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A magnetic field applied to a three-dimensional antiferromagnetic metal can destroy the long-range order
and thereby induce a quantum critical point. Such field-induced quantum critical behavior has been the focus
of many recent experiments. We theoretically investigate the quantum critical behavior of clean antiferromag-
netic metals subject to a static, spatially uniform, external magnetic field. The external field not only suppresses
(or induces in some systejnantiferromagnetism, but also influences the dynamics of the order parameter by
inducing spin precession. This leads to an exattiyginalcorrection to spin-fluctuation theory. We investigate
how the interplay of precession and damping determines the specific heat, magnetization, magnetocaloric
effect, susceptibility, and scattering rates. We point out that precession can change the sign of thed_TEeading
correction to the specific-heat coefficiaT)/T and can induce a characteristic maximune()/T for certain
parameters. We argue that the susceptibilityoM/dB is the thermodynamic quantity that shows the most
significant change upon approaching the quantum critical point, and which gives experimental access to the
(dangerously irrelevapspin-spin interactions.
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The study of quantum phase transitions is currently a very0,'6 where other scenarios have been propdg&imilarly
active field of research in theoretical as well as experimentaéxperimentdin field-tuned YbCy_Al, appear to be consis-
condensed-matter physics. Particularly in a large number dint with spin-fluctuation theory, which is not found to be the
metals—mostly heavy Fermion or transition-metalcase in YbRBSi,, where magnetic order is suppressed by
compounds—the critical fluctuations associated with a quartiny magnetic field$. Recently, in CeColn(Refs. 7 and B
tum phase transition induce anomalous behavior in thermahe superconducting order was suppressed by a magnetic
dynamic and transport quantities such as diverging specifidield—it is at the moment a controversial question whether
heat coefficients or a linear resistivity quite distinct from thethe observed anomalous behavior is related to a supercon-
behavior of a conventional Fermi liquid. ducting quantum critical point or whether magnetism plays a

Experimentally, there are three main methods to use imole in this system.
tuning a system towards a quantum critical point: doping, Another interesting class of systemsinsulatorssuch as
pressure, and magnetic field. Doping has the disadvantagdCuCls,° SrCw(BO3),,*° or BaCuSjOg,* where antiferro-
that it induces disorder, and it cannot be easily adjustednagnetic order has beanducedby the application of a
within a single sample. These problems are absent if pressureagnetic fieldB. These transitiorffscan be interpreted as a
is used as the control parameter of the quantum phase traBose-Einstein condensatiofsee below of spin-1 excita-
sitions. However, the presence of a pressure cell makes maripns. The energy of the “spin-up” component of such triplets
experiments difficult. For this reason, many recentis lowered byB until it condenses at a critical field=B,
experiments'? investigate field-tuned quantum critical be- thereby inducing an antiferromagnetic order perpendicular to
havior, where an external magnetic field is used to controthe magnetic field.
the distance from the quantum critical point. Generally it is In contrast to classical transitions, the dynamics, i.e., the
expected that the presence of a magnetic field changes tiiemporal quantum fluctuations, of the order parameter deter-
universality class of the transition, as in its presence timemines the nature and universality class of a quantum phase
reversal invariance is broken. In this paper, we will thereforetransition. For example, at the critical point of an insulating
theoretically analyze the quantum critical behavior of aantiferromagnet, the dynamics of the order paramétean
clean, itinerant antiferromagnet in three dimensions, subjedie describe® as in a Klein-Gordon equatio@?f—Vz)CIl In
to a static, spatially uniform, external magnetic fi@d such a system, typical frequenciesscale linearly with the

Such a situation has been investigated in a number afhomentumw o g* wherez=1 is the dynamical, critical expo-
experiments—® For example, in CeGWAgys (Ref. ) and nent. In contrast, in a metal the excitation of particle-hole
CeCuy Aug, (Ref. 2 magnetic order can be suppressed bypairs leads to a Landau dampigf the antiferromagnetic
moderate magnetic fields. In these systems the quantum critbrder parametefs,+V?)®, and therefore=2. Here we as-
cal behavior induced by a magnetic fielappears to be sumed that the ordering vect® is sufficiently small,Q
qualitatively different, compared to the critical properties for < 2kg, such that low-energy particle-hole pairs with momen-
vanishing field(controlled by pressure or dopipgln the  tum Q exist.
presence of a field these systems seem to fdlitwe predic- A magnetic field will have two main effects: first it will
tions from spin-fluctuation theoty*°for three-dimensional suppress(or in some casésalso inducg magnetic order.
nearly antiferromagnetic metals. This is not the caseBor More interesting is the second effects, it induces a precession
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§ where r measures the distance from the quantum critical
g point, and momentak are given relative to the
§ ,/""Fenni liquid antiferromagnetic-ordering wave vect@. The |w,| term
" regime arises from théLandau) damping of the spin fluctuations by
Ofldered gapless fermionic excitations in the vicinity of points on the
i /Qcp Fermi surface that are connected @y(assumingQ < 2kg).
0 0 How will this effective action change in the presence of a

magnetic field? Firsty=r(B) will acquire a magnetic-field
dependence. For example,will grow for larger fields in
FIG. 1. Schematic phase diagram of a quantum phase transitioByStems where antiferromagnetism is suppressef. [§ec-
with a control parameterc B-BL. ond, the magnetic field breaks the rotational invariance and
components ofb parallel, and perpendicular 8 will have

of the magnetic momentS perpendicular to the magnetic different massest, _and_ i r_espectlvely. Third, gs_argued
field above, the magnetization will precess arouidthis is de-

' scribed by an extra terrfin coordinate and time space for

#S=B X S, (1)  conveniencg

control parameter r

and therefore modifies the dynamics of the order parameter.

The linear time derivative also translates to a dynamical ex- B

ponentz=2, and therefore arises the question of how the g'g[q)]zf dedrb' i(® X gP)
precession competes with damping in a metal that is charac- 0

terized by the same. For insulating systems the physics of

the precession term has been widely discud&&dThe cor- = f f b(i D0 Dy = i1DyaDy)
responding quantum critical behavior as a function of the

magnetic field of such an insulating magnet in an external ~ =

field is actually well known: it is expected to be in the same = f f b®, aP,, 3)

universality class as the quantum phase transition of a low-

density interacting Bose-Einstein condensate as a function of

chemical potential. The linear time derivativg ¥ of the in the effective action, whereis parallel toB (taken to point
Schrodinger equation can in this case be identified with thénto the Z direction), and we have introduced the complex

precession ternil) (see below. _ _ field @, =d,+id,. Note that(3) breaks time-reversal invari-

In the following, we study the interplay of ohmic damping ance. Therefore such a term is absentBerO0.
and spin precession terms in the case of a nearly antiferro- Apove, we deduced the form of the effective action on
magnetic metal. First we present the model for the orderphenomenological grounds, but it can also be derived from a
parameter field and a short derivation of the effective actionmore explicit calculation, starting from a Hubbard-type

Then we list the renormalization-group equations for the pamodel of electrons moving in the presence of a magnetic
rameters of.the model and use them to der!ve the behavior gfg|q, Hzzko(ek"'Bo-(Zm)‘//lo'pka-'-UEnLnT' Here, the mag-
the correllqtmn length. In the foIIovylng sections we cglculatenetic field enters only via a Zeeman term; we do not take
the specific heat, thermal expansion, magnetocaloric effechpita| effects into account, assuming that Landau levels are
and susceptibility. We show for example that sufficiently yroadened by disorder or thermal effects. Note that in the
large magnetic fields can induce sign changes in the criticalyperimentally most relevant heavy Fermion system, orbital
contribution to the specific heat, and that the susceptibility issffects are strongly suppressed, compared to contributions
particularly suited to probe the vicinity of the quantum criti- from the Zeeman term as the effective masses and magnetic
cal point. Finally, we investigate the influence of tRdield susceptibilities are very large in those systéfs.
on the scattering rate of the electrons. For simplicity, we assume that the antiferromagnet is
commensuratéincommensurate antiferromagnets show the
same qualitative behavior for all quantities discussed below

Following Hertz!* we describe the critical behavior of an and introduce a real order-parameter vec®(x,t) as a
antiferromagnetic metal entirely in terms of the effective Hubbard-Stratonovich field that decouples the spin-density
Ginzburg-Landau-Wilson theory of an order-parameter fieldpart of the interaction. Following Hertz, the electrons are
®(r,t) that represents the fluctuatiistaggerefimagnetiza- now integrated out to obtain an effective action for the order
tion of the system. parameter, generating priori infinitely many interaction

In the absence of a magnetic field, the quadratic part oferms. We truncate the effective action, retaining the leading
the action takes the forth (assuming negligible spin-orbit frequency and momentum dependence of the Gaussian
coupling, part of the action as well as a constdntRef. 4) interaction

I. MODEL AND EFFECTIVE ACTION
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term, since all other terms are irrelevant in the renormalizainteraction in the spin-spin channel, am@a,(k,iwn) is the

tion group sensé'® (cubic terms are discussed in susceptibility in the presence of the finite fi@devaluated at
Appendix A. For the quadratic part one obtainS,  j=0. Calculating these susceptibilities on the paramagnetic
:(1/[3)2“,,@3”,;([5@'/3+X2a/(k-iwn)]@a, whereJisthe side of the transition we obtain

—a)n,—k

S=S§[®]+ 5[],

10 & r, +|wycosd+k? w,Sin @ 0
Sz[‘l)]:’[—g WE ® - w,siné I, +|wy|cosf+k? 0 D, . (4)
T n .
" 0 0 r,+|wn| + k2
g d3k, d3k,
S[®]= 54 (271_)3 o (277)3n2n O(kq +ky+ kg +ky) 5n1+n2+n3+n4(‘l)wnfkl . q)“’nzvkz)((l)wn3vk3 . ¢wn4,k4)- (5)
1"

Here B=1/kgT and w,=2mn/B is a Matsubara frequency into the calculations both by tH&dependence afas well as
andk is measured again from the ordering wave vector. Thehrough theB-dependent anglé. Close to the quantum criti-
coefficients ofk? and|w,|cosd are made to be unity by an cal point tuned by dinite magnetic fieldB., 8(B) = 6(B,) can
appropriate choice of the bare length scéjeand the tem- be approximated by a constafas checked belowwhile it
perature and energy scalg. In general the prefactors of the is obviously essential to keep track of the leadBiglepen-
k? and|w| terms for®, and®,,, will be different(even after dence of the control paramete(B) < B-B..
rescaling; we suppress these prefactors to keep the notations At this point, it is worthwhile to take a closer look at
simple as they will not lead to any qualitative changes in thes,[® '] in coordinate and time space fé= /2, i.e., if Lan-
results. Itis, however, essential to keep track of the dynamicgau damping is absent, as it is the case in an insulator such as
of @y, i.e., of the ratio of the precession and damping termsT|CuCl,, (Ref. 9, or in a metal withQ > 2ke (see the Intro-
parametrized by an angle. For small § the dynamics is duction. The Gaussian part d&[®'] is minimized for a
overdamped, while fort~ /2 precession dominates. The fie|d & that obeys the equation,
value of # depends on the details of the band structure and
the size of the magnetic field, with B for small magnetic igdt=H®:, H=(-V?+r,). (8)
fields.

As anticipated in(3), the x andy directions are coupled
for 6>0. The Gaussian part of the action can be diagonal
ized by introducing the complex field+ = (<I>X+i<I>y)/\s’§ as

This has the form of a Schrédinger equation for a particle in
a constant potential given By=r , . If one adds the interac-
tions one obtains a nonlinear Schrédinger equation or Gross-
Pitaevskii equation that describes the physics of weakly in-

above, and we obtain teracting Bosons. In this interpretatiantakes over the role
Pk 1 of the chemical potential. The quantum critical point of a
SZ[QJL,QDZ]:J 3—2 ‘bin,k*[sz(iwn)_l]‘bin,k field-tuned insulating antiferromagnéf=1/2) is therefore
(2m)° B in the same universality class as the quantum phase transition
+ @7, (14 [w) D2, (6)  of adilute gas of Bosons driven by a chemical potential. The
”’ m nonmagnetic phade > 0) corresponds to a phase witlkega-
where tive chemical potential where no Bosons are present in the

L . L T— 0 limit, while the Bose-Einstein condensed ph&éBEC)
Xliog) = (K +1, +|wgcost~iwysing) ™ (7) corresponds to the magnetically ordered phasep.
is the propagator ofb+.
As expected from the s_ymmetry a}rguments given above, IIl. RENORMALIZATION GROUP EQUATIONS
r, andr, turn out to be dl_fferent, W|trrz>_rl anq r=r AND CORRELATION LENGTH
«B? for small B. As r,, increases for increasing fields
[r(B)=r(0)+cB? for small B], an antiferromagnetic system  The physical properties of the effective acti@h can be
sufficiently close to its quantum critical point can be tuned toanalyzed with the help of renormalization group equations.
the paramagnetic phase by applying a magnetic feddum-  As a first step it is useful to perform a simple scaling analysis
ing that no first-order transition is induced of §@]. When momenta, frequencies, and fields are rescaled
When discussing the behavior close to the quantum critiask’ =kb, o’ =wb? wherez is the dynamical critical expo-
cal point, it is important to note that the magnetic field entersnent, and®’'=db(*#2/2 g®] remains invariant under
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scaling, provided that=2. The masses*Z and the dimen- tively (see Fig. 1 This provides us with an expression for
sionless coupling constant= ggS/TO have the scaling di- the correlation lengtt¥,. We refer to Appendix B for the
mensions 2 and 4(el+2z), respectively. In an antiferromag- details of the calculation. In the quantum-critical regiﬁé
netic metal, damping as well as precession are linear ifs given by

frequency, and the terms therefore behave in the same way 5 _ = 3 3
under scaling. In renormalization group terminology this im- §°(r, <T)=r +16V2777(3/2uT"*cod 6/2), (13)

plies that the precession term is an “exactly marginal” perang in the Fermi-liquid regime it has the form,
turbation with respect to the Hertz fix poiit=0,u=0),
which can be expected to modify the behavior of the system
at the quantum critical point.
The renormalization group equations for the paramékers

r, and u with corrections to scaling can be obtained by < _
closely following the procedure employed by Milswe [N the case of the vanishing, external magznenc fiélnly
introduce a UV cutoff in the linked cluster expansion of theN the Fermi-liquid regime fo=a/2, the T* correction is
free energy and express changes of that cutoff in terms gfuppressed, as Landau damping is absent in this limit, and

changes of the parameters of the model. The renormalizatiofr model is characterized by an energy gap that leads to an
group (RG) equations are as follows: exponential dependence dxp,/T) of the correlation

length.
J1(b)
dlogb

16
EXT<r)=r, + Eﬁuﬁri’z cosé. (14

For all 6< /2 one obtains the same qualitative behavior as

=77(b), 9) IIl. THERMODYNAMIC QUANTITIES

In this section we calculate the specific heatthe tem-
or (b) _ n 2 perature dependence of the magnetization, the magnetoca-
dlogb =2, (b) + 4u(b){2f; [r  (b), 7(b)] + f3lr,(b), TO) 1}, loric effectI's, and the susceptibility. The free energy can be
(10) calculated directly from RG equations, again following Ref.
15. However, as the quartic couplings irrelevant, the lead-
ing behavior in the paramagnetic phase can equivalently be

ar,b i i
(9:;(9; = 2r (b) + 4u(b){f§[rl(b),7(b)] + 361 (b), TO) ]}, extracted just from the Gaussian free energy,
&
(11) F= U [F-F(T=0)]
0
au(b) 1 d% f dw{ h(;m) }
=4- =——| —= | —|coth—|-1
Jloghb [4—=(d+2)]u(b), (12 2] emi) o co >
where7 is the running temperature, and the expressions for < arcta 2(r + k¥ w cos o (15)
f5* as well as the details of the calculation can be found in (r+k¥2-o? |’

Appendix B. Since the scaling dimension foris negative . ) 3
for an antiferromagnetic system in three spatial dimensiondnéasured in units ofgV/ &, and we have set=r,.
we only consider contributions up to and including the first N Ed. (15) and in the results shown below we ignore
order inu. To this order, the scaling law fou remains contributions from the massive, noncritical mallg charac-
unmodified, andd remains unrenormalized. The parametert€rized by a finite mass,. To the leading order, the corre-
9 obtains, however, finite corrections by higher_orderspondlng(analytlc) corrections to the free energy and its de-
contributions. rivative are just additive and can be obtained by replacing
Equations (9) and (12) are solved trivially. Asr,(b) by r,, by settingf=0 and by dividing the result by a factor of

>r,(b), ®, remains massive at the quantum critical point2 (as there are two modes perpendicularBpin all the
(r,>0 for r, =0). In the following we will concentrate on formulas for thermodynamic quantities given below.
the regimeT <r,, where the influence of the parallel mode
&, can be absorbed in a redefinition of the bare

Equation(10) can be solved for low temperatures in the We first consider the specific-heat coefficieot T
limits r , /T<1 andr , /T>1, corresponding to the quantum- =¢(T,r)=-dF/JT%. More precisely, we calculatey
critical and (renormalizedl Fermi-liquid regimes, respec- =y(T,r)—¥(T=0,r=0),

A. Specific heat

1 d [ dx 2x ((k2+r)3{4(k2+r)2[(k2+r)2+2T2x2]cose+4T4x4cos(39)}_4cos¢9> 16

""4) enP) me-1 [+ 1)%+ T + 20+ 1)2T2C cod26) 1 K2
This differs from the physical specific heat byTendependentbut cutoff-dependentconstanty, cosé.
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FIG. 2. Scaling function for the specific-heat coefficient  FIG. 3. Specific-heat coefficient as a function of temperature for
(1/\r)7y, where a noncritical contribution has been subtracted, ¢=0.37 and different values of. Note that the total specific-heat
=y(T,r)-¢(T=0,r=0). The function is not completely universal, coefficienty is always positive. The maximum for>0 is charac-
but it depends on the parametérA crossover fronfyoc £ T2 for teristic for systems withr/6< 6< /3.

T<r toy~ +\T for r <T can be observed, where the signs depend
on the value off. %(T) shows a maximum forr/6< < /3, as

can be seen more clearly in Fig. 3 point (r=0), but can be seen at any finite- 0, as long as the

critical corrections to the specific heat dominate the noncriti-

; . . . calones.
The integrals can be evaluated exactly in certain limits.

For 6=m/2 and lowT<r the specific heat shows thermally
activated behavior, B. Magnetization, magnetocaloric effect,
and the Griineisen parameter

Jr 12 r
ANO=7/2T—0)= (2m)3 T3 exp[— 1_-} Y As was argued in Ref. 25, the specific heat is not the most
sensitive thermodynamic quantity close to a quantum critical
as can be expected from a system with a gapped spectrumpoint, as it tracks only the variations of the free energy with
Forr<T andT<r, i.e., in the quantum-critical and Fermi- respect to temperatui@ertical axis in Fig. 1, but not with

liquid regimes, respectively, we obtain fér /2, respect to the control parametBr (horizontal axi$. It is
— therefore interesting to study azalso 2the magnetization

~ _ 1527 (5 3 M=-dF/4B, the susceptibilityy=-9°F/4B?, and theT de-

A<= §(§>TU2 C°S<§‘9)’ 18 rivative of M, 9M/aT=—¢F/(dBdT)=-3S/3B. This mixed
derivative has the advantage that—opposite of the specific-

1 2 T2 heat coefficient and susceptibility—it vanishes in the:0
T <r)=-=r"?cosd- ——5 cog30). (19)  limit, due to the second law of thermodynamics. Therefore it
60r is not necessary to subtract any constant noncritical contri-

. . butions when measuringM/JT.

For ¢=0, this reproduces well-known resdftscorrecting Very interesting are also the ratios of the thermodynamic

some factors of g and as expected from scaling, exponentsyeiyatives? For a field-tuned critical point, one interesting
do not change in the presence of the precession term. HoWs mpination is

ever, not only the sizes of the prefactors, but, interestingly,

also their signs change when the dynamics begins to be

dominated by precession rather than by damping. In the (OM1dT)g 1(69dB)r 14T

quantum-critical regime theT correction isnegativefor 6 I'g=- T =_?(&S/<9T) = T8l (20)

< /3 and positive ford> /3. Also in the Fermi-liquid I B s

regime a sign change can be observed inTthe®/? contri-

bution at6=m/6. _ which describes the magnetocaloric effect, i.e., the tempera-
In Fig. 2 we show the scaling functiofi(T,r)/\r]  ture change in the sample, after an adiabatic change of the

=f4(T/r) obtained from a numerical integration @f6). Due  magnetic field.

to the presence of an exactly marginal perturbation, the scal- For pressure-tuned quantum phase transitions, where

ing function isnot completely universal, but it depends on /4B is replaced by/ dp, the quantities related @M/ dT, x

the parametep. In an intermediate regimer/6<<w/3, andTg, are the thermal expansion, the compressibiligd

v(T,r) [and the universal scaling functié}(T,r)/v‘ﬁ shows therefore also the sound velogityand the Griineisen

a characteristic maximum as a function of temperature, aparametef®

can be read from the asymptotical result8) and(19). This As both control parametar and # depend orB, one can

maximum cannot be seen directly at the quantum criticaexpect two independent critical contributionsdtd / JT,
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‘T ' ' ' ' M N T r|ar
NN, sEeXp -z |- (26)
FON . T g T bt To0 (277') \T T|dB
o 005 \\ T N — Finally, we evaluate the magnetocaloric effect,
=N S e e (M/3T)g
<2 _ N e - [g=—-——— (27)
----- 0=mn72 TS . B ~ '
2 01 - 0-3m8 R e T(y+ ¥ coso)
-—- 9=m/4 ~o o . . .
I— ezﬁ,g T which is given by
— 6=0 N 2
L N [ 0
sl I B R B B B 612 C0<5>§<5)
0 0.5 | 1.5 2 2.5 3

Igr<T)=

T/I' = 3 5 ”_3
B 15y2T cos -6 |¢| = | — 32VT#>y. coséh
FIG. 4. Scaling functior(1/\r)(dM/dT). While for the specific 2 2

heat shown in Fig. 3 it was necessary to subtract a noncritical con- (28)
stant contribution, such a background does not existkrJT.

1
2 2 Ig(T<r)=——, (29
aMz_é}'ﬂ_a}"a_a B 21 — 6y
ar dTordB  dT96B
2 in the limitsr, T— 0. Due to the noncritical contributiom,,

_1 d f d_w(&m) “ the result forT— 0 is not fully universal?®
4) 2md) w\eT-1) T?
{ [(K?+r)?+ w’]cosd o
(K2 +1)%+ w* + 2(k2 + 1)20? 05 26) IB
(2 + (K2 +1)2 = w?]sin 0 ae}
[(K2+1)2— 22+ 4(K2 +1)20? co2(6) 3B | -

C. Susceptibility

Sincer ~B-B. and T have the same scaling exponents,
one might expect that the susceptibility=dM/oB
=—¢F/9B? and the specific-heat coefficient=-¢F/JT?
show very similar behavior. This, however, turns out to be

(21 not correct. The technical reason for this is that the suscep-
tibility in the quantum-critical regime is aingular function

of the (dangerously irrelevajptspin-spin interactionu. Prac-
tically, this implies that a measurement of the susceptibility
is complementary to other thermodynamic measurements, as
it is highly sensitive to a quantity that can otherwise be de-
termined only by neutron-scattering measurements of the
correlation length.

The susceptibilityy=-#F/9B? gets contributions both
from the B-field dependence of and ofr. We only consider
the leading corrections due to(see discussion aboyvand
evaluate the quantity(r,T)=x(r,T)—x(r=0,T=0) with

As r is arelevantperturbation at the quantum critical point, ok de 1
while 6 is only marginal the contributions due to th8 X= Sf {nB((u)lm
dependence of) are subleading and can therefore be ne- (2m)

In the limitsr, T— 0 we obtain
M 3\zw§< ) Tood 2]
ITrer 1672 2/ B
1527 (5) 32 & (3 )ae
- T 60—, 22
3272 322 ¢ 2°) B (22

oM 1T 1~ 90
— =-——FCO0 SH———\I‘T sinf—. (23
IT T<r 12\r B 6 B

(K>+r1 +iwcosd— wsin )?

glected. 1 }
i - i +0(- w)lm . 30
With r «B-B,, we therefore find (- o) I+ 10 00— wsing)? (30)
M o« — \Fr co;(ig), (24) Most interesting is the quantum-critical regime, where the
T ret 2 leading correction to the susceptibility takes the form,
M - 1T V2 = S(e) (ﬁr)z
- X = cosé. 25 r<T)=| _——F-——VIcog = — . (31
dTt<r  \B-B (29 <D [877\? 472" } B 31

Neither(dM/dT), <1 nor (IM/dT)1«, changes sign as a func- Note that this expression formallgivergesfor r —0. This

tion of 6, and indeeddM/dT)+, is a monotonous function of implies that we have to take into account the interaction

T for all values of# (see Fig. 4. effects discussed in Sec. I, and we have to replace the con-
For #=/2 and at lowT, the temperature derivative of the trol parameter by 512('|')NT+U'|'3’2 given by Eq.(13). One

magnetization also shows thermally activated behavior,  therefore finds
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Uy the scattering rate as a function 6f We will neglect all

orbital effects of the magnetic field and will not try to calcu-
late the conductivity and the Hall effect. For an extensive
discussion of orbital effects and magnetotransport in nearly

-0.01

. 002 antiferromagnetic metals see Ref. 24, which does not con-
=2 0.03 sider, however, the effects of spin precession.
= In second-order perturbation theory the lifetime of the

0.04 spin-up electron scattering from fluctuationsdof atT=0 is

given by26
-0.05
-0.06 I ] I | ) ] I | I ] I = Zg 2 dw Im Xk k’(w)g[w (Ek Ek/)]! (36)
0 005 01 015 02 025 k

T/TO +/- +/-

wheregs is a coupling constang,’~ andvg ~ are the energy
FIG. 5. 3M/4T as a function of temperature f@=0.37 and  and velocity of spin-up and spin-down e|eCtr0n5a and the

different values ofr. At the quantum critical point we obtain SPin-fluctuation spectrum of E¢7),
IM /3T~ =T while JM/dT~=T/\r for T<r.

1
= , 37
T Xe(@) wq+ T +iwcosf—wsin g 37
~ _ / ) ) ) . )
X N for r<T<(r/u??, (B2 with wq:(qu)zqu. We split the momentum integration in
an integral over the Fermi surface and an energy integration
but fdsk’:ffdk’/v;de;, and integrate first ovel,, and then
1/4 over o to obtain
X —= for T>(r/u? (33

vu 1 )
i 3 dk
Scaling is violated, i.e., the susceptibility is no longer of the Tk UF(ZW)

form X(r, T)=f4(T/r)/\r, as the dangerously irrelevant cou- (i + )2+ 2E; sin 0+ (E})?
pling u determinesy in this regime. It is interesting to trace X| cosfIn ( 12
the origin of the 14r contribution in(31). It arises from the O T
w,=0 mode of the Gaussian theof§), which leads to a —E' cosd
contribution of the formT=,1/(k?+r)? to the susceptibility. + sin g arcta L (38)
Note that the stati@=0 contribution does not depend on the Wk +T+HEsInG
dynamics; i.e., it does not depend énHowever, the corre- )
lation length¢  (T) gi in Eq.(13) d d d thl
ation leng &, (T) given in Eq (13) does depend smoothly — _Qs% E* min cosa T_gt (39)
on ¢, which leads to a sligh# dependence of. ve(2m? 252
In the Fermi-liquid regime, the susceptibility is given by
) ) where §,=r+(5k/qg)? and &k is the distance ok+Q from
~ 1~ 1T or the Fermi surface or, approximately, the distancé dfom
T<r)=(-—V +— , N ' !
XT=r) ( 42" cosé gre”2 COSH)(&B) hot lines on the Fermi surface. Analogously we obtain for
(34) spin-down electrons

2 —
while for #=7/2 and lowT<r it shows thermally activated 1_ 92%5 £~ min B cosd. T — (40)
behavior, o vi2m? 288 2 )
Jar ar where the indicest and — have been exchanged with re-
=mle, 1 = U= 3 spect to Eq(38). The scattering rate is strongly dependent on
x(0=7/2,T— 0) (2 p VT ex A Eq(38). Th ly d d

the distance from the hot lines; at the quantum critical point
(35) and for 6k/qgy= 0 the scattering rate is linear in the quasipar-

The rapid crossovers between e T, and T regimes are t|g|§ energy. Far away from the hot lines and the_tzqufemtum
shown in Fig. 5. critical point the usual scattering rate #4/=E;~ is
recovered* The main result of this section is that the spin-

precession term does not lead to a qualitative change in the
IV. SCATTERING RATE scattering rate.

Due to energy and momentum conservation, the scattering
of electrons from spin fluctuations is most efficient close to
“hot lines” on the Fermi surface, wheEg=E,.o=0 andQ is
the ordering vector of the antiferromagnet. In order to deter- In this paper, we discussed the field-induced quantum
mine how spin precession modifies the results we calculatphase transition of a clean, three-dimensional antiferromag-

V. DISCUSSION

184429-7
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- | ' ' o] 1~ uT?
0.025 quantum critigzﬂ/
g 0.02 o tT'?
? = - ,’I + 12 r~T
£ 0015 £ X~ V2T
= = ’ 172
I} g ordered X~T/x
= 001 g
L g phase
0.005
0
C 0
0 0.05 0.1 0.15 0.2 0
T/TO control parameter r
FIG. 6. Susceptibility as a function of temperature €s¢0.2, FIG. 7. Qualitative behavior of specific-heat coefficignand

#=0.01, and different values of Curves for other values aflook ~ Magnetic susceptibility in various regimes of the phase diagram.
essentially identical and are not shown. Note that the susceptibility
is much moresensitive to small deviations from the quantum criti- ing, the critical theory within the Hertz approach will be
cal point than the specific-heat coefficient@v/JT (c.f. Figs. 3 characterized by a finiteand again sizabjef.
and 6 where much Iarggr valugs forhave_ been_ usedThe T4 As long as the ordering vectd@ of the antiferromagnet
cusp at the quantum critical poifiq. (33)] is rapidly washed out  can connect the spin-up and spin-down Fermi surfd€es
by tiny deviations from the critical magnetic field and replaced b S Vo i to- i
tr?/e Iinyear dependence of E2 g p Y<ki+kg or, more pre0|§elyljik—Eth—O for a line of mo-
: mentak), Landau damping is present amd< /2. In con-

) o ) .. trast, one find¥)=7/2 in all systems where no such connec-
netic metal, restl’lctlng our attention to the nonmagnet|c S|inon exists (Q> k;+k'_:) However, the transition frong
of the phase diagram. The main question was how the inter= /2 tg 9= /2 is not expected to be smooth, as the inter-
play of Fhe_precessmn of the spins in the presence of a finitgctions  of the spin fluctuations diverge and become
magnetic field and Landau damping modifies the quantumg|evants27 at the point wherd=k: +k-.
critical behavior. o . According to our analysis, the susceptibiliéi/dB is a

One main qualitative result of our analysis is that the criti-narticularly interesting experimental quantity to study close
cal t_)ehawor Isnot completely unlvgrsal, as it depends 0N atg a field-driven quantum critical point. First of all, it is
continuous variable that parametrizes the ratio of the pre- gypected to be much more sensitive to small deviations from
cession and damping terms in the effective action. Whilegiticality, compared to changes in other thermodynamic
critical exponents do not depend of\ this parameter gyantties(see Fig. 5 Second, it allows us to measure
strongly changes the scaling functions and even the sign ghe correlation length, a quantity that cannot be extracted

leading corrections, e.g., to the specific heat. from other thermodynamic quantities, as BB, we obtain
A requirement for the validity of our analysis is that the o (31)

two modesd, , perpendicular to the magnetic field are char-
acterized by the same mass. In the presence of sizable spin- x(M -x(T=0)
orbit couplings, this will be the case only if the crystal has a T < &(T).
sufficiently high symmetry and if, furthermore, the external
magnetic field is applied along the symmetry direction of aThird, it strongly violatesT/(B-B) scaling. This deviation
crystal. from scaling fory can be used to show that the relevant
Presently, we are not aware of any experiments that shovgritical theory is above its upper critical dimension, a central
for example, the maximum in th@ dependence of the question for the interpretation of quantum criticality in sys-
specific-heat coefficient that we predict far6< #</3.  tems such as CeGyAu, or YbRh,Si,.>* All of these three
Note that in systems such as CeGAig,g (Ref. ) or  statements are actually independent of the valu®; dhey
CeCuy AU, » (Ref. 2 strong anisotropies prohibit the preces- apply equally for a dynamics that is overdampéek 1, or
sion of the spin, i.e.#=0. Under what conditions can large for a BEC system such as TICuGlith §=7/2. Note that in
values ofé be expected? Obviously, large uniform magneti-pressure-tuned quantum critical points the compressibity
zations are required. In heavy Fermion systems with Konddand therefore the sound velodty plays the same role ag
temperatures of the order of a few Kelvin, one can introducdor field-tuned quantum phase transitions. An overview of
strong magnetic polarizations with moderate external fieldsthe qualitativel dependence of the specific heat and suscep-
and it should therefore be possible to induce sizable valueibility is shown in Fig. 7.
of 6. A different class of systems which might be of interest  Field-tuned quantum phase transitions in metals allow us
in this context are ferromagnetic materials. If it is possible toto study quantum critical behavior with a tuning parameter
suppress only the staggered component of the magnetizatidhat can easily be controlled and with a conjugate field—the
in such systems, either by external fields, pressure, or dopsiform magnetization—that can be directly measured. They

(41)
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are therefore especially well suited to answer some of théo the first order iru, the free energyF is therefore given by
central questions in the field of quantum-critical metals, for

example, whether or not such systems can be described in

terms of simple spin-fluctuation theories, such as those that Fz=Fatu[(l+1+1.22+ 202412 +12 B1
have been used in this paper. tUllltle +la + 20+ T+ 10 (BD)
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APPENDIX A: CUBIC TERMS IN THE 2(r + k?)w cosh
EFFECTIVE ACTION X arcta AR —a? (B2)

In this appendix we briefly discuss whether cubic terms
@3 are present in the low-energy, effective LagrangiandAs
carries the momentur®, the presence of such terms is for- is the Gaussian free energy measured in unifEDV’v’gg, with
bidden by momentum conservation in most systems, with théhe cutoffsA andT’; | is given by
exception of magnetic structur¢s.g., body-centered cubic
(bco) latticed, where the sum of the three ordering vectors

adds up to O. If such a system has Ising symmetry, then a 3

. . S . g d°k .
cubic term does exist and the magnetic-field-driven transition I, = W_E xx(iwp)
will be first order. However, foxy symmetry perpendicular ™ F
to the magnetic fieldthe case mostly discussed in this pa- A Bk (T de Bw

; ; ; ; 3 —
pen, a rotationally invariant cubic term of the ford’ does = pyncl cotf(;)
not exist. While terms such aB®,|® |? are allowed by o @m)3 )y
symmetry, they lead effectively only to a renormalization of © COSH
the |®  |* interaction asP, remains massive. We therefore X 22 + K wsin g+ w2’ (B3)
neglect such terms. (r+k)"-2r +kJwsinf+ o
APPENDIX B: DERIVATION OF RG EQUATIONS .
andl, 1,. are defined analogously.
Following Millis' treatment!®>?°® we perform the As a next step, we separate out of the momentum and

renormalization-group analysis on the free energy after havirequency integrals in the expressions on the right-hand side
ing converted all Matsubara sums to integrals. Although weof (B1) the regions given bfA=k=A/b,I'=»=0} and
restrict our calculations to systems in three spatial dimenfA=k=0,I'=w=I'/b?. Considering that

sions and with a dynamical critical exponent of2, we

nonetheless keep the variablésnd z in the calculation in

order to make the origin of certain factors more transparent. 0F 0F
The free energy can be obtained via a linked cluster ex- L+l =2—, 1z=2 , (B4)
pansion in the coupling constamt The scaling dimension of I o

u is 4—(d+z), which is negative for an antiferromagnetic

system in three spatial dimensions. To the first ordeu,in

only the diagram in Fig. 8 contributes to the free energy. up€ change inF upon such a variation of the cutoff can be
expressed as a change of andr,, and this leads to the

equations,

ar, (b)
dloghb

=2r, (b) + 4u(b){2f;[r , (b), Z(D)] + f3[r,(b), Z(D)]},
(BS)

.
%

FIG. 8. Diagram contributing to the free energy @fu). The ar(b)
different contractions of the internal indices of the fields involved
have been made explicit on the right hand side, where the dasheof7 logb
line represents the quartic interactian (B6)

= 2r,(b) + 4u(b){f3 [r . (b), 7(b)] + 3f3[r(b), T(b) ]},
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for the running masses, (b), r,(b), where f; and f5 are Inb
given by R.(b)=rg +8 f dxeZu(e) 5 [R. (e9e?, T,
0

r
d
o, 7= K3A3f = COtI'('g—;) (B9)
T
0 We then perform an expansion in temperature,

20[(A?+r1 )’ + w?]cos6

x [(A%+71 )%+ 0?? - 4(A%+1 | )2w?sir? 0 R, (b) ~ A, (b) +Ry(b) + oR, (b), (B10)
(A dPk B where three terms contribute.
* . o (2m)3 cot o : The first termA | (b) is the running mass at zero tempera-
ure,
2IT(k>+r ,)?+T?]cosé -
2 2, 1212 _ 2(L2 212 o ’ n
[(k + I’L) +T ] 4(|( + I‘L) T SII"I2 6 Al(b) — ré_ + gf dxe‘zxu(ex)ff[AL(é)ezx,O].
0
r
dw ) 1) B11
= eonl g o
0 z The integrand can now be expanded\in which leads to the
a (M d%k ar r following expression:
+ —f zCoth — | ——5——.
mJo (2m) 2 J(r,+k)“+T Inb bsoe
(B7) A (b)~ry+ 8f2l(0,0)f0 dxeZu(e) —— rg —rg
In the following we assume that the system is close to the _
=r,, (B12)

quantum critical point at temperatures much lower thamn
this casef3(r,, 7)) can be set to zero, and the renormalizationgnd this defines the parameter that characterizes the distance
group flow ofr | is determined byg(rL,T) only. There are  from the critical point.

two contributions tof,, one from the renormalization due to  The other two terms in(B10) are of the first order in

the separated momentum shell, where momentum is set aemperature. One contribution is due to an explicit depen-
shellk=A, and one from the renormalization due to the fre-dence off, on the running temperature,

quency shell withw=I". For subsequent calculations we note

that B b .
Ry (b)=8 dxe 2u(e9){f,[R, (€)e*, Te]
f%(rlrﬂ_fé(rL!O) 0
r - f5[R, (€9€*,0]} (B13)
d 1 1
:K3A3f —w{cotI'n(@)—l] S
o 7 2 and SR, (b) originates from the temperature dependence of
20[(A2+T )2+ w?]cosd the running mass,
X
[(AZ+7 )2+ ?]? = A(A%+71 | )2w® SiI? 6 Inb
— 2% €L X
+ O(e—F/T). (B8) oR, (b) = sfo dxe “u(e9){f; [RL(eX)eZ 0]
In other words, the contribution of the frequency shell renor- - f5[A, (e)e*,0]}. (B14)
malizes the zero-temperature properties only and is exponen-
tially suppressed at finite temperatures. This term is of the order af?, and it will be neglected from
In order to obtain an expression for the correlation lengthnow on.
we first substituter  (b)=R, (b)b? to eliminate the naive The inverse square of the correlation lendthis given
scaling and then formally integrate E@5), by

£2= lim {A(b) + Ry (b)}

_ b " do p 20{[A%+ R, (€9e¥]? + w3cosf
_ 2X, 3 _ —
=rotim 8f | DXETUENK AT X f . {COth( 2Tezx) 1] ([A2+ R, ()PP + 0?2 — A A2+ R, (€)* Pe? Sir? 0

(B15)
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o) o0

=r, + 16Ad+z_2KdT2/Zf
In(TY2/A)

dXU(EAT 12)el= 2 f
0

PHYSICAL REVIEW B 71, 184429(2005

d
—U(COthv -1)
o

4N V(A% + R, (ENTH9)eAT 242 + 4A%%€*)?}cos §

x {[A? + R, (ENTY)ePA2T 272 + 402?922 - 1 A% + R (ENTY9)ePA 2T 2722 A2e® sir? 6

(B16)

where the transformationg-e e*’A™1TYZ andy = w/2Te* are
introduced, andu(e* AT 2 =uy(e* AT 19442 Expression

In the Fermi-liquid regime and for low temperatures, we

can replace the running mass in (B16) by the control

(B16) for the correlation length can now be evaluated in theparameter | . It is convenient at this point to introduce yet

guantum-critical and Fermi-liquid regimes.

another variable transformation of the forf'er | T-22e?*,

In the quantum-critical regime we can neglect the depentg the lowest order we can then neglect the té’mﬁz in the

dence of the integrand ¢B16) on R, and extend the lower
limit of the x integral to -c. Using the following integral:

oy B
fo dgsinﬁé—ZnF(n)g(n), n=0,1,2,..., (B17)
we obtain
Ky d-2 d-2
E°=r, +16 {d—z )F(1+ . >§<1+ . )
Z2C0§ —
2z

integrand. Furthermore, we can extend the lower limit of the
X integral to -o, thereby inducing an error of order
O(r*2/ A)?>=%*7 and obtain

2.(d-z-2)/2
KquT?r( 82272 cos9

(B19)

in the Fermi-liquid regime.
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