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A magnetic field applied to a three-dimensional antiferromagnetic metal can destroy the long-range order
and thereby induce a quantum critical point. Such field-induced quantum critical behavior has been the focus
of many recent experiments. We theoretically investigate the quantum critical behavior of clean antiferromag-
netic metals subject to a static, spatially uniform, external magnetic field. The external field not only suppresses
sor induces in some systemsd antiferromagnetism, but also influences the dynamics of the order parameter by
inducing spin precession. This leads to an exactlymarginalcorrection to spin-fluctuation theory. We investigate
how the interplay of precession and damping determines the specific heat, magnetization, magnetocaloric
effect, susceptibility, and scattering rates. We point out that precession can change the sign of the leadingÎT
correction to the specific-heat coefficientcsTd /T and can induce a characteristic maximum incsTd /T for certain
parameters. We argue that the susceptibilityx=]M /]B is the thermodynamic quantity that shows the most
significant change upon approaching the quantum critical point, and which gives experimental access to the
sdangerously irrelevantd spin-spin interactions.
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The study of quantum phase transitions is currently a very
active field of research in theoretical as well as experimental
condensed-matter physics. Particularly in a large number of
metals—mostly heavy Fermion or transition-metal
compounds—the critical fluctuations associated with a quan-
tum phase transition induce anomalous behavior in thermo-
dynamic and transport quantities such as diverging specific-
heat coefficients or a linear resistivity quite distinct from the
behavior of a conventional Fermi liquid.

Experimentally, there are three main methods to use in
tuning a system towards a quantum critical point: doping,
pressure, and magnetic field. Doping has the disadvantage
that it induces disorder, and it cannot be easily adjusted
within a single sample. These problems are absent if pressure
is used as the control parameter of the quantum phase tran-
sitions. However, the presence of a pressure cell makes many
experiments difficult. For this reason, many recent
experiments1–12 investigate field-tuned quantum critical be-
havior, where an external magnetic field is used to control
the distance from the quantum critical point. Generally it is
expected that the presence of a magnetic field changes the
universality class of the transition, as in its presence time-
reversal invariance is broken. In this paper, we will therefore
theoretically analyze the quantum critical behavior of a
clean, itinerant antiferromagnet in three dimensions, subject
to a static, spatially uniform, external magnetic fieldB.

Such a situation has been investigated in a number of
experiments.1–6 For example, in CeCu5.2Ag0.8 sRef. 1d and
CeCu5.8Au0.2 sRef. 2d magnetic order can be suppressed by
moderate magnetic fields. In these systems the quantum criti-
cal behavior induced by a magnetic fieldB appears to be
qualitatively different, compared to the critical properties for
vanishing field scontrolled by pressure or dopingd. In the
presence of a field these systems seem to follow1 the predic-
tions from spin-fluctuation theory13–15 for three-dimensional
nearly antiferromagnetic metals. This is not the case forB

=0,16 where other scenarios have been proposed.17 Similarly
experiments3 in field-tuned YbCu5−xAl x appear to be consis-
tent with spin-fluctuation theory, which is not found to be the
case in YbRh2Si2, where magnetic order is suppressed by
tiny magnetic fields.4 Recently, in CeCoIn5 sRefs. 7 and 8d
the superconducting order was suppressed by a magnetic
field—it is at the moment a controversial question whether
the observed anomalous behavior is related to a supercon-
ducting quantum critical point or whether magnetism plays a
role in this system.

Another interesting class of systems isinsulatorssuch as
TlCuCl3,

9 SrCu2sBO3d2,
10 or BaCuSi2O6,

11 where antiferro-
magnetic order has beeninduced by the application of a
magnetic fieldB. These transitions9 can be interpreted as a
Bose-Einstein condensationssee belowd of spin-1 excita-
tions. The energy of the “spin-up” component of such triplets
is lowered byB until it condenses at a critical field,B=Bc,
thereby inducing an antiferromagnetic order perpendicular to
the magnetic field.

In contrast to classical transitions, the dynamics, i.e., the
temporal quantum fluctuations, of the order parameter deter-
mines the nature and universality class of a quantum phase
transition. For example, at the critical point of an insulating
antiferromagnet, the dynamics of the order parameterF can
be described18 as in a Klein-Gordon equations]t

2−=2dF. In
such a system, typical frequenciesv scale linearly with the
momentumv~qz wherez=1 is the dynamical, critical expo-
nent. In contrast, in a metal the excitation of particle-hole
pairs leads to a Landau damping14 of the antiferromagnetic
order parameters]t+=2dF, and thereforez=2. Here we as-
sumed that the ordering vectorQ is sufficiently small,Q
,2kF, such that low-energy particle-hole pairs with momen-
tum Q exist.

A magnetic field will have two main effects: first it will
suppresssor in some cases5 also induced magnetic order.
More interesting is the second effects, it induces a precession
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of the magnetic momentsS perpendicular to the magnetic
field,

]tS= B 3 S, s1d

and therefore modifies the dynamics of the order parameter.
The linear time derivative also translates to a dynamical ex-
ponentz=2, and therefore arises the question of how the
precession competes with damping in a metal that is charac-
terized by the samez. For insulating systems the physics of
the precession term has been widely discussed.18–23The cor-
responding quantum critical behavior as a function of the
magnetic field of such an insulating magnet in an external
field is actually well known: it is expected to be in the same
universality class as the quantum phase transition of a low-
density interacting Bose-Einstein condensate as a function of
chemical potential. The linear time derivativei]tC of the
Schrödinger equation can in this case be identified with the
precession terms1d ssee belowd.

In the following, we study the interplay of ohmic damping
and spin precession terms in the case of a nearly antiferro-
magnetic metal. First we present the model for the order-
parameter field and a short derivation of the effective action.
Then we list the renormalization-group equations for the pa-
rameters of the model and use them to derive the behavior of
the correlation length. In the following sections we calculate
the specific heat, thermal expansion, magnetocaloric effect,
and susceptibility. We show for example that sufficiently
large magnetic fields can induce sign changes in the critical
contribution to the specific heat, and that the susceptibility is
particularly suited to probe the vicinity of the quantum criti-
cal point. Finally, we investigate the influence of theB field
on the scattering rate of the electrons.

I. MODEL AND EFFECTIVE ACTION

Following Hertz,14 we describe the critical behavior of an
antiferromagnetic metal entirely in terms of the effective
Ginzburg-Landau-Wilson theory of an order-parameter field
Fsr ,td that represents the fluctuatingsstaggeredd magnetiza-
tion of the system.

In the absence of a magnetic field, the quadratic part of
the action takes the form14 sassuming negligible spin-orbit
couplingd,

S28fFg =
1

b
E d3k

s2pd3o
n

F*sr + k2 + uvnudF, s2d

where r measures the distance from the quantum critical
point, and momenta k are given relative to the
antiferromagnetic-ordering wave vectorQ. The uvnu term
arises from thesLandau-d damping of the spin fluctuations by
gapless fermionic excitations in the vicinity of points on the
Fermi surface that are connected byQ sassumingQ,2kFd.

How will this effective action change in the presence of a
magnetic field? First,r =rsBd will acquire a magnetic-field
dependence. For example,r will grow for larger fields in
systems where antiferromagnetism is suppressed byB. Sec-
ond, the magnetic field breaks the rotational invariance and
components ofF parallel, and perpendicular toB will have
different masses,rz and r', respectively. Third, as argued
above, the magnetization will precess aroundB; this is de-
scribed by an extra termsin coordinate and time space for
convenienced,

S2
prfFg =E

0

b

dtE drb · isF 3 ]tFd

=E E bsiFx]tFy − iFy]tFxd

=E E bF̃'
* ]tF̃', s3d

in the effective action, whereb is parallel toB staken to point
into the ẑ directiond, and we have introduced the complex

field F̃'=Fx+iFy. Note thats3d breaks time-reversal invari-
ance. Therefore such a term is absent forB=0.

Above, we deduced the form of the effective action on
phenomenological grounds, but it can also be derived from a
more explicit calculation, starting from a Hubbard-type
model of electrons moving in the presence of a magnetic
field, H=okssek+Bsss

z dcks
† cks+Uon↓n↑. Here, the mag-

netic field enters only via a Zeeman term; we do not take
orbital effects into account, assuming that Landau levels are
broadened by disorder or thermal effects. Note that in the
experimentally most relevant heavy Fermion system, orbital
effects are strongly suppressed, compared to contributions
from the Zeeman term as the effective masses and magnetic
susceptibilities are very large in those systems.24

For simplicity, we assume that the antiferromagnet is
commensuratesincommensurate antiferromagnets show the
same qualitative behavior for all quantities discussed belowd
and introduce a real order-parameter vectorFsx ,td as a
Hubbard-Stratonovich field that decouples the spin-density
part of the interaction. Following Hertz, the electrons are
now integrated out to obtain an effective action for the order
parameter, generatinga priori infinitely many interaction
terms. We truncate the effective action, retaining the leading
frequency and momentum dependence of the Gaussian
part of the action as well as a constantF sRef. 4d interaction

FIG. 1. Schematic phase diagram of a quantum phase transition
with a control parameterr ~B−Bc.
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term, since all other terms are irrelevant in the renormaliza-
tion group sense14,15 scubic terms are discussed in
Appendix Ad. For the quadratic part one obtainsS2

=s1/bdov,kFvn,k
a fdaa8 /J+xaa8

0 sk , ivndgF−vn,−k
a8 whereJ is the

interaction in the spin-spin channel, andxaa8
0 sk , ivnd is the

susceptibility in the presence of the finite fieldB evaluated at
J=0. Calculating these susceptibilities on the paramagnetic
side of the transition we obtain

S= S2fFg + S4fFg,

S2fFg =
1

b
E d3k

s2pd3o
n

Fvn,k
T 1r' + uvnucosu + k2 vn sinu 0

− vn sinu r' + uvnucosu + k2 0

0 0 rz + uvnu + k22Fv−n,−k, s4d

S4fFg =
g

b4 E d3k1

s2pd3 ¯
d3k4

s2pd3 o
n1¯n4

dsk1 + k2 + k3 + k4ddn1+n2+n3+n4
sFvn1

,k1
· Fvn2

,k2
dsFvn3

,k3
· Fvn4

,k4
d. s5d

Here b=1/kBT and vn=2pn/b is a Matsubara frequency
andk is measured again from the ordering wave vector. The
coefficients ofk2 and uvnucosu are made to be unity by an
appropriate choice of the bare length scalej0 and the tem-
perature and energy scaleT0. In general the prefactors of the
k2 and uvu terms forFz andFx/y will be different seven after
rescalingd; we suppress these prefactors to keep the notations
simple as they will not lead to any qualitative changes in the
results. It is, however, essential to keep track of the dynamics
of Fx/y, i.e., of the ratio of the precession and damping terms
parametrized by an angleu. For small u the dynamics is
overdamped, while foru,p /2 precession dominates. The
value of u depends on the details of the band structure and
the size of the magnetic field, withu~B for small magnetic
fields.

As anticipated ins3d, the x and y directions are coupled
for u.0. The Gaussian part of the action can be diagonal-
ized by introducing the complex fieldF';sFx+iFyd /Î2 as
above, and we obtain

S2fF',Fzg =E d3k

s2pd3

1

b
o
n

Fvn,k
' *f2xksivnd−1gFvn,k

'

+ Fvn,k
z sk2 + rz + uvnudF−vn,−k

z , s6d

where

xksivnd ; sk2 + r' + uvnucosu − ivn sinud−1 s7d

is the propagator ofF'.
As expected from the symmetry arguments given above,

r' and rz turn out to be different, withrz. r' and rz−r'

~B2 for small B. As rz/' increases for increasing fields
frsBd< rs0d+cB2 for small Bg, an antiferromagnetic system
sufficiently close to its quantum critical point can be tuned to
the paramagnetic phase by applying a magnetic fieldsassum-
ing that no first-order transition is inducedd.

When discussing the behavior close to the quantum criti-
cal point, it is important to note that the magnetic field enters

into the calculations both by theB dependence ofr as well as
through theB-dependent angleu. Close to the quantum criti-
cal point tuned by afinite magnetic fieldBc, usBd<usBcd can
be approximated by a constantsas checked belowd, while it
is obviously essential to keep track of the leadingB depen-
dence of the control parameterrsBd~B−Bc.

At this point, it is worthwhile to take a closer look at
S2fF'g in coordinate and time space foru=p /2, i.e., if Lan-
dau damping is absent, as it is the case in an insulator such as
TlCuCl3, sRef. 9d, or in a metal withQ.2kF ssee the Intro-
ductiond. The Gaussian part ofS2fF'g is minimized for a
field F' that obeys the equation,

i]tF
' = HF', H = s− =2 + r'd. s8d

This has the form of a Schrödinger equation for a particle in
a constant potential given byV=r'. If one adds the interac-
tions one obtains a nonlinear Schrödinger equation or Gross-
Pitaevskii equation that describes the physics of weakly in-
teracting Bosons. In this interpretation,r takes over the role
of the chemical potential. The quantum critical point of a
field-tuned insulating antiferromagnetsu=p /2d is therefore
in the same universality class as the quantum phase transition
of a dilute gas of Bosons driven by a chemical potential. The
nonmagnetic phasesr .0d corresponds to a phase withnega-
tive chemical potential where no Bosons are present in the
T→0 limit, while the Bose-Einstein condensed phasesBECd
corresponds to the magnetically ordered phase.

II. RENORMALIZATION GROUP EQUATIONS
AND CORRELATION LENGTH

The physical properties of the effective actions4d can be
analyzed with the help of renormalization group equations.
As a first step it is useful to perform a simple scaling analysis
of SfFg. When momenta, frequencies, and fields are rescaled
as k8=kb, v8=vbz, wherez is the dynamical critical expo-
nent, andF8=Fb−sd+z+2d/2, SfFg remains invariant under
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scaling, provided thatz=2. The massesr',z and the dimen-
sionless coupling constantu;gj0

d/T0 have the scaling di-
mensions 2 and 4−sd+zd, respectively. In an antiferromag-
netic metal, damping as well as precession are linear in
frequency, and the terms therefore behave in the same way
under scaling. In renormalization group terminology this im-
plies that the precession term is an “exactly marginal” per-
turbation with respect to the Hertz fix pointsu=0,u=0d,
which can be expected to modify the behavior of the system
at the quantum critical point.

The renormalization group equations for the parametersT,
r, and u with corrections to scaling can be obtained by
closely following the procedure employed by Millis.15 We
introduce a UV cutoff in the linked cluster expansion of the
free energy and express changes of that cutoff in terms of
changes of the parameters of the model. The renormalization
group sRGd equations are as follows:

]Tsbd
] log b

= zTsbd, s9d

]r'sbd
] log b

= 2r'sbd + 4usbdh2f2
'fr'sbd,Tsbdg + f2

zfrzsbd,Tsbdgj,

s10d

]rzsbd
] log b

= 2rzsbd + 4usbdhf2
'fr'sbd,Tsbdg + 3f2

zfrzsbd,Tsbdgj,

s11d

]usbd
] log b

= f4 − sd + zdgusbd, s12d

whereT is the running temperature, and the expressions for
f2

',z as well as the details of the calculation can be found in
Appendix B. Since the scaling dimension foru is negative
for an antiferromagnetic system in three spatial dimensions,
we only consider contributions up to and including the first
order in u. To this order, the scaling law foru remains
unmodified, andu remains unrenormalized. The parameter
u obtains, however, finite corrections by higher-order
contributions.

Equations s9d and s12d are solved trivially. As rzsbd
. r'sbd, Fz remains massive at the quantum critical point
srz.0 for r'=0d. In the following we will concentrate on
the regimeT, rz, where the influence of the parallel mode
Fz can be absorbed in a redefinition of the barer'.

Equations10d can be solved for low temperatures in the
limits r' /T!1 andr' /T@1, corresponding to the quantum-
critical and srenormalizedd Fermi-liquid regimes, respec-

tively ssee Fig. 1d. This provides us with an expression for
the correlation lengthj'. We refer to Appendix B for the
details of the calculation. In the quantum-critical regimej'

−2

is given by

j'
−2sr' ! Td = r' + 16Î2p3/2zs3/2duT3/2 cossu/2d, s13d

and in the Fermi-liquid regime it has the form,

j'
−2sT ! r'd = r' +

16

3
p3uT2r'

1/2 cosu. s14d

For all u,p /2 one obtains the same qualitative behavior as
in the case of the vanishing, external magnetic field.15 Only
in the Fermi-liquid regime foru=p /2, theT2 correction is
suppressed, as Landau damping is absent in this limit, and
our model is characterized by an energy gap that leads to an
exponential dependence exps−r' /Td of the correlation
length.

III. THERMODYNAMIC QUANTITIES

In this section we calculate the specific heatg, the tem-
perature dependence of the magnetization, the magnetoca-
loric effectGB, and the susceptibility. The free energy can be
calculated directly from RG equations, again following Ref.
15. However, as the quartic couplingu is irrelevant, the lead-
ing behavior in the paramagnetic phase can equivalently be
extracted just from the Gaussian free energy,

F ;
j0

3

T0V
fF − FsT = 0dg

= −
1

4
E d3k

s2pd3 E dv

p
FcothSbv

2
D − 1G

3 arctanF2sr + k2dv cosu

sr + k2d2 − v2 G , s15d

measured in units ofT0V/j0
3, and we have setr ; r'.

In Eq. s15d and in the results shown below we ignore
contributions from the massive, noncritical modeFz, charac-
terized by a finite massrz. To the leading order, the corre-
spondingsanalyticd corrections to the free energy and its de-
rivative are just additive and can be obtained by replacingr
by rz, by settingu=0 and by dividing the result by a factor of
2 sas there are two modes perpendicular toBd in all the
formulas for thermodynamic quantities given below.

A. Specific heat

We first consider the specific-heat coefficientc/T
=gsT,rd=−]2F /]T2. More precisely, we calculateḡ
;gsT,rd−gsT=0,r =0d,

g̃ =
1

4
E d3k

s2pd3 E dx

p

2x

ex − 1
X sk2 + rd3h4sk2 + rd2fsk2 + rd2 + 2T2x2gcosu + 4T4x4 coss3udj

fsk2 + rd4 + T4x4 + 2sk2 + rd2T2x2 coss2udg2 −
4 cosu

k2 C . s16d

This differs from the physical specific heat by aT-independentsbut cutoff-dependentd constantgc cosu.

I. FISCHER AND A. ROSCH PHYSICAL REVIEW B71, 184429s2005d

184429-4



The integrals can be evaluated exactly in certain limits.
For u=p /2 and lowT! r the specific heat shows thermally
activated behavior,

gsu = p/2,T → 0d =
Îp

s2pd3

r2

T3/2 expF−
r

T
G , s17d

as can be expected from a system with a gapped spectrum.
For r !T andT! r, i.e., in the quantum-critical and Fermi-
liquid regimes, respectively, we obtain foru,p /2,

g̃sr ! Td = −
15Î2p

32p2 zS5

2
DT1/2 cosS3

2
uD , s18d

g̃sT ! rd = −
1

6
r1/2 cosu −

p2

60

T2

r3/2 coss3ud. s19d

For u=0, this reproduces well-known results15 scorrecting
some factors of 2d, and as expected from scaling, exponents
do not change in the presence of the precession term. How-
ever, not only the sizes of the prefactors, but, interestingly,
also their signs change when the dynamics begins to be
dominated by precession rather than by damping. In the
quantum-critical regime theÎT correction isnegativefor u
,p /3 and positive foru.p /3. Also in the Fermi-liquid
regime a sign change can be observed in theT2/ r3/2 contri-
bution atu=p /6.

In Fig. 2 we show the scaling functionfg̃sT,rd /Îrg
= fusT/ rd obtained from a numerical integration ofs16d. Due
to the presence of an exactly marginal perturbation, the scal-
ing function isnot completely universal, but it depends on
the parameteru. In an intermediate regime,p /6,u,p /3,
gsT,rd fand the universal scaling functiong̃sT,rd /Îrg shows
a characteristic maximum as a function of temperature, as
can be read from the asymptotical resultss18d ands19d. This
maximum cannot be seen directly at the quantum critical

point sr =0d, but can be seen at any finiter .0, as long as the
critical corrections to the specific heat dominate the noncriti-
cal ones.

B. Magnetization, magnetocaloric effect,
and the Grüneisen parameter

As was argued in Ref. 25, the specific heat is not the most
sensitive thermodynamic quantity close to a quantum critical
point, as it tracks only the variations of the free energy with
respect to temperaturesvertical axis in Fig. 1d, but not with
respect to the control parameterB shorizontal axisd. It is
therefore interesting to study also the magnetization
M =−]F /]B, the susceptibilityx=−]2F /]B2, and theT de-
rivative of M, ]M /]T=−]2F / s]B]Td=−]S/]B. This mixed
derivative has the advantage that—opposite of the specific-
heat coefficient and susceptibility—it vanishes in theT→0
limit, due to the second law of thermodynamics. Therefore it
is not necessary to subtract any constant noncritical contri-
butions when measuring]M /]T.

Very interesting are also the ratios of the thermodynamic
derivatives.25 For a field-tuned critical point, one interesting
combination is

GB = −
s]M/]TdB

Tg
= −

1

T

s]S/]BdT

s]S/]TdB
= U 1

T

]T

]B
U

S
, s20d

which describes the magnetocaloric effect, i.e., the tempera-
ture change in the sample, after an adiabatic change of the
magnetic field.

For pressure-tuned quantum phase transitions, where
] /]B is replaced by] /]p, the quantities related to]M /]T, x
and GB, are the thermal expansion, the compressibilitysand
therefore also the sound velocityd, and the Grüneisen
parameter.25

As both control parameterr andu depend onB, one can
expect two independent critical contributions to]M /]T,

FIG. 2. Scaling function for the specific-heat coefficient
s1/Îrdg̃, where a noncritical contribution has been subtracted,g̃
=gsT,rd−gsT=0,r =0d. The function is not completely universal,
but it depends on the parameteru. A crossover fromg̃~ ±T2 for
T! r to g̃, ±ÎT for r !T can be observed, where the signs depend
on the value ofu. g̃sTd shows a maximum forp /6,u,p /3, as
can be seen more clearly in Fig. 3.

FIG. 3. Specific-heat coefficient as a function of temperature for
u=0.3p and different values ofr. Note that the total specific-heat
coefficientg is always positive. The maximum forr .0 is charac-
teristic for systems withp /6,u,p /3.
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]M

]T
= −

]2F
]T]r

]r

]B
−

]2F
]T]u

]u

]B

=
1

4
E d3k

s2pd3 E dv

p
S 2ev/s2Td

ev/T − 1
D2v2

T2

3 H fsk2 + rd2 + v2gcosu

sk2 + rd4 + v4 + 2sk2 + rd2v2 coss2ud
]r

]B

+
sk2 + rd2fsk2 + rd2 − v2gsinu

fsk2 + rd2 − v2g2 + 4sk2 + rd2v2 cos2sud
]u

]B
J .

s21d

In the limits r ,T→0 we obtain

]M

]T r!T
= −

3Î2p

16p2 zS3

2
DÎT cosSu

2
D ]r

]B

−
15Î2p

32p2 zS5

2
DT3/2 sinS3

2
uD ]u

]B
, s22d

]M

]T T!r
= −

1

12

T
Îr

cosu
]r

]B
−

1

6
ÎrT sinu

]u

]B
. s23d

As r is a relevantperturbation at the quantum critical point,
while u is only marginal, the contributions due to theB
dependence ofu are subleading and can therefore be ne-
glected.

With r ~B−Bc, we therefore find

]M

]T r!T
~ − ÎT cosSu

2
D , s24d

]M

]T T!r
~ −

T
ÎB − Bc

cosu. s25d

Neithers]M /]Tdr!T nor s]M /]TdT!r changes sign as a func-
tion of u, and indeeds]M /]TdT,r is a monotonous function of
T for all values ofu ssee Fig. 4d.

For u=p /2 and at lowT, the temperature derivative of the
magnetization also shows thermally activated behavior,

]M

]T u=p/2,T→0
= −

Îp

s2pd3

r
ÎT

expF−
r

T
G ]r

]B
. s26d

Finally, we evaluate the magnetocaloric effect,

GB = −
s]M/]TdB

Tsg̃ + gc cosud
, s27d

which is given by

GBsr ! Td =

6Î2 cosSu

2
DzS3

2
D

15Î2T cosS3

2
uDzS5

2
D − 32ÎTp3gc cosu

,

s28d

GBsT ! rd =
1

2sr − 6gc
Îrd

, s29d

in the limits r ,T→0. Due to the noncritical contributiongc,
the result forT→0 is not fully universal.25

C. Susceptibility

Since r ,B−Bc and T have the same scaling exponents,
one might expect that the susceptibilityx=]M /]B
=−]2F /]B2 and the specific-heat coefficientg=−]2F /]T2

show very similar behavior. This, however, turns out to be
not correct. The technical reason for this is that the suscep-
tibility in the quantum-critical regime is asingular function
of the sdangerously irrelevantd spin-spin interactionu. Prac-
tically, this implies that a measurement of the susceptibility
is complementary to other thermodynamic measurements, as
it is highly sensitive to a quantity that can otherwise be de-
termined only by neutron-scattering measurements of the
correlation length.

The susceptibilityx=−]2F /]B2 gets contributions both
from theB-field dependence ofu and ofr. We only consider
the leading corrections due tor ssee discussion aboved and
evaluate the quantityx̃sr ,Td=xsr ,Td−xsr =0,T=0d with

x̃ =E d3k

s2pd3 E dv

p
FnBsvdIm

1

sk2 + r + iv cosu − v sinud2

+ Qs− vdIm
1

sk2 + iv cosu − v sinud2G . s30d

Most interesting is the quantum-critical regime, where the
leading correction to the susceptibility takes the form,

x̃sr ! Td < F 1

8p

T
Îr

−
Î2

4p2
ÎT cosSu

2
DGS ]r

]B
D2

. s31d

Note that this expression formallydivergesfor r →0. This
implies that we have to take into account the interaction
effects discussed in Sec. II, and we have to replace the con-
trol parameterr by j'

−2sTd, r +uT3/2, given by Eq.s13d. One
therefore finds

FIG. 4. Scaling functions1/Îrds]M /]Td. While for the specific
heat shown in Fig. 3 it was necessary to subtract a noncritical con-
stant contribution, such a background does not exist for]M /]T.
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x̃ ~
T
Îr

for r , T , sr/ud2/3, s32d

but

x̃ ~
T1/4

Îu
for T . sr/ud2/3. s33d

Scaling is violated, i.e., the susceptibility is no longer of the
form x̃sr ,Td= fusT/ rd /Îr, as the dangerously irrelevant cou-
pling u determinesx̃ in this regime. It is interesting to trace
the origin of the 1/Îr contribution ins31d. It arises from the
vn=0 mode of the Gaussian theorys6d, which leads to a
contribution of the formTSk1/sk2+rd2 to the susceptibility.
Note that the staticv=0 contribution does not depend on the
dynamics; i.e., it does not depend onu. However, the corre-
lation lengthj'sTd given in Eq.s13d does depend smoothly
on u, which leads to a slightu dependence ofx̃.

In the Fermi-liquid regime, the susceptibility is given by

x̃sT ! rd = S−
1

4p2
Îr cosu +

1

48

T2

r3/2 cosuDS ]r

]B
D2

,

s34d

while for u=p /2 and lowT! r it shows thermally activated
behavior,

xsu = p/2,T → 0d = X Îp

s2pd3
ÎT expF−

r

T
GCS ]r

]B
D2

.

s35d

The rapid crossovers between theT2, T, andT1/4 regimes are
shown in Fig. 5.

IV. SCATTERING RATE

Due to energy and momentum conservation, the scattering
of electrons from spin fluctuations is most efficient close to
“hot lines” on the Fermi surface, whereEk=Ek±Q=0 andQ is
the ordering vector of the antiferromagnet. In order to deter-
mine how spin precession modifies the results we calculate

the scattering rate as a function ofu. We will neglect all
orbital effects of the magnetic field and will not try to calcu-
late the conductivity and the Hall effect. For an extensive
discussion of orbital effects and magnetotransport in nearly
antiferromagnetic metals see Ref. 24, which does not con-
sider, however, the effects of spin precession.

In second-order perturbation theory the lifetime of the
spin-up electron scattering from fluctuations ofF' at T=0 is
given by26

1

tk
↑ = 2gs

2o
k8
E

0

ek

dv Im xk−k8svddfv − sEk
+ − Ek8

− dg, s36d

wheregs is a coupling constant,Ek
+/− andvF

+/− are the energy
and velocity of spin-up and spin-down electrons, andx is the
spin-fluctuation spectrum of Eq.s7d,

xqsvd =
1

vq + r + iv cosu − v sinu
, s37d

with vq=sq±Qd2/q0
2. We split the momentum integration in

an integral over the Fermi surface and an energy integration
ed3k8=eedk8 /vF

− edEk8
− and integrate first overEk8

− and then
over v to obtain

1

tk
↑ <

gs
2

vF
−s2pd3 E E dk8

3Xcosu lnF svk−k8 + rd2 + 2Ek
+ sinu + sEk

+d2

svk−k8 + rd2 G
+ sinu arctanF − Ek

+ cosu

vk−k8 + r + Ek
+ sinu

GC s38d

<
gs

2q0
2

vF
−s2pd2Ek

+ minH Ek
+

2dk
2 cosu,

p

2
− uJ , s39d

wheredk=r +sdk /q0d2 and dk is the distance ofk+Q from
the Fermi surface or, approximately, the distance ofk from
hot lines on the Fermi surface. Analogously we obtain for
spin-down electrons

1

tk
↓ <

gs
2q0

2

vF
+s2pd2Ek

− minH Ek
−

2dk
2 cosu,

p

2
− uJ , s40d

where the indices1 and 2 have been exchanged with re-
spect to Eq.s38d. The scattering rate is strongly dependent on
the distance from the hot lines; at the quantum critical point
and fordk /q0<0 the scattering rate is linear in the quasipar-
ticle energy. Far away from the hot lines and the quantum

critical point the usual scattering rate 1/tk
↑,↓~Ek

+,−2
is

recovered.24 The main result of this section is that the spin-
precession term does not lead to a qualitative change in the
scattering rate.

V. DISCUSSION

In this paper, we discussed the field-induced quantum
phase transition of a clean, three-dimensional antiferromag-

FIG. 5. ]M /]T as a function of temperature foru=0.3p and
different values ofr. At the quantum critical point we obtain
]M /]T,−ÎT while ]M /]T,−T/Îr for T! r.
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netic metal, restricting our attention to the nonmagnetic side
of the phase diagram. The main question was how the inter-
play of the precession of the spins in the presence of a finite
magnetic field and Landau damping modifies the quantum
critical behavior.

One main qualitative result of our analysis is that the criti-
cal behavior isnot completely universal, as it depends on a
continuous variableu that parametrizes the ratio of the pre-
cession and damping terms in the effective action. While
critical exponents do not depend onu, this parameter
strongly changes the scaling functions and even the sign of
leading corrections, e.g., to the specific heat.

A requirement for the validity of our analysis is that the
two modesFx,y perpendicular to the magnetic field are char-
acterized by the same mass. In the presence of sizable spin-
orbit couplings, this will be the case only if the crystal has a
sufficiently high symmetry and if, furthermore, the external
magnetic field is applied along the symmetry direction of a
crystal.

Presently, we are not aware of any experiments that show,
for example, the maximum in theT dependence of the
specific-heat coefficient that we predict forp /6,u,p /3.
Note that in systems such as CeCu5.2Ag0.8 sRef. 1d or
CeCu3.8Au0.2 sRef. 2d strong anisotropies prohibit the preces-
sion of the spin, i.e.,u=0. Under what conditions can large
values ofu be expected? Obviously, large uniform magneti-
zations are required. In heavy Fermion systems with Kondo
temperatures of the order of a few Kelvin, one can introduce
strong magnetic polarizations with moderate external fields,
and it should therefore be possible to induce sizable values
of u. A different class of systems which might be of interest
in this context are ferromagnetic materials. If it is possible to
suppress only the staggered component of the magnetization
in such systems, either by external fields, pressure, or dop-

ing, the critical theory within the Hertz approach will be
characterized by a finitesand again sizabled u.

As long as the ordering vectorQ of the antiferromagnet
can connect the spin-up and spin-down Fermi surfacessQ
,kF

+ +kF
− or, more precisely,Ek

+=Ek±Q
− =0 for a line of mo-

mentakd, Landau damping is present andu,p /2. In con-
trast, one findsu=p /2 in all systems where no such connec-
tion exists sQ.kF

+ +kF
−d. However, the transition fromu

,p /2 to u=p /2 is not expected to be smooth, as the inter-
actions of the spin fluctuations diverge and become
relevant15,27 at the point whereQ=kF

+ +kF
−.

According to our analysis, the susceptibility]M /]B is a
particularly interesting experimental quantity to study close
to a field-driven quantum critical point. First of all, it is
expected to be much more sensitive to small deviations from
criticality, compared to changes in other thermodynamic
quantities ssee Fig. 5d. Second, it allows us to measure
the correlation length, a quantity that cannot be extracted
from other thermodynamic quantities, as forB=Bc we obtain
from s31d,

xsTd − xsT = 0d
T

~ jsTd. s41d

Third, it strongly violatesT/ sB−Bcd scaling. This deviation
from scaling forx can be used to show that the relevant
critical theory is above its upper critical dimension, a central
question for the interpretation of quantum criticality in sys-
tems such as CeCu6−xAux or YbRh2Si2.

2,4 All of these three
statements are actually independent of the value ofu; they
apply equally for a dynamics that is overdamped,u!1, or
for a BEC system such as TlCuCl3 with u=p /2. Note that in
pressure-tuned quantum critical points the compressibilityk
sand therefore the sound velocity28d plays the same role asx
for field-tuned quantum phase transitions. An overview of
the qualitativeT dependence of the specific heat and suscep-
tibility is shown in Fig. 7.

Field-tuned quantum phase transitions in metals allow us
to study quantum critical behavior with a tuning parameter
that can easily be controlled and with a conjugate field—the
uniform magnetization—that can be directly measured. They

FIG. 6. Susceptibility as a function of temperature foru=0.2,
u=0.01, and different values ofr. Curves for other values ofu look
essentially identical and are not shown. Note that the susceptibility
is much moresensitive to small deviations from the quantum criti-
cal point than the specific-heat coefficient or]M /]T sc.f. Figs. 3
and 6 where much larger values forr have been usedd. The T1/4

cusp at the quantum critical pointfEq. s33dg is rapidly washed out
by tiny deviations from the critical magnetic field and replaced by
the linear dependence of Eq.s32d.

FIG. 7. Qualitative behavior of specific-heat coefficientg and
magnetic susceptibilityx in various regimes of the phase diagram.
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are therefore especially well suited to answer some of the
central questions in the field of quantum-critical metals, for
example, whether or not such systems can be described in
terms of simple spin-fluctuation theories, such as those that
have been used in this paper.
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APPENDIX A: CUBIC TERMS IN THE
EFFECTIVE ACTION

In this appendix we briefly discuss whether cubic terms
F3 are present in the low-energy, effective Lagrangian. AsF
carries the momentumQ, the presence of such terms is for-
bidden by momentum conservation in most systems, with the
exception of magnetic structuresfe.g., body-centered cubic
sbccd latticesg, where the sum of the three ordering vectors
adds up to 0. If such a system has Ising symmetry, then a
cubic term does exist and the magnetic-field-driven transition
will be first order. However, forxy symmetry perpendicular
to the magnetic fieldsthe case mostly discussed in this pa-
perd, a rotationally invariant cubic term of the formF'

3 does
not exist. While terms such asBFzuF'u2 are allowed by
symmetry, they lead effectively only to a renormalization of
the uF'u4 interaction asFz remains massive. We therefore
neglect such terms.

APPENDIX B: DERIVATION OF RG EQUATIONS

Following Millis’ treatment,15,29 we perform the
renormalization-group analysis on the free energy after hav-
ing converted all Matsubara sums to integrals. Although we
restrict our calculations to systems in three spatial dimen-
sions and with a dynamical critical exponent ofz=2, we
nonetheless keep the variablesd and z in the calculation in
order to make the origin of certain factors more transparent.

The free energy can be obtained via a linked cluster ex-
pansion in the coupling constantu. The scaling dimension of
u is 4−sd+zd, which is negative for an antiferromagnetic
system in three spatial dimensions. To the first order inu,
only the diagram in Fig. 8 contributes to the free energy. Up

to the first order inu, the free energyF is therefore given by

F = FG + ufsIx + Ix* + Ixzd2 + 2sIx
2 + Ix*

2 + Ixz
2 dg, sB1d

where

FG = −
1

2
E

0

L d3k

s2pd3E
0

G dv

p
cothSbv

2
D

3 arctanF2sr + k2dv cosu

sr + k2d2 − v2 G sB2d

is the Gaussian free energy measured in units ofT0V/j0
3, with

the cutoffsL andG; Ix is given by

Ix ;E d3k

s2pd3

1

b
o
n

xksivnd

=E
0

L d3k

s2pd3E
0

G dv

p
cothSbv

2
D

3
v cosu

sr + k2d2 − 2sr + k2dv sinu + v2 , sB3d

and Ix* , Ixz are defined analogously.
As a next step, we separate out of the momentum and

frequency integrals in the expressions on the right-hand side
of sB1d the regions given byhLùkùL /b,Gùvù0j and
hLùkù0,GùvùG /b2j. Considering that

Ix + Ix* = 2
]FG

]r'

, Ixz = 2
]FG

]rz
, sB4d

the change inF upon such a variation of the cutoff can be
expressed as a change ofr' and rz, and this leads to the
equations,

]r'sbd
] log b

= 2r'sbd + 4usbdh2f2
'fr'sbd,Tsbdg + f2

zfrzsbd,Tsbdgj,

sB5d

]rzsbd
] log b

= 2rzsbd + 4usbdhf2
'fr'sbd,Tsbdg + 3f2

zfrzsbd,Tsbdgj,

sB6d

FIG. 8. Diagram contributing to the free energy inOsud. The
different contractions of the internal indices of the fields involved
have been made explicit on the right hand side, where the dashed
line represents the quartic interactionu.
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for the running massesr'sbd, rzsbd, where f2
' and f2

z are
given by

f2
'sr',T d = K3L3E

0

G dv

p
cothSbv

2
D

3
2vfsL2 + r'd2 + v2gcosu

fsL2 + r'd2 + v2g2 − 4sL2 + r'd2v2 sin2 u

+
zG

p
E

0

L d3k

s2pd3 cothSbG

2
D

3
2Gfsk2 + r'd2 + G2gcosu

fsk2 + r'd2 + G2g2 − 4sk2 + r'd2G2 sin2 u
,

f2
zsrz,T d = K3L3E

0

G dv

p
cothSbv

2
D v

srz + L2d2 + v2

+
zG

p
E

0

L d3k

s2pd3 cothSbG

2
D G

srz + k2d2 + G2 .

sB7d

In the following we assume that the system is close to the
quantum critical point at temperatures much lower thanrz. In
this case,f2

zsrz,T d can be set to zero, and the renormalization
group flow ofr' is determined byf2

'sr' ,T d only. There are
two contributions tof2

', one from the renormalization due to
the separated momentum shell, where momentum is set on
shell k=L, and one from the renormalization due to the fre-
quency shell withv=G. For subsequent calculations we note
that

f2
'sr',Td − f2

'sr',0d

= K3L3E
0

G dv

p
FcothSbv

2
D − 1G

3
2vfsL2 + r'd2 + v2gcosu

fsL2 + r'd2 + v2g2 − 4sL2 + r'd2v2 sin2 u

+ Ose−G/Td. sB8d

In other words, the contribution of the frequency shell renor-
malizes the zero-temperature properties only and is exponen-
tially suppressed at finite temperatures.

In order to obtain an expression for the correlation length,
we first substituter'sbd=R'sbdb2 to eliminate the naive
scaling and then formally integrate Eq.sB5d,

R'sbd = r0
' + 8E

0

ln b

dxe−2xusexdf2
'fR'sexde2x,Tezxg.

sB9d

We then perform an expansion in temperature,

R'sbd , D'sbd + RT
'sbd + dR'sbd, sB10d

where three terms contribute.
The first termD'sbd is the running mass at zero tempera-

ture,

D'sbd = r0
' + 8E

0

ln b

dxe−2xusexdf2
'fD'sexde2x,0g.

sB11d

The integrand can now be expanded inD' which leads to the
following expression:

D'sbd , r0
' + 8f2

's0,0dE
0

ln b

dxe−2xusexd ——→
b→`

r0
' − rc

'

; r', sB12d

and this defines the parameter that characterizes the distance
from the critical point.

The other two terms insB10d are of the first order in
temperature. One contribution is due to an explicit depen-
dence off2

' on the running temperature,

RT
'sbd = 8E

0

ln b

dxe−2xusexdhf2
'fR'sexde2x,Tezxg

− f2
'fR'sexde2x,0gj, sB13d

and dR'sbd originates from the temperature dependence of
the running mass,

dR'sbd = 8E
0

ln b

dxe−2xusexdhf2
'fR'sexde2x,0g

− f2
'fD'sexde2x,0gj. sB14d

This term is of the order ofu2, and it will be neglected from
now on.

The inverse square of the correlation lengthj' is given
by

j'
−2 = lim

b→`
hDsbd + RT

'sbdj

= r' + lim
b→`

8E
0

ln b

dxe−2xusexdK3L3 3 E
0

G dv

p
FcothS v

2TezxD − 1G 2vhfL2 + R'sexde2xg2 + v2jcosu

hfL2 + R'sexde2xg2 + v2j2 − 4fL2 + R'sexde2xg2v2 sin2 u

sB15d
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=r' + 16Ld+z−2KdT
2/zE

lnsT1/z/Ld

`

dxusexLT−1/zdesz−2dxE
0

` dv
p

scothv − 1d

3
4LzezxvhfL2 + R'sexlT1/zde2xL2T−2/zg2 + 4L2ze2zxv2jcosu

hfL2 + R'sexlT1/zde2xL2T−2/zg2 + 4L2ze2zxv2j2 − 16fL2 + R'sexlT1/zde2xL2T−2/zg2v2L2xe2zx sin2 u
, sB16d

where the transformations ex→exL−1T1/z andv=v /2Tezx are
introduced, andusexLT−1/zd=u0sexLT−1/zd4−sd+zd. Expression
sB16d for the correlation length can now be evaluated in the
quantum-critical and Fermi-liquid regimes.

In the quantum-critical regime we can neglect the depen-
dence of the integrand ofsB16d on R' and extend the lower
limit of the x integral to −̀ . Using the following integral:

E
0

`

dj
s2jdn

sinh2 j
= 2nGsndzsnd, n = 0,1,2, . . . , sB17d

we obtain

j'
−2 = r' + 16

Kd

zcosSd − 2

2z
pDGS1 +

d − 2

z
DzS1 +

d − 2

z
D

3 uTsd+z−2d/z cosSd − 2

z
uD . sB18d

In the Fermi-liquid regime and for low temperatures, we
can replace the running massR' in sB16d by the control
parameterr'. It is convenient at this point to introduce yet
another variable transformation of the form e2x8=r'T−2/ze2x.
To the lowest order we can then neglect the termTr'

−z/2 in the
integrand. Furthermore, we can extend the lower limit of the
x integral to −̀ , thereby inducing an error of order
Osr'

1/2/Ld2−d+z and obtain

j'
−2 = r' + 16

p2

12

d − z

sinSd − z

2
pDKduT2r'

sd−z−2d/2 cosu

sB19d

in the Fermi-liquid regime.
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