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Evidence for two electronic phases in Y_La,TiO 5 from thermoelectric and magnetic
susceptibility measurements
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Structural, transport, and magnetic measurements on nearly oxygen stoichiometric samples of the system
Y 1,La,TiO3 and LuTiG; have revealed that antiferromagnetic Lafi®a p-type conductor with holes spread
over more than 10 Ti-atom centers in itinerant-electron clusters having a motional eniti#lpy0.035 eV.
With the substitution of Y for La, short-range orbital-order fluctuations introduce ferromagnetic interatomic
spin-spin interactions that increasingly reduce the magnitude of the Weiss coéistadtsuppres3y asx
decreases. The volume fraction of a localized-electron, orbitally ordered second phase containing small-
polaron holes increases with decreasiyg 0.6 until it becomes the majority phase fo=0.3 with static
orbital ordering below a temperatufé that increases asdecreases. The volume fraction of the ferromagnetic
phase does not reach unity>at0, but it approaches unity in LuTiOAntiferromagnetic interactions across
orbital-order antiphase interfaces lowers to zero the remanence of the ferromagnetic phase. The data appear to
distinguish an itinerant-electron antiferromagnetism in the La-rich samples from a localized-electron ferromag-
netic phase with a cooperative Jahn-Teller distortion.
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[. INTRODUCTION molecular-orbital formalism used is appropriate for a
L ) , .. ... strongly correlated electronic system, it does not distinguish
Oxygen stoichiometry in th&TiO; perovskites is diffi-  pepyeen itinerant-electron and localized-electron antiferro-
cult to achieve; the best samples commonly have nearly,agnetism. Since the trigonal crystalline field imparted by
0.4% excess oxygen, which translates to a rare-earth define |argeA-site cations in the orthorhombic structure would
ciency of about 0.5% to 1.0% iR,.,TiOs. Since strong oply increase with the cooperative Tj@site rotations on
electron-electron interactions split the (M)/Ti(lll) and  gypstituting Y for La, the question whether the different or-
Ti(l)/Ti(ll) redox couples by a finite energy g&, the  pjtal order in LaTiQ and YTiO, is associated with a change
rare-earth deficiency dopes the sampetype by introduc-  from itinerant to localized strongly correlated electrons re-
ing holes into the TiV)/Ti(lll) couple. Whereas LaTiJs  mains open.
antiferromagnetic below aly=140 K with E;=0.2 eV, In this paper, we reexamine experimentally the evolution
YTiOg is reported to be ferromagnetic beldw=30 K with  with x of the transport and magnetic properties of the system
anEg~ 1 eV13As the ionic radius of th&®* ion decreases Y, |aTiO; to determine whether there is evidence for
from that of L&", Ty falls to belav 5 K for R=Sm,_,Gd, and itinerant-electron antiferromagnetism in Lai@ith a trans-
a ferromagneticTc, as measured in an applied magneticformation to localized-electron ferromagnetism in YEiO
field, increases from Gd to DYyA similar decrease iy such a transformation can be expected to manifest itself by
followed by an increase ific with increasing Y concentra- an electronic phase separation accomplished by locally co-
tion in Y;,L&,TiO5 has also been reportéd,but the evolu-  operative atomic displacemerifswe will argue that LaTiQ
tion of the electronic state witk has not been clarified. is an itinerant-electron antiferromagnet and that a ferromag-
Mizokawa and Fujimofi proposed an orbital ordering in netic minority phase increases its volume fraction(hsx)
YTiO3 to account for the ferromagnetic order following the jncreases. A zero remanence exhibited by the ferromagnetic
Goodenough-Kanamori rules for the interatomic spin-spirphase is interpreted to signal the existence of antiphase

interactions, and an NMR study by Ite al® has confirmed  poundaries associated with long-range orbital ordering.
this prediction; but no attempt has been made to determine

the orbital-ordering temperatur®,; and how Ty changes

with X in the system Y__xLaxTio_g. The question of orbital Il. EXPERIMENT
ordering versus an orbital liquid in the other end member _ _
LaTiO; remains controversidh!! but a structural distortion Polycrystalline samples of Y,La,TiO; (0=<x=<1) and

below Ty in LaTiO; is consistent with a concentration of LuTiO; were prepared by solid-state reactions. Stoichio-
electronic charge along[d11] octahedral-site axi¥, which  metric mixtures ofkLa,O3+(1-x)Y ,05 or Lu,05; and T,O5
would be consistent with an exchange stabilization associwere ground together for each composition; the powders
ated with type-G antiferromagnetic order. A recent theoretiwere cold pressed into pellets, placed into a molybdenum
cal analysis for LaTiQ that takes account of the measuredcrucible, and set into a tube that was then evacuated to
temperature dependence of the magnetic susceptibility is-107° torr before firing at 1620 °C for 12 h.

consistent with an orbital order that concentrates electronic A Perkin-Elmer TGA-7 thermogravimetric analyzer was
charge along d111] octahedral-site axi& Although the used to determine the oxygen content of the samples from
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TABLE I. Variation with x in Y _,La,TiO3 of room-temperature

lattice parameters. 2521
X a(A) b (A) c(A) V(A3 2481
0 5.3411) 5.6862) 7.6211) 231.4 > 2441
0.1 5.3701) 5.6781) 7.6581) 2335 g Syl
0.2 5.4012) 5.6741) 7.6872) 235.6 3
0.3 5.41%1) 5.6681) 7.7151) 236.8 S 36k
0.4 5.4371) 5.66711) 7.7282) 237.9 F
0.5 5.4512) 5.6641) 7.7432) 239.0 2321
0.6 5.4662) 5.6602) 7.7521) 239.8 8 I . . . i .
0.65 5.4962) 5.6581) 7.7911) 242.3 00 02 04 06 08 10
0.7 5.5281) 5.6462) 7.8321) 244.5 x
0.75 5.5701) 5.6332) 7.8641) 246.8 FIG. 1. Room-temperature volume versusx for
0.8 5.5801) 5.6301) 7.9011) 248.2 Y,,LaTiO; (0<x<1.0.
0.9 5.6082) 5.6171) 7.9182) 249.4
1 5.6331) 5.6132) 7.9422) 2511 LuTiO; sample had room-temperature lattice parameters

=5.2751) A, b=5.6442) A, andc=7.8512) A.
. ) o o Figure 2 shows the temperature dependence of the resis-
the weight gain due to an oxidation of the(fli) ions to tvity p(T) for YTiO5 and LaTiQ,. At room temperature, the
Ti(IV) on heating to 1000 °C in air. For all samples, the rggjstivity of YTIO, is two orders of magnitude larger than
excess oxygen was small_er than 0.4%; they were oxygefhat of LaTiOs. A p(T) ~ exp(—E,/KT) fit for YTiO5 gives an
stoichiometric W'th'_n expenmental error. activation energ\e,~0.25 eV; the same fit for LaTiQap-
_ Powder x-ray diffraction(XRD) patterns were recorded plies only in the rangd > 55 K with anE,~0.035 eV.

with a Philips. PW 1729 powder x-ray diffractometer * piq e 3 shows the temperature dependence of the ther-
equipped with a pyrolytic graphite monochromator andmgelectric powera(T) for several compositions of the
CuK, radiation(1.540 59 A; Si was the internal standard. Y, LaTiO; system. Asx increases fromx=0 to x=1.0

. X Y 1Lay . .0,
Data weore _collected In steps of 0.020° over the range 20 a(T) decreases and becomes nearly temperature independent
< =< 60° with a count time of 20 s per step. Peak profiles for

the XRD data were fitted with the program JADE. above 160 K byx=1.0. A step decrease in the room-

- temperature value occurs between0.7 andx=0.8. Forx
Low-temperature (5 K<T<300 K) magnetic-suscept- <0.7, «(T) varies as a semiconductor. For YTEiOa(T)
ibility measurements were made on heating with a Quantum )

Design dc SQUID magnetometer after cooling in zero field~A/2kT gives a charge-carrier trapping enedyy0.14 eV.
(ZFC) or after cooling in a measuring field=C) of 1 kOe.

M-H hysteresis loops of magnetizatidl versus applied 1°F  ——LaTiO,

magnetic fieldH were measured over the range -5H 10k —4—YTiO,

<5T at 5 K. High-temperature magnetic-susceptibility g b

(300 K=T=680 K) was measured ikl=5 T under a pure clor

He atmosphere. 10k

The low-temperature thermoelectric powe(T) was ob- o'k \\M

tained from 80 K to 320 K with a laboratory-built apparatus , oso0n,

as described elsewheYeThe resistivity was measured by a W0y e

four-probe technique on samples that were cold pressed as 50 100 150 200 250 300
Temperature (K)

mixed powders. The cold-pressing technique has been de-
scribed elsewher®. The high-temperature(320 K<T

<600 K) thermoelectric power and resistivity were mea- 12t ° \L;‘TT_g)s
sured in a vacuum of I8 torr. ol i
IIl. RESULTS = 6r

Room-temperature lattice parameters and unit-cell vol- o
umes for the orthorhombicPbnm perovskite system of
Y L&, TiO5 are given in Table I. All samples were single- 1 - - L L -
phase to XRD. Figure 1 shows that the unit-cell volume var- 000 001 (1)'/(%2(1/1%'03 004 0.05
ies linearly withx in accordance with Végard’s law, but with
a break and change of slope near0.7. Goralet all also FIG. 2. Temperature dependence below room temperature of

reported this break in their study of ;¥%La,TiO;. Our resistivity p and the Inp~1/T curve for YTiO; and LaTiQ,
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given in Fig. 7, show an increase T to 40 K with a Weiss
300 - . constanté>T. and a magnetization in 50 kOe of nearly
T . x=0 0.9ug/f.u. However, theM-H loop of LuTiO; retains a zero
400 - remanence.
¥=07 e L Figure 8 shows high-temperature resistivigyT) and
< 300} x=038 ’ thermoelectric-powew(T) data for YTiO;; changes in slopes
Z| et in the Arrhenius plots occur near 490 K. Witp(T)
® 500k Y =009 ~exp(—E,/kT) and a(T)~A/2KT, the activation and trap-
A R ping energieE, and A change, respectively, from 0.18 eV
A S and 0.10 eV above 490 K to 0.25 eV and 0.14 eV below 490
100 - Ot x: 1.0 ) K. The high-temperaturé300 K< T<680 K) paramagnetic
" ' Y LaTiO o . -
A susceptibilities of Fig. 9 show a change in the slope of
1(')0 1%0 2(')0 250 3(')0 1/x+(T) at T'; this is the same temperature at which a

Temperature (K) second-order orbital order-disorder transition has been
observed. T* decreases from 490 K to 450 K to 380 K to
FIG. 3. Temperature dependence of thermoelectric panier  just below 300 K forx=0, 0.1, 0.2, and 0.3. Figure 10 shows
several values of in Y1 La,TiO3. a T for LuTiO; like that in YTiO;. The high-temperature
(T>T") Curie-Weiss law has a Weiss const#rt 0 for all x
Figures 4—6 and Table Il show the evolution witlof the  that approaches zero far0.
magnetic properties of Y,La,TiO3. Three compositional In the range 0.35x=<0.7, the M-H curves develop a
ranges can be distinguishedss&=0.3, 0.35sx=<0.7, and  hysteresis loop. Ax increases, the coercivitflc increases
0.8<x=1.0. In the range &x=0.3, the paramagnetic sus- and the magnetizatioM at 50 kOe decreases. Moreover, the
ceptibility taken in 1 kOe shows the onset of ferromagnetisirinverse molar paramagnetic susceptibility exhibits a Curie-
below a T that decreases linearly witk from 30 K for  Weiss temperature dependence that giveggeand al 6| that
YTiO3 to belov 5 K for Y ALag 3TiO3 as determined by the increase linearly witlx, see Fig. 11. An increase within the
temperature where the inverse molar susceptibility,{T)  long-range magnetic ordering temperature in the range 0.35
becomes flat in Fig. 4. However, thd-H curves taken at 5 =<x=<1.0 contrasts with the decrease Tg in the range 0
K exhibit nearly zero remanence for alix<0.3 samples <x=<0.3, so we label this ordering temperatigto signal
and a magnetization at 50 kOe that decreases froma predominantly antiferromagnetic volume fraction with a
0.8 ug/f.u. for YTiO5 to under 0.2g/f.u. atx=0.3. In order weak canted-spin ferromagnetic moment as in LaTiO
to increase the bending of the Ti-O-Ti bonds beyond that of Figure 11 shows a step increaseHp atx= 0.7, the com-
YTiO3; while keeping theA-site cation honmagnetic, we in- position where Fig. 1 shows a discontinuity in the slope of
vestigated the magnetic properties of Lufj@he results, volume versusx. For x>0.7, the 14,(T) curve retains a
linear dependence o, but the u and a|6>600 K ob-

201 YTio, oo YTiO, —— Jos tained by fitting to a Curie-Weiss law increases even more
13 i T e E; strongly withx to values that are clearly inconsistent with a
osl 300 oa homogeneous localized-electron model. However, the Néel
ool 0 e 08 temperatur&y changes smoothly through this compositional
Yy La TiO, 10 Y, La TiO, U L range.
12F 800 ) e 03
08 . 0.0
i 400
04r . -0.3
e EEERSSSS IV. DISCUSSION
0.0F ™ e a0 -0.6
o osph Yogla,Tio, N T | Yula,Tio, 02 = A. Transport properties
g o g0 S ol § )
EO ‘: - w E vz Although all samples were single-phase to XRD, they
= 02 a 01 £ . .. .
KR , = o & were slightly oxidized. Since the structure does not accom-
e 100 e T S modate oxygen interstitials, it must have cation vacancies.
1 Y gashRg 110, T 075205 1y T . . .. .
03! T e . 01 The R3* ions are more mobile than the 3fiions in these
N w00 / oo perovskites; therefore, we assume the oxidized compositions
o S " hy correspond 10 Ry, TiO3+(y/2)R,05 with y<0.01; the
% (SR oo L g R3*-jon vacancies introduce holes into &)/ Ti(lll ) redox
b Tga iy IV o 0.8y 5 110, 7 . . . .
02l e 500 " couple that is split from the Till )/Ti(ll) couple by an en-
alt T ™ " ergy gap that increases froiy~0.2 eV in LaTiQ to 1.0 eV
ol o in YTiO,. With this model, the-type conduction, Fig. 3, is
C Y ey, VAT b 0300 polaronic with a motional enthalpgH,=E,—(A/2); AH,

=0.035 eV in LaTiqQ increases withx to AH,,=0.18 eV in
FIG. 4. Temperature dependence below room temperature of th¥TiO3.
molar magnetic susceptibility,,, inverse 1., measured wittH The resistivities we measured for our samples, Fig. 2, are
=1 kOe, andM-H curves for Y;_,La,TiO; at T=5 K (0=x=<0.3). somewhat higher than those reported by Oketlal ° for a
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LaTiO5; crystal, but at low temperature they are nearlyonly that Hembergeret al. had an essentially oxygen-
seven orders of magnitude lower than those reported bgtoichiometric crystal, but also that the mobilities of the few
Hembergeret all® The oxygen excess in our sample washoles introduced by a slight oxidation of LaTj®nust be
comparable to that found by Okaéaal. for their crystal; it  high.

corresponds ta=0.02 hole/Ti atom. The markedly contrast-  Where there is no trapping of charge carriéks=0), the

ing low-temperature(T) values reported therefore signal not thermoelectric power generated by polarons is normally

=G {1600 Y
0.06f yee e 11200 T oo
1800 - : 0.00
0.03} \ ) e )
Y, La, TiO, 1400 P 17001
Y1) — . . . o o IYol.zLalo.nglosl 1-0.02
e e 1500 g [ [ 1Y s
= mm— JIIUESSC ey g I g FIG. 6. Temperature depen-
0.06 ; g / loor 5
% T | 11000 = : <_; dence below room temperature of
£ Lo g - 0.00 E the molar magnetic susceptibility
L 0.03+ Y g . S ; ;
= L 1500 = P loor £ Xm» iNverse 1k, measured with
= \ . = - 01
r Y, La TiO, . 2 H=1 kOe, andM-H curves for
0.00 Y — Y,,La,, 10, 1g.02 :
Hh ! i t ' i —10 T MU LI e Y,4LaTiO3 at T=5 K (0.8<x
0.06 — FC U T <10).
N 11500 T - 0.01 )
ZFC S K ,
A . {500 7
\ LaTiO, | o 1-0.01
0.00f oremsancsmers” {0 e . .L?TI(.% .
0 50 100 150 200 250 300 -50-40-30-20-10 0 10 20 30 40 50
Temperature (K) H (kOe)
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TABLE Il. Magnetic data, including ¢, Ty, coercivityHc, and calculated parameteigs and Weiss constargtfrom a linear temperature
dependence of y,(T) for Y,,La,TiO3 and LuTiO;. The ues and 6 were obtained from high-temperature measurement$=80 kOe.

X Te(K) Tn(K) Hc  (kOg Hefi (up/f.u.) 6 (K)

0 30 0 1.80(T > 490 K) ~50 (T>490 K)
1.62(T< 490 K) 52 (T<490 K)

0.1 20 0 1.87(T>450 K) ~104(T> 450 K)
1.73(T< 450 K) -28(T< 450 K)

0.2 10 0.007 1.89T>380 K) -161(T>380 K)
1.77(T<380 K) -93(T<380 K)

0.25 5 0.01

0.3 0 0 0.057 1.96 -224

0.35 20 0.27

0.4 40 0.82 2.00 -283

0.5 48 2.78 2.06 -363

0.6 76 3.43 2.11 -415

0.7 93 8.38 2.15 -479

0.8 106 17.2 2.29 -633

0.9 124 17.2 2.34 -726

1 140 17.0 2.43 -853

LuTiOs 40 0 1.79(T>500 K) -45(T>500 K)

1.60(T<500 K) 58 (T<500 K)

dominated by the temperature-independent statistical comp@f Ti atoms contained in a mobile polaron. For Lagj@ith
nent c~=0.03, which is its upper limit within experimental error,
Eq. (1) gives aQ=10. Such a large polaron size signals that
as= (Kle)In[8(1 - Qc)/Qc], (1)  the polarons are hole-rich itinerant-electron clusters in a

) ) i strongly correlated matrix. Large clusters would not be
wherek is the Boltzmann constarg,is the charge carried by trapped by isolated®*-ion vacancies, which is consistent

the mobile polarons3=2 is the spin-degeneracy facteris  wijth a A=0. The clusters would be defined by cooperative
the fraction of Ti atoms that are (), andQ is the number  oxygen-atom displacements at the boundary, and these dis-
placements are significantly smaller than those that define a
small (Q=1) polaron!’ Therefore, the motional enthalpy of

2.0 -_ Ll.lTiO3 - 800 ,:?
[ J600 §
1.5 =
E 1400 & °r
5 10} 4400 £ i
E 3 1 g Sk
2 o5k 4200 & i
= L 1 2 4t
0.0 - 0 g |
1 1 1 n 1 L 1 . 1 L 1 L 1
0 50 100 150 200 250 300 3r
Temperature (K ) [
09 | s
06 T=3K Kf 360 |-
= I A
T 03F
g l ~ 330}
S 0.0 X
< >
51-0.3 - 2300 -
L o]
-0.6 |- -
-0.9 T T T P PR I R B P | 270 >
-50-40-30-20-10 0 10 20 30 40 50 S Y FE S R S
H (kOe) 1.5 1.8 2.1 2.4 2.7 3.0 33
1000/T (K™)
FIG. 7. Temperature dependence below room temperature of the
molar magnetic susceptibility,, inverse 1k, measured wittH FIG. 8. In p~1/T and a~1/T curves with 300 KT
=1 kOe, andM-H curve for LuUTiG; at T=5 K. <600 K for YTiOs.
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molar magnetic susceptibilityy,, and their inverse 1y, for
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600

Y 14La,TiO3 (0=x=<1.0), measured wittH=50 kOe.

the polaron is small. These data suggest that LaTi@y be
an itinerant-electron antiferromagnet; it contains strongly

correlated, but

On the other hand, th&-type orbital order responsible for
ferromagnetic interactions in YTiQsignals that the Ti-@
electron in the ferromagnetic phase is localized, as does thi
appearance of a trapping of smaller polarons in Ysli&rom
the virial theorem, it has been argdédhat the equilibrium
(M-O) bond is longer for more localized electrons than that
for itinerant electrons and that the transition from localized

itinerantr” electrons.
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to itinerant electronic behavior is first order. It is the first-
order character of the transition that supports a hole-rich FIG. 11. Magnetic data for ), La,TiO3, including the variation
itinerant-electron phase as large-polaron clusters in &ith x of (a) coercivity Hc and magnetization(T=5 K, H

strongly correlated Till) matrix. As the bandwidth of the

0.0012

0.0009 -

%,, (emu/mol)

0.0006

LuTiO,

1 1
300 3
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Temperature (K)

n 1 1
650
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=50 kOe, (b) wes, (c) Weiss constand, for x<<0.3 samples, open
circles are obtained witli<T", and solid circles are obtained with
T>T, (d) Tc, Ty, andT'. Here ue and 9 are obtained from the
high-temperature measurementsHr 50 kOe.

matrix redox couple decreases with decreasirfpe polaron
size decreases, approaching that of a small polaron in a
localized-electron matrix. More problematic is the question
whether a transition from itinerant-electron antiferromag-
netism to localized-electron, orbitally ordered ferromag-
netism is also first order. We now argue that our data support
a two-magnetic-phase compositional range for the;Ti@-
trix, thus supporting a first-order phase change between the
antiferromagnetic and ferromagnetic regimes.

First, however, we must consider whether to ascribe the
change in slope of the volume wscurve of Fig. 1 to the
onset of localized-electron behavior below=0.8. This

m

17y (mol/emu)

FIG. 10. Temperature dependence above room temperature éhange of slope is opposite to that we should expect from

molar magnetic susceptibility,, and their inverse 1y, for LuTiO3
measured wittH=

50 kOe.

electronic changes since the equilibriu@hi-O) bond is
longer for localized than itinerant electrons. Therefore, we
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conclude that it is due to a change from cooperative rotationan optimization of the interatomic Ti-O-Ti interactions for

of undistorted TiQ, octahedra ak=<0.7 to octahedral-site strongly correlated itinerant electrons in an orthorhombic lat-
distortions superimposed on the cooperative site rotations beice. Asx decreases below=0.3, the volume fraction of the
cause ofR-O interactions that arise where the mean size ofocalized-electron phase becomes large enough to percolate
the rare-earth ion, as calculated for ninefold oxygen coordiso as to give long-range orbital order beldWw within a
nation, gives a tolerance factor 0.87; in theRFeQ; family  fraction of the volume that becomes ferromagnetic belgw

this tolerance factor is reached at B# ionic radius of 1.11
A.18 2. M-H data

Samples 0.&x=<1.0 of Fig. 6 exhibit a weak ferromag-

B. Magnetic evidence for two electronic phases netic behavior typical of a global canted-spin antiferromag-
net. On the other hand, sampless@<0.3 of Fig. 4 show a
) ~_ferromagnetic behavior that has no remanence; there is no

The paramagnetic data reflect the character of the; TiOgpening of thev-H hysteresis loop and the magnetization at
array. In the pa*ramagnetic state where the occupigd orbita) k in 50 kOe never attains the spin-only value ofid/f.u.
fluctuates(T>T for 0<=x=<0.3, the x(T) data of Fig. 9  ajthough it increases progressively with decreasiagd ap-
signal antiferromagnetic interatomic spin-spin interactionsproaches the spin-only value in LuTjOThe lack of any
(0< O), the magnitude of the Weiss constahilecreases lin- remanence even though the magnetizatMnapproaehes
early to near zero anfle; approaches the spin-only value as saturation by 20 kOe can only mean that in zero field the
the La conteni decreases ta=0 through the range€x  ferromagnetic regions become coupled antiparallel to one an-
<0.7. It thus appears that &>T where the orbitals are other. The large magnetization of a ferromagnetic region pro-
disordered, the entire compositional range may be characteyides a sufficient torque in a moderate applied magnetic field
ized as a single paramagnetic phase in which the exchangg align the ferromagnetic regions in opposition to an anti-
interactions change continuously with In the range 0.7 ferromagnetic exchange field across the interface between
<x=<1.0, the calculateg.n and ¢ values of Table II, which  them. However, on removal of the applied field, the antifer-
appear to be physically unmeaningful, are consistent with @omagnetic interactions across an interface boundary realigns
volume fraction of strong-correlation fluctuations within a the ferromagnetic regions antiparallel to one another.
matrix exhibiting an enhanced Pauli paramagnetism that in- The origin of this behavior resides in the nature of the
creases with decreasing However, at temperaturés<T  orbital order belowT" that gives rise to the ferromagnetic
where long-range orbital ordering occurs in the interval Ospin-spin interactions. Th&-type orbital order, which sup-
<x=<0.2, a¢#>0 in YTiO3 changes to &< 0 with increas-  presses the orbital angular momentum, has been pretlicted
ing x; and forx>0, 1/xy(T) decreases from the Curie-Weiss and identified®. Nucleation and growth of many regions of
linear curve as the temperature is lowered towdigsnd it G-type orbital order must introduce antiphase boundaries at
decreases more strongly with increasingrhe shape of the many interfaces where these regions meet, and the coupling
1/xm(T) curve is similar to that of a ferrimagnet, but the across an antiphase boundary would be antiferromagnetic ac-
orthorhombic perovskite structure does not contain two uneording to the Goodenough-Kanamori rules for spin-spin in-
equal spin sublattices coupled antiparallel to one anotheteractions. Therefore, we conclude that the lack of rema-
Rather, the 1¥,,(T) curves signal the appearance of antifer-nence signals antiferromagnetic coupling across antiphase
romagnetic fluctuations, pairs or clusters, within a paramagboundaries at the interface of orbitally ordered, ferromag-
netic matrix. Figure 4 shows that this phenomenon increaseasetic regions. A similar phenomenon has been observed in
and the ferromagnetic saturation magnetization decrease®uble perovskites where there is atomic rather than orbital
with increasingk< 0.5, which signals that the magnetic tran- ordering®®
sition is not global; the volume fraction of an antiferromag- In the range 0.4 x=<0.6, any orbital ordering only occurs
netic second phase having a weak, canted-spin ferromagnetielow room temperature; the dominant phase is antiferro-
component increases withuntil it percolates fox>0.3 and  magnetic belowly with a weak canted-spin ferromagnetism.
occupies the entire volume for>0.6. The splitting of the

1. Paramagnetic data

FC and ZFC curves at lower temperatures f>o]>.0.4 ' V. CONCLUSIONS
samples correlates with the presence of a canted-spin antifer- o - . _
romagnetic phase. LaTiO3 is an itinerant-electron antiferromagnet with no

There are two possible driving forces for a phase separardering of the threefold-degeneratebonding electrons in
tion; one is a segregation of the two types of orbital orderthe paramagnetic phase even though strong correlations split
each type associated with a cooperative Jahn-Teller distothe Ti(IV)/Ti(lll) redox couple from the Till)/Ti(ll)
tion, and the other is the first-order character of a transitiortouple by an energy gaBy;=0.2 eV. Holes introduced by
from localized to itinerant @ electrons. The transport data La*"-ion vacancies are spread over more than 10 Ti sites in
show that the antiferromagnetic phase would contain mobil@n itinerant-electron cluster. Substitution of Y for La in
holes in “bags” enclosing several Ti atoms whereas the ferY ;4La,TiO3 (0.3<x<0.7) introduces orbital-order fluctua-
romagnetic phase would contain small-polaron holes. Theretions in the paramagnetic phase that create ferromagnetic
fore, we believe the orbital order of the ferromagnetic phasepin-spin interactions that progressively rediigeof the ma-
is a conventional Jahn-Teller orbital ordering of localizedjority phase as the volume fraction of short-range orbital or-
electrons whereas that of the antiferromagnetic phase reflecttering increases. A change in the variation of lattice volume
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with x nearx=0.7, Fig. 1, is interpreted to signal the intro- ferromagnetic phase exhibits a zero remanence because of
duction of a TiQ,, site distortion superimposed on a coop- antiferromagnetic coupling across antiphase boundaries at
erative site rotation fox>0.7. In the range &x=<0.3, or- the interface of regions with out-of-phase orbital ordering.
bital ordering below ar” occurs in a [najority phase that

becomes ferromagnetlc beloty; b_othT and TC_ increases ACKNOWLEDGMENTS
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