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A general theory is developed for describing the nonlinear relaxation of spin systems from astrongly
nonequilibrium initial state, when, in addition, the sample is coupled to a resonator. Such processes are
characterized by nonlinear stochastic differential equations. This makes these strongly nonequilibrium pro-
cesses principally different from the spin relaxation close to an equilibrium state, which is represented by linear
differential equations. The consideration is based on a realistic microscopic Hamiltonian including the Zeeman
terms, dipole interactions, exchange interactions, and a single-site anisotropy. The influence of cross correla-
tions between several spin species is investigated. The critically important function of coupling between the
spin system and a resonant electric circuit is emphasized. The role of all main relaxation rates is analyzed. The
phenomenon of self-organization of transition coherence in spin motion, from the quantum chaotic stage of
incoherent fluctuations, is thoroughly described. Local spin fluctuations are found to be the triggering cause for
starting the spin relaxation from an incoherent nonequilibrium state. The basic regimes of collective coherent
spin relaxation are studied.
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I. INTRODUCTION

The problem of spin relaxation from a state close to equi-
librium has a long history and is well studied, being related
to the description of spin motion in the vicinity of different
magnetic resonances. This type of spin relaxation is usually
characterized by linear differential equations, such as Bloch
equations. The theory of spin motion close to equilibrium has
been expounded in numerous literature, among which it
would be possible to mention several good books.1–7

Essentially nonlinear spin motion arises if the system is
prepared in a strongly nonequilibrium initial state, e.g., with
magnetization opposite to an external magnetic field, and, in
addition, is coupled to a resonator. Such nonlinear dynamics
are commonly treated by the Bloch equations supplemented
by the Kirchhoff equation for a resonator electric circuit.8–11

However, the phenomenological Bloch equations do not al-
low for the elucidation of different physical processes in-
volved in the behavior of the system and are not able to
describe several, probably the most interesting, self-
organized regimes of spin motion, as was demonstrated in
Refs. 12–14. Some physical models, based on microscopic
spin Hamiltonians, have also been considered, whose survey
can be found in recent reviews.15,16 But in each of these
models one standardly studies only some particular sub-
stances and considers only a part of spin interactions, mainly
secular dipole-dipole interactions, and one takes into account
only some of the known attenuation processes. At the same
time, it is evident that taking care of only particular model
elements can easily lead to wrong physical conclusions,
since real physical materials always include several different
characteristics competing with each other. The study of non-
linear spin relaxation is of paramount importance not solely
owing to its theoretical beauty but also because it can be
employed in a variety of applications, such as the measure-
ment of materials parameters, ultrafast repolarization of
solid-state targets, creation of sensitive field detectors, usage

in quantum computing and others, as is discussed in
reviews.15,16 One of the major possible applications is in
achieving the regime of superradiant operation by spin
masers.13,17–19Punctuated nonlinear dynamics of spin assem-
blies can also be a new tool for information processing.20

The aim of the present paper is to develop a general
theory of nonlinear spin relaxation, being based on a realistic
microscopic Hamiltonian including, in addition to the Zee-
man terms, the main spin interactions, and taking account of
the different major mechanisms of spin attenuation. By con-
sidering just some limited models, it is easy to come to false
conclusions and to predict fictitious physical effects that by
no means can exist in real materials. It is only by carefully
treating different competing mechanisms that one can derive
reliable physical implications.

II. BASIC SPIN HAMILTONIAN

Keeping in mind the applicability of the theory to a wide
class of spin systems, we start with a rather general Hamil-
tonian including the major spin interactions the most often
met in magnetic materials.1–7,21–23 Let us consider a solid
sample containingN vector spinsSi enumerated by the index
i =1,2, . . . ,N. The spin operatorsSi can represent any par-
ticle of spinS, starting fromS=1/2 tovery high spin values.
These can be nuclear or electronic spins, as in the standard
problems of nuclear or electronic spin resonances.1–7,15Mag-
netic molecules, forming molecular magnets, can possess
various spins ranging fromS=1/2 up toS=27/2, as is re-
viewed in Refs. 16, 19, and 24–26. Bose-Einstein conden-
sates of dilute gasesssee reviews27–30d, being placed in opti-
cal lattices can form localized clouds with an effective spin
per site of order 102 or 103. Spin dynamicssmainly lineard is
an intensively developing field of research, called
spintronics.31

The Hamiltonian of a spin system can, generally, be sepa-
rated into two parts,
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Ĥ = o
i

Ĥi +
1

2o
iÞ j

Ĥi j , s1d

the first term being related to individual spins, while the
second representing spin interactions. The single-spin Hamil-
tonian

Ĥi = − m0B ·Si − DsSi
zd2 s2d

consists of the Zeeman energy and the energy of the single-
site magnetic anisotropy. Herem0;"gS, with gS being the
gyromagnetic ratio of a particle with spinS. For electronic
spins,m0,0, while for nuclear spinsm0 can be either posi-
tive or negative. The total magnetic field

B = B0ez + sB1 + Hdex s3d

contains external longitudinal,B0, and transverse,B1, mag-
netic fields, and also a feedback fieldH of a resonator, if the
sample is coupled to a resonant electric circuit. The aniso-
tropy parameterD is positive for an easy-axis anisotropy and
negative in the case of an easy-plane anisotropy.

The interaction Hamiltonian

Ĥij = o
ab

Dij
abSi

aSj
b − JijSi ·Sj s4d

includes dipole and exchange interactions. The dipolar tensor
is

Dij
ab =

m0
2

r ij
3 sdab − 3nij

anij
bd, s5d

wherea ,b=x,y,z and

r ij ; ur i j u, ni j ;
r i j

r i j
, r i j ; r i − r j .

This tensor enjoys the properties

o
a

Dij
aa = 0, o

jsÞid
Dij

ab = 0, s6d

of which the first is exact and the second one is asymptoti-
cally exact for a macroscopic sample with a large number of
spinsN@1. A positive exchange integral corresponds to fer-
romagnetic interactions and negative, to antiferromagnetic
interactions.

It is convenient to represent the Hamiltonians through the
ladder spin operatorsSi

± ;Si
x± iSi

y. Then the single-spin term
s2d writes as

Ĥi = − m0B0Si
z −

1

2
m0sB1 + HdsSi

+ + Si
−d − DsSi

zd2. s7d

With the notation

aij ; Dij
zz, bij ;

1

4
sDij

xx − Dij
yy − 2iDij

xyd,

s8d

cij ;
1

2
sDij

xz− iDij
yzd,

the interaction Hamiltonians4d transforms to

Ĥij = aijSSi
zSj

z −
1

2
Si

+Sj
−D + bijSi

+Sj
+ + bij

* Si
−Sj

− + 2cijSi
+Sj

z

+ 2cij
* Si

−Sj
z − JijsSi

+Sj
− + Si

zSj
zd. s9d

The interaction parametersaij =aji , bij =bji , and cij =cji are
symmetric and have the property

o
jsÞid

aij = o
jsÞid

bij = o
jsÞid

cij = 0, s10d

following from Eqs.s6d.
The equations of motion for the spin operators are ob-

tained from the Heisenberg equations and the commutation
relations

fSi
+,Sj

−g = 2di jSi
z, fSi

z,Sj
±g = ± di jSi

±.

In order to represent the evolution equations in a compact
form, it is convenient to introduce the local fields

j0 ;
1

"
o
jsÞid

faijSj
z + cij

* Sj
− + cijSj

+ + JijsSi
z − Sj

zdg, s11d

j ;
i

"
o
jsÞid

F2cijSj
z −

1

2
aijSj

− + 2bijSj
+ + JijsSi

− − Sj
−dG

and the effective force

f ; −
i

"
m0sB1 + Hd + j. s12d

There is a characteristic frequency, the Zeeman frequency,
which we denote as

v0 ; −
m0

"
B0. s13d

Then as the equations of motion for the spin operators, we
obtain

dSi
−

dt
= − isv0 + j0dSi

− + fSi
z + i

D

"
sSi

−Si
z + Si

zSi
−d, s14d

with its Hermitian conjugate, and

dSi
z

dt
= −

1

2
sf+Si

− + Si
+fd. s15d

The following description of spin dynamics will be based on
these equations.

III. TRIGGERING SPIN FLUCTUATIONS

Suppose that the spin system is prepared in a strongly
nonequilibrium state, being polarized along thez axis. What
then could be the triggering mechanisms initiating spin mo-
tion and their relaxation to an equilibrium state? It is evident
that imposing transverse magnetic fields would push the
spins to move. But assume that there are no transverse mag-
netic fields at the initial time and no transverse coherence is
imposed on the system. What then would initiate the spin
motion? Here it is important to stress the role of local spin
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waves as of the triggering mechanism for starting the spin
relaxation.

The appearance of spin waves is due to the local fields
s11d. In order to consider spin waves, or more generally, spin
fluctuations that arise in a state which is not necessarily equi-
librium, it is appropriate to work with the operator equations
s14d and s15d. Let us define the operator deviation

dSi
a ; Si

a − kSi
al s16d

from an averagekSi
al, which is not necessarily an equilib-

rium average, but which can be an average over a nonequi-
librium statistical operator, though such thatkSi

al weakly de-
pends on the indexi, because of which it can be taken out of
the sums in Eqs.s11d. Then, owing to Eqs.s10d, we have

j0 =
1

"
o
jsÞid

faijdSj
z + cij

* dSj
− + cijdSj

+ + JijsdSi
z − dSj

zdg,

s17d

j =
i

"
o
jsÞid

F2cijdSj
z −

1

2
aijdSj

− + 2bijdSj
+ + JijsdSi

− − dSj
−dG ,

which demonstrates that these local fields really correspond
to local spin fluctuations.

To emphasize the role of the spin fluctuations, let us set
B1=H=0, that is, looking at the case when the transverse
fields do not initiate the spin motion. And, respectively, let
kSi

±l=0, but the longitudinal polarization be finite,kSi
zlÞ0.

ThenSi
±=dSi

±. The behavior of spin fluctuations is character-
ized by linearizing Eqs.s14d and s15d with respect to the
operator deviationss16d. The linearization of the single-site
anisotropy term in Eq.s14d has to be done so that we satisfy
the known exact relations forS=1/2 andS→`, which can
be represented16,32 as

Si
−Si

z + Si
zSi

− = S2 −
1

S
DkSi

zlSi
−. s18d

Introduce the single-site anisotropy frequency

vD ; s2S− 1d
D

"
s19d

and the effective spin frequency

vs ; v0 − vD

kSi
zl

S
, s20d

wherev0 is defined in Eq.s13d. Then, linearizing Eqs.s14d
and s15d, we find

d

dt
Si

− = − ivsSi
− + kSi

zlj,
d

dt
dSi

z = 0. s21d

The second of these equations, under the initial condition
dSi

zs0d=0, givesdSi
z=0.

Now let us employ the Fourier transforms for the interac-
tions

aij =
1

N
o
k

ake
ik·r i j , ak = o

jsÞid
aije

−ik·r i j ,

with the analogous transforms forbij andJij , and for the spin
operators

Sj
± = o

k

Sk
±e7ik·r j, Sk

± =
1

N
o

j

Sj
±e±ik·r j .

Using the notation

ak ; vs +
1

"
Sak

2
+ Jk − J0DkSi

zl, bk ;
2

"
bkkSi

zl, s22d

from the first of Eqs.s14d, we obtain

d

dt
Sk

− = − iakSk
− + ibkSk

+. s23d

Looking for the solution of the latter equation in the form

Sk
− = uke

−ivkt + vk
*eivkt,

we find the spectrum of spin waves

vk = Îak
2 − ubku2. s24d

In the long-wave limit, one gets

vk . uvsuF1 − kSi
zlo

k jl

aij + 2Jij

4"vs
sk · r i jd2G , s25d

wherek→0, and the summation is over the nearest neigh-
bors.

In this way, in the spin system there are always transverse
fluctuations, which can be named spin waves. The latter, as
they have been described, are not necessarily the spin waves
in an equilibrium state, as they are usually understood,33 but
are to be considered in a generalized sense. Under spin
waves, we mean here just transverse spin fluctuations. It is
these transverse fluctuations that are responsible for trigger-
ing the initial motion of polarized spins, when there are no
external transverse magnetic fields. This is why these trans-
verse spin fluctuations can be called triggering spin waves.
Taking into account such quantum spin fluctuations makes it
possible to describe the dynamical regimes of spin motion,
which do not exist for classical Bloch equations. And it be-
comes possible to develop a detailed picture of how the
transverse spin coherence arises from initially chaotic fluc-
tuations. This self-organized process of coherence emerging
from chaos is one of the most interesting and challenging
problems of spin dynamics.

IV. SPIN EVOLUTION EQUATIONS

The equations of motions14d and s15d for spin operators
are highly nonlinear. The nonlinearity comes from two
sources. One is caused by the spin interactions accumulated
in the local fluctuating fieldss11d. Another kind of nonlin-
earity enters through the effective forces12d containing feed-
back fields included in the termH. The treatment of the
nonlinear spin dynamics will be done here by means of the
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scale separation approach,11–15,34which is a generalization of
the averaging technique35 to stochastic differential equations.

Notice, first of all, that there are two different spatial
scales. One of them is related to local fieldss11d describing
random spin fluctuationss17d, which is characterized by a
spatial length of the order of the mean interparticle distance
a0. At this length scale, chaotic quantum spin fluctuations
prevail. Another length scale is the wavelengthl@a0 corre-
sponding to coherent effects associated with the characteris-
tic spin rotation frequencyvs. At the latter scale, coherent
spin correlations are important. These two different length
scales allow us to distinguish two types of operators. One
type are the local fluctuating fieldss11d, that is, the variables
j0, j, andj+, and another type are the spin operatorsSi

−, Si
+,

andSi
z. The former, responsible for local short-range fluctua-

tions, can be represented by random variables,2,5,11,16,36while
the latter keep track of long-range coherent effects. Respec-
tively, it is convenient to define two sorts of averaging with
respect to the corresponding variables. Then the statistical
averaging over spin operators will be denoted by the single
angle bracketsk¯l, while the averaging over the random
local fields will be denoted by the double angle brackets
kk¯ll. The latter, treating the chaotic local spin fluctuations
as white noise, are defined as

kkj0stdll = kkjstdll = 0, kkj0stdj0st8dll = 2g3dst − t8d,

kkj0stdjst8dll = kkjstdjst8dll = 0, kkj*stdjst8dll = 2g3dst − t8d,

s26d

whereg3 is the width of inhomogeneous dynamic broaden-
ing.

It is worth stressing that the white-noise approximation
s26d is not principal and could be generalized to taking into
account a colored noise by including finite relaxation times.
This, however, would result in much more complicated and
cumbersome equations. It is therefore more convenient, fol-
lowing the ideas of the scale separation approach,11–15 to
separate in the temporal behavior of spin correlations two
parts, fast and slow. The fast part is connected to the local
spin fluctuations described by the spectrum of local spin
wavess24d. The characteristic frequencies of these fluctua-
tions are defined by the near-neighbor spin coupling as well
as by the applied external magnetic field. Here and in what
follows, we assume that this external field is sufficiently
strong, so that the fluctuation spectrums24d is characterized
by the frequencies of the order of the Zeeman frequencyv0,
which is essentially larger than the frequency terms due to
spin interactions. With the time 2p /v0 being the shortest
among all other characteristic times, the related fast spin
fluctuations can be effectively treated as white noise, as is
done in Eq.s26d. The influence of spin correlations slowly
decaying in time can be appropriately included into the trans-
verse relaxation timeT2 determined by the strength of the
spin-spin coupling allowing for dipolar as well as exchange
interactions. This effective relaxation time will also be taken
into account in the following consideration, together with the
effect of line narrowing due to high spin polarization.6

Averaging over spin operators, because of their long-
range role, one can employ the decoupling

kSi
aSj

bl = kSi
alkSj

bl si Þ jd. s27d

Though this looks like a mean-field approximation, one
should not forget that the restricted averaging, denoted by the
single angle bracketsk¯l, by definition, involves only the
spin degrees of freedom, without touching the stochastic
variablesj0 and j* . Therefore the quantum fluctuations are
not lost in decouplings27d but are preserved because of the
dependence of the spin averageskSi

al on the random vari-
ablesj0 andj. Then decouplings27d is termed the stochastic
mean-field approximation.11–16

A special care is to be taken in considering the single-site
term of Eq.s14d. When averaging the latter, one has to pre-
serve the exact limiting properties known forS=1/2 andS
→`. The corresponding decoupling, correctly interpolating
between the exact limiting behaviors16,19,32is

kSi
−Si

z + Si
zSi

−l = S2 −
1

S
DkSi

−lkSi
zl. s28d

Thus, forS=1/2,expressions28d becomes zero, as it should
be, and forS→`, one has 2kSi

−lkSi
zl, again in agreement with

the correct asymptotic behavior.
Let us average the equations of motions14d ands15d over

the spin degrees of freedom, not touching the fluctuating
random fieldsj0 and j. Our aim is to obtain the evolution
equations for the following variables: Thetransition function

u ;
1

SN
o
i=1

N

kSi
−l, s29d

describing the average rotation of transverse spin compo-
nents; thecoherence intensity

w ;
1

S2NsN − 1doiÞ j

N

kSi
+Sj

−l, s30d

showing the level of coherence in the spin motion, and the
spin polarization

s;
1

SN
o
i=1

N

kSi
zl, s31d

defining the average polarization per particle.
In order to have the evolution equations representing re-

alistic spin systems, but not just some unreasonable models,
an accurate account must be taken of the main relaxation
mechanisms. Being based on unrealistic models, omitting
important existing attenuation processes, it would be easy to
fall into the sin of predicting physical effects that in reality
can never occur. We shall consider the following basic relax-
ation rates.

s1d Spin-lattice longitudinal attenuationg1, caused by
spin-lattice interactions. The corresponding longitudinal re-
laxation time isT1;1/g1. For different materials,g1 can be
of different order. At low temperature, when spin-phonon
interactions are suppressed, the parameterg1 can be rather
small. For instance, in polarized nuclear targets16 at tempera-
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ture of 1 K, one hasg1,10−5 s−1. In molecular crystals be-
low the blocking temperature of the order of 1 K, the spin-
lattice rate can be betweeng1,10−7 and 10−5 s−1 ssee more
details in Refs. 16 and 24–26d. Being small, this relaxation
parameter may not play an essential role at the initial stage of
spin motion, however, it always plays a principal role at the
late stages of spin relaxation.

s2d Polarization pump rateg1
* , which is added tog1 when

the sample is subject to a permanent pump supporting a non-
equilibrium level of the longitudinal spin polarization. This
rate can be made much larger thang1. Thus, by means of
dynamic nuclear polarization, the pump rate for nuclear spins
in solids can be as large asg1

* ,0.01 and 10 s−1.16 The sum
of g1 andg1

* will be denoted as

G1 ; g1 + g1
* . s32d

s3d Spin dephasing rateg2, due to spin-spin interactions.
This rate has been calculated by many authors, and the gen-
erally accepted value1–7 writes as

g2 = n0r
m0

2

"
ÎSsS+ 1d, s33d

where r;N/V is density andn0 is a coefficient approxi-
mately equal to the number of nearest neighbors. The process
of spin dephasing is mainly due to dipolar forces. Exchange
interactions slightly narrow the line widths33d, yielding4,6,21

a factor of about 0.8. The coefficient in Eq.s33d also depends
on the type of lattice, so that the numerical factor here is
approximate. The value ofg2 is usually larger than that ofg1.
For example, in polarized solid targets16 g2,105 s−1, in mo-
lecular magnets16,24 it is g2,1010 s−1. Inverse ofg2 defines
the spin dephasing timeT2;1/g2.

s4d Effective homogeneous broadeningg2ssd takes into ac-
count a correction to the spin dephasing rateg2, appearing in
the case of strongly polarized spin systems. Such a strong
polarization can be achieved in magnetically ordered materi-
als, by applying strong longitudinal magnetic fields, or by
dynamic polarization techniques. This effective broadening
reads as

g2ssd = g2s0ds1 − s2d, g2s0d ; g2, s34d

wheres is an average spin polarizations31d andg2 is given
by Eq. s33d. The derivation of Eq.s34d is explained in Ap-
pendix A. Under weak polarization, whens2!1, one has
g2ssd.g2.

s5d Static inhomogeneous broadeningg2
* is due to various

magnetic defects, crystalline defects, field gradients, and a
variety of additional interactions always present in any real
materials.1–7,21,31Very often the inhomogeneity develops in
matter not because of externally incorporated defects, but
being due to the internal properties, when a heterogeneous
state is more thermodynamically stable than a homogeneous
state.37,38 This, e.g., happens in many colossal-
magnetoresistance materials39–41 and in high-temperature
superconductors,42–46 where there appears mesoscopic phase
separation. In general,g2

* can be both smaller as well as
larger thang2. However in the majority of cases, to a very
good approximationg2

* ,g2. Summarizing the homogeneous

and inhomogeneous mechanisms, discussed above, we de-
note the overall transverse relaxation rate as

G2 ; g2s1 − s2d + g2
* . s35d

s6d Dynamic inhomogeneous broadeningg3 is caused by
fast dynamic spin fluctuations, or the local spin waves, dis-
cussed in Sec. III. It comes into play through the stochastic
averagings26d. The value of the broadening, due to local
spin waves, is of the order or smaller thang2.

14–16,21As is
emphasized in Sec. III, this dynamic broadening is crucially
important at the initial stage of spin relaxation, when there
are no applied transverse fields.

s7d Cross relaxation ratesarise when there are several
spin species in the system. For example, if there are two
types of spins,SandF, then the dynamic broadening for spin
S becomes

g3 = ÎgSS
2 + gSF

2 . s36d

Cross correlations can influence other relaxation rates, espe-
cially if the Zeeman frequencies of the spinsS and F are
close to each other.1–7,15,16

s8d Spin radiation rategr arises when there exist the so-
called wave packets of strongly correlated spins interacting
with each other through the common radiation field. The
possibility of the appearance of such an electromagnetic fric-
tion was, first, noticed by Ginzburg47 and later discussed by
many authorsssee, e.g., Ref. 48d. This collective radiation
rate is

gr =
2

3"
rm0

2SskLsd3, s37d

wherek is the wave vector of the radiating field andLs is an
effective linear size of a spin packet radiating coherently.
Rate s37d has earlier been obtained47,48 in the classical ap-
proximation. In Appendix B, we briefly sketch how this rate
can be derived in a fully quantum-mechanical picture. It is
important to stress that the existence of rates37d presupposes
the occurrence of monochromatic radiation with a well-
defined constant spin frequencyvs and wave vectork, and
that the radiation wavelength is much larger than the linear
sizeLs of a spin packet, so that

kLs ! 1 Sk ;
vs

c
D . s38d

If these conditions do not hold, no noticeable relaxation rate
arises. And under the validity of these conditions, one has

gr

g2
< 0.1skLsd3 ! 1. s39d

The rategr is so much smaller thang2, and usually much
smaller thang2

* , that it can be safely neglected, being abso-
lutely unable to influence the motion of spins. Actually,
Bloembergen1 has already analysed this problem and come
to the conclusion that the interaction of spins through the
magnetodipole radiation field is completely negligible. How-
ever, one may put the following question. Suppose that the
considered sample is ideally homogeneous, so thatg2

* is very
small, and let the initial spin polarization be very high, such
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that s0
2<1. Then the effective transverse rates35d at the ini-

tial time t=0 can become rather small. Could then the radia-
tion rate s37d play any noticeable role, at least at the very
initial stage of spin motion? We study this problem below.

s9d Thermal noise attenuationgT emerges when the spin
system is coupled to a resonant electric circuit. The resonator
Nyquist noise, due to the thermal fluctuations of current in
the circuit creates a fluctuational magnetic field, which has to
be included in the effective forces12d. The magnitude of the
thermal field, produced by the Nyquist noise, is well
known.10 It was found12–16 that the resulting thermal attenu-
ation is

gT =
hrm0

2v

4"gN
coth

v

2vT
, s40d

whereh is a filling factor,v is the natural frequency of the
electric circuit, g is the resonator ringing width, andvT
;kBT/" is the thermal frequency. Bloembergen and Pound8

first mentioned that, because of the macroscopic number of
spinsN entering the denominator ofgT, the latter is unable to
influence any spin motion in a macroscopic sample. This
conclusion was confirmed by accurate calculations.12–16

s10d Resonator relaxation ratearises when the sample is
coupled to a resonant electric circuit. Then in the effective
force s12d the magnetic fieldH is the resonator feedback
field. The role of this field will be thoroughly studied in what
follows.

Summarizing all said above, for the spin averagess29d to
s31d, we obtain the evolution equations

du

dt
= − isvs + j0 − iG2du + fs, s41d

dw

dt
= − 2G2w + su* f + f*uds, s42d

ds

dt
= −

1

2
su* f + f*ud − G1ss− zd, s43d

supplemented by the initial conditions

us0d = u0, ws0d = w0, ss0d = s0.

In these equations,z is a stationary spin polarization, the
characteristic spin frequency is

vs = v0 − vDs, s44d

with v0 given by Eq.s13d and vD by Eq. s19d. The total
longitudinal rateG1 is defined in Eq.s32d and the total trans-
verse rateG2, in Eq. s35d. The effective force is

f = −
i

"
m0sB1 + Hd + j + gru, s45d

where the last term is the friction force due to the interaction
through magnetodipole radiation, andgr is the magnetodi-
pole radiation rates37d. Equationss41d to s43d are stochastic
differential equations, since they contain the random vari-
ablesj0 and j, whose stochastic averages are given in Eqs.

s26d. The external transverse fieldB1 and the resonator feed-
back fieldH need yet to be specified.

V. RESONATOR FEEDBACK FIELD

The resonator feedback fieldH is created by the electric
current of the coil surrounding the spin sample. We assume
that the coil axis is along the axisx. The electric circuit is
characterized by resistanceR, inductanceL, and capacityC.
The spin sample is inserted into a coil ofn turns, lengthl,
cross-section areaAc, and volumeVc=Acl. The electric cur-
rent in the circuit is described by the Kirchhoff equation

L
dj

dt
+ Rj +

1

C
E

0

t

jst8ddt8 = Ef −
dF

dt
, s46d

in which Ef is an electromotive force, if any, and the mag-
netic flux

F =
4p

c
nAchmx, s47d

whereh<V/Vc is a filling factor, is formed by thex com-
ponent of the magnetization density

mx ;
m0

V
o

i

kSi
xl. s48d

The electric current, circulating over the coil, creates a mag-
netic field

H =
4pn

cl
j . s49d

The circuit natural frequency is

v ;
1

ÎLC
SL ; 4p

n2Ac

c2l
D s50d

and the circuit damping is

g ;
1

t
=

R

2L
=

v

2Q
, s51d

wheret is called the circuit ringing time andQ;vL /R is
the quality factor. Also, let us define the reduced electromo-
tive force

ef ;
cEf

nAcg
. s52d

Then the Kirchhoff equations46d can be transformed to the
equation

dH

dt
+ 2gH + v2E

0

t

Hst8ddt8 = gef − 4ph
dmx

dt
s53d

for the feedback magnetic field created by the coil.
The feedback equations53d can be represented in another

equivalent form that proved to be very convenient for defin-
ing the feedback field.12–15 For this purpose, we involve the
method of Laplace transforms and introduce the transfer
function
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Gstd = Scosv8t −
g

v8
sinv8tDe−gt, s54d

where

v8 ; Îv2 − g2.

Thus we transform the feedback-field equations53d to the
integral representation

H =E
0

t

Gst − t8dfgefst8d − 4phṁxst8dgdt8, s55d

in which

ṁxstd ;
1

2
rm0S

d

dt
su* + ud. s56d

Let the resonant part of the reduced electromotive force
s52d be

efstd = h2 cosvt. s57d

And let us introduce the notation

n2 ;
m0h2

2"
. s58d

As usual, we assume that all attenuation parameters are
much smaller than the characteristic spin frequencyvs. Then
Eq. s55d can be solved by an iteration procedure, which in
first order gives

m0H

"
= isau − a*u*d + 2b cosvt. s59d

Here the coupling function

a = g0vsF1 − exph− isv − vsdt − gtj
g + isv − vsd

+
1 − exph− isv + vsdt − gtj

g − isv + vsd
G s60d

describes the coupling of spins with the resonator and the
function

b =
n2

2
s1 − e−gtd s61d

characterizes the action of the resonator electromotive force
on spins. In Eq.s60d the notation for the natural spin width

g0 ;
p

"
hrm0

2S s62d

is employed.
The spin-resonator coupling can be characterized by the

dimensionless coupling parameter

g ;
gg0vs

g2sg2 + D2d
, s63d

in which D;v− uvsu is the detuning. As is evident from Eq.
s60d, an efficient spin-resonator coupling is possible only
when the detuning from the resonance is small, such that

uDu
v

! 1 sD ; v − uvsud. s64d

When the resonance is sufficiently sharp, so thatuDu,g, then
the coupling functions60d reduces to

a = gg2s1 − e−gtd. s65d

Thus the resonator feedback fieldH is defined by Eq.s59d, in
which a is given by Eq.s65d andb, by Eq. s61d.

VI. AVERAGED EVOLUTION EQUATIONS

The resonator field, defined in Eq.s59d, has to be substi-
tuted in the effective forces45d entering the evolution equa-
tions s41d to s43d. In Eq. s45d, we also need to specify the
external magnetic fieldB1. In general, the latter may contain
a constant part and an alternating term. So, let us take this
transverse field in the form

B1 = h0 + h1 cosvt. s66d

In what follows, we shall use the notation

n0 ;
m0h0

"
, n1 ;

m0h1

2"
. s67d

Equationss41d to s43d are stochastic differential equations,
containing the random variablesj0 and j describing local
spin fluctuations. In order to derive the evolution equations
in terms of ordinary differential equations, we have to ac-
complish the averaging over random fluctuations. This can
be done by following the scale separation approach,11–16 the
usage of the stochastic averagess26d, and by invoking the
known techniques of treating stochastic variables.49

Keeping in mind that the attenuation parameters are sub-
stantially smaller than the characteristic spin frequencyvs,
we notice from Eqs.s41d to s43d that the functionu can be
classified as fast, being compared with the temporal behavior
of the functionsw ands. The latter play the role of temporal
quasi-invariants with respect tou.

First, we substitute into Eqs.s41d to s43d the effective
force s45d, the resonator fields59d, and the transverse mag-
netic field s66d. This results in the equations

du

dt
= − isvs + j0du − sG2 − as− grsdu + f1s− asu* ,

s68d

dw

dt
= − 2sG2 − as− grsdw + su* f1 + f1

*uds− as„u2 + su*d2
…,

s69d

ds

dt
= − sa + grdw −

1

2
su* f1 + f1

*ud − G1ss− zd

+
1

2
a„u2 + su*d2

…, s70d

in which
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f1 ; − in0 − 2isn1 + bdcosvt + j. s71d

Then we solve Eq.s68d for the fast variableu, keeping the
quasi-invariants fixed, which yields

u = u0 expH− sivs + G2 − as− grsdt − iE
0

t

j0st8ddt8J
+ sE

0

t

f1st8dexpH− sivs + G2 − as− grsdst − t8d

− iE
t8

t

j0st9ddt9Jdt8. s72d

Solution s72d must be substituted in Eqs.s69d and s70d for
the slow functionsw and s. After this, the latter equations
have to be averaged over time and over the stochastic vari-
ablesj0 and j, again keeping the quasi-invariants fixed. To
slightly simplify the resulting equations, one can take the
initial condition for the transition functionu in the real form,
such thatu0

* =u0, which is not principal but just makes the
equations less cumbersome.

To present the resulting equations in a compact form, we
introduce theeffective attenuation

G3 ; g3 +
n0

2G

vs
2 + G2 −

n0sn1 + bdG
vs

2 + G2 e−Gt +
sn1 + bd2G

D2 + G2 s1 − e−Gtd,

s73d

in which

G ; G2 + g3 − sa + grds. s74d

And finally, after the described averaging, we obtain the evo-
lution equations

dw

dt
= − 2sG2 − as− grsdw + 2G3s

2, s75d

ds

dt
= − sa + grdw − G3s− G1ss− zd. s76d

These equations are very general. They include various
attenuation processes, described in Sec. IV, and take into
account transverse constant and alternating fieldss66d, as
well as the resonator electromotive forces57d entering
through functions61d. The resonator feedback field is re-
sponsible for the appearance of the coupling functions65d.
Notice that the radiation relaxation rategr, defined in Eq.
s37d, enters everywhere together with the spin-resonator cou-
pling a. However their values are drastically different. Since

gr

a
, 0.1

g

vs
skLsd3 ! 1,

the value ofgr is so incomparably smaller thana,gg2, that
it is evident, in the presence of a resonator, the rategr must
be forgotten.

Moreover, even when there is no resonator, so thata=b
=0, the radiation rategr plays no role, since it is much
smaller thang2, g2

* , and g3. One might think thatgr could
play a role in the following unrealistic case. Let us imagine

an absolutely ideal lattice with no inhomogeneous broaden-
ing, that is, let us setg2

* =0, which is certainly a purely
imaginary situation. Then, according to Eq.s35d, one has
G2=g2s1−s2d. Assume that the spin system is completely
polarized, withs0=1. Hence, at the initial time,G2=0. Could
then the spin motion be started by the term withgr? The
answer is evident: As far as the largest terms in both Eqs.
s75d and s76d are those containingG3, the terms withgr are
always negligible, even ifG2=0. Even more, functionss30d
and s31d, by their definition, satisfy the inequality

w + s2 ø 1. s77d

Therefore, if one setss0=1, thenw0=0, and the termgrw
simply disappears from the equations. Vice versa, if one sets
a noticeablew0,1, then s2!1, and G2<g2@gr. In this
way, the radiation rategr never plays any role in the spin
motion, which is in agreement with the estimates by
Bloembergen.1

Note that the situation in spin systems is principally dif-
ferent from that happening in atomic systems. In the latter,
both the linewidthg2=2udu2k3/3 as well as the collective
radiation rategr =s2/3dudu2k3Nc, whereNc is the number of
correlated atoms, forming a wave packet, are caused by the
same physical process, by the interaction of atoms with their
radiation field. Hencegr /g2=Nc@1, which results in the co-
herentization of the dipole transitions. This is possible even
if kL@1, but the number of atoms in a partial wave packet is
Nc@1, sincegr /g2=Nc@1. Contrary to this, in spin systems
the linewidthg2, given in Eq.s33d, is due to direct dipole-
dipole interactions, while the radiation rates37d is a result of
the spin interactions with their radiation field. This is why in
the latter case, one always hasgr !g2, and the radiation rate
gr plays no part in the motion of spins.

We may also notice that in the effective attenuations73d
the terms due to the presence of a constant transverse field
are less important than the terms caused by the local spin
fluctuations and by the alternating transverse fields. There-
fore, omitting the terms corresponding to a permanent trans-
verse magnetic field, we have

G3 = g3 +
sn1 + bd2G

G2 + D2 s1 − e−Gtd. s78d

Finally, we obtain the evolution equations

dw

dt
= − 2sG2 − asdw + 2G3s

2, s79d

ds

dt
= − aw − G3s− G1ss− zd, s80d

describing the averaged motion of spins.

VII. COHERENCE EMERGING FROM CHAOS

One of the most intriguing questions is how the spin mo-
tion could become coherent if initially it was not. This is a
particular case of the general physical problem of how co-
herence emerges from chaos.
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Being interested in a self-organized process of arising co-
herence, let us consider the case, when there are no external
transverse fields pushing spins, that isn1=b=0. Then Eq.
s78d yieldsG3=g3. Assume also that there is no pumping, so
that g1

* =0, henceG1=g1. Under these conditions, the initial
spin motion, for the timet such that

g1t ! 1, g2t ! 1, g3t ! 1, s81d

follows from Eqs.s79d and s80d in the form

w . w0 + 2fg3s0
2 − g2s1 − s0

2 + kdw0gt,

s. s0 − fsg1 + g3ds0 − g1zgt, s82d

where the inhomogeneity coefficient is introduced,

k ; g2
* /g2. s83d

If at the initial time no transverse polarization is imposed on
the system, and the initial coherence function is zero,w0
=0, nevertheless the coherent spin motion starts developing
according to the law

w . 2g3s0
2t sw0 = 0d, s84d

provided there is an initial longitudinal polarizations0Þ0.
The initiation of the emerging coherent motion is caused by
local spin fluctuations creating the effective rateg3. Recall
that in the Bloch equations coherent motion never appears if
it is not imposed by the initial conditions. Contrary to this,
Eqs. s79d and s80d take into account the local spin fluctua-
tions triggering the motion of spins. The second of Eqs.s82d,
keeping in mind that usuallyg1!g3,g2, can be simplified
to

s. s0s1 − g3td. s85d

At the initial stage of spin motion, their coherence is yet
incipient, and the motion is mainly governed by quantum
chaotic spin fluctuations. The coherentization of the trans-
verse motion goes through the resonator feedback field and
the growing coupling functions65d. The quantitative change
in the spin motion happens when the coupling functions65d
becomes so large that the termsG2−asd in Eq. s79d goes
negative, which means that an efficient generation of coher-
ence has started in the system. This is analogous to the be-
ginning of maser generation.15–19The moment of time, when
the regime of mainly chaotic quantum fluctuations trans-
forms into the regime of predominantly coherent spin mo-
tion, can be called thechaos time. This timetc is defined by
the equalityas=G2, that is by the equation

as= g2s1 − s2d + g2
* st = tcd. s86d

From here, the estimate for the chaos time is

tc = t ln
gs0

gs0 − 1 +s0
2 − k

, s87d

wheret is the resonator ringing time defined in Eq.s51d. The
regime of chaotic spin fluctuations lasts till the chaos time
s87d, after which the coherent stage of spin motion comes
into play. As is clear from the above equations, the transfor-
mation from the chaotic to coherent regime goes as a gradual

crossover. Notice that the quantity 1−s0
2+k is positive since

s0
2ø1. Then, in order that the chaos times87d be positive and

finite, the inequality

gs0 . 1 − s0
2 + k . 0 s88d

must hold. For a strong spin-resonator coupling, whengs0
@1, the chaos times87d reduces to

tc .
t

gs0
s1 − s0

2 + kd. s89d

As is seen, there exists a well-defined stage of chaotic
spin fluctuations, with a finite chaos timetc.0, after which
the coherent regime develops, ifgs0.0. The coupling pa-
rameterg is defined in Eq.s63d, from which it follows that
one should havevss0.0. Assuming that the initial spin po-
larization is positive,s0.0, one gets the requirement that
vs.0. The latter, by definitions44d, is equivalent to the
conditionv0.vDs. Moreover, the coupling functions65d is
obtained under the resonance conditions64d, which implies
that vs has to be close to the resonator natural frequencyv.
There are two ways of preserving the resonance condition
s64d. First, one can impose a sufficiently strong external
magnetic fieldB0, such that the frequencyv0, given by Eq.
s13d, would be much larger thanvD, defined in Eq.s19d. This
becomes trivial forS=1/2, whenvD=0. If v0@vD, then it
is easy to realize the resonance conditions64d, with vs<v
and slightly varying in time detuningD=v−vs.

The second way of keeping the resonance conditions64d
is by means of the chirping effect.16,19 This requires to vary
in time the external magnetic fieldB0 so that to maintain the
equality

m0B0

"
+ sv + vDsd = D, s90d

with a fixed detuning.

VIII. COHERENT SPIN RELAXATION

After the chaos times87d, the motion of spins becomes
more and more coherent, being collectivized by the resonator
feedback field, with the coupling functiona reaching the
value gg2. At the transient stage, whent. tc but t!T1, we
may neglect the term withg1 in Eq. s80d. Assuming that
there is no pumping, that isg1

* =0, one hasG1=g1. Let us
continue studying the case of the self-organized coherent
spin motion, when there are no transverse external fields, so
that n1=b=0, henceG3=g3. When the coherence is well
developed, then the main term in Eq.s79d is the first one,
while the term withg3 can be neglected. Under these condi-
tions, and using expressions35d for the rateG2, Eqs.s79d and
s80d reduce to the form

dw

dt
= − 2g2s1 − s2 + k − gsdw, s91d
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ds

dt
= − gg2w. s92d

The solution of these equations is explained in Appendix C
and it yields

w = S gp

gg2
D2

sech2S t − t0
tp

D ,

s= −
gp

gg2
tanhS t − t0

tp
D +

1 + k

g
. s93d

Here

tp ; 1/gp s94d

is the pulse time showing the duration of the coherent relax-
ation occurring as a fast pulse. The delay time

t0 = tc +
tp

2
lnUgp + gg

gp − gg
U s95d

defines the time of the maximal coherence. The pulse width
is given by the relation

gp
2 =

1

2
gg

2F1 +Î1 + 4Sgg2

gg
D2

wcG , s96d

in which

gg ; g2sgsc − 1 −kd. s97d

The boundary valueswc andsc are

wc = w0 + 2fg3s0
2 − g2s1 − s0

2 + kdw0gtc, sc = s0s1 − g3tcd,

s98d

with the chaos timetc given in Eq.s87d. Since we are inter-
ested in the self-organized collective process, when there is
no large transverse polarization imposed on the system at the
initial time, we may setw0!s0

2. Then Eq.s96d simplifies to

gp
2 = gg

2 + sgg2d2wc. s99d

The pulse times94d reads as

tp =
T2

Îsgsc − 1 −kd2 + g2wc

. s100d

It is easy to notice that if the spin-resonator coupling is
weak,g!1, thengp,gg,g2 and tp,T2. In that case, no
self-organized coherence can arise in the system.

Collective coherent effects appear in the spin motion only
if the pulse timetp is smaller than the dephasing timeT2.
The inequalitytp,T2, according to Eq.s100d, requires that

sgsc − 1 −kd2 + g2wc . 1. s101d

Three different regimes can satisfy Eq.s101d.
The regime ofcollective inductionhappens when

gs0 , 1 + k, g2w0 . 1. s102d

Then, as is clear from Eq.s97d, one hasgg,0, because of
which t0, tc. This means that there is no noticeable maxi-
mum in the coherence functionw, since, by definition, the

delay times95d should occur after the chaotic stage, so that
t0. tc. But the latter implies thatgg.0.

The triggered coherent relaxationcorresponds to

gs0 . 1 + k, 0 , g2w0 , 1. s103d

And the purely self-organized coherent relaxationtakes
place when

gs0 . 2 + k, w0 = 0. s104d

In this classification, we keep in mind the inequalityg3tc
!1, owing to whichwc<w0 and sc<s0. The initial coher-
ence is assumed to be weak, so thatw0!1.

For w0!s0
2, the delay times95d can be represented as

t0 = tc +
tp

2
ln

4sgsc − 1 −kd2

g2wc
. s105d

In the case of the purely self-organized coherent relaxation,
for sufficiently large coupling and initial polarization, such
that gs0@1, the delay times105d reduces to

t0 = tc +
tp

2
lnU 2

g3tc
U , s106d

wheretp=T2/gs0. From these formulas, one sees that ifg3
→0, thent0→`, and no coherent relaxation is possible. This
emphasizes the crucial role of the local spin fluctuations,
whose existence results in the relaxation rateg3.

At the delay times95d, solutionss93d are given by the
expressions

wst0d = wc + Ssc −
1 + k

g
D2

, sst0d =
1 + k

g
. s107d

And for t@ t0, they exponentially decay to the values

w . 4wst0dexps− 2gptd,

s. − sc +
2

g
s1 + kd + 2Ssc −

1 + k

g
Dexps− 2gptd.

s108d

At very large timest,T1, the transient equationss91d and
s92d are no longer valid. Then one has to return to the full
equationss79d and s80d. With increasing time, the solutions
tend to the stationary points defined by the zeros of the right-
hand sides of these equations. Among the relaxation regimes
to the stationary solutions, one is especially interesting, go-
ing through a long series of coherent pulses. This pulsing
coherent relaxation takes place under a permanent external
pumping described by a large pumping rateg1

* @g1. Then
G1=g1

* . If also the coupling parameter is sufficiently large,
such thatgz@1 and

g3

gzg1
* ! 1,

then the fixed point of Eqs.s79d and s80d is given by the
expressions
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w* =
g1

*

gsg2 + g2
*dS1 −

g3

gzg1
* D, s* =

1

g
S1 −

g3

gzg1
* D ,

s109d

corresponding to a stable focus. The relaxation to the station-
ary solutionss109d realizes through a series of sharp coher-
ent pulses, similar to the form of Eqs.s93d, with the temporal
interval between the pulses asymptotically defined by the
separation time

Tsep=
2p

Î2gzg1
*sg2 + g2

*d
. s110d

The number of the separate coherent pulses can be estimated
asNsep=1/g1

*Tsep, which gives

Nsep=Îgzsg2 + g2
*d

2p2g1
* .

Such a highly nontrivial relaxation regime occurs only under
a strong pumping and a sufficiently strong coupling with a
resonator.

IX. INFLUENCE OF CROSS CORRELATIONS

When in the sample, in addition to the studied spins, there
are spins of other nature, the presence of the latter can cer-
tainly influence the dynamics of the former. Let us consider
the case of two types of coexisting spins,S andF. The total
Hamiltonian is the sum

Ĥ = ĤS+ ĤF + ĤSF s111d

of the Hamiltonians forS spins,F spins, and their interac-

tions. The HamiltonianĤS of S spins is the same as in Eqs.

s1d to s4d. Let us accept for the HamiltonianĤF of F spins a
similar general form

ĤF = o
i

ĤiF +
1

2o
iÞ j

Ĥi jF . s112d

The single-spin terms are

ĤiF = − m0FB ·Fi − DFsFi
zd2, s113d

with the total magnetic fields3d. And the interaction terms
are given by

ĤijF = o
ab

DijF
abFi

aFj
b − JijFFi ·F j , s114d

with the dipolar tensor

DijF
ab =

m0F
2

r ij
3 sdab − 3nij

anij
bd.

Assume that the interactions between theS andF spins are
represented by the Hamiltonian

ĤSF= o
i

ASi ·Fi + o
iÞ j

o
ab

Aij
abSi

aFj
b, s115d

containing the part of the single-site interactions of intensity
A and the part of the dipole interactions, with the dipolar
tensor

Aij
ab =

m0m0F

rij
3 sdab − 3nij

anij
bd.

In particular, these could be hyperfine interactions between
nuclear and electron spins.15,50

We employ notations8d for the interaction parameters of
S spins and an equivalent notation for the interaction param-
etersaijF , bijF , andcijF of F spins. Similarly, we define the
interaction parameters

āij ; Aij
zz, b̄ij ;

1

4
sAij

xx − Aij
yy − 2iAij

xyd, c̄i j ;
1

2
sAij

xz− iAij
yzd

s116d

for the spin cross interactions.
The local fieldss11d, acting onS spins, are generalized to

the form

j0 ;
1

"
o
jsÞid

faijSj
z + cij

* Sj
− + cijSj

+ + JijsSi
z − Sj

zd + āijFj
z + c̄i j

* Fj
−

+ c̄i jFj
+g, s117d

j ;
i

"
o
jsÞid

F2cijSj
z −

1

2
aijSj

− + 2bijSj
+ + JijsSi

− − Sj
−d + 2c̄i jFj

z

−
1

2
āijFj

− + 2b̄ijFj
+G .

Analogous local fields act onF spins,

j0F ;
1

"
o
jsÞid

faijFFj
z + cijF

* Fj
− + cijFFj

+ + JijFsFi
z − Fj

zd + āijSj
z

+ c̄i j
* Sj

− + c̄i jSj
+g,

jF ;
i

"
o
jsÞid

F2cijFFj
z −

1

2
aijFFj

− + 2bijFFj
+ + JijFsFi

− − Fj
−d

+ 2c̄i jFSj
z −

1

2
āijSj

− + 2b̄ijSj
+G . s118d

Instead of one effective forces12d, we have now two forces

f ; −
i

"
m0sB1 + Hd +

i

"
AiFi

− + j,

fF ; −
i

"
m0FsB1 + Hd +

i

"
AiSi

− + jF. s119d

In addition to frequencys13d, let us introduce the effective
frequencies

v0F ; −
m0F

"
B0, « ;

A

"
. s120d

NONLINEAR SPIN RELAXATION IN STRONGLY… PHYSICAL REVIEW B 71, 184432s2005d

184432-11



The Heisenberg equations of motion for the system with
Hamiltonians111d yield the equations forS spins

dSi
−

dt
= − isv0 + «Fi

z + j0dSi
− + SI

zf +
i

"
DsSi

−Si
z + Si

zSi
−d,

dSi
z

dt
= −

1

2
sf+Si

− + Si
+fd, s121d

and the equations forF spins

dFi
−

dt
= − isv0F + «Si

z + j0FdFi
− + FI

zfF +
i

"
DFsFi

−Fi
z + Fi

zFi
−d,

dFi
z

dt
= −

1

2
sfF

+Fi
− + Fi

+fFd. s122d

Again we assume that the sample is inserted into the coil of
a resonant electric circuit. The feedback field acting on the
sample is given by Eq.s53d or s55d, where now the
magnetic-moment density is

mx =
m0

V
o
i=1

N

kSi
xl +

m0F

V
o
j=1

NF

kFj
xl, s123d

with NF being the number ofF spins.
Averaging Eqs.s121d and s122d, we derive the evolution

equations for functionss29d, s30d, ands31d, corresponding to
S spins, as well as the equations for the functions

uF ;
1

FNF
o
i=1

NF

kFi
−l, s124d

wF ;
1

F2NFsNF − 1doiÞ j

NF

kFi
+Fj

−l, s125d

sF ;
1

FNF
o
i=1

NF

kFi
zl, s126d

describingF spins. In this notation, the transverse magnetic-
moment densitys123d is

mx =
1

2
rm0Ssu* + ud +

1

2
rFm0FFsuF

* + uFd,

whererF is the density ofF spins.
The analysis of the evolution equations for the combined

system ofS andF spins is the same as has been given above
for one type of spinsS, with the difference that all expres-
sions become much more cumbersome. Again it is possible
to show that in the triggering of spin motion an important
role is played by the coupledS-F spin fluctuations, which
yield the dynamic relaxation ratesg3 andg3F defined by the
relations

g3
2 = gSS

2 + gSF
2 , g3F

2 = gFF
2 + gFS

2 , s127d

where

gSS< r
m0

2

"
ÎSsS+ 1d, gSF< ÎrrF

m0m0F

"
F,

gFF < rF

m0F
2

"
ÎFsF + 1d, gFS< ÎrrF

m0Fm0

"
S.

The effective frequencies ofS and F spins, respectively,
are

vS= v0 − vDs+ «sFS, vF = v0F − vDFsF + «sF,

s128d

wherevD is given by Eq.s19d and

vDF ; s2F − 1d
DF

"
. s129d

We shall not overload this paper by a detailed exposition
of various cross correlations resulting from the complicated
system of the coupled evolution equations forS andF spins.
Let us only emphasize the existence of a rather nontrivial
nonlinear effect of mutual spin interactions through the reso-
nator feedback field. Calculating the latter from the integral
representations55d, with the transverse magnetic density
s123d, and substituting this into the evolution equations re-
sults in an effective mutual influence of spins through the
feedback field. If the resonator is tuned to the characteristic
frequencyvS of S spins, then for the latter, we derive the
evolution equations similar to Eqs.s79d and s80d, but with
the effective spin-resonator coupling

g =
gg0vS

g2sg2 + D2d
S1 +

rFm0F«sFF

rm0vF
D , s130d

instead of Eq.s63d, and withg3 given by Eq.s127d. Depend-
ing on the spin characteristics, couplings130d can substan-
tially surpass the value of Eq.s63d. This is because the sub-
system ofF spins, coupled to a resonator, becomes itself a
kind of an additional resonator forS spins.

X. CONCLUSION

A general theory is developed for describing nonlinear
spin relaxation, which occurs when the spin system is pre-
pared in a strongly nonequilibrium state and when the
sample is coupled to a resonator electric circuit. A strongly
nonequilibrium initial state can be realized by placing a po-
larized sample into an external magnetic field, whose direc-
tion is opposite to the sample magnetization. Nonlinearity in
spin relaxation comes from direct spin-spin interactions and
from their effective interactions through the resonator feed-
back field. Direct spin interactions are responsible for the
appearance of local spin fluctuations, playing a crucial role at
the starting stage of relaxation. The resonator feedback field
collectivizes the spin motion, leading to coherent collective
relaxation. The developed theory is based on a realistic
Hamiltonian containing the main spin interactions. The role
of various relaxation rates is thoroughly analyzed.
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The aim of the present paper has been to develop a gen-
eral theory providing an accurate and realistic description of
nonlinear spin relaxation. This theory can be employed for a
large class of polarized spin materials. Applications to par-
ticular substances require a special consideration and sepa-
rate publications. There exists a large variety of materials
that can be treated by the developed theory. Just to give an
example, we may mention the class of molecular
magnets.16,19,24–26For instance, the molecular crystal V15 is
made of molecules of spin 1/2, so has no magnetic aniso-
tropy. Its nonlinear spin relaxation can be realized in a rather
weak external fieldB0ù1 G. The molecules Mn12 and Fe8
possess the spinS=10. They form crystals with densityr
,1021 cm−3. The anisotropy frequency isvD,1012 s−1. At
low temperatures below about 1 K, the molecules can be
well polarized, with the spin-lattice relaxation parameters
g1,10−5–10−7 s−1. The line width is caused by rather strong
dipole interactions, withg2,1010 s−1. The condition v0
.vD can be reached forB0.105 G. In the molecular mag-
net, formed by the molecules Mn6, whose spin isS=12, the
magnetic anisotropy is much weaker, withvD,1010 s−1, be-
ing of the same order asg2,1010 s−1. Therefore the required
magnetic field is not high,B0.103 G. Coupling a molecular
crystal to a resonant circuit with the natural widthg
;v /2Q, where Q is the resonator quality factor, one can
attain the values of the coupling parameter as large asg
,Q,104. With such a strong coupling, the influence of the
resonator feedback field outperforms other relaxation mecha-
nisms, producing fast coherent relaxation, with relaxation
timestp,10−13 s. Such a fast reorientation of the magnetic
moment can result in the emission of radiation pulses of high
intensity.
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APPENDIX A: EFFECTIVE HOMOGENEOUS
BROADENING

The homogeneous broadening, existing in spin systems,
arises from spin-spin interactions and is usually expressed
through the momentsMn, which may depend on the level of
the longitudinal polarizations, provided the latter is suffi-
ciently large. The moments have been calculated in a number
of works 1–7,21. The most general and exact formula, relat-
ing the effective broadening with the moments, can be found
in Abragam and Goldman,6 which for the Gaussian line
shape is

g2ssd =Î pM2
3ssd

2fM4ssd − M2
2ssdg

.

The Lorentzian line shape yields to practically the same ex-
pression, with a slightly different coefficient. The broadening
g2ssd for the Lorentzian line isÎp of the Gaussian broaden-
ing. The dependence of the moments on the polarization has
been accurately calculated,6 yielding

M2ssd = M2s0ds1 − s2d,

M4ssd = 2.18M2
2s0ds1 − s2ds1 − 0.42s2d.

Substituting this intog2ssd, and taking into account thats2

ø1, we obtain Eq.s34d.

APPENDIX B: SPIN RADIATION RATE

To get a fully quantum-mechanical microscopic picture of
spin interactions with electromagnetic field they radiate, one
has to add to the spin Hamiltonians1d the field Hamiltonian

Ĥf =
1

8p
E sE2 + H2ddr ,

whereE=Esr ,td is electric field andH =Hsr ,td is magnetic
field, and the operator energy of spin-field interactions

Ĥsf = − m0o
i=1

N

Si ·H i ,

whereH i =Hsr i ,td. From the Heisenberg equations of motion
for the field variables, one finds the vector potential

Asr ,td =
1

c
E jSr 8,t −

ur − r 8u
c

D dr

ur − r 8u
,

in which the current density is

j = − cm0o
i=1

N

Si 3 ¹W dsr − r id.

The vector potentialA i ;Asr i ,td can be represented as

A i = A i
− + A i

+ + A i8,

where

A i
− = − o

j
S1 +

1

c

]

]t
D r i j

r i j
3 3 mW *Sj

−St −
r ij

c
D ,

A i8 = − o
j

r i j

r i j
3 mW 0Sj

zSt −
r ij

c
D ,

with the notation

mW ;
m0

2
sex − ieyd, mW 0 ; m0ez.

From here, we get the magnetic fieldH i ;Hsr i ,td acting on

an ith spin asH i =¹W i 3A i, which gives the field

H i = H i
− + H i

+ + H i8,

in which

H i
− = − o

j
FmW * − smW * ·ni jdni j

c2r ij

]2

]t2
+

mW * − 3smW * ·ni jdni j

r i j
3

3S1 +
r ij

c

]

]t
DGSj

−St −
r ij

c
D ,
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H i8 = − o
j

mW 0 − 3smW 0 ·ni jdni j

r i j
3 Sj

zSt −
r ij

c
D .

If the spins on different sites move independently of each
other, so that the single-spin terms in the above sums chaoti-
cally oscillate, then the average magnetic field acting on each
spin from the radiation of other spins is zero. Noticeable
action of other spins can arise only if there exist the groups
of spins, the so-called spin packets, which are strongly cor-
related, moving together. A substantial mutual interaction be-
tween spins, caused by their electromagnetic radiation, can
appear only when this radiation is monochromatic, with a
well-defined spin frequencyvs, the related wavelengthl
=2pc/vs, and wave vectork=vs/c. This radiation can col-
lectivize spins in a spin packet of sizeLs, provided that

kLs ! 1.

When the radiation wavelengthl is much larger than the
system lengthL, thenLs=L. This, however, is not compul-
sory, and the size of a spin packet can be much shorter than
L, but it should be much larger than the mean interspin dis-
tance. Thus inequalitys38d is a necessary condition for the
appearance of collective effects.

Under conditions38d, the above magnetic fields can be
simplified, averaging them over spherical angles. The result-
ing expressions have to be added to the magnetic field in the
effective forces12d, which acquires one more term, being the
friction force

f8 = sgr − idvdu,

in which the collective radiation rate and frequency shift are

gr ; g0o
j

Ns sinskrijd
krij

Qsct − r ijd,

dv ; g0o
j

Ns cosskrijd
krij

Qsct − r ijd,

where

g0 ;
2

3"
m0

2Sk3

is the single-spin natural width,Qs·d is a unit-step function,
and Ns=rLs

3 is the number of spins in a spin packet. These
formulas can be further simplified to

gr = g0Ns =
2

3"
m0

2Sk3Ns

and

dv =
3gr

2kLs
=

1

"
rm0

2SskLsd2.

The frequency shift is very small, even as compared tog2,
since

dv

g2
> 0.1skLsd2 ! 1.

Of course, such a small shift can be omitted, being negligible
as compared tog2 and the more so as compared tovs. And
for the radiation rategr, substituting thereNs=rLs

3, we obtain
Eq. s37d.

APPENDIX C: TRANSIENT STAGE OF RELAXATION

After the chaotic stage of spin fluctuations, the transient
stage comes into play, characterized by Eqs.s91d and s92d.
The latter, by introducing the function

y ; g2s1 − s2 + k − gsd

and keeping in mind a sufficiently large coupling parameter
g@s, rearrange to

dw

dt
= − 2yw,

dy

dt
= sgg2d2w.

Differentiating the second of these equations, we have

d2y

dt2
+ 2y

dy

dt
= 0,

which yields

dy

dt
+ y2 = gp

2,

with gp being an integration parameter. This Riccati equation
possesses the solution

y = gp tanhS t − t0
tp

D ,

in which gptp;1 andt0 is another integration constant. In-
verting the dependence ofy on s for s2ø1, we get

s= −
y

gg2
+

1 + k

g
.

This gives the second of Eqs.s93d, while the first of solutions
s93d follows from Eq.s92d. The integration constantsgp and
t0 are defined by the initial conditions, which for the transient
stage arewc=wstcd andsc=sstcd.
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