetic radiation, cagy the radiation ratey,, substituting therés=pL3, we obtain
appear only when this radiation is monochromatic, with agq, (37).

well-defined spin frequency,, the related wavelength
=2mcl wg, and wave vectok=wg/c. This radiation can col-

lectivize spins in a spin packet of sitg, provided that APPENDIX C: TRANSIENT STAGE OF RELAXATION

kKLs< 1. After the chaotic stage of spin fluctuations, the transient
When the radiation wavelengtk is much larger than the Stage comes into play, characterized by H§4) and (92).
system lengti., thenL¢=L. This, however, is not compul- The latter, by introducing the function
sory, and the size of a spin packet can be much shorter than
L, but it should be much larger than the mean interspin dis-
tance. Thus inequality38) is a necessary condition for the and keeping in mind a sufficiently large coupling parameter

y=¥(1l-s+xk-g9

appearance of collective effects. g>s, rearrange to

Under condition(38), the above magnetic fields can be d d
simplified, averaging them over spherical angles. The result- aw__ 2yw, y_ (9y2)°W.
ing expressions have to be added to the magnetic field in the dt dt

effective force(12), which acquires one more term, being the

e Differentiating the second of these equations, we have
friction force

. dy _ dy
f'=(y, —idw)u, —+2y— =0,
- oo | ae " Yt
in which the collective radiation rate and frequency shift are )
N which yields
5 sin(kr;)
= —LO(ct-r; d
Vr 70; krij ( 'l)' d—il + y2 = yz,
Ns ith v, being an integration parameter. This Riccati equation
cogkr;) with 1y, g g p q
8o = Y2, —Lkr Lo(ct-ry), possesses the solution
i ij
-t
where Y=% tan)‘(TO>,
p
2
Vo= ﬁﬂéSl@ in which y,7,=1 andt, is another integration constant. In-

verting the dependence gfon s for s°<1, we get
is the single-spin natural widtl®)(+) is a unit-step function,

and NS:pLg’ is the number of spins in a spin packet. These s=- Y + ! +K,
formulas can be further simplified to g9v. 9
2, This gives the second of Eq®3), while the first of solutions
% = YoNs= E#oSko’Ns (93) follows from Eq.(92). The integration constantg, and
to are defined by the initial conditions, which for the transient
and stage aren,=w(t;) ands.=s(t).
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